
Filter Caching for Free: The Untapped Potential of the
Store-Buffer

Ricardo Alves
Uppsala University

ricardo.alves@it.uu.se

Alberto Ros
Universidad de Murcia

aros@ditec.um.es

David Black-Schaffer
Uppsala University

david.black-schaffer@it.uu.se

Stefanos Kaxiras
Uppsala University

stefanos.kaxiras@it.uu.se

ABSTRACT
Modern processors contain store-buffers to allow stores to retire
under a miss, thus hiding store-miss latency. The store-buffer needs
to be large (for performance) and searched on every load (for cor-
rectness), thereby making it a costly structure in both area and
energy. Yet on every load, the store-buffer is probed in parallel with
the L1 and TLB, with no concern for the store-buffer’s intrinsic hit
rate or whether a store-buffer hit can be predicted to save energy
by disabling the L1 and TLB probes.

In this work we cache data that have been written back to mem-
ory in a unified store-queue/buffer/cache, and predict hits to avoid
L1/TLB probes and save energy. By dynamically adjusting the al-
location of entries between the store-queue/buffer/cache, we can
achieve nearly optimal reuse, without causing stalls. We are able
to do this efficiently and cheaply by recognizing key properties of
stores: free caching (since they must be written into the store-buffer
for correctness we need no additional data movement), cheap co-
herence (since we only need to track state changes of the local, dirty
data in the store-buffer), and free and accurate hit prediction (since
the memory dependence predictor already does this for scheduling).

As a result, we are able to increase the store-buffer hit rate
and reduce store-buffer/TLB/L1 dynamic energy by 11.8% (up to
26.4%) on SPEC2006 without hurting performance (average IPC
improvements of 1.5%, up to 4.7%). The cost for these improvements
is a 0.2% increase in L1 cache capacity (1 bit per line) and one
additional tail pointer in the store-buffer.

CCS CONCEPTS
• Computer systems organization → Superscalar architec-
tures; Pipeline computing;Multicore architectures.

KEYWORDS
store-buffer, filter-cache, single thread performance, memory archi-
tecture, energy efficient architecture

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6669-4/19/06.
https://doi.org/10.1145/3307650.3322269

ACM Reference Format:
Ricardo Alves, Alberto Ros, David Black-Schaffer, and Stefanos Kaxiras.
2019. Filter Caching for Free: The Untapped Potential of the Store-Buffer. In
The 46th Annual International Symposium on Computer Architecture (ISCA
’19), June 22–26, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3307650.3322269

1 INTRODUCTION
The store-buffer (SB) is a sine qua non for high-performance proces-
sor implementations that allow stores to retire under cache misses.
It is so important that all prevailing memory models today, includ-
ing Total Store Order (TSO), relax the store→load order for the
express purpose of accommodating the store-buffer. Under TSO
(and consequently any weaker memory model that relaxes the same
order), performance-critical loads are allowed to bypass committed
stores that are waiting in the store-buffer to be inserted in the mem-
ory order, i.e., written to the L1. On the other hand, the store-buffer
is intentionally sized and managed in a way that keeps its occu-
pancy low, so that it does not induce processor stalls from being
full on future cache misses.

To maximize the use of available resources, the store-buffer (SB),
which holds stores between commit and when they are written to
memory, is often unified with the store-queue (SQ), which holds
stores from dispatch to commit. The resulting unified SQ/SB allows
for better overall utilization of the expensive CAM-FIFO needed to
support searches by load address and enforce store→store ordering,
and eliminates the cost of moving entries between separate queues.

To enforce sequential execution semantics, load instructions
must probe the SQ/SB searching for the youngest store (but older
than the load) to the same address that has not been written to
memory yet. If found, the value of the store takes precedence over
any value that may be in the L1 or elsewhere in the memory hierar-
chy. However, delaying the access to the L1 to perform this search
would unduly delay all L1 accesses, even when there is no such
store found in the SQ/SB. To avoid a performance loss on all loads,
the SQ/SB is commonly probed in parallel with the L1/TLB access.

A hit in the SQ/SB, makes the L1/TLB access irrelevant and the
value found in the SQ/SB is forwarded to the load (store-to-load
forwarding). Conceivably, the access to the L1 could be discarded
as soon as a hit in the SQ/SB is detected, but the damage in perfor-
mance (interference in cache ports) and energy (TLB and L1 tag
access) would already have been done.

