
A First Exploration of
Fine-Grain Coherence for Integrity Metadata

Per Ekemark∗, Alberto Ros†, Konstantinos Sagonas∗‡, and Stefanos Kaxiras∗

∗Dept. of Information Technology †Computer Engineering Dept. ‡School of Electrical and Computer Engineering
Uppsala University University of Murcia National Technical University of Athens
Uppsala, Sweden Murcia, Spain Athens, Greece

∗{per.ekemark,kostis,skaxiras}@it.uu.se †aros@ditec.um.es ‡kostis@cs.ntua.gr

Abstract—Memory integrity protection is intended for secure execution,
and it is typically associated with programs running on a single
core. However, with the emergence of multi-processor systems-on-chip
and chiplets, extending memory integrity protection to cache-coherent
multiprocessors becomes essential.

In this work, we explore for the first time the design space for
maintaining coherence in fine-grain integrity metadata at the block level.
We discuss various policies for updating the integrity tree using the
underlying coherence protocol, and examine how these policies affect
coherence traffic. We introduce the concepts of proactive and reactive
update initiation, and discuss their implications for data and integrity-
tree blocks. We also investigate the trade-offs between eager and lazy
update propagation policies, focusing on coherence transactions such as
invalidations and downgrades to analyse the pros and cons of different
approaches. What we observe is that for some benchmarks the choice
between the eager and the lazy update initiation policy does not make
much difference, while for many other benchmarks one policy is better
over the other, depending on how the benchmark shares its data.

I. INTRODUCTION

Memory integrity protection is intended for secure processing
which is typically thought of as a secure program running in a
single core in an enclave. Typically, one tends not to associate
memory integrity protection with shared-memory parallel systems
(running parallel workloads) where cache coherence would be needed.
However, compelling cases, where we would care to extend memory
integrity protection to a multiprocessor cache-coherent system, are
now emerging:

• Multi-processor systems-on-chip (MPSoC) applications where
multiple embedded processors may need to share memory.
According to Hassan et al. [1, 2], one of the most challenging
burdens faced by the designers of mixed-criticality systems and
MPSoCs is the problem of maintaining correctness of shared
data stored in the memory hierarchies of multiple-PE platforms.
Such platforms find extensive use in areas such as transportation
(smart vehicles), infrastructures (smart power grids), healthcare
(implantable devices), and industrial environments (robots) [1, 2].

• Obtaining and integrating into an SoC chiplets from untrusted
sources [3]. The trend in computing systems is shifting towards
2.5D designs, which involve acquiring diverse hardware IPs,
referred to as chiplets, from multiple suppliers and integrating
them using an interposer. Industry has successfully showcased
that these 2.5D designs reduce manufacturing expenses, allowing
for continued scalability beyond the constraints of Moore’s
Law. Chiplet-based designs rely heavily on cache coherence for
coherent data communication, as the cache hierarchy is distributed
across chiplets which may straddle security boundaries. In
upcoming 2.5D designs, there is a strong potential for the adoption
of standard coherence, e.g., Arm AXI Coherency Extensions
or Compute Express Link (CXL) [4] to enable collaborative

operation through shared memory. Acquiring chiplets from
various sources introduces the need for increased memory
integrity protection for critical computations that span more than
one chiplet.

It is exactly in cases such as these where our research study becomes
relevant. More specifically, in this paper, we delve into the concept of
coherence for integrity metadata, particularly focusing on the common
practice of adhering to “standard” coherence protocols, like the familiar
invalidation-based MESI or MOESI protocols1. Often, coherence is
standardised, as exemplified by widely used frameworks like AXI
and CXL. In practice, these standard coherence protocols become
considerably more intricate and convoluted when additional states are
introduced, making them challenging to implement and manage. Still,
there are scenarios where custom coherence protocols can be devised,
offering opportunities to explore alternative approaches, e.g., using
update-based protocols instead of invalidation-based ones, but this is
left for future work.

In contrast to prior research, which partitioned datasets into non-
shared segments making the problem of applying coherence on an
integrity scheme a relatively straightforward task [5], the unique aspect
of our work lies in its emphasis on fine-grain sharing at cacheline
granularity. In this context, and without changing the coherence
protocol, the main question is how the updates to integrity metadata
are initiated and scheduled in relation to the coherence events that
affect the data.

Memory integrity relies on constructing message authentication
codes (MACs) (i.e., keyed hashes) for data blocks. To verify integrity, a
MAC is computed for a data block and checked against a stored MAC
in memory. However, ensuring MAC integrity becomes challenging as
adversaries can tamper with both data blocks and their corresponding
stored MACs. To address this issue, integrity trees are introduced that
incorporate MACs in each node: Merkle Trees (MTs), Bonsai Merkle
Trees (BMTs), with BMTs using version counters to reduce MT size,
or Intel SGX-like integrity trees, which combine MACs and counters
in the same blocks.

The challenge is to keep all blocks, both the data blocks and the
integrity tree blocks, under a single coherence domain. The problem
is that this is expensive: to verify a data block, a complete path to the
root of the integrity tree must be available; to expose a modified data
block to other sharers, a complete path to the root of the tree must
be updated. These two operations, even for independent data blocks,
interact via false-sharing in the integrity tree nodes: reading and
writing completely independent data blocks by different cores, leads
to coherence downgrades and invalidations higher up in the integrity

1The MESI and MOESI protocols are named after the included, stable
coherence states: Modified, (Owned), Exclusive, Shared, and Invalid.

tree. This in turn leads to substantial interference and ping-pong
effects for the nodes of the higher levels of the integrity tree.

The choice of when to propagate updates in the integrity tree,
therefore, becomes critical. On the one hand, eagerly updating the
integrity tree on a data block update, invalidates parts of the integrity
tree in other caches which are not actively sharing the data block in
question. On the other hand, lazily updating the integrity tree only
when it is absolutely necessary transfers the penalty (appearing as a
serialised invalidation latency) to the reading side, where latency is
critical for performance.

In this work, we examine this trade-off for the different integrity tree
update strategies from the point of view of the amount of coherence
transactions generated, as a first-order approximation of the incurred
cost of coherence. We introduce proactive and reactive integrity tree
update initiation policies and analyse their impact on data and integrity-
tree blocks. We also explore the trade-offs between eager and lazy
update propagation policies, with a focus on coherence transactions
like invalidations and downgrades. Our findings suggest that the choice
between these policies has varying significance, depending on the
benchmark’s data-sharing characteristics.

II. BACKGROUND

In this section, we give a quick recap of the most important elements
for memory integrity to set the stage for the coherence discussions
that follow.

At its most basic, memory integrity for a data block b is guaranteed
by constructing a keyed hash of the value of b. These keyed hashes are
usually called message authentication codes (MACs), a terminology
that comes from secure networks.

The integrity check for b consists of: reading b and its MAC from
memory, computing anew the keyed hash of b and checking to see if
it matches the MAC read from memory.

Only the holder of the secret key can generate the correct MAC for
a particular value of b. It is therefore important that the key is only
stored within a secure domain (e.g., in a register within a processor
core). Key transfers must ensure confidentiality and can thus only be
done within the secure domain (e.g., within a core or across a trusted
bus) or while encrypted (i.e., when using an untrusted bus).

A MAC is smaller than the data block it protects. Typically a
64-byte block can be reasonably well protected by a 16-byte MAC.
To save memory and manage MACs more easily, multiple MACs are
packed in the space of a data block. In our example, four MACs,
protecting four 64-byte data blocks, are packed in a block of 64 bytes.

