
Noname manuscript No.
(will be inserted by the editor)

Analysing Software Prefetching Opportunities in
Hardware Transactional Memory

Marina Shimchenko · Rubén Titos-Gil ·
Ricardo Fernández-Pascual ·
Manuel E. Acacio · Stefanos Kaxiras ·
Alberto Ros · Alexandra Jimborean

Received: date / Accepted: date

Abstract Hardware Transactional Memory emerged to make parallel pro-
gramming more accessible. However, the performance pitfall of this technique
is squashing speculatively executed instructions and re-executing them in case
of aborts, ultimately resorting to serialization in case of repeated conflicts.
A significant fraction of aborts occur due to conflicts (concurrent reads and
writes to the same memory location performed by different threads). Our pro-
posal aims to reduce conflict aborts by reducing the window of time during
which transactional regions can suffer conflicts. We achieve this by using soft-
ware prefetching instructions inserted automatically at compile-time. Through
these prefetch instructions, we intend to bring the necessary data for each
transaction from the main memory to the cache before the transaction itself
starts to execute, thus converting the otherwise long latency cache misses into
hits during the execution of the transaction. The obtained results show that
our approach decreases the number of aborts by 30% on average and improves
performance by up to 19% and 10% for two out of the eight evaluated bench-
marks. We provide insights into when our technique is beneficial given certain
characteristics of the transactional regions, the advantages and disadvantages
of our approach, and finally, discuss potential solutions to overcome some of
its limitations.

This project has received funding from the European Research Council (ERC) under the
European Unions Horizon 2020 research and innovation programme (grant agreement No
819134), the Spanish MCIU and AEI, as well as the European Commission FEDER funds,
under grant RTI2018-098156-B-C53, and the Swedish VR grant number 2016-05086.

M. Shimchenko · S. Kaxiras · A. Jimborean
Department of Computing Systems, Uppsala University
E-mail: first.last@it.uu.se

R. Titos-Gil · R. Fernández-Pascual · M. E. Acacio · A. Ros · A. Jimborean
Computer Engeneering Department, University of Murcia
E-mail: rtitos@um.es, ricardof@um.es, meacacio@um.es, aros@ditec.um.es,
alexandra.jimborean@um.es



2 Marina Shimchenko et al.

Keywords Hardware Transactional Memory · Parallel programming ·
Compiler · Software-prefetching

1 Introduction

The switch to multicores, following the demise of Dennard’s scaling in the
mid 2000’s and the more recent slowing of Moore’s law, brought parallelism
into the center stage. Parallel programming is significantly more challenging
than its serial counterpart. In large part, this is due to the intricate synchro-
nization required in many applications. Some parallel models, e.g., for GPUs
and massively-parallel accelerators, have proven very successful in exploiting
parallelism found in specific application classes (e.g., graphics, embarrassingly
parallel scientific computations, etc.) but, admittedly, synchronization in these
approaches is trivial. For any other workload that may be unstructured and
with many inter-dependencies among tasks, extracting parallelism is far more
complicated.

Transactional memory (TM) in general has been proposed as a simpler
alternative to the conventional parallel programming with locks [11]. TM is an
optimistic form of synchronization that speculatively executes transactional
regions concurrently. Whereas with traditional lock synchronization only one
thread at a time can enter a critical section, TM increases concurrent execu-
tion in uncontended scenarios without burdening the programmer. Hardware
implementations of the TM concept (Hardware Transactional Memory) have
already been deployed in commercial processors from IBM [12], Intel [35], and
more recently, ARM [3].

To ensure correctness, HTM ensures that a transaction will fail when two
or more threads conflict. A conflict arises when two or more threads access the
same memory location, and at least one of the accesses is a write. When there
is a conflict, memory changes made by the transaction are discarded, registers
are restored to their former state and the transaction re-runs until it completes
successfully. Usually, to limit speculative execution and avoid infinite re-trying
upon continuous mis-speculation, HTM implementations employ a fallback
lock, which is acquired after a number of aborts to execute the transaction
non-speculatively.

Conflicts are just one example why a transaction must abort in contem-
porary best-effort Hardware Transactional Memory (HTM) systems. Other
sources of abort may include interruptions, page faults or lack of capacity in
caches. In general, aborts are expensive both in execution time and energy due
to the loss of concurrency and the need to re-execute transactions.

This paper focuses on conflict-induced aborts. We make the observation
that by turning long latency loads within transactions into cache hits, we
can decrease the execution time of transactional regions, and thus reduce the
likelihood for conflicts. We depict this concept in Fig. 1. On the left (Fig. 1a),
one can see the timeline with original transactions. They have the potential to
abort each other because of their overlapping duration. In the center (Fig. 1b),



Analysing Software Prefetching Opportunities in HTM 3

a) Baseline b) Perfect cache c) Access phase

T
im

e

P1 P2

B
wx

...

...
wy

...

A
B

wx

...

...
wy

...

C

B
wxConf

...

...
wy

...

C

P1 P2

B
wx

wy

C B
wx

wy

C

P1 P2

...

...

...

B
wx

wy

C

...

...

...

B
wx

wy

C

B Begin Transaction

C Commit Transaction

A Abort Transaction

Transactional

Non-transactional

Conf Conflict signal

wx Write to memory location x

wy Write to memory location y

... Waiting for data

Access phase (non-transactional)

Fig. 1: Motivation for reducing cache misses in transactional regions and consequently their
execution time: a) Our baseline is the original transaction, which includes long latency
operations (such as read operations served from main memory) illustrated by ellipses (...).
Due to the long execution time, the transactions of P1 and P2 overlap leading to a conflict,
which causes P1 to abort and re-run the transaction. b) This case considers a perfect cache
(i.e., all memory accesses are served directly from the cache) which significantly reduces
transactional time and avoids the conflict between P1 and P2 and the resulting abort and
reexecution. c) Finally, this represents our proposal in which we aim to get the benefits of
a near-perfect cache, by moving the long latency operations outside the transactions, in the
so called Access phases, one per transaction, aimed to prefetch the data accessed in the TM
region.

these transactions execute faster since a perfect cache would transform misses
into hits, which reduces their duration, and thus, the chances of a conflict. This
observation gives a major insight into the correlation between the execution of
transactions and the probability of conflicts. To this end, we design a compiler
technique that automatically prefetches the data required by a transactional
region before its execution, ensuring that data is readily available in the cache,
as shown in Fig. 1c.

Our technique excels for transactions that i) abort frequently and ii) incur
a large number of cache misses. We performed an analysis of the applications
in STAMP benchmark suite [20], presented in Fig. 2 which shows the average
number of aborts due to conflicts per committed transaction and the cache
miss ratios for the accesses within a transaction, for the STAMP applications
evaluated in this work. This analysis shows that the best candidates for ben-
efiting from our technique are kmeans-h and labyrinth since both of these



4 Marina Shimchenko et al.

genome kmeans-h kmeans-l labyrinth ssca2 vacation-h vacation-l intruder
0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
Average number of aborts per commited transaction
Cache miss rate during transations

A
ve

ra
g

e
 n

u
m

b
e

r 
o

f a
b

o
rt

s

C
a

ch
e

 m
is

s 
ra

te

Fig. 2: The graph shows the average number of times that transactions abort due to conflicts
before committing (bar and left y axis) and the cache miss ratio for all accesses within
transactions (line and right y axis) for STAMP benchmarks (x axis).

benchmarks have the highest conflict rate at the time that suffer from cache
misses within transactions.

Our simulation results using the Gem5 [4] simulator and applications from
the STAMP benchmark suite show that our approach decreases the number of
aborts by 30% on average and improves performance by up to 19% and 10%
for two (kmeans-h and labyrinth) out of the eight evaluated benchmarks.

This work makes the following contributions:

– We provide a key insight regarding the correlation between the execution
time of transactions and the probability of conflicts.