For efficiency, we would like to predict whether we are likely
to find the correct value in the SQ/SB or the L1, and thereby only
probe one structure. If a reliable prediction indicates that the correct

https://doi.org/10.1145/3307650.3322269
https://doi.org/10.1145/3307650.3322269

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Ricardo Alves, Alberto Ros, David Black-Schaffer, and Stefanos Kaxiras

value is to be found in the SQ/SB, we can serialize the access to the
L1/TLB and save the energy penalty of an irrelevant access, without
paying the latency penalty of the serialization when we do not hit
in the SQ/SB. Yet today’s designs try to empty the SQ/SB as rapidly
as possible, which explicitly reduces the chance of hitting in the
SQ/SB. This approach reduces the potential benefit of predicting
SQ/SB hits and using the prediction to avoid irrelevant L1/TLB
probes. In this paper we address the conflict between emptying the
the SQ/SB quickly to avoid increasing latency on write-misses and
keeping it full to use hits in the SQ/SB to reduce irrelevant L1/TLB
probe energy.

This work makes three main observations. First, although expen-
sive CAM-based SQ/SBs are made as large as possible to prevent
processor stalls when full (e.g., the Intel Skylake processor employs
a combined 56 entry SQ/SB), they typically remain underutilized.
Second, since the SQ/SB has to be probed on every load instruction
(to allow store-to-load forwarding), the SQ/SB acts as a filter or
L0 cache [4, 14, 19]. Third, the hit ratio of existing SQ/SB’s is kept
intentionally low (8%) due to aggressive write back policies that
lead to under-utilization (first observation).

From these observations, we explore the potential benefits of
keeping data in the SQ/SB, and determine that an ideal approach
could reduce L1/TLB probes by 14% on average. We then develop
an essentially zero-cost approach (a second dirty bit per L1 cache
line is all we require) that allows us to keep the SQ/SB full to obtain
these benefits. We do so in two steps: First, by keeping SB entries
that have been written to cache around as long as the SQ/SB is
not full, thereby increasing its hit ratio, and, second, by efficiently
predicting when the data will be found in the SQ/SB so that the
L1/TLB probes can be avoid to save energy.

Increasing SQ/SB hits. Keeping stores that have already been
written to memory in the SQ/SB is free in terms of storage, as
we simply leverage the unused portion of the SQ/SB, and free in
terms of data movement, as the data has already been installed
in the SQ/SB for correctness. We name the part of the SQ/SB that
keeps already performed stores the Store-Buffer-Cache (SBC) and
the new shared structure SQ/SB/SBC, S/QBC (Figure 1). This allows
us to maximize the use of the expensive CAM storage by keeping
it full with a combination of entries from S/QBC, and only requires
adding a head pointer to track the SBC portion. As a result, we can
improve its hit ratio without increasing the likelihood of processor
stalls, since all stores in the SBC part have already been written to
memory, and can therefore be immediately removed when more
space is needed. Our key observation here is that the SQ/SB is
already paying the data movement and capacity overheads of a
filter cache, but without any energy benefit on hits. (Section 4.1)

S/QBC coherence. The data in the SBC must be coherent with
the data in memory as they have already been written to mem-
ory and another processor can modify them, resulting in a stale
copy in the SBC. A central contribution of our work is propos-
ing a highly-effective, low-cost mechanisms for achieving such
coherence. (Section 4.3)

Avoiding L1/TLB probes. While leveraging the unused por-
tion of the SQ/SB as a store-buffer-cache increases the hit ratio, to
achieve energy benefits we need to avoid the parallel L1/TLB probe
on S/QBC hits. For correctness we must always check the S/QBC,
but we can afford to serialize the access to the L1/TLB if we expect

X X
X X X X

S0S1S2S3S4S5S6

SB
Tail

L1
Cache

SQ
Next

SQ/SB

S2S3S4S5S6

SB
Tail

SQ
Next

S0S1

SBC
Tail

Coherence:
Flush (reset SBC Tail)

on invalidation

X X
X X X X

S0S1L1
CacheSQ/SB/SBC

S/QBC: Unified SQ/SB/SBC

Baseline: Unified SQ/SB

Figure 1: The Store Buffer Cache extends a unified SQ/SB with a
third logical cache partition (SBC) that holds copies of data that has
already beenwritten to the L1 to increase store buffer hits. This data
can be immediately and silently evicted when space is needed (so it
does not increase stalls) but needs to participate in coherence.