It would seem that complementing every memory block with a
corresponding MAC would guarantee the integrity of all memory, but
the problem now is who guarantees the integrity of the MACs? If
adversaries are able to write both a data block and its MACs, they
can simply corrupt memory by replacing the latest data with a stale
version of the block and its corresponding (valid) MAC. To protect
against such replay attacks, the concept of integrity trees is applied.

A. Merkle Trees

Assuming that the MACs that protect data blocks form a “first
level” of MAC blocks (multiple MACs per block), a second level
of MACs is needed to protect the first level of blocks, and a third
level to protect the second, and so on, all the way to a “root” MAC.
The root cannot be protected yet with another MAC that is public
(otherwise we would go on ad infinitum), so the root MAC needs to
be kept secret within the secure domain (and be handled similarly
to the key for the MACs). This tree of MACs is known as a Merkle
Tree (MT) [6] and is shown in the top half of Fig. 1.

...
data blocks

...
1st level

MAC
blocks

2nd level
MAC

blocks

3rd level
MAC
block

Secure
MAC root

...

...
data blocks +
data MACs Counter

Level

1st level
MAC
block

Secure
MAC root Secure Boundary

Secure Boundary

Fig. 1. Top: Merkle Tree (MT); Bottom: Bonsai MT (BMT); Logical layout
shown in grey, memory layout in colour.

A Merkle Tree is characterised by its arity, which corresponds to
how many MACs can fit in the space of a data block. For example,
in a cache hierarchy with 64-byte blocks (cachelines) and a 16-byte
MAC per block, one can fit four MACs in a block. Thus, the arity of
the MT in this case is four.

B. Bonsai Merkle Trees

Bonsai Merkle Trees (BMT) [7, 8] for memory integrity, aim to
reduce the size of the Merkle Tree while preserving its properties.
In a BMT, the first level of MACs that protect the data blocks are
not directly protected by a tree. Instead, each data block is associated
with a version counter that changes every time the data is updated.
Corresponding data and counter are concatenated before computing
their combined MAC. To prevent replay attacks with stale data, it
is sufficient to protect the counters with a Merkle Tree. The version
counters can be much smaller than MACs; 16 or 64 counters can fit
in a 64-byte block. Thus, the arity at the counter level can be higher
(e.g., 64) than for the rest of the tree levels (e.g., 4), allowing the
height of the tree to be reduced. An example of a BMT is shown in
the bottom half of Fig. 1.

C. Intel SGX Integrity Tree

The Intel SGX integrity tree [9, pp. 166–201] combines the MAC
and the counters it protects in the same block. This increases arity
throughout the whole tree at the expense of having slightly smaller
counters, since some of the space of the block is taken by the
corresponding MAC. This type of integrity trees have a constant
arity throughout the tree.

D. This paper

In this paper, we discuss an abstract MT with its arity as a parameter.
At first approximation, the coherence transactions for an MT and a
BMT (or other tree with counters) are identical. While differences
can arise depending on when the counters and the MACs are updated,
here we adopt a uniform view and assume that the counters and the
corresponding MACs are updated at the same time.

TABLE I
TRUST MODELS

Name Trust Comment

High shared cache coherence inside secure boundary
Medium all private caches (private) cache-to-cache is secure

Low own private cache all coherence insecure

III. THREAT MODELS AND COHERENCE

A. Threat Models

We consider three threat models (or trust models) that can apply,
which affect coherence in different ways. They are shown in Table I
and described below.
High-Trust: If cores trust each other and the shared memory (read

Last Level Cache (LLC)), the coherence is not affected as it
operates entirely within the trusted domain.

Low-Trust: At the other extreme, where cores do not trust each other,
nor any other part of the system, all data entering a private cache
must be verified (ultimately against the root MAC). Similarly, any
modifications must also update the integrity tree before release.
Updates in the integrity trees can be done lazily, only one level
closer to the root at a time. This is useful when voluntarily
evicting data, but on invalidation another core is likely going to
force writes all the way to the root MAC, as that core wants to
verify the data it reads by invalidating.

Medium-Trust: We can also consider an intermediate trust level. If
cores trust each other but not shared memory (i.e., coherence data
transfers are trusted), the integrity tree only has to be read and
updated when data is read from and written back to, respectively,
the shared memory, not on core-to-core transfers. This model
opens the possibility of sharing already verified (and potentially
dirty) data between cores without a lookup in the integrity tree.
The same policy applies for integrity tree nodes as well.

In this paper, we chose to examine the low-trust model because
it represents the greatest challenge in terms of coherence, and fits
the motivating cases where coherence for integrity would be needed
(cf. §I). As we show, in a low-trust scenario, a transfer of dirty data
between two cores requires the sender to make writes throughout the
full height of the integrity tree and the receiver to read the same tree
path in its entirety.

B. Coherence Threat Model

The critical function of coherence when it comes to memory integrity
protection can be understood by contrasting the non-coherent and the
coherent scenarios:

• In a non-coherent setup, exposing (evicting and writing to
memory) requires updating all integrity tree nodes and writing
out all updated nodes to memory. This is essential to enable
a valid integrity check. It is important to note that the order
in which nodes are exposed does not matter; an adversary can
disrupt correct integrity checks regardless of the order in which
integrity tree nodes and data are written to memory.

• In a coherent system, exposing (evicting, or causing a coherent
transfer on a read or write) only necessitates changing the state
of the integrity tree nodes in a manner that allows coherence to
handle the correct exposure of the required integrity tree nodes
during an integrity check. In other words, if we trust coherence
transactions and the directory, there is no need to write out the
integrity tree nodes to a shared level of the coherent hierarchy.
Our primary concern is ensuring that the only valid copy of any

a b c d

Mab Mcd

Mabcd Mefgh

root

Fig. 2. Abstract integrity tree example. Here. the arity is two, Mab holds the
MACs of cachelines a and b, and Mabcd holds the MACs of Mab and Mcd.

node is deterministically located, which is precisely the function
of coherence.

Thus, we assume that coherent transactions and the information
stored in the directory are safe from tampering by an adversary.
In other words, while we may not trust any data values delivered
by a different core/cache, shared cache, or memory, we trust the
validity and integrity of the coherence transaction (e.g., Read, Write,
Invalidate, Downgrade, Ack, etc.) both in terms of the address it refers
to and the coherence command. Safety and security for coherence
transactions is a valid assumption as it has been demonstrated by
Olson et al. [10, 11, 12]; their solutions can equally well apply in
our case.

Thus, given a low-trust model and a trusted coherence layer, the
overall threat model can be summarised as:

Coherence transactions are trusted, but the values of the
transferred cachelines are not.

Threat Model

Safeguarding against adversaries in our threat model, necessitates
an integrity mechanism that ensures the integrity of the data and
the integrity of its metadata (i.e., the nodes of the integrity tree), all
of which are subject to the same coherence protocol. As far as the
coherence protocol is concerned, it is agnostic to the type of data in
the cachelines.

In this paper, the only differentiation we permit between ordinary
data cachelines and integrity metadata cachelines strictly concerns the
freedom to schedule integrity tree updates in the local private caches
so as to implement policies that affect the resulting coherence traffic.

IV. INTEGRITY PROPAGATION POLICIES

After updating data protected by an integrity tree, it is necessary
to (eventually) document the new data in the integrity tree to make
the data verifiable in the future. There are numerous possible policies
imaginable for when to update the integrity tree and at what pace.

We illustrate our discussion regarding the various policies con-
cerning the update of the integrity tree, and subsequently how these
policies affect coherence, with an abstract integrity tree. An abstract
integrity tree consists of data nodes (in leaves), and of integrity nodes
which can be MACs, counters, or a combination thereof. An example
is depicted in Fig. 2.