– We present a compiler technique that performs inter-procedural memory
alias analysis (IPMAA) to detect and prefetch the data required within
transactional regions. We implemented our proposal in the LLVM com-
piler [16].

– We provide an in-depth analysis for the analyzed benchmarks and iden-
tify the key features of transactional regions that can benefit from our
approach.

The rest of the manuscript is organized as follows. Section 2 provides some
background about different implementations of transactional memory. Sec-
tion 3 surveys related work. Section 4 gives an overview of our proposal and
details its main challenges. Section 5 describes our compiler technique in de-
tail. Section 6 describes our hardware extensions. Section 7 introduces our
experimental environment and presents the obtained results. Section 8 iden-
tifies the limitations of our technique and highlights the future improvement
directions. Finally, Section 9 contains the main conclusions of this work.

2 Background on Transactional Memory

In this section we offer an overview of Hardware Transactional Memory (HTM)
and its implementation in commodity processors of Intel [35], IBM [12] and
ARM [3]. Stores within a transaction are executed speculatively, which means



Analysing Software Prefetching Opportunities in HTM 5

that they are only visible to the thread that executes them. When the trans-
action commits, the stores become non speculative and are made visible to
the rest of the threads. If a transaction cannot commit due to a conflict or
any other cause, it aborts and reverts architectural state to that before the
beginning of the transaction: all speculative stores are discarded, and the reg-
ister file checkpoint taken at transaction begin is restored. Currently available
implementations of HTM are best-effort, which means there are no guarantees
that a speculative transaction will ever succeed. In this best-effort designs,
the hardware TM support must be combined with a non speculative path for
transactions to make progress in spite of limited hardware resources, repeated
aborts as a result of high contention, etc. A software abort handler determines
whether an aborted transaction should be speculatively retried, or must take
the fallback path. To maintain atomicity of non speculative transactions,the
traditional lock-based synchronization scheme enforces mutual exclusion: i) no
speculative transactions can begin execution when the lock is held, and ii) all
speculative transactions must subscribe to the lock, so that they are aborted
as a result of a conflict when the cache block that contains the lock is written
upon acquisition.

In general, there are several reasons why a transaction might be aborted in
a best-effort HTM design: data conflicts, insufficient speculative buffering ca-
pacity, unsupported instructions, etc. In certain implementations, such as Intel
TSX, interrupts always cause the abort of a transaction, while in other imple-
mentations such as in IBM Power 8 [17] transactions can survive interrupts.
A fragment of non-transactional code that executes in between transactional
execution is also known as an escape action [21], which reduces the number
of aborts of transactional programs and allows a wider use of transactions. In
this work, we focus on aborts that take place due to data conflicts.

3 Related work

This section surveys related work in hardware, software, or hardware-software
co-design to decrease the abort rate in transactional memory (TM) systems,
since aborts are the main drawback for TM performance.

Diegues et al. [8] avoid aborting transactions that read stale data (i.e. miss
the writes of a parallel transaction) and instead find a valid execution which
allows such transactions to pretend they commit in the past, before their
competitors. This is called a time-warp commit and guarantees correctness.

Ansari et al. [2] propose Steal-on-Abort (SOA) for software TM to change
the transactions order at runtime, if a conflict occurs. Once two transactions
A and B are observed to conflict, they are sequentialized in the following
occurrences, such that B is always scheduled to execute after A completes,
to avoid repeated conflicts. In their follow-up work [1], the authors expanded
their ideas of SOA to HTM, but entail significant changes of the core.

Maldonado et al. [19] propose a kernel-level scheduler targeting repeated
conflicts, as in the case of SOA. Our proposal can handle also conflicts that



6 Marina Shimchenko et al.

occur for the first time and our compiler based optimizations do not require
any changes at the operating system level.

Diegues et al. [9] explore a software scheduler for HTM called Seer. It
gathers statistics at runtime and supplies this information to an on-line prob-
abilistic inference technique that identifies conflict patterns between different
transactions. Seer establishes a dynamic locking scheme to serialize transac-
tions in a fine-grain manner, yet serialization might create a bottleneck when
many threads are involved. Our solution does not rely on additional locking
(other than the fallback path) and therefore is not subject to increased con-
tention.

Other proposals exploit snapshots, i.e. memory captures that always guar-
antee consistent reads, and allow aborting only on write-write conflicts and
ignoring read-write conflicts. Litz et al. [18] in their work on snapshot isola-
tion (SI-TM) allow multiple versions of the same data to coexist in memory,
but require changes both in the memory system and in the HTM design to
guarantee consistency. Their technique can handle read-write conflicts, but
transactions still need to abort on write-write conflicts.

PfTouch [29] avoids resolving page faults in mutual exclusion mode, thus re-
ducing the number of aborts. The page faults are resolved concurrently by the
abort handler while other speculative transactions still run. Similarly, TAPs is-
sue prefetch requests in parallel with the execution of other transactions. Both
approaches are orthogonal as we focus on cache misses and PfTouch focuses
on page faults.

Xiang and Scott [34] propose a design in which the compiler identifies and
instruments potential parts of transactions that generate conflicts instead of
collecting these statistics at runtime. The compiler divides the transactions in
a read-mostly (planning) and a write-mostly (completion) phase and moves the
planning phase out of the parent transaction. Moving part of the transactional
code outside the transaction has some limitations and the authors propose
some workarounds to guarantee atomicity. In our proposal, we duplicate the
read-mostly part of the transaction outside the transactional code, without
affecting atomicity.

Prefetching has been employed by Dash et al. [5,6] targeting distributed
transactions with the goal of hiding network latency and not to reduce con-
flicts. In one proposal [6], the authors prefetch objects identified by the pro-
grammer using manually given hints, i.e. paths to parse the heaps and find the
target objects before their address is computed. Such hints are called symbolic
prefetches. In contrast, our technique is fully automated and does not require
programmer’s intervention. Moreover, their technique allows using stale ver-
sions of an object until the commit time, when the transaction is validated.
The authors do present several workarounds to the shortcomings that can stem
from using stale data (e.g. infinite loops, exceptions), but rely on time bud-
gets allocated to each transaction and checking regularly their read sets. In
contrast, ensuring that the latest version is used in each AP and transaction
comes naturally with our approach, without extra overheads due to checks.
The other proposal [5] focuses on compiler techniques to automatize the def-



Analysing Software Prefetching Opportunities in HTM 7

inition of symbolic prefetches. Yet, overall, these proposals address problems
specific to the communication design of distributed transactional memory and
object definition in Java. For instance, prefetching objects of the type a.m[i][k]
is performed in three consecutive round trips over the network to prefetch a,
then a.m, and a.m[i], which is not the case in our system. To the best of our
knowledge no previous attempts have been made to use software prefetching
to reduce the number of conflict-caused aborts.

Negi et al. [23] prosose transactional prefetching, which is a hardware
prefetcher mechanism targeting transactional writes. In essence, they track
write-set lines that are prefetched on transaction aborts. In contrast, we pro-
pose a software prefetching mechanism that targets all accesses within the
transaction.

In this work, we have retargeted the software Decouple Access Execute
(DAE) model [13] to handle transactional workloads. The software Decoupled
Access Execute (DAE) model [13,15] was previously employed to enable effec-
tive Dynamic Voltage Frequency Scaling in order to reduce the energy expendi-
ture. In this proposal we go beyond simply employing DAE for a new purpose
(reducing conflicts in transactional memory execution), but we significantly ex-
tend the model with support for inter-procedural memory analysis and build-
ing access phases that consist in multiple functions. In contrast, DAE could
previously handle only loops that contain no function calls. By adding support
for following the call graph and identifying memory dependences across loop
bounds and function calls, our proposal yields a more robust version of DAE
that is readily applicable to any application, of high complexity, that couldn’t
have been targeted before.