to hit in the S/QBC. In contrast, when we expect to miss in the
S/QBC, we can start the parallel access to the L1/TLB, as in current
practice, so as to not penalize performance. This requires an early
prediction of the chances of hitting in the S/QBC. Our key observa-
tion here is that such hardware already exists in out-of-order cores
in the memory dependence predictor [10, 25, 40], and we simply use
it (without loss of generality) to select between serial or parallel
access to the S/QBC and the L1/TLB. (Section 4.4)

Our results show that by using the empty portion of the SQ/SB as
a store-buffer-cache, we can keep stores around for long enough to
improve the hit ratio from 8.1% to 18.1%. Using the the CPUmemory
dependence predictor to choose between serial or parallel probing
of the S/QBC and L1/TLB, the S/QBC/TLB/L1 cache dynamic energy
can be reduced by 11.8%. Our design achieves this essentially for
free: We leverage the existing memory dependence predictor and
SQ/SB capacity and add only 1 bit per L1 cache line (0.2% storage
increase) and one additional SQ/SB head pointer. Moreover, we
achieve this energy reduction without impacting ability of the
SQ/SB to reduce latency, and deliver 1.5% average IPC improvement
on SPEC2006. Our contributions are:
• We identify that writes in the SQ/SB are paying the energy and
area costs of a filter cache, but are not seeing savings on hits.
• We identify that L1/TLB accesses can be avoided on SQ/SB hits

using the existingmemory dependence predictor, but that current
SQ/SB hit ratios are too low to benefit from this.
• We determine the potential reuse available through the SB/SQ
and propose a third logical cache partition in the SB/SQ, the
Store-Buffer-Cache, that can obtain 99% of the reuse.
• We identify that copies of writes in the SQ/SB can be kept coher-

ent very cheaply by tracking epochs of dirty data in the L1, and
develop an extremely-low overhead multi-dirty-bit coherence
implementation for the Store-Buffer-Cache.
• We combine these insights to develop the Store-Buffer-Cache,
a nearly zero-cost design that saves 11.8% of SQ/SB + L1/TLB
energy with no performance loss (actually having an modest
improvement of 1.5%).

Filter Caching for Free: The Untapped Potential of the Store-Buffer ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

2 BACKGROUND
2.1 The Store-Queue/Store-Buffer (SQ/SB)
CPUs with an out-of-order execution pipeline implement a several
structures to keep track of the original program order. The store-
queue (SQ), in particular, is responsible for keeping track of the
original order of store instructions. Its purpose is twofold: (1) to
keep track of the stores’ original order so that they are committed to
memory in that same order, and, (2) to forward data to load instruc-
tions that address the same memory location of an uncommitted
store, thus guaranteeing that a load always accesses the most recent
value.

A common challenge is that stores that are ready to commit may
be stalled due to cache misses or contention. Such delays block
the ROB and may stall the pipeline. To allow stores to retire in
these conditions, a store-buffer (SB) is used to track stores that have
committed but have not yet been written back to memory. When
entries in the SQ have been committed, they are moved to the SB
until they are written back to memory (typically to the L1).

The store-queue (SQ) and store-buffer (SB) are generally imple-
mented in a unified physical structure called the SQ/SB. The unified
approach means that the distinction between entries in the SQ and
SB is purely logical: stores that are not yet committed are in the
SQ portion, and stores that are committed but not yet written to
memory are in the SB portion. This allows for a more efficient im-
plementation, as there is no need to copy between separate buffers
on commit (moves simply require changing head/tail pointers as
all moves are in store order) and either the SQ or the SB size can
increase up to the maximum capacity. The higher utilization by
sharing capacity between the SQ/SB is important as the structure
is implemented as a FIFO (to support writing to memory in-order
as required by widely-supported memory models such as Total
Store Order —TSO), but requires CAM access (to allow searches by
address for later loads). As a result, the cost of this structures is
high, but it must be large enough to handle bursts of write misses
that would otherwise stall the processor.

Too avoid increasing load latency, loads probe the SQ/SB and L1
cache in parallel. If the address matches a store in the SQ/SB (i.e.
a SQ/SB hit), the data is forwarded from the youngest store that
matches the address, and the in-flight L1 cache request is ignored1.
In addition, since L1 caches are generally physically tagged, the
load address has to be translated, requiring a parallel access to the
TLB as well.