We explain the various policy choices, illustrated in Fig. 3, on
a case-by-case basis. In Fig. 3 A⃝, we show two cores caching two
different data cachelines (a and b) but sharing the same integrity
tree path to the root. The cached data blocks and integrity tree nodes
are shown in bold and colour, while uncached nodes (in each core
respectively) are shown as faded grey nodes to illustrate the whole
integrity tree.

Proactive or Reactive? To reason about policies that control when
an update takes place, we start from the question: “If we update
the data cacheline a, do we also cause an immediate update to the
integrity tree?” Or, do we wait until the data cacheline a needs to be

a b c d

Mab Mcd

Mabcd

root

c d

Mab Mcd

Mabcd

root

a b

a b c d

Mab Mcd

Mabcd

root

Core0

c d

Mab Mcd

Mabcd

root

a ba b c d

Mab Mcd

Mabcd

root

c d

Mab Mcd

Mabcd

root

a b

c d

Mab Mcd

Mabcd

root

a ba b c d

Mab Mcd

Mabcd

root

Core1
A

B

C

D

Core1 read misses and requests 'a'
(normally indirection via the directory)

Inv

Inv

Inv

Inv

Fig. 3. Two and two choices: Reactive/Proactive — Eager/Lazy.

exposed either by a request from some other node or because of an
eviction? (Note that we will treat these two cases separately later on.)
For example, in Fig. 3 B⃝, the data cacheline a is written to by Core0
but the integrity tree is not updated until Core1 requests this cacheline
(shown as a dashed arrow). This is a reactive update initiation policy.
In contrast, when cacheline a is written in Fig. 3 C⃝, an immediate
update of the integrity tree is proactively initiated upwards. This is a
proactive update initiation policy.

The question can be generalised for any node in the integrity tree:
When a node is updated, is the update proactively initiated towards
the root, or deferred until the node is exposed, that is, reactively
initiated?

The proactive and reactive initiation policies can be mixed inde-
pendently per level, or even node, of the integrity tree. However, a
more reasonable (and useful) division would be to apply different
policies to data blocks and tree node blocks. Since having spatial
(and temporal) locality for data is a common pattern, it makes sense
to wait for as long as possible to coalesce multiple data modifications
into a single integrity update. This implies a reactive policy for data
cachelines, but it is unclear what policy should be followed for the
integrity tree.

Once an integrity update is needed, either an eager or lazy policy
can be applied to propagate the update in the tree. While we refer to
the update initiation policies as proactive and reactive, to differentiate
the policies of propagating an integrity update within a tree, we use
the respective terms eager and lazy:

• An eager update policy for the integrity tree implies that a
proactive initiation policy is used in all tree levels.

• A lazy update policy for the integrity tree implies that a reactive
initiation policy is used in all tree levels.

Between the two extremes (eager and lazy), other policies can be
constructed that switch between proactive and reactive propagation
depending on the level of the tree. While such policies may have
interesting properties, we defer their examination for future work.

Figure 3 C⃝ and D⃝ demonstrate the lazy and eager update policies
for the integrity tree (in other words, the updates either just go to
the next level above or all the way to the root). In Fig. 3 C⃝, the lazy
policy, the update is stopped at the first level node (Mab) and does
not propagate upwards unless this node is exposed to the outside
world. In Fig. 3 D⃝, the eager policy, the update to the integrity tree
propagates from the node that was affected all the way to the root
uninterrupted.

A. Eager vs. Lazy Trade-off

Suppose that a lazy integrity propagation policy were in place, as
in Fig. 4. When Core1 (right) requests dirty data a from Core0 (left)
1⃝, Core0 must first ensure that an initial update has been made into

the integrity tree, specifically tree node Mab 2⃝, before releasing a
5⃝. The update of Mab requires Core0 to obtain write permission for

it by invalidating other cores or requesting an exclusive and writable
copy of the integrity node 3⃝ 4⃝. Once Core1 receives a 6⃝, it must
verify the data since it comes from outside Core1’s zone of trust 7⃝.
As the MAC in Mab was just updated by Core0, it cannot already be
cached by Core1. As Core1 requests Mab 8⃝, a new cycle, similar to
the request of the data, begins: Core0 must get write permission for
the node one level up in the tree, Mabcd, and update it before Core0
can send out Mab 9⃝–13⃝. This process with two round trips per cycle
repeats until the root of the integrity tree is reached.

A lazy propagation policy doubles the request/response round
trip latency of a reader from the bottom level to the top level
of the tree. This is because, for each level of the tree, the
request/response latency (of reading a modified node), is
serialised by the interjection of the invalidate/ack latency of the
node in the next level up. On the other hand, a lazy policy does
not create interference in nodes higher up in the tree, potentially
affecting other cores who are trying to validate using the same
nodes at the same time.

Observation I

As an alternative to this observation, consider instead an eager
propagation policy, illustrated in Fig. 5. In the bottom diagram, Core1
requests, as before, the dirty data a. At this point, Core0 starts an
internal process (top diagram) and requests write permission for Mab
1⃝– 3⃝. However, armed with the knowledge that in a low-trust scenario,

a transfer of dirty data between two cores requires the sender to make
writes throughout the full height of the integrity tree and the receiver to
read the entirety of the same tree branch, an eager policy of updating
the integrity tree on the sender’s side can overlap the latency of the
transfer.

Writes to the integrity branch must be made in order from leaf
to root (1⃝, 5⃝, 9⃝) as write permissions are acquired for each node
(2⃝– 3⃝, 6⃝– 7⃝, 10⃝–11⃝). The leaf-to-root order, guarantees absence of
deadlocks even in the case when write permissions would be held for

a b c d

Mab Mcd

Mabcd

root

a c d

Mab Mcd

Mabcd

root

5

secure transfer of root

12

14

16
19

21

22
23

24

b

1

2

6

34
7

9

8 13

1011
15

20
1817

5 12 16 192 9

Local latency
Remote latency

Forced updates and acks

34 1011 1817 Invalidations and acks (combined in a single double arrow)

22 231 6 8 13 15 20 Requests and responses (data)

Core0 Core1

24 Validation ack

Fig. 4. Lazy update of the integrity tree. Updates in the integrity tree on the
left (e.g., cached in Core0) are propagated upwards in the local tree only when
the corresponding nodes are requested from another core (e.g., from Core1 as
part of integrity check on the same path).

a b c d

Mab Mcd

Mabcd

root

a c d

Mab Mcd

Mabcd

root
secure transfer of root

6

9

10
11

12

b

1 2

3

5

7
8

Local latency
Remote latency

10 111 2 4 7 8 Requests and responses (data)

4

5

a b c d

Mab Mcd

Mabcd

root

a c d

Mab Mcd

Mabcd

root
12

b

1
23

4

5 6

9

8

1

Local latency
Remote latency

Eager updates and acks

32

10

7

11

6 7 10 11 Invalidations and acks (combined in a single double arrow)

4 5 8 9 12

Core0 Core1

12 Validation ack

Fig. 5. Eager update of the integrity tree. Assuming sufficient separation, the
update of the tree happens (top diagram) independently of the read (bottom
diagram). In contrast to the lazy update, eager update does not weave the
latency of the invalidation phase into the latency of the read phase.

the lower-level nodes until the top of the tree is reached.2 However,
holding on to permissions until the root of the tree is reached is
not necessary, as the single-writer, multiple-reader (SWMR) invariant
guarantees correct update of the tree regardless of the number of cores
trying to update the same path simultaneously. Thus, similar to the lazy
update, a cacheline can be exposed as soon as there is confirmation
that the write of the next level has been performed. In coherence, a
write is performed when the invalidation has been acknowledged (all

2The reason is that for any two tree paths that share a number of nodes to the
top, there is a unique strict order (a “lexicographical” order of, e.g., ascending
physical addresses of the nodes to the root), in which write permission “locks”
can be taken.

invalidation acks received).
As Core0 completes updates to integrity nodes, the node in the level

below is released. As a is sent to Core1 (Fig. 5, bottom, 2⃝), Core1
can climb the integrity tree and request necessary integrity nodes from
Core0. Since we know that Core1 will eventually request all integrity
nodes on the relevant path, requests for these nodes (bottom diagram
4⃝, 7⃝, 10⃝) can be considered implied and the nodes be sent from

Core0 to Core1 when available.
In the lazy policy, there have to be four requests/responses (two

round trips) between cores for every level of the integrity tree, strictly
serialised. With the eager policy, one of the four requests per level
can be implied and the remaining requests/responses only have to be
serialised within each level but different levels can overlap.