4 Overview and challenges

To reduce the conflicts of transactional memory execution, we present a com-
piler technique that prefetches the shared data read by transactional regions
ahead of time to speed-up their execution, reduce the overall time spent by
an application executing transactions, and therefore reduce the likelihood for
conflicts to occur. This section outlines the automatic code transformations
performed by our compiler to turn long-latency memory accesses in local cache
hits and the proposed hardware extensions, diving in the details of the encoun-
tered challenges and our solutions to address them.

The target application is transformed such that most of the read-data re-
quired by a transactional region is brought to the cache (prefetched) by a
dedicated Access Phase, prior to its execution. We prefetch variables that es-
cape the scope of the transaction, assuming that accesses performed through
the stack are not shared. Fig. 3 shows an example of the intermediate repre-
sentation (IR) code of an Access Phase (AP) automatically generated by our
compiler to prefetch the data required by the transaction. The original trans-
actional region (shown on the left) is identified as being the code executed
between the TX calls: beginTX and endTX. The tran function delineated by



8 Marina Shimchenko et al.

these calls contains simple computations, a load, and a function call. The called
function, helper, is therefore part of the transactional region as well.

The right-hand side of Fig. 3 shows the modified code after applying our
compiler pass. Each function in the transactional code region has a corre-
sponding access phase function (AP tran and AP helper). Each access phase
function represents a program slice of the loads in the original function, where
leaf-loads are turned into prefetch instructions [13]. The access phase func-
tions replicate the call graph within the transaction and together they build
the corresponding access phase of the transactional code region. Recall the
execution flow shown in Fig. 1, where the transactional code region (shown in
purple) is preceded by a dedicated access phase prefetching its data (shown
in green). Thus, AP tran precedes the execution of the transactional function
tran and calls the corresponding access phase of function helper, AP helper,
as seen in Fig. 3.

Key principles of access phases. The example in Fig. 3 helps to identify
the key principles upon which the access phases are built in order to guarantee
the correctness of the compile-time code transformation. We must ensure that
accesses phases are side-effect free and do not perturb the observable behavior
of the program. Namely, an access phase cannot perform writes that are visible
outside its scope. Access phases are merely designed to prefetch data and add
the minimum number of instructions required, to avoid the runtime overhead.
To this end, the compiler identifies loads of globals and variables that escape
the scope of the transaction and builds the program slice of these target loads.
Departing from the original transactional code region, the compiler first creates
a clone of this region and then filters out all instructions that are not involved
in the address computation of these loads, akin to prior work [13–15,32,33].
All instructions required to compute the target address and to reach the load
in a complex control flow and call graph are preserved. Such instructions may
be computations, control flow, function calls, instructions residing in other
functions, etc. The complete algorithm of our compiler technique is presented
below.

However, building lean, effective, efficient, and side-effect free access phases
is challenging. This becomes a monumental task in the presence of complex
control flow and call graphs, pointers, dynamic data structures or recursive
functions, which are all characteristics exhibited by the transactional memory
applications that we have analyzed (see Section 7). Pointer analysis is noto-
riously difficult for compilers and the difficulty is exacerbated by the inter-
procedural analysis of dependences in order to identify instructions required
for building the access phase (i.e., potentially residing in a different function,
deep in the call graph). We describe next the challenges of identifying the
instructions required for building lean and effective access phases.



Analysing Software Prefetching Opportunities in HTM 9

1 helper()

2 {

3 addr1 = compute address

4 load1 = load addr1

5 use load1

6 }

7 tran()

8 {

9 val = compute value

10 addr = compute address

11 load = load addr

12 call helper()

13 use val

14 }

15 int main()

16 {

17 ...

18 beginTX

19 call tran()

20 endTX

21 ...

22 }

a. Original IR code

1 AP helper()

2 {

3 addr1 = compute address

4 prefetch addr1

5 }

6 AP tran()

7 {

8 addr = compute address

9 prefetch addr

10 call AP helper()

11 }

12 helper()

13 {

14 addr1 = compute address

15 load1 = load addr1

16 use load1

17 }

18 tran()

19 {

20 val = compute value

21 addr = compute address

22 load = load addr

23 call helper()

24 use val

25 }

26 int main()

27 {

28 ...

29 call AP_tran()

30 beginTX

31 call tran()

32 endTX

33 ...

34 }

b. Transformed IR code

Fig. 3: An example of an Access Phase prefetching data required by a transactional region.

4.1 Generating multi-function APs

Transactions often have a complex control flow graph (CFG), including many
function calls. Consequently, the APs must span multiple functions, as they
replicate the original control and call graph. We denote these access phases
multi-function APs.

First, for each callee function, we need to generate an appropriate AP1.
This step applies recursively. Without this step, the original functions would
be called (instead of the corresponding AP), including all the unnecessary

1 If a function is called in two different transactions, we create one AP version for each
call context. AP versions are transaction specific because the selection of the instructions
for each AP depends on how the memory updates performed within the function affect its
callers.



10 Marina Shimchenko et al.

1 int a[3] = {0,1,2}
2 int n = 0;
3 func1()
4 {
5 n = a[1];
6 }
7 func2()
8 {
9 n = a[n];

10 }
11 int main()
12 {
13 beginTX
14 func1();
15 func2();
16 endTX
17 printf(n);
18 }

a. C-code

1 int a[3] = {0,1,2}
2 int n = 0;
3 func1()
4 {
5 val1 = load a[1]
6 store val1 , n
7 }
8 func2()
9 {

10 val2 = load a[n]
11 store val2 , n
12 }
13 int main()
14 {
15 beginTX
16 call func1()
17 call func2()
18 endTX
19 call printf(n)
20 }

b. Original transaction

1 AP_func1 ()
2 {
3 prefetch a[1];
4 }
5 AP_func2 ()
6 {
7 prefetch a[n];
8 //n = ??
9 }

c. AP without IPMAA

1 AP_func1 ()
2 {
3 val1 = load a[1];
4 store val1 , n;
5 }
6 AP_func2 ()
7 {
8 prefetch a[n];
9 //n = a[1]

10 }

d. AP with IPMAA

Fig. 4: IPMAA is mandatory to generate representative Access Phases, that can reach out
and prefetch the required data.

instructions that do not contribute to prefetching, thus increasing the size of
the APs and leading to potential side effects.

Second, a multi-function structure requires inter-procedural memory alias
analysis (IPMAA), as shown in Fig. 4. Fig. 4a shows a simple C-code ex-
ample. The main function contains a transaction that reads and writes the
shared variable n (lines 13–16). The examples in all the figures of this section
assume that multiple threads execute the transactional regions in parallel. The
transaction calls func1 and func2. func1 initializes an index n (line 5). func2
accesses the nth element of the shared array a (line 9) and overwrites the
value of n. Fig. 4b shows the IR corresponding to the C-code. func1 loads
the value from a[1] (line 5) and then stores it to n (line 6). func2 loads a new
value from a[n] (line 10) and stores it back to n (line 11). Fig. 4c shows the
APs for func1 and func2 without an inter-procedural alias analysis (IPMAA).
Since these functions have no information about data dependencies between
them, APs keep only instructions that are necessary for computing the ad-
dresses and for reaching the target loads that reside in the current function.
In this case, a prefetch from AP func2 (line 7) would access an invalid address
because AP func1 did not update n. However, leveraging information about
data dependencies, the store to n in AP func1 would be preserved as part of
the AP (Fig. 4d, line 4) and the prefetch in AP func2 would access the correct
address.

There are two ways to guarantee that all necessary stores are included:
to inline all callee functions within transactional regions or to use IPMAA.
Inlining increases compilation time considerably and not every function is
suitable for inlining. Therefore, we integrated the SVF [27,28] inter-procedural



Analysing Software Prefetching Opportunities in HTM 11

1 int a[3] = {2, 0, 1};
2 int n = 0;
3 tran()
4 {
5 n = a[n];
6 n = a[n];
7 }
8 int main()
9 {

10 beginTx
11 tran();
12 endTX
13 printf(n); // n = 0
14 }

a. Original c-code.