2.2 SQ/SB Utilization and Hit Ratio
The relatively small size of the SQ/SB, combined with its aggres-
sive eviction policy (designed to keep it as empty as possible to
avoid stalls) results in a low utilization and a low hit ratio. Figure 2
demonstrates this low-utilization for a 56-entry SQ/SB across the
SPEC2006 benchmarks. While the SQ/SB is highly-utilized (>80%
full) at some point in all benchmarks, the majority of the time the
buffer remains largely un-utilized (<40% full). Indeed, the average
benchmark uses 20% or less of the SQ/SB for 62% of its execution,
and 40% or less for 85% of its execution.

1As mentioned in the introduction, it might be possible to squash the L1 request at
this point, but the cost of port contention and tag/TLB access has already been paid.

as
ta
r

bw
av
es

bz
ip
2

ca
ct
us

ad
m

ca
lc
ul
ix

de
al
ii

ga
m
es

s
gc

c
ge

m
sf
dt
d

go
bm

k
gr
om

ac
s

h2
64

re
f

hm
m
er

lb
m

le
sl
ie
3d

lib
qu

an
tu
m

m
cf

m
ilc

na
m
d

om
ne

tp
p

pe
rl

po
vr
ay

sj
en

g
so

pl
ex

sp
hi
nx

3
to
nt
o

w
rf

xa
la
n

ze
us

m
p

G
eo

m
ea

n

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
0-20% 20-40% 40-60% 60-80% 80-100%

Figure 2: SQ/SB occupancy across benchmarks. All benchmarks
have high SQ/SB utilization (>80%) at some point, while themajority
of the time it experiences lowutilization (<40%). Simulationmethod-
ology is explained in Section 5.1.

as
ta

r
bw

av
es

bz
ip

2
ca

ct
us

ad
m

ca
lc

ul
ix

de
al

ii
ga

m
es

s
gc

c
ge

m
sf

dt
d

go
bm

k
gr

om
ac

s
h2

64
re

f
hm

m
er

lb
m

le
sl

ie
3d

lib
qu

an
tu

m
m

cf
m

ilc
na

m
d

om
ne

tp
p

pe
rl

po
vr

ay
sj

en
g

so
pl

ex
sp

hi
nx

3
to

nt
o

w
rf

xa
la

n
ze

us
m

p
G
eo

m
ea

n

0
5

10
15
20
25
30
35
40
45
50

Standard SQ/SB Optimal SQ/SB

H
it

ra
tio

 (%
)

Figure 3: Percentage of loads that hit in the SQ/SB for: 1) A Standard
SQ/SB that aggressively writes out to memory, and 2) an Optimal
SQ/SB thatmaximizes hits by keeping values around exactly as long
as possible without stalling the processor.

Figure 3 shows the percentage of loads (hit ratio) that receive
their data from the Standard SQ/SB (aggressively writing back
data) for SPEC2006 with a Skylake-like 56-entry unified SQ/SB.
(Configuration details in Section 5.1.) While cactusadm, omnetpp,
and povray have significant SQ/SB hit ratios (21.4%, 21.5% and 19.6%,
respectively), most applications have hit ratios around or below
10%, and the overall SPEC2006 average is only 8.1%. This is not
surprising given the utilization, but is very low for a typical cache.

The low hit ratio suggests that (1) programs are unlikely to
benefit from the lower latency of data forwarded by the SQ/SB as
the majority of the loads experience the longer L1 latency on SQ/SB
misses, and, that (2) today’s approach of probing both the SQ/SB
and the L1/TLB in parallel is reasonable, as most data requests will
miss in the SQ/SB and have to access the L1/TLB anyway. With this
SQ/SB hit ratio, serializing SQ/SB→L1/TLB accesses would increase
the latency for the 92% of the accesses that miss in the SQ/SB and
only provide an energy benefit for 8% that hit. Thus, although
the SQ/SB could provide energy benefits by filtering accesses to
the L1/TLB, its poor hit ratio justifies today’s approach of parallel
accesses.

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Ricardo Alves, Alberto Ros, David Black-Schaffer, and Stefanos Kaxiras

2.3 Filter Caches and the SQ/SB
Filter caches [4, 14, 19] add a very small cache between the CPU
and the L1, typically in the range from a few cache lines with high
associativity up to a few dozen direct-mapped lines. Because of their
small size, a hit in a filter cache is inherently faster and more energy
efficient than a hit in the L1. While their lower latency is unlikely to
translate into performance gains, as it will typically be covered by
OoO execution, the reduced access energy can still deliver efficiency
benefits by filtering accesses to the L1. Unfortunately, the small
capacities of filter caches often result in extremely low hit rates,
which incur the additional energy and latency of probing the filter
cache and probing and copying from the L1. For low hit rates, this
overhead can be worse than directly accessing the L1 and actually
increase the memory access energy and latency [3].