An eager propagation policy decouples the invalidation/ack
latency from the request/response latency as experienced by
a reader. Given sufficient separation between the invalidation
phase (by the writer) and the read phase (by the reader), the read
latency is minimised.

Observation II

B. Secure Root Transfer

In Figs. 4 and 5, the transfer of the root is marked differently from
the transfers of the other tree nodes. This is because there are no
further nodes in the tree to check the integrity of the root against. Since
the root is always kept securely in the processor and never written to
memory, root transfers always take place between processors. We do
not propose any new solutions to facilitate secure transfers between
processors over the insecure interconnect; instead we note that there
already are solutions to this. For example, Rogers et al. [13] achieve
secure processor-to-processor transfer by attaching a MAC to the
message generated using a nonce to protect against replay attacks.
They also use the address to protect against splicing attacks, which
we can omit since we only need to transfer the root.

C. Evictions

In a typical coherence protocol, a modified (dirty) cacheline, kept
locally in the private cache in state M (Modified), which signifies that
it is the only copy of the data block in the system (SWMR invariant),
can only be exposed to the outside world (other cores or memory) in
one of the following ways:

1) Invalidation: Another core wants to write the cacheline.
2) Downgrade: Another core wants to read the cacheline.
3) Eviction: The cacheline is evicted to memory and it is unknown

who (if any) is going to read or write it next.
There is a difference between eviction and remote-demand-request

(Invalidation–write or Downgrade–read) because in the latter case, it
is expected that the rest of the path to the root will soon be needed,
while in the former there is no such expectation since it is unknown
who is reading the data next.

While the eager policy clearly has benefits when a core receives a
demand request for dirty data, this is not the case when a core itself
generates an eviction. It is entirely possible that the evicting core
itself will read the same cacheline back on its next use. Assuming
the core can keep (at least part of) the integrity branch for the data
node, it would be unnecessary to update the entire branch at eviction
time. For this reason, it would make sense to use a lazy integrity
propagation policy for evictions. If another core reads the evicted
cacheline, it will request the corresponding integrity node, at which
point the eager policy can be used to transfer the rest of the integrity
branch.

TABLE II
RELATION OF EVENTS FOR INTEGRITY TREE COHERENCE.

Event Relation to Invalidations/Downgrades

Read The number of reads to the nodes of the integrity tree (per level).
Reads can hit; or in a miss, in which case the relevant cacheline
must be fetched.

Read
Miss

Read misses correspond to data transfers. A read miss may result
in a downgrade of a dirty node in a different cache (the previous
writer) but write misses are a better proxy for the downgrades.

Write The number of writes to the nodes of the integrity tree (per level).
Writes can result in a hit (write permissions already present) or a
write miss. The write misses are permission misses, a portion of
which can also be missing cachelines.

Write
Miss

Write misses are a good proxy for both invalidations (every write
miss sends an invalidation) and downgrades (since, eventually, the
soon-to-be writer is downgraded by a future read). Invalidations
can result in the invalidation of one or more cached copies. In
general, the eager policy has an average degree of sharing upon
invalidation between 1 and 2, while the lazy policy more than 2.

V. EVALUATION

A. Methodology

The design space for how to keep integrity metadata coherent is
large. In this work, we limit our exploration to fine-grain coherence (at
the block level) without changing the underlying coherence protocol
(i.e., its states, transactions, and directory information). Besides the
practical aspect of performing a first exploration in such a large
design space, focusing on keeping the coherence protocol unmodified
is justified by the case of standardised protocols as we discussed in
the introduction.

Thus, in our evaluation, we focus on simple metrics that can
determine the advantage or disadvantage of one approach over another.
These metrics focus on coherence transactions such as invalidation and
downgrade messages that incur latency and are the cause of coherence
misses (i.e., read misses on invalidated cachelines, and write-misses
on cachelines that do not have write permissions).

We use the Ruby memory model [14] to generate a detailed trace
of L2 cache events in a 3-level invalidation-based cache coherence
protocol modelled in the SLICC language. The L1D (32 KB, 8-way
associative) and the L2 (256 KB, 8-way associative) are private to
the core. The LLC (8 MB, 16-way associative) is shared across the
cores. We model a system with 16 out-of-order cores. We run our
simulator without memory integrity protection for a wide range of
benchmarks from the PARSEC [15] and SPLASH-3 [16] benchmark
suites for 16 threads and with the simsmall input.

The traces include the following L2 events: reads (i.e., cache fills),
dirty evictions, invalidations, and downgrades. Dirty cachelines that
are evicted, invalidated or downgraded from L2 (last level private
cache) require an integrity tree update. Cachelines that are filled into
L2 (for either reading or writing) require a verification against the
integrity tree.

The collected traces are then processed using a tool we developed
that models an abstract integrity tree. Because the volume of results is
considerable, for clarity, we chose to present only reads/writes and read-
misses/write-misses, from which the rest of the events (invalidations,
downgrades) can be inferred. Table II shows the relationship among
the various coherence events.

Since the memory access traces concern a fixed cache hierarchy,
we cannot retroactively model the cache interference that would be
generated by keeping integrity metadata cachelines in the same cache
hierarchy with the data cachelines. Thus, a simplifying assumption of

our model is that the integrity metadata do not suffer from evictions and
always fit in the cache (without evicting data cachelines). This allows
us to model the pure coherence communication (e.g., invalidations and
downgrades) that is incurred by the integrity protection mechanism
assuming ideal caching for its metadata.

Our analysis tool simulates a Merkle tree and keeps track of what
cores cache each node of the tree and in what state. The tool reads the
aforementioned cache trace, where each trace entry indicate that some
cache has read a cacheline and must verify it or has exposed dirty data
(eviction, invalidation, or downgrade) and must update the integrity
tree. The tool can operate with either the eager or lazy propagation
policy. In the eager mode, an update in the integrity tree implies that a
core fetches and writes all tree levels immediately (before processing
the next trace entry). In the lazy mode, an update only implies fetching
(and validating, if necessary) and writing the leaf level of the tree,
writes higher in the tree are delayed until they are forced by another
trace entry, causing a downgrade of the dirty tree node. Regardless
of mode, a validation operation implies reading the appropriate leaf
node and, if necessary, continue validation higher in the tree until
hitting a node that is already cached. While processing trace entries,
our tool keeps statistics of coherence events for every node in the
tree and ultimately presents a summation of the event per level of the
integrity tree.

We explore different arities with our tool: 4, 16, and 64. An arity
of 4 is practical as it allows storing four 128-bit MAC in a single
64-byte cacheline. Higher arities would require increasing the node
size, weakening the MAC, or using (small) counters. Our tool does
not simulate the size of the tree nodes nor the integrity mechanism
(i.e., calculating and comparing MACs), thus the arity is only relevant
to see the coherence effect of different tree topologies.