1 int a[3] = {2, 0, 1};
2 int n = 0;
3 tran()
4 {
5 val = load a[n]
6 store val , n
7 val = load a[n]
8 store val , n
9 }

10 int main()
11 {
12 beginTx
13 tran();
14 endTX
15 printf(n); // n = 0
16 }

b. Original IR code

1 int a[3] = {2, 0, 1};
2 int n = 0;
3 AP tran()
4 {
5 val = load a[n]
6 store val , n
7 prefetch a[n]
8 }
9 tran()

10 {
11 val = load a[n]
12 store val , n
13 val = load a[n]
14 store val , n
15 }
16 int main()
17 {
18 AP_tran ();
19 beginTx
20 tran();
21 endTX
22 printf(n); // n = 2
23 }

c. Transformed IR code

Fig. 5: The access phase non-side-effect-free problem

alias analysis. SVF is a static tool that enables scalable and precise inter-
procedural dependence analysis for C and C++ programs. Yet, including stores
in the AP breaks the side-effect freedom property, leading us to the next
challenge.

4.2 Side-effect free APs

Building side-effect free and efficient APs is a challenge, as illustrated by the
example in Fig. 5. The original C-code is shown in Fig. 5a. It contains a
transaction which updates the shared variable n. If we consider one thread
execution for simplicity, the printed result of n should be equal to 0. Fig. 5b
shows the corresponding intermediate representation (IR) code of the C-code
snippet. Fig. 5c illustrates the IR with the generated AP (AP tran). It contains
one load (line 5), a load changed to a prefetch instruction (line 7), and the
store to n (line 6) due to data dependencies between the prefetch instruction
and the store. If AP tran and the transaction execute one after another, the
printed value would be incorrect because the store in the AP changed the
program’s behavior.

To solve this problem APs should either prohibit stores to global variables
or provide a mechanism to undo their changes. After having analyzed both
options, we concluded that the former would discard a significant fraction of
loadsfrom being placed in an AP, since they depend on stores to global vari-
ables (or to variables that escape the scope of the function). So, this solution
is only viable for very simple transactions.



12 Marina Shimchenko et al.

Our solution consist on undoing writes. To this end, we designed a more
general approach in which the compiler wraps APs in their own doomed trans-
action, creating transactional access phases (TAPs). The compiler ensures
that, if not aborted for other causes, TAPs always explicitly abort at the end
by executing the abort transaction instruction. In this way, all the changes per-
formed during the execution of a TAP are discarded, keeping them side-effect
free with respect to the state of the globally visible memory. Furthermore,
prefetched data stays in the cache (recall that we prefetch the read sets), de-
livering the same benefits as the APs. The compiler provides a specific abort
handler for TAPs, since they do not require a fallback path as they are never
retried. Consequently, TAPs do not subscribe nor wait on the fallback lock
used by regular transactions, and as a result TAPs can execute concurrently
with a non speculative transaction. However, TAPs come at a cost, due to the
overhead of starting and aborting a transaction, equivalent to executing three
contended atomic operations (e.g., test-and-set or compare-and-swap) [26,35].
Additionally, transactional reads incur non-fixed costs as well [26]. Thus, it
could be beneficial to select between the two design options on a transaction
basis. We leave this investigation for future work.

4.3 Nack Access Phases

The drawback of using TAPs is a potential increase in the number of conflicts
and execution time in consequence. To avoid that TAPs abort regular trans-
actions, we propose a hardware extension inspired by power transactions [7],
which allows transactions to acquire elevated priority by employing requester-
loses as conflict resolution policy (instead of the default requester-wins) so
as to survive conflicts with others. In our particular case, conflicts between
TAPs and regular transactions are always resolved in favour of the latter:
upon detection of conflicting accesses from TAPs, regular transactions send
negative acknowledgments (nacks) in response, which forces the abort of the
TAP. Conflicts among threads with equal priority (i.e., TAP-TAP, or among
regular transactions) are resolved using the default requester-wins policy.

4.4 Loops and recursions

Loops and recursions are handled differently than linear code (Fig. 6). Fig. 6a
shows a simple C-code example, which contains a while loop (lines 3–6) and
the linear code (line 7). This loop exhibits a loop carried dependence through
n. Fig. 6b illustrates the corresponding IR for the C-code snippet. Each as-
signment to n is transformed into a load and a store, thus producing in total
two store instructions (line 6, line 9). The store in the loop is vital to be pre-
served in the AP due to the loop carried data dependence. Removing it would
cause the prefetch instruction (Fig. 6c, line 5) to access incorrect addresses.
The store in the linear code does not contribute to the computation of the tar-
get address of the prefetch instruction and therefore, can be safely removed.



Analysing Software Prefetching Opportunities in HTM 13

1 tran()
2 {
3 while(cond)
4 {
5 n = a[n];
6 }
7 n = a[n];
8 }

a. Original c-code.

1 tran()
2 {
3 while(cond)
4 {
5 val = load a[n]
6 store val , n
7 }
8 val = load a[n]
9 store val , n

10 }

b. Original IR code

1 AP tran()
2 {
3 while(cond)
4 {
5 prefetch a[n]
6 }
7 prefetch a[n]
8 }

c. Corresponding AP without a
proper loop handling.

1 AP tran()
2 {
3 while(cond)
4 {
5 val = load a[n]
6 store val , n
7 }
8 prefetch a[n]
9 }

d. Corresponding AP with
proper loop handling.

Fig. 6: Why loops and recursions should be handled differently than linear code

In short, in addition to identifying (i) the instructions that contribute to the
computation of the target address of the load (line 5 Fig. 6d) and (ii) the
control-flow instructions required to reach the load (line 3,4,7), the compiler
detects (iii) data dependencies between stores and loads (read after write) and
preserves in the AP the stores that feed loads that are required in order to
prefetch from the correct address (line 6). When handling loops and recursive
functions, for identifying the stores that feed loads, the compiler must account
for loop carried dependencies and for dependencies carried by the recursions.

5 Compile-time code transformation

We implemented our technique in the LLVM 3.8 compiler framework [16].
The compile-time transformations follow the three main steps presented in
Algorithm 1.

5.1 Step 1: Preparation

The first step is to prepare several aspects. The compiler parses all functions
and identifies transactions, creates a clone for each transactional region (the
future AP), and places a call to the clone before the corresponding transac-
tion. At this point, all APs are merely copies of the original transactional
regions, extracted in their own functions. We also temporarily extract loops
into functions to process them as regular functions. Fig. 7a and Fig. 7b show
the original C-code and the pseudo-code without any transformations. After



14 Marina Shimchenko et al.

Algorithm 1: The main compiler algorithm

Step1: for each function do
TX = identify transactions();
AP TX = copy(TX);
place before TX(AP TX);
for each loop in AP TX do

LP = extract loop();
end
Step2: for each function do

WPA = WPA();
VECT = ∅;
for each AP TX do

find APInstr(AP TX, WPA, VECT);
end
for each AP TX do

delete inst notInVECT(AP TX, VECT);
replace loads with prefetching(AP TX);

end

end
Step3: for each function do

for each AP TX do
clean pref(AP TX);
for each loop in AP TX do

change attribute(loop, AlwaysInline);
end

end

end

end

step 1, transactional regions, including all the functions they call, are copied
in separate functions with AP prefixes. We then insert calls to the APs just
before the corresponding transaction. For example, the call to AP tran() is
inserted just before its transaction (Fig. 7c, line 21). The result of this step is
shown in Fig. 7c.

5.2 Step 2: Building the AP

This step is the core of our optimizations and consists mainly in identifying
the instructions required for each AP and filtering out the unnecessary ones
(Algorithm 1, find APInst).