B. Microbenchmarks

To characterise specific scenarios, we have constructed artificial
traces of integrity events that we feed into our integrity simulator.
Continuous Independent Writes: Several cores (16) each write an

amount of memory (1 MB) that exceeds the cores’ private cache
capacity (256 KB). Each core writes its own continuous part
of the memory. The cores begin to read from memory, causing
verification operations, reading branches in the integrity tree to
verify. As the cache fills up, cores evict old data, causing integrity
updates mixed with verification for new data. When the writing
is done, the caches flush (i.e., evict) dirty data, continuing the
integrity updates without the interspersed verifications.

Interleaved Independent Writes: Several cores (16) each write an
amount of memory (1 MB) that exceeds the cores’ private cache
capacity (256 KB). Each core writes its own cachelines, but the
cores’ cachelines are interleaved in memory. The operation is the
same as in the previous scenario, only with different addresses.

Blocked Interleaved Independent Writes: It is similar to the previ-
ous microbenchmark, but instead of interleaving every cacheline,
cachelines are interleaved in blocks of four. This eliminates
contention for leaf integrity node (when arity is 4).

Lock Variable Contention: Several cores (16) contend over a single
Test and Test-and-Set (TATAS) lock. Each core reads the lock
(each causing an integrity verification). As they see an available
lock, they all write (TAS) to attempt to acquire the lock (causing
an integrity update and verification each as they invalidate each
other). All but two cores (the one that acquired the lock and the
last that failed) have to read (and verify) the lock again. (The
last writer is downgraded.) While the core with the lock keeps it,
there are no more coherence transactions (due to the lock). When

0 1 2 3 4 5 6 7 8
0.0

0.5

1.0

1.5

2.0

2.5
1e5 Continuous (read)

Eager read misses
Eager reads
Lazy read misses
Lazy reads

0 1 2 3 4 5 6 7 8
0.0

0.5

1.0

1.5

2.0

2.5
1e5 Continuous (write)

0 1 2 3 4 5 6 7 8
0

1

2

3
1e5 Blocked Interleaved (read)

0 1 2 3 4 5 6 7 8
0.0

0.5

1.0

1.5

2.0

2.5
1e5 Blocked Interleaved (write)

Eager write misses
Eager writes
Lazy write misses
Lazy writes

0 1 2 3 4 5 6 7 8
2.5

3.0

3.5

4.0

4.5

5.0
1e5 Interleaved (read)

0 1 2 3 4 5 6 7 8

2.0

2.2

2.4

2.6
1e5 Interleaved (write)

0 1 2 3 4 5 6 7 8
5.8

6.0

6.2

6.4
1e1 Lock Variable (read)

0 1 2 3 4 5 6 7 8

1.65

1.70

1.75

1e1 Lock Variable (write)

Integrity tree level

Ev

en
ts

Fig. 6. Results of microbenchmarks.

the lock is released, the lock is read (and verified) and written.
After being invalidated, the other cores request (and verify) the
lock after it has been downgraded (and integrity updated) by the
former lock holder.

Figure 6 shows the analysis result of our microbenchmark traces,
integrity tree read characteristics to the left, write characteristics to
the right.

To understand the Continuous write benchmark, it is important to
realise that each core has a portion of the integrity tree private (i.e.,
no other core is neither reading nor writing that part). We use 64-byte
cachelines and arity 4 in the tree, and since each core is using 1 MB
of data, all tree nodes at level 6 and below are private to each core.
Each core starts reading their private memory, causing verifications
(i.e., reads) in the integrity tree. In the private subtree area, both the
eager and lazy policy follow the same curve, with read misses being
exactly 1/4 of the reads (an effect of using arity 4 in the tree). At
the root end of the plot, we can see that the reads in the lazy policy
stay very low, while the reads for the eager policy, with 100% miss
ratio, go high. To understand this sharp incline we must consider the
updates (i.e., writes in the integrity tree). The lazy policy only has to
write in the leaf nodes as we do not model evictions and no other
core are requesting theses nodes as per the design of the benchmark.
The eager policy, on the other hand, is forced to write in all levels
every time a data cacheline is evicted. Within the private subtrees,
the eager write misses can still stay low, but at level 7 and up, cores
start contending over the same integrity nodes and invalidating each
other. This also explains the sharp rise in eager reads at level 8: every
time a cache fetches a node at level 7 it must verify it by reading
level 8. This will always be a miss since level 8 is also experiencing

severe write contention.
The Blocked Interleaved microbenchmark is similar to the Contin-

uous in that all cores have private integrity subtrees, but instead of
having one spanning many levels, the cores now have many subtrees
only involving the leaf and data nodes. The plots demonstrate the
similarity to the Continuous microbenchmark: the same rise in eager
write misses we saw at level 7, here shows up at level 1, the first
non-private tree level. This in turn, causes a similar eager read spike
at level 2 (instead of level 8).

The (fully) Interleaved microbenchmark does not allow for any
private subtree for cores. This makes the eager and lazy policy have
the almost same characteristics: As soon as a core has made a write to
a leaf integrity node under the lazy policy, the next core will request
the same node, causing a cascading update to the root, as we showed
in Fig. 4. The exception to this is that only 4 of the 16 cores compete
over each leaf node (due to using arity 4). Since the microbenchmark
is only doing one pass over the memory, the lazy policy can avoid an
update propagation 1/4 of the time, resulting in fewer writes for the
lazy policy by 1/4. The read characteristics are, however, the same
for both eager and lazy.

In the final microbenchmark, the cores are contending over a single
lock variable. The important thing to notice is that all cores are trying
to read and write the exact same memory location. Every time a core
writes, it invalidates the integrity nodes on all levels for every core,
causing a read at every level when another core tries to read the value
again. As a result, the eager and lazy policy become effectively the
same, and the plot becomes flat.

To summarise, if cores work on separate memory areas, they can
avoid interfering with each other in the integrity tree. The bigger the
private memory areas are, the bigger the interference-free integrity
subtrees can be. In eager mode, all integrity updates will propagate
throughout the height of the tree, hitting in cache within the private
subtree, but interfering with other cores higher up in the tree. In lazy
mode, it is possible to remain interference free in the entire tree, as
long as the private subtree can be held in cache.

C. Benchmarks

Figures 7 and 8 show the results of our analysis of the PARSEC
and SPLASH-3 benchmark suites, for reads and writes, respectively.
Note that we put emphasis on misses in solid lines, as these represent
events that would cause coherence traffic, and an account for total
number of events (including both hits and misses) in weaker, dashed
lines.

In both Figs. 7 and 8, the benchmarks are sorted according to which
policy is “better” in a column-major order (top-down, left-to-right)
with “eager better” to the (top) left (e.g., Canneal) and “lazy better”
to the (bottom) right (e.g., Swaptions), with a spectrum in-between.
To be precise, the sorting criteria is the relative difference between
the read (misses) of the two policies at the root level (level 12) of
the integrity tree. Additionally, we can also highlight an orthogonal
“read heavy” group, marked with “*”.

We would particularly like to draw attention to the following
insights:

1) The leaf write miss ratio influences policy performance.
2) Page size and placement influence integrity tree sharing.
3) Large read-only data benefit from good integrity tree caching.

We discuss each of these insights in more depth below:
1) Policy performance differentiation: While Figs. 7 and 8 only

show integrity tree statistics, the fetches and exposures of data (which
cause integrity tree activity) can be seen as an echo in the reads and
writes, respectively, to the leaf level (level 0) of the integrity tree.