5.2.1 Initializing helper structures

During the initialization phase, the compiler retrieves the interprocedural alias
analysis (AA) information (Algorithm 1, WPA = WPA()) required to handle
multi-function transactions (4.1) and creates an empty vector (set of instruc-
tions) for each function. Vectors are helper structures which will be later used
to collect all the necessary instructions during the process of finding loads and



Analysing Software Prefetching Opportunities in HTM 15

1 int a[3] = {0,1,2}
2 int n;
3 func()
4 {
5 n = a[1];
6 }
7 int main()
8 {
9 beginTX

10 func();
11 n = a[n];
12 endTX
13 }

a. C-code

1 int a[3] = {0,1,2}
2 int n;
3 func()
4 {
5 val = load a[1]
6 store val , n
7 }
8 int main()
9 {

10 beginTX
11 call func()
12 val = load a[n]
13 store val , n
14 endTX
15 }

b. Original IR code

1 int a[3] = {0,1,2}
2 int n;
3 func()
4 {
5 val = load a[1]
6 store val , n
7 }
8 AP_func ()
9 {

10 val = load a[1]
11 store val , n
12 }
13 AP tran()
14 {
15 call AP_func ()
16 val = load a[n]
17 store val , n
18 }
19 int main()
20 {
21 call AP tran()
22 beginTX
23 call func()
24 val = load a[n]
25 store val , n
26 endTX
27 }

c. After Step1

AP_tran’s vector:
AP_func’s vector:

d. Initial vectors state

AP_tran’s vector:
AP_func’s vector:

val = load a[1]

e. Process Fig. 7c, line 15

AP_tran’s vector:
val = load a[n]

AP_func’s vector:
val = load a[1]
store val , n

f. Process Fig. 7c, line 16

1 int a[3] = {0,1,2}
2 int n;
3 func()
4 {
5 val = load a[1]
6 store val , n
7 }
8 TAP_func ()
9 {

10 val = load a[1]
11 store val , n
12 // aborts at the

end
13 }
14 AP tran()
15 {
16 call AP_func ()
17 prefetch a[n]
18 }
19 int main()
20 {
21 call AP tran()
22 beginTX
23 call func1()
24 val = load a[n]
25 store val , n
26 endTX
27 }

g. After Step2

Fig. 7: Compilation steps.

their dependencies. Each function has its helper vector. For example, AP tran
in Fig. 7c, calls another function. We create two initially empty helper vectors
—one for the called function and one for AP tran itself (Fig. 7d)— and use
these vectors to gather the instructions that will eventually be part of the AP.

5.2.2 Selecting the AP instructions

The following functions presented in Algorithm 2 implement the selection of
the instructions for the access phases, and are detailed next: find APInst,
followDeps, and enqueueDependentInstructions.

find APInst The primary purpose of this function is to identify the instruc-
tions of interest (Algorithm 2, findInstToKeep), namely loads to shared data
and function calls. We find loads to global variables by tracing the whole use-
def chain. If the definition turns out to be a stack allocation function, we treat



16 Marina Shimchenko et al.

Algorithm 2: Helper functions.

Function find APInst(AP TX, WPA, V ECT):
InstToKeep, Deps = empty();
findInstToKeep(AP TX, InstToKeep);
followDeps(InstToKeep, Deps);

VECT=InstToKeep + Deps;

return res

Function followDeps(InstToKeep, Deps):
for each inst in InstToKeep do

Q = empty();
enqueueDependentInstructions(inst, LocalSet, Q);
while !Q.empty() && res do

Qinst = Q.pop();
if Qinst.is call() then

find APInst(Qinst->getAP, Qinst->getVECT);
end
enqueueDependentInstructions(Qinst, InstToKeep, Q);

end

end

return

Function enqueueDependentInstructions(Inst, InstToKeep, Q):
enqueueInst(Inst, InstToKeep, Q);
enqueueStores(Inst, InstToKeep, Q);

return

the load as local. We also keep function calls, because they might contain crit-
ical loads. If, at a later stage, we discover that a function does not contain
any loads or other function calls, it will be deleted from its AP. Once all the
instructions are collected into a vector (Algorithm 2, InstToKeep), we follow
all the dependency chains to include the required instructions (Algorithm 2,
followDeps).

followDeps For each instruction in InstToKeep, we find dependencies by
calling the enqueueDependentInstructions function and enqueue them to
Q. This process is then repeated for each instruction in Q until all required
instructions are identified and the program slice is built. Furthermore, for in-
structions that represent function calls, in addition to collecting their required
instructions, we recursively initiate the process of building the AP for the
called function.

enqueueDependentInstructions This function identifies the operands of a
particular instruction and selects (i) the instructions that represent these
operands (using the def-use chains in LLVM) and (ii) other instructions that
may affect its operands such as function calls or stores (see below).

When the operand of an instruction is an instruction itself (Algorithm 2,
enqueueInst) we simply enqueue this instruction to be processed in the same



Analysing Software Prefetching Opportunities in HTM 17

manner. Next, we search for function calls that satisfy the following criteria:
an operand of the instruction aliases with one of the arguments of the function
and the function modifies this argument. Finally, stores may introduce depen-
dencies if they alias with the required loads (Algorithm 2, enqueueStores). If
a load and a store are in the same function, we use the standard LLVM Alias
Analysis, which returns four possible answers: must-alias, may-alias, partial-
alias, and no-alias. May-alias might be false-positive; therefore, by including
such stores, we build heavier access phases that include potentially redundant
instructions. However, by keeping only must-alias stores, we risk missing true
may-alias stores. For correctness, we build safe, conservative access phases that
preserve all may-alias stores.

However, using only local AA does not address the fact that instructions
from different functions might have a dependency (see section 4.1). For this
reason, we perform IPMAA. It is important to note that processing one in-
struction can modify the content of all the vectors. For example, we start by
selecting the instructions for AP tran (see Fig. 7c), but the first instruction is
a call. Therefore, we proceed by building the access phase of the called func-
tion and selecting its instructions, AP func. While processing AP func, the
compiler is only aware of the instructions in AP tran() that have already been
visited, but not of the successor instructions in the control flow graph (Fig. 7c,
lines 16-17). Hence, at this point, we collect only loads and dependencies re-
quired for AP func, namely the load in Fig. 7c, line 10, which we insert in the
AP func’s vector (Fig. 7e). At this point, AP func’s vector does not contain
the store (Fig. 7c, line 11), because it is not needed for any instruction resid-
ing in any of the vectors. This store will be added when returning to build
AP tran and processing the load on line 16, which has a dependency with the
store from AP func (Fig. 7c, line 11), detected through the interprocedural
alias analysis.

5.2.3 Filtering out unnecessary instructions

After all the transactions are processed (Algorithm 1, find APInst), we are
ready to delete all the instructions that are not contained in the helper vectors
(Algorithm 1, delete inst notInVect). Moreover, we transform leaf load instruc-
tions into prefetch instructions (Algorithm 1, replace loads with prefetching).
APs that contain stores to globally visible data are wrapped in transactions
that abort at the end (see Section 4.3). The result of this step is shown in
Fig. 7g. This concludes the building of the AP: selecting the required instruc-
tions for prefetching the target loads and removing the remaining, unnecessary
instructions.



18 Marina Shimchenko et al.

Table 1: Benchmarks and inputs.

Benchmark Input

genome -g512 -s32 -n32768
kmeans-l -m40 -n40 -t0.05 -i inputs/random-n16384-d24-c16.txt
kmeans-h -m15 -n15 -t0.05 -i inputs/random-n16384-d24-c16.txt
labyrinth -i inputs/random-x48-y48-z3-n64.txt
ssca2 -s14 -i1.0 -u1.0 -l9 -p9
vacation-l -n2 -q90 -u98 -r1048576 -t4096
vacation-h -n4 -q60 -u90 -r1048576 -t4096
intruder -a10 -l16 -n4096 -s1

5.3 Step 3: Cleaning

This step performs a ”cleaning” of the generated code, such as removing re-
dundant instructions artificially introduced in Step 2 (e.g. prefetches to the
same address).

6 Hardware extensions

We depart from an Intel RTM hardware transaction memory implementation,
and add two key extensions to support efficient TAPs. First, we implemented
support for escape actions to survive interrupts and page-faults (Section 2).
This increases the chances that TAPs run until completion. Second, we imple-
mented a custom policy for resolving conflicts with access phase loads (Sec-
tion 4.3). In particular, TAPs never abort other transactions, but abort them-
selves in case of a conflict. This optimization is essential not to artificially
increase the abort rate of normal transactions.

7 Evaluation and Analysis

7.1 Setup and Methodology

Our code transformations are implemented as a separate compilation pass in
LLVM 3.8 [16]. The experiments run on full-system simulation with the Gem5
simulator [4] modified for adding HTM support. We use a simulator instead
of a real system because of the hardware extensions required by our proposal.
We model a 32-core, haswell-like multi-core running x86 code. Each core is
modeled after the timing in-order Gem5 processor model.

We present results for applications from the STAMP transactional bench-
mark suite [20] with 32 threads. The applications along with their inputs
are shown in Table 1. We excluded bayes since it exhibits high variability in
its execution time as well as unpredictable behavior for different runs of the
same binary [10,24]. We used both low and high contention configurations for
kmeans and vacation.



Analysing Software Prefetching Opportunities in HTM 19

Table 2: Number of static instructions inside TAPs and binary size overhead.

Static instructions Binary size overhead
Benchmark allLoads profiledLoads allLoads profiledLoads

genome 103 98 0.91% 0.45%
kmeans 81 70 0.06% 0.01%
labyrinth 88 84 4.08% 2.84%
ssca2 107 103 4.38% -0.15%
vacation 127 126 10.59% 6.23%
intruder 99 95 1.29% -1.29%

We compare the following configurations combining three versions of the
programs (orig, allLoads and profiledLoads) with hardware with and with-
out support for Nack Access Phases (Section 4.3). All the executables have
been compiled with the -O3 optimization level:

– orig: the original code compiled with LLVM.
– allLoads: TAPs include only loads (turned into prefetches) and the corre-

sponding program slice (instructions contributing to reaching the prefetch
instructions and to computing the target address). Stores are included only
if they may-alias, must-alias or partially alias with the selected loads. The
APs are wrapped in regular transactions.

– allLoads-nack: The allLoads version with nack access phases support
in hardware (see Section 4.3) instead of wrapping the TAPs in regular
transactions.

– profiledLoads: Like the allLoads version but, based on profiling, only
loads with long miss latency are selected for prefetching, in an attempt to
build lighter access phases.

– profiledLoads-nack: The profiledLoads version with nack access phases
support.

Our versions add access phases, which means that the code includes addi-
tional instructions, and therefore, an overhead when compared to the original
program. The goal is to keep this overhead low (by filtering instructions) such
that it can be hidden by the benefits of reducing the abort rate, squashing
and re-execution. Furthermore, the profile-based versions aim to include even
fewer instructions since they target only the loads that miss in the cache the
most (long latency loads). We obtained this information by profiling the orig-
inal binaries in the simulator. We then annotated the selected loads, detected
them with the compiler, and built the corresponding access phases targeting
these loads. Our analysis shows that to reach most of the identified loads re-
quires adding an amount of instructions close to the non-profiling versions (see
Table 2). Finally, Table 2 also shows the overhead in the size of the binary
when creating TAPs, which in the worse case is below 11%.



20 Marina Shimchenko et al.

Table 3: Cache misses and aborts for the baseline configuration. All metrics refer to trans-
actions and transactional accesses.

genome kmeans-h kmeans-l laby. ssca2 vaca.-h vaca.-l intruder

Read misses 191794 34633 177859 126 92512 283080 229879 153118
Write misses 9957 8279 82096 28 151714 5604 4158 53682
Total reads 4311557 582645 3364280 1244 1499801 3761862 2839445 2366946
Total writes 976743 203942 1183569 293 468685 1194754 906972 843897
Conflict aborts 2496 192943 22655 666 484 20 48 85867
Committed 19257 16595 85092 58 93745 4078 4090 47378
Non-speculative 246 27159 2416 134 24 17 6 7527

Cache miss rate 0.04 0.05 0.06 0.10 0.12 0.06 0.06 0.06
Abort rate 0.13 4.41 0.26 3.47 0.01 0.00 0.01 1.56

7.2 Analysis of the Results

Our aim is to reduce the execution time of the transactions by eliminating
cache misses with the goal of reducing conflicts and therefore aborts (see
Fig. 1). As shown in the motivation, there are two STAMP applications with
potential for our approach: kmeans-h and labyrinth. We include all applica-
tions in the evaluation for completion but our technique is only expected to
be implemented for such applications. Table 3 elaborates on the analysis done
for our motivational analysis (Fig. 1) offering abosute numbers.

First we focus on how varies the number of cache misses in the applica-
tions. Fig. 8 shows the number of cache misses normalized to our baseline
configuration. Cache misses have been divided accounting for the region of
code in which they happen. These regions are listed and explained in Table 4.
Our technique reduces the cache misses inside transactions to a great extent
for some applications (e.g., vacation). These cache misses are shifted to the
TAP region of code. However, for some applications (e.g., genome) extra cache
misses occur. This happens because genome is one of the benchmarks where
transactions change their reading and writing sets between retries (see table 5),
that is, the target address of a cache access prefetched during the TAP region
changes and misses again during the execution of the transaction. Note that,
as expected, kmeans-h and labyrinth reduce the misses during the transaction
phases.

Then, we focus on the reduction of aborts, mostly due to conflicts. We
show both the normalized number of transactions that abort (Fig. 9, showing
the transaction in the code that aborts and Fig. 11, showing the reason of the
abort) and the normalized number of cycles spent in the aborted transaction
(Fig. 10, showing the transaction in the code that aborts, and Fig. 12, showing
the reason of the abort). The legend in Fig. 9 and Fig. 10 represents the
transaction identifier (applications have up to five transactions). The As we
expected, the abort rate is reduced for most applications, which also affects the
number of cycles spent in aborted transactions. However, sometimes we can



Analysing Software Prefetching Opportunities in HTM 21

0

0,2

0,4

0,6

0,8

1

1,2

1,4

o
ri
g

ABORT_HANDLERS KERNEL ACQLOCK BARRIER TAP DEFAULT HASLOCK TRANSACTIONAL WAITFORRETRY

genome kmeans-h kmeans-l labyrinth ssca2 vacation-h vacation-l intruder

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

Fig. 8: Normalized number of cache misses.

Table 4: Notations for the execution phases.

Execution phases Notation

TAP Cycles spent inside transactional access phases
Barrier Cycles spent waiting for all the threads to reach the barrier
HasLock Cycles spent inside fallback paths
Default Non transactional code
WaitForRetry Cycles transactions wait for re-attempt
Abort Handlers Cycles spent inside abort handlers for each abort
Transaction Commit Cycles inside transactions that committed
Transaction Aborted Cycles inside transactions that aborted
Kernel Cycles inside system calls, interrupts, page faults, etc.
Acqlock Cycles spent acquiring fallback lock

Table 5: Transactions with changing reading and writing sets are marked with X. Grey cells
mean that a benchmark does not have transactions with this ordinal number.

Benchmark TX0 TX1 TX2 TX3 TX4

genome X X X X
intruder X X X
kmeans-h
kmeans-l
labyrinth
ssca2
vacation-h X X
vacation-l X X

see an increase in conflicts, mostly when nack access phases (see Section 4.3)
are not enabled, as TAPs can abort transactions in this case.