0 1 2 3 4 5 6 7 8 9 10 11 12

0.8

1.0

1.2

1e7 Canneal

0 1 2 3 4 5 6 7 8 9 10 11 12
1.2

1.4

1.6

1.8

1e6 1.2e7 Water-spatial*

0 1 2 3 4 5 6 7 8 9 10 11 12

3.0

3.5

4.0

4.5
1e5 1.1e6 LU-cb*

0 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

1e7 Ocean-ncp

0 1 2 3 4 5 6 7 8 9 10 11 12

4

5

6

7

8
1e6 LU-ncb

0 1 2 3 4 5 6 7 8 9 10 11 12
1.0

1.1

1.2

1.3
1e6 7.9e6 Bodytrack*

0 1 2 3 4 5 6 7 8 9 10 11 12

2.5

3.0

3.5

4.0

1e6 3.3e7 Raytrace*

0 1 2 3 4 5 6 7 8 9 10 11 12

0.5
1.0
1.5
2.0
2.5

1e7 Ocean-cp

0 1 2 3 4 5 6 7 8 9 10 11 12

1.0

1.2

1.4

1.6

1.8
1e7 FMM

0 1 2 3 4 5 6 7 8 9 10 11 12

0.8

1.0

1.2

1.4

1e8 Freqmine

0 1 2 3 4 5 6 7 8 9 10 11 12

0.6

0.8

1.0

1e6 8.8e6 Water-nsquared*

0 1 2 3 4 5 6 7 8 9 10 11 12
0.5

1.0

1.5

2.0

1e6 3.4e7 Volrend*

0 1 2 3 4 5 6 7 8 9 10 11 12

1.0

1.2

1.4

1.6

1.8

1e8 Fluidanimate

0 1 2 3 4 5 6 7 8 9 10 11 12

0.6

0.8

1.0

1.2
1e7 Cholesky

0 1 2 3 4 5 6 7 8 9 10 11 12

0.4

0.6

0.8

1.0

1.2
1e7 VIPS

0 1 2 3 4 5 6 7 8 9 10 11 12

2

4

6

8

1e6 Radix

0 1 2 3 4 5 6 7 8 9 10 11 12

0.8

1.0

1.2

1e7 4.9e7 Barnes*

0 1 2 3 4 5 6 7 8 9 10 11 12

3.0

3.5

4.0

4.5

5.0
1e6 2.3e7 Streamcluster*

0 1 2 3 4 5 6 7 8 9 10 11 12

1.0

1.5

2.0

2.5
1e5 Dedup

0 1 2 3 4 5 6 7 8 9 10 11 12
0.0

0.5

1.0

1.5

1e7 Ferret

0 1 2 3 4 5 6 7 8 9 10 11 12
5

6

7

8

9

1e4 Blackscholes

0 1 2 3 4 5 6 7 8 9 10 11 12
3.4

3.6

3.8

4.0

4.2

4.4
1e6 4.3e7 Radiosity*

0 1 2 3 4 5 6 7 8 9 10 11 12
0.5

1.0

1.5

2.0

2.5

3.0 1e6 FFT

0 1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

1e6 5.8e7 Swaptions*

Integrity tree level

Ev

en
ts

Eager read misses Eager reads Lazy read misses Lazy reads

Fig. 7. Results from selected PARSEC and SPLASH-3 benchmarks: reads and read-misses for both eager and lazy propagation. Ordered according to
characteristics in column-major order (top-down, left-to-right). Eager better to the left, lazy better to the right. Benchmarks marked with “*” are read heavy in
the leaf node and the outlier on level 0 has been left outside the plot with a note of its value (equal for both eager and lazy).

This is the reason there is no difference between the propagation
policies at the leaf. Similarly, it is the misses that cause fetches at
a particular level, which propagate as reads to the next level of the
integrity tree. Write propagation depends on the policy: either every
write are eagerly propagated as a write in the next level or only
exposures (caused by misses on dirty integrity tree nodes) are lazily
propagated as writes in the next level.

Since our model does not limit cache size for the integrity tree, all
write misses at the leaf level are compulsory or coherence misses (the
later due to communication between cores or false sharing). This is
beneficial for the lazy propagation policy as writes only propagate

on exposures, which are caused by coherence misses. It is even more
useful when the write miss ratio at the leaf level is low as it limits
the traffic (both reads and writes) that propagates to higher tree level.
As a result, we find the benchmarks with a low leaf write miss ratio
to the right (i.e., the “lazy better” side) in Fig. 8.

Conversely, when the leaf write miss ratio is high, the lazy policy
approaches the write volume of the eager policy. However, it is already
at about the 50% leaf write miss-ratio mark that read characteristics
become similar between the policies (middle of Fig. 7). At even
higher ratios, read characteristics favour the eager policy. A possible
explanation is that the eager policy keeps the integrity tree fresh at all

0 1 2 3 4 5 6 7 8 9 10 11 12

6.0

6.5

7.0

1e6 Canneal

0 1 2 3 4 5 6 7 8 9 10 11 12

0.8

1.0

1.2

1.4
1e6 Water-spatial*

0 1 2 3 4 5 6 7 8 9 10 11 12

2.0

2.5

3.0

3.5

4.0

1e5 LU-cb*

0 1 2 3 4 5 6 7 8 9 10 11 12

1.0

1.5

2.0

2.5

3.0
1e7 Ocean-ncp

0 1 2 3 4 5 6 7 8 9 10 11 12

3.8

3.9

4.0

4.1

4.2

1e6 LU-ncb

0 1 2 3 4 5 6 7 8 9 10 11 12

5.5

6.0

6.5

7.0

7.5
1e5 Bodytrack*

0 1 2 3 4 5 6 7 8 9 10 11 12

2.0

2.5

3.0

3.5

1e6 Raytrace*

0 1 2 3 4 5 6 7 8 9 10 11 12

0.5

1.0

1.5

2.0

2.5
1e7 Ocean-cp

0 1 2 3 4 5 6 7 8 9 10 11 12

0.8

1.0

1.2

1e7 FMM

0 1 2 3 4 5 6 7 8 9 10 11 12
0.6

0.8

1.0

1.2
1e8 Freqmine

0 1 2 3 4 5 6 7 8 9 10 11 12
0.4

0.6

0.8

1.0

1e6 Water-nsquared*

0 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3
1e6 Volrend*

0 1 2 3 4 5 6 7 8 9 10 11 12
1.0

1.1

1.2

1.3
1e8 Fluidanimate

0 1 2 3 4 5 6 7 8 9 10 11 12
4
5
6
7
8
9

1e6 Cholesky

0 1 2 3 4 5 6 7 8 9 10 11 12
0.2

0.4

0.6

0.8

1.0
1e7 VIPS

0 1 2 3 4 5 6 7 8 9 10 11 12

2

4

6

8
1e6 Radix

0 1 2 3 4 5 6 7 8 9 10 11 12
4.0

4.5

5.0

5.5

6.0
1e6 Barnes*

0 1 2 3 4 5 6 7 8 9 10 11 12
2.4

2.6

2.8

3.0

3.2

1e6 Streamcluster*

0 1 2 3 4 5 6 7 8 9 10 11 12

0.5

1.0

1.5

1e5 Dedup

0 1 2 3 4 5 6 7 8 9 10 11 12
0.00

0.25

0.50

0.75

1.00

1e7 Ferret

0 1 2 3 4 5 6 7 8 9 10 11 12

2.8

2.9

3.0

3.1

3.2
1e4 Blackscholes

0 1 2 3 4 5 6 7 8 9 10 11 12
2.00

2.25

2.50

2.75

3.00

3.25
1e6 Radiosity*

0 1 2 3 4 5 6 7 8 9 10 11 12
0.5

1.0

1.5

2.0

2.5
1e6 FFT

0 1 2 3 4 5 6 7 8 9 10 11 12
0.0

0.2

0.4

0.6

0.8

1.0
1e7 Swaptions*

Integrity tree level

Ev

en
ts

Eager write misses Eager writes Lazy write misses Lazy writes

Fig. 8. Results from selected PARSEC and SPLASH-3 benchmarks: writes and write-misses for both eager and lazy propagation. Ordered according to
characteristics in column-major order (top-down, left-to-right) in the same way as in Fig. 7. Benchmarks marked with “*” to match Fig. 7 but irrelevant here.

times, which would allow cores to sometimes fetch and keep a fresh
integrity tree node rather than loose the node due to an invalidation
by a lazily delayed update.