Finally, we show the overall application execution time in Fig. 13. Exe-
cution time is normalized to the baseline configuration, and it is also broken
down into disjoint components (see Table 4). As it can be observed, the exe-
cution time of the Transactional Aborted region is reduced because the num-
ber of aborts due to conflicts is lower. As a consequence, the time spent in
Abort Handlers, WaitForRetry, and HasLock is also reduced. The time spent
in the abort handlers decreases because if fewer aborts happen, those han-



22 Marina Shimchenko et al.

0

0,5

1

1,5

2

0 1 2 3 4

genome kmeans-h kmeans-l labyrinth ssca2 vacation-h vacation-l intruder

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

Fig. 9: Normalized number of transactions that abort per transactional region.

0
0,2
0,4
0,6
0,8
1

1,2
1,4
1,6
1,8
2

0 1 2 3 4

genome kmeans-h kmeans-l labyrinth ssca2 vacation-h vacation-l intruder

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

Fig. 10: Normalized number of cycles spent in aborted transactions per transactional region.

0

0,5

1

1,5

2

2,5

3

FallbackLock L1Capacity L2Capacity Conflict

genome kmeans-h kmeans-l labyrinth ssca2 vacation-h vacation-l intruder

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

Fig. 11: Normalized number of transactions that abort per cause.

dlers execute less often. Besides, thanks to reducing the number of aborts,
transactions have to retry and to resort to irrevocable execution using mutual
exclusion fewer times, reducing the time that some transactions spend execut-
ing in mutual exclusion (HasLock) and the time that other transactions wait
until the first ones finish executing (WaitForRetry).



Analysing Software Prefetching Opportunities in HTM 23

0
0,5
1

1,5
2

2,5
3

o
ri
g

d
u
p
l

Conflict ExplicitFallbackLock FallbackLock L1Capacity L2Capacity

0
0,2
0,4
0,6
0,8
1

1,2
1,4
1,6
1,8
2

Conflict FallbackLock L1Capacity L2Capacity

genome kmeans-h kmeans-l labyrinth ssca2 vacation-h vacation-l intruder

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
o
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

Fig. 12: Normalized number of cycles spent in aborted transactions per cause.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

ABORT_HANDLERS

BARRIER

KERNEL

TAP

ACQLOCK

HASLOCK

TRANSACTIONAL_ABORTED

TRANSACTIONAL_COMMITTED

DEFAULT

WAITFORRETRY

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
ro
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

genome kmeans-h kmeans-l labyrinth ssca2 vacation-h vacation-l intruder

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
ro
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
ro
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
ro
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
ro
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
ro
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
ro
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

o
ri
g

a
ll
L
o
a
d
s

a
ll
L
o
a
d
s-
n
a
c
k

p
ro
fi
le
d
L
o
a
d
s

p
ro
fi
le
d
L
o
a
d
s-
n
a
c
k

Fig. 13: Normalized execution time.

By shifting cache misses from the transactional phases to the TAPs, we
also expect a decrease the Transaction Committed execution time, and a cor-
responding increase in execution time the new category TAP, as reported in
Fig. 13. The time spent in TAPs needs to be smaller than the decrease in all
other categories to avoid increasing the total execution time. On the other
hand, the time spent in non transactional code (the Default category) should
stay the same, as we do not affect non-transactional code if TAPs prefetch
only the data that transactions use.

As expected, we see performance improvements only in kmeans-h and
labyrinth. The other applications degrade performance mostly due to the over-
head introduced by the TAPs instructions, although the time spent in synchro-
nization (Barrier) increases in some cases (genome and labyrinth, when not
using profiling). The time spent executing transactions that ultimately abort
(Transactional Aborted) does decrease in general, but remarkably it increases



24 Marina Shimchenko et al.

for kmeans-l and ssca2, where the number of aborts increases (see Fig. 9 or
Fig. 11).

We have used profiling to reduce the overhead introduced by TAPs. This
profiling is beneficial for some benchmarks like labyrinth and ssca2, but does
not make a great difference in most cases and is detrimental for performance
in vacation-l and genome. The reason is that profiledLoads binaries might
exclude some loads with a relatively low miss rate, but those loads give the
advantage to allLoads binaries to prefetch more data, therefore gaining some
extra performance. Also, in most cases the time spent in access phases is not
reduced thanks to the profiling because to be able to calculate the addresses
of the identified loads requires often adding a number of instructions similar
to the non-profiling versions due to data and control flow dependencies (see
Table 2).

Since TAPs execute transactionally, they can abort and can make other
transactions abort, negatively affecting performance. As discussed, this ex-
plains the increase in the number of aborts and time spent executing aborted
transactions (see Fig. 9 and Fig. 11). In addition to this, an aborted TAP does
not completes execution and may not prefetch all data in the transaction. Note
that TAPs might abort at the beginning of the execution.

When enabling Nack access phases (see Section 4.3), the performance is
affected only slightly, improving the execution time in intruder and increasing
it in labyrinth. This technique does reduce the number of aborted transactions,
as can be seen in Fig. 9 for most applications, and the number of cycles spent
executing them as can be seen in Fig. 10, but these reductions do not have a
positive effect in the final execution time except in the case of intruder and
kmeans-h when not using profiling.

Finally, We performed simulations when varying the number of threads and
observed improvements in kmeans-h and labyrinth when running more than 8
threads. As we increase the number of threads, the performance improvements
of our approach increase for kmeans-h and labyrinth. This is expected as more
aborts due to conflicts appear in those applications.

8 Future work

Although our approach improves the abort rate by up to 90% for some bench-
marks, the extra execution time of TAPs jeopardizes performance improve-
ments. Finding a good trade-off between the size of TAPs and their prefetching
efficiency by further reducing TAPs instructions is a promising future work.
We envision that effective heuristics can be designed based on the number of
dependent loads required to reach the targeted loads [15] or on the number of
jumps or branches required to place the target load in the TAP [30].

Additionally, not all transactions are suitable for our technique. For ex-
ample, for transactions that work on different data sets on each run, TAPs
would fail to prefetch the correct data. Static analysis can help to identify the
transactions that are unlikely to change their working sets.



Analysing Software Prefetching Opportunities in HTM 25

In the evaluation performed in this work, we apply TAPs to all transactions,
even though some of them have a low abort rate and miss rate. One future
work direction is to monitor the abort rate and prefetch effectiveness, and
dynamically disable TAPs when they are predicted to be ineffective.

Finally, we have evaluated our technique using the STAMP benchmark
suite, finding only two cases for which our technique provides performance
improvements. Since STAMP benchmarks present a poor scalability [22,25], a
large study considering other transactional benchmarks [31] will be interesting
in order to better assess the reach of our proposal.

9 Conclusions

Improving the abort rate for applications that use HTM is extremely im-
portant, given the cost of each abort. Doing it at a hardware level requires
many changes, while the software brings lightweight solutions with high flex-
ibility and portability. In this work, we propose a new technique to improve
the abort rate due to conflicts and to improve the scalability of transactional
applications. Particularly, we make the observation that by turning long la-
tency loads within transactions into cache hits, we can decrease the execution
time of transactional regions, and thus reduce the likelihood for conflicts. Our
approach exploits this observation by using software prefetching instructions
inserted automatically at compile-time.

Our simulation results using the Gem5 simulator and applications from
the STAMP benchmark suite show that our approach can significantly benefit
applications with transactions that abort frequently and incur a large number
of cache misses. Particularly, we obtain reductions in the number of aborts
of 30% on average and performance improvements of 19% and 10% for two
(kmeans-h and labyrinth) out of the eight evaluated applications. In addition
to reporting on the impact that our technique has on the performance of the
applications under consideration, we also provide in-depth analysis for each
application and identify the key characteristics of the transactional regions
that can benefit from our approach.