We can see the same relation between policy performance and
leaf write miss ratio already in the microbenchmarks (Fig. 6). In the
Blocked Interleaved and Continuous benchmarks, the miss ratio is
low and as a result, there are fewer lazy read (misses) than eager (at
the root). In the Interleaved and Lock Variable benchmarks, the miss
ratio is 100% and read (misses) for the benchmarks are the same for
both policies. The artificial perfect interleaving does not allow any
coincidental prefetches for the eager policy.

2) Page influence on integrity tree sharing: In Fig. 8 we can see
that most benchmarks have more write misses in the eager policy
compared to the lazy policy, particularly near the root level (level 12).
This is natural as every exposure of data causes a write in every level
of the integrity tree under the eager policy. As there are fewer nodes
per level near the root, collisions causing coherence misses become
increasingly likely when climbing toward the root.

Interestingly, with only a few exceptions (e.g., Radix and Canneal),
most benchmarks start the eager miss climb (departing from the lazy
miss level) after level 2. This is the same behaviour we see in the
Continuous and Blocked Interleaved microbenchmarks (cf. Fig. 6).
The Continuous microbenchmark starts the climb after level 6 as it

0 1 2 3 4 5 6 7 8 9 10 11 12

4

5

6

7

8
1e6 LU-ncb (arity 4)

0 1 2 3 4 5 6

4

6

8
1e6 LU-ncb (arity 16)

0 1 2 3 4

4

6

8

1e6 LU-ncb (arity 64)

0 1 2 3 4 5 6 7 8 9 10 11 12

2

4

6

8
1e6 Radix (arity 4)

0 1 2 3 4 5 6
2

4

6

8

1e6 Radix (arity 16)

0 1 2 3 4

4

6

8

1e6 Radix (arity 64)

0 1 2 3 4 5 6 7 8 9 10 11 12
0.6

0.8

1.0

1.2

1e7 Canneal (arity 4)

0 1 2 3 4 5 6

0.75

1.00

1.25

1.50
1e7 Canneal (arity 16)

0 1 2 3 4

0.75

1.00

1.25

1.50

1e7 Canneal (arity 64)

0 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3 1e6 FFT (arity 4)

0 1 2 3 4 5 6

1

2

3 1e6 FFT (arity 16)

0 1 2 3 4

1

2

3 1e6 FFT (arity 64)

0 1 2 3 4 5 6 7 8 9 10 11 12

1.00

1.25

1.50

1.75

1e8 Fluidanimate (arity 4)

0 1 2 3 4 5 6

1.0

1.5

2.0

1e8 Fluidanimate (arity 16)

0 1 2 3 4

1.0

1.5

2.0

1e8 Fluidanimate (arity 64)

0 1 2 3 4 5 6 7 8 9 10 11 12

1

2

1e7 Ocean-cp (arity 4)

0 1 2 3 4 5 6

1

2

1e7 Ocean-cp (arity 16)

0 1 2 3 4

1

2

1e7 Ocean-cp (arity 64)

0 1 2 3 4 5 6 7 8 9 10 11 12
0.75

1.00

1.25

1.50

1.75
1e7 FMM (arity 4)

0 1 2 3 4 5 6
0.75

1.00

1.25

1.50

1.75
1e7 FMM (arity 16)

0 1 2 3 4
0.75

1.00

1.25

1.50

1.75
1e7 FMM (arity 64)

0 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

1e7 Ocean-ncp (arity 4)

0 1 2 3 4 5 6

1

2

3

1e7 Ocean-ncp (arity 16)

0 1 2 3 4

1

2

3

1e7 Ocean-ncp (arity 64)

Integrity tree level

Ev

en
ts

Eager read misses
Eager reads

Eager write misses
Eager writes

Lazy read misses
Lazy reads

Lazy write misses
Lazy writes

Fig. 9. Results from a random selection of eight PARSEC and SPLASH-3 benchmarks: Reads and writes (and misses) for both eager and lazy propagation
for different integrity tree arity (4, 16, 64). Trends remain the same across different arity values but for much shorter trees with higher arity, which indicates
higher contention for hot-spot nodes.

has continuous private blocks of 1 MB, the exact amount of memory
covered by a level 6 integrity tree node. In the Blocked Interleaved
microbenchmark the climb starts after level 0 as the continuous private
blocks are 256 B (four cachelines).

Since level 2 integrity tree nodes cover 4 KB, we can conclude
that most benchmarks exhibit 4 KB private blocks. However, this is
likely tied to the fact that we have 4 KB pages in our simulation. It is
possible that using larger pages, or placing pages used by a particular
core consecutively in memory, we can delay the climb of eager write
misses to higher integrity tree levels, similarly to the Continuous
microbenchmark. That would decrease coherence overhead incurred
by both write and read misses for the eager policy.

3) Integrity tree caching importance: In Fig. 7, the benchmarks
marked with “*” exhibit a count of leaf reads that exceeds both read
misses and writes many times over (the value is printed between the
scale and benchmark name). As the leaf reads represent fetches of
data to the private cache, the volume indicate that the benchmark’s
data set does not fit in the private cache. Since our simulation caches
the integrity tree separately, it does not compete for capacity.

However, it is important to realise that if data and the integrity tree
did compete for space and the data were allowed to replace integrity
tree nodes, particularly at the leaf, many more fetches would cause
misses and reads on many more levels. The lesson we can learn is
that it is important to balance the cache storage for data and integrity
nodes.

D. Sensitivity to the Arity of the Integrity Tree

Higher arity for integrity nodes results in a shallower integrity tree.
With arity 16 and 64 every level represents two or three level of
the arity-4 tree, respectively. In Fig. 9 we show the trends for some
(randomly selected) benchmarks for higher arity. The statistics are
similar for levels where nodes cover a specific amount of memory
(e.g., level 0 with arity 64 corresponds to level 2 with arity 4), but
skew toward the statistics of the levels that were skipped. However,
coherence traffic is generally lower overall with higher associativity.

VI. DIRECTIONS FOR FUTURE WORK

A. A Universal Policy

It is evident from the evaluation that, without taking into account
evictions for the integrity tree, some benchmarks benefit from the
eager update policy and some from the lazy one (while for a few it
makes no significant difference). But what about if we account for
evictions?

We can generalise the lazy/eager update propagation policies beyond
the data cachelines to the whole integrity tree. For any cacheline,
regardless of whether it contains data or is an integrity tree node at
any level:

• On a dirty eviction, a lazy update of the next level is preferable
(just to save the information that the evicted block has changed
but not interfere with any other sharer).

• On a demand request, an eager update upwards in the integrity
tree should be selected (as the requester will verify shortly after).

We can therefore propose the following:

Lazy on evictions, eager on demand requests, for any cacheline,
whether data or integrity tree cacheline, independently of tree
level.