References

1. Ansari, M., Khan, B., Luján, M., Kotselidis, C., Kirkham, C., Watson, I.: Improving per-
formance by reducing aborts in hardware transactional memory. In: High Performance
Embedded Architectures and Compilers, pp. 35–49 (2010)

2. Ansari, M., Luján, M., Kotselidis, C., Jarvis, K., Kirkham, C., Watson, I.: Steal-on-
abort: Improving transactional memory performance through dynamic transaction re-
ordering. In: Proceedings of the High Performance Embedded Architectures and Com-
pilers, pp. 4–18 (2009)

3. ARM Ltd.: Transactional memory extension (tme) intrinsics. URL
https://developer.arm.com/documentation/101028/0011/Transactional-Memory-
Extension–TME–intrinsics

4. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hestness,
J., Hower, D.R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish, N.,



26 Marina Shimchenko et al.

Hill, M.D., Wood, D.A.: The gem5 simulator. Computer Architecture News 39(2), 1–7
(2011)

5. Dash, A., Demsky, B.: Automatically generating symbolic prefetches for distributed
transactional memories. In: Middleware 2010. Lecture Notes in Computer Science,, vol.
6452 (2010)

6. Dash, A., Demsky, B.: Integrating caching and prefetching mechanisms in a distributed
transactional memory. IEEE Transactions on Parallel and Distributed Systems 22(8),
1284–1298 (2011)

7. Dice, D., Herlihy, M., Kogan, A.: Improving parallelism in hardware transactional mem-
ory. ACM Transactions on Architecture and Code Optimization 15(1), 1–24 (2018)

8. Diegues, N., Romano, P.: Time-warp: lightweight abort minimization in transactional
memory. In: Proceedings of the Symposium on Principles and Practice of Parallel
Programming, pp. 167–178 (2014)

9. Diegues, N., Romano, P., Garbatov, S.: Seer: Probabilistic scheduling for hardware
transactional memory. ACM Transactions on Computer Systems 35(3) (2017)

10. Dragojevic, A., Guerraoui, R.: Predicting the scalability of an stm. In: 5th ACM SIG-
PLAN Workshop on Transactional Computing. (2010)

11. Harris, T., Larus, J., Rajwar, R.: Transactional Memory, 2nd edn. Morgan & Claypool
Publishers series (2010)

12. Jacobi, C., Slegel, T., Greiner, D.: Transactional memory architecture and implemen-
tation for IBM system Z. In: Proceedings of the International Symposium on Microar-
chitecture, pp. 25–36 (2012)

13. Jimborean, A., Koukos, K., Spiliopoulos, V., Black-Schaffer, D., Kaxiras., S.: Fix the
code. dont tweak the hardware: A new compiler approach to voltage-frequency scaling.
In: Proceedings of the International Symposium on Code Generation and Optimization,
pp. 262–272 (2014)

14. Koukos, K., Ekemark, P., Zacharopoulos, G., Spiliopoulos, V., Kaxiras, S., Jim-
borean, A.: Daedal decoupled access-execute llvm tools repository (2016). URL
https://github.com/etascale/daedal

15. Koukos, K., Ekemark, P., Zacharopoulos, G., Spiliopoulos, V., Kaxiras, S., Jimborean,
A.: Multiversioned decoupled access-execute: the key to energy-efficient compilation of
general-purpose programs. In: Proceedings of the 25th International Conference on
Compiler Construction, pp. 121–131 (2016)

16. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program analysis
and transformation. In: Proceedings of the International Symposium on Code Genera-
tion and Optimization, pp. 75–88 (2004)

17. Le, H.Q., Guthrie, G.L., Williams, D.E., Michael, M.M., Frey, B.G., Starke, W.J., May,
C., Odaira, R., Nakaike, T.: Transactional memory support in the ibm power8 processor.
IBM Journal of Research and Development 59(1), 8:1–8:14 (2015)

18. Litz, H., Cheriton, D., Firoozshahian, A., Azizi, O., Stevenson, J.P.: Si-tm: reducing
transactional memory abort rates through snapshot isolation. In: Proceedings of the
19th International Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 383–398 (2014)

19. Maldonado, W., Marlier, P., Felber, P., Suissa, A., Hendler, D., Fedorova, A., Lawall,
J.L., Muller, G.: Scheduling support for transactional memory contention management.
In: Proceedings of 15th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pp. 79–90 (2009)

20. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transactional
applications for multi-processing. In: Proceedings of The IEEE International Sympo-
sium on Workload Characterization, pp. 35–46 (2009)

21. Moravan, M.J., Bobba, J., Moore, K.E., Yen, L., Hill, M.D., Liblit, B., Swift, M.M.,
Wood, D.A.: Supporting nested transactional memory in LogTM. In: Proceedings of
the 12th international conference on Architectural Support for Programming Languages
and Operating Systems, pp. 359–370 (2006)

22. Nakaike, T., Odaira, R., Gaudet, M., Michael, M.M., Tomari, H.: Quantitative compar-
ison of hardware transactional memory for blue gene/q, zenterprise ec12, intel core, and
power8. In: Proceedings of the 42nd Annual International Symposium on Computer
Architecture, pp. 144–157 (2015)



Analysing Software Prefetching Opportunities in HTM 27

23. Negi, A., Armejach, A., Cristal, A., Unsal, O.S., Stenstrom, P.: Transactional prefetch-
ing: narrowing the window of contention in hardware transactional memory. In: Pro-
ceedings of the 21st international conference on Parallel architectures and compilation
techniques, pp. 181–190 (2012)

24. Negi, A., Walliullah, M., Stenstrom, P.: Lv*: A low complexity lazy versioning htm
infrastructure. In: Proceedings of the 25th International Conference on Embeded Com-
puter Systems: Architectures, Modeling, and Simulation, pp. 231–240 (2010)

25. Nguyen, D., Pingali, K.: What scalable programs need from transactional memory. In:
Proceedings of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, pp. 105–118 (2017)

26. Ritson, C., Barnes, F.: An evaluation of intel’s restricted transactional memory for cpas.
Communicating Process Architectures pp. 271–292 (2013)

27. Sui, Y., Xue, J.: SVF: interprocedural static value-flow analysis in LLVM. In: Pro-
ceedings of the 25th International Conference on compiler construction, pp. 265–266
(2016)

28. Sui, Y., Ye, D., Xue, J.: Detecting memory leaks statically with full-sparse value-flow
analysis. IEEE Transactions on Software Engineering 40(2), 107–122 (2014)

29. Titos-Gil, R., Fernández-Pascual, R., Ros, A., Acacio, M.E.: Pftouch: Concurrent page-
fault handling for intel restricted transactional memory. Journal of Parallel Distributed
Computing 145, 111–123 (2020)

30. Tran, K.A., Carlson, T.E., Koukos, K., Själander, M., Spiliopoulos, V., Kaxiras, S.,
Jimborean, A.: Clairvoyance: look-ahead compile-time scheduling. In: Proceedings of
the 2017 International Symposium on Code Generation and Optimization, pp. 171–184
(2017)

31. Wang, Q., Su, P., Chabbi, M., Liu, X.: Lightweight hardware transactional memory
profiling. In: Proceedings of the 24th Symposium on Principles and Practice of Parallel
Programming, pp. 186–200 (2019)

32. Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference on
Software Engineering, pp. 439–449 (1981)

33. Weiser, M.: Program slicing. IEEE Transactions on Software Engineering 10, 352–357
(1984)

34. Xiang, L., Scott., M.L.: Conflict reduction in hardware transactions using advisory locks.
In: Proceedings of the Symposium on Parallelism in Algorithms and Architectures, pp.
234–243 (2015)

35. Yoo, R., Hughes, C., K.Lai, Rajwar, R.: Performance evaluation of intel transactional
synchronization extensions for high performance computing. In: Proceedings of the
International Conference on High Performance Computing, Networking, Storage and
Analysis, pp. 1–11 (2013)