Universal Policy

B. Data-Race Freedom

Another compelling reason to prefer the lazy integrity propagation
policy on eviction is the effect of data-race–free programs [17]. Data
used by one core will remain private, even when evicted, until it is
released using synchronisation. After synchronisation, it is possible
—and sometimes even likely— that another core will read previously
private data. Assuming the integrity mechanism is aware of the
synchronisation, it can trigger a flush of integrity metadata. Starting
from the leaves, one level at the time, any dirty data or integrity
metadata updates the integrity metadata in the level above. Updating
in this order maximises the coalescing in the integrity tree as different
branches converge. The entire integrity flush only requires one update

of the root. Without the synchronisation-triggered integrity flush, every
request for a dirty cacheline or integrity node would cause an update
of the relevant integrity branch, including the root.

C. Implications of Trees with Counters

An improvement to purely MAC-based integrity trees (e.g., Merkle
trees) is to introduce one or more levels with counter nodes (e.g.,
Bonsai Merkle Trees). This modification also affects when it is feasible
to start an integrity update.

When the integrity of a cacheline is protected by a MAC only, it is
possible to be proactive by updating the MAC on every write. This is,
however, very wastefully (especially when paired with eager integrity
propagation). A better alternative is to be reactive and only make the
integrity update when the cacheline is about to leave the cache. The
drawback is instead that the entire integrity branch has to be updated
after a request for a cacheline arrives, a time-consuming operation at
a time-critical point.

With counters, data is associated with both a MAC and a counter,
with the MAC computed from both the data and the counter. For
the same reason as before, it would be wasteful to update the MAC
proactively and it still makes more sense to follow a reactive strategy
for it. The counter, however, only has to be incremented once per
(exposed) MAC update, and before the MAC update. Since we know
that the MAC has to be updated eventually once the cacheline becomes
dirty, this is an excellent time to increment the counter proactively.
The updated counter can be saved and used later when updating the
associated MAC.

When a counter is involved, the MAC is not really part of the tree,
that is, the MAC is not used to construct the MAC a level up in the
tree. Instead, the counter serves as the link to the rest of the tree.
This means that updates in the integrity branch can be propagated as
soon as the counter is incremented. The MAC can be updated later,
independently.

VII. CONCLUSION

Motivated by the need to extend memory integrity protection
to cache-coherent multiprocessors, we performed a design space
exploration of the policies for updating integrity trees. We presented
both a proactive and a reactive update initiation in the integrity
tree, as well as an eager and a lazy update propagation policy. We
analysed how those policies affect coherence traffic, discussed their
pros and cons, and concluded that both data cachelines and integrity
tree cachelines (independently of tree level) should propagate updates
lazily on evictions and eagerly on demand requests from another core.
This work is a first step towards a systematic evaluation of fine-grain
coherence for integrity trees, potentially enabling a slew of future
work (§VI) to truly enable secure cache-coherent systems.

REFERENCES

[1] M. Hassan, “Heterogeneous MPSoCs for mixed critical-
ity systems: Challenges and opportunities,” arXiv preprint
arXiv:1706.07429, 2017.

[2] M. Hassan, A. M. Kaushik, and H. Patel, “Predictable cache
coherence for multi-core real-time systems,” in 2017 IEEE Real-
Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, 2017, pp. 235–246.

[3] S. H. Gade, M. Sinha, M. Kumar, and S. Deb, “Scalable hybrid
cache coherence using emerging links for chiplet architectures,”
in 2022 35th International Conference on VLSI Design and 2022
21st International Conference on Embedded Systems (VLSID).
IEEE, 2022, pp. 92–97.

[4] S. Naffziger, N. Beck, T. Burd, K. Lepak, G. H. Loh, M. Sub-
ramony, and S. White, “Pioneering chiplet technology and
design for the amd epyc™ and ryzen™ processor families:
Industrial product,” in 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2021, pp.
57–70.

[5] E. Feng, D. Du, Y. Xia, and H. Chen, “Efficient distributed secure
memory with migratable Merkle tree,” in 2023 IEEE Interna-
tional Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 2023, pp. 347–360.

[6] B. Gassend, G. E. Suh, D. Clarke, M. Van Dijk, and S. Devadas,
“Caches and hash trees for efficient memory integrity verification,”
in The Ninth International Symposium on High-Performance
Computer Architecture, 2003. HPCA-9 2003. Proceedings. IEEE,
2003, pp. 295–306.

[7] S. Chhabra, B. Rogers, Y. Solihin, and M. Prvulovic, “Making
secure processors os-and performance-friendly,” ACM Transac-
tions on Architecture and Code Optimization (TACO), vol. 5,
no. 4, pp. 1–35, 2009.

[8] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using
address independent seed encryption and bonsai Merkle trees to
make secure processors os-and performance-friendly,” in 40th An-
nual IEEE/ACM International Symposium on Microarchitecture
(MICRO 2007). IEEE, 2007, pp. 183–196.

[9] Intel Corporation, “Intel® software guard extensions (intel® sgx),”
ISCA ’15 tutorial, https://community.intel.com/legacyfs/online/
drupal files/332680-002.pdf, Jun. 2015, reference no. 332680-
002, Accessed: 2024-04-13.

[10] L. E. Olson, S. Sethumadhavan, and M. D. Hill, “Security impli-
cations of third-party accelerators,” IEEE Computer Architecture
Letters, vol. 15, no. 1, pp. 50–53, 2015.

[11] L. E. Olson, J. Power, M. D. Hill, and D. A. Wood, “Border
control: Sandboxing accelerators,” in Proceedings of the 48th
International Symposium on Microarchitecture. IEEE, 2015,
pp. 470–481.

[12] L. E. Olson, M. D. Hill, and D. A. Wood, “Crossing guard: Me-
diating host-accelerator coherence interactions,” ACM SIGARCH
Computer Architecture News, vol. 45, no. 1, pp. 163–176, 2017.

[13] B. Rogers, M. Prvulovic, and Y. Solihin, “Efficient data protection
for distributed shared memory multiprocessors,” in Proceedings
of the 15th International Conference on Parallel Architectures
and Compilation Techniques, ser. PACT ’06. New York, NY,
USA: ACM, 2006, pp. 84–94.

[14] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood,
“Multifacet’s general execution-driven multiprocessor simulator
(GEMS) toolset,” ACM SIGARCH Computer Architecture News,
vol. 33, no. 4, pp. 92–99, Nov. 2005.

[15] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dis-
sertation, Princeton University, Jan. 2011.

[16] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-
3: A properly synchronized benchmark suite for contemporary
research,” in IEEE International Symposium on Performance
Analysis of Systems and Software, Apr. 2016, pp. 101–111.

[17] S. V. Adve and M. D. Hill, “Weak ordering – A new definition,” in
17th International Symposium on Computer Architecture (ISCA),
Jun. 1990, pp. 2–14.

https://community.intel.com/legacyfs/online/drupal_files/332680-002.pdf
https://community.intel.com/legacyfs/online/drupal_files/332680-002.pdf

	Introduction
	Background
	Merkle Trees
	Bonsai Merkle Trees
	Intel SGX Integrity Tree
	This paper

	Threat Models and Coherence
	Threat Models
	Coherence Threat Model

	Integrity Propagation Policies
	Eager vs. Lazy Trade-off
	Secure Root Transfer
	Evictions

	Evaluation
	Methodology
	Microbenchmarks
	Benchmarks
	Policy performance differentiation
	Page influence on integrity tree sharing
	Integrity tree caching importance

	Sensitivity to the Arity of the Integrity Tree

	Directions for Future Work
	A Universal Policy
	Data-Race Freedom
	Implications of Trees with Counters

	Conclusion