Intriguingly, if we consider using the SQ/SB as a filter cache for
writes, the low hit rate does not incur an additional energy cost,
as all stores must be installed in the SQ/SB and it must always
be probed for correctness. That is, the SQ/SB is already paying the
probe and copy energy overheads of a filter cache, but by choosing a
policy that empties it as aggressively as possible, we are reducing
the chance of hits. This differs from addressing loads in the load
queue, as it does not store the load data, using it as a cache requires
both additional storage and data movement energy [27].

3 MOTIVATION AND POTENTIAL
To understand the potential of the store-buffer as a cache, we need
to identify how much locality it can deliver, both as a function of
its size and its write back policy.

3.1 Maximizing the SQ/SB Hit Ratio
We implemented an Optimal SQ/SB that delays writes from the
SB to the L1 as long as possible without hurting performance. The
Optimal SQ/SB models an instantaneous write back to the L1 from
the SB that is triggered as soon as new entries in the SQ/SB are
needed. This allows us to see the potential for hits in the SQ/SB.

Figure 3 shows that with the Optimal SQ/SB, perl, povray and
gobmk now have the highest hit ratios of 46.6%, 35.4% and 34.4%,
respectively, increases of 2.9x, 1.8x and 4.3x over the Standard
SQ/SB, with its aggressive write back policy. On average, the hit
ratio increase to 18.4% from 8.2%, a 2.3x improvement over the
Standard SQ/SB.

Figure 4 shows the potential of the Optimal SQ/SB to reduce
L1/TLB accesses (assuming perfect hit prediction) and the resulting
SQ/SB+L1/TLB dynamic energy savings. Taking perfect advantage
of maximal SQ/SB locality would filter an average of 15.5% of the
L1/TLB accesses (up to 31.5% on perl) and save an average of 13%
of the dynamic energy (up to 28.7% on perl).

3.2 Sensitivity to Store-Buffer Size
Figure 5 explores the total percentage of memory accesses the SQ/SB
can filter as a function of size for an Optimal SQ/SB. This metric
includes the effect of load/store mix in the application, as only loads
can hit in the SQ/SB. The average percentage of filtered accesses
across SPEC2006 (purple line, Geomean) increases only slightly
from 15.5% at our baseline size of 56-entries to 19.7% at 256-entries,
despite the 4.5x increase in queue size. Catusadm stands out as

as
ta

r
bw

av
es

bz
ip

2
ca

ct
us

ad
m

ca
lc

ul
ix

de
al

ii
ga

m
es

s
gc

c
ge

m
sf

dt
d

go
bm

k
gr

om
ac

s
h2

64
re

f
hm

m
er

lb
m

le
sl

ie
3d

lib
qu

an
tu

m
m

cf
m

ilc
na

m
d

om
ne

tp
p

pe
rl

po
vr

ay
sj

en
g

so
pl

ex
sp

hi
nx

3
to

nt
o

w
rf

xa
la

n
ze

us
m

p
G
eo

m
ea

n

0

5

10

15

20

25

30

35
L1/TLB accesses filtered Energy improvement

%

Figure 4: Potential accesses to the L1/TLB that can be filtered with
an optimal SQ/SB write policy and the resulting SQ/SB+L1/TLB dy-
namic energy improvement. (Higher is better.)

1 8 16 32 44 56 64 96 128 160 192 224 256
0

5

10

15

20

25

30

35

40

45

50

bwaves bzip2 cactusadm gamess
libquantum perl povray sjeng
zeusmp Geomean

To
ta

l L
1/

TL
B

 a
cc

es
se

s
re

du
ct

io
n

(%
)

Figure 5: Percentage of memory accesses filtered by a SQ/SB with
an optimal (delayed write back) policy as a function of size. Note
the non-linear X-axis that highlights sizes 44 and 56, which are
AMD Zen’s and Intel Skylake’s SQ/SB sizes, respectively. Only se-
lected benchmarks are shown for clarity, while the mean includes
all SPEC2006 benchmarks.

the exception, with a significant increase for sizes of 96 and up.
However, designing FIFO-CAMs of that size is a challenge, and has
been shown to incur performance overheads [35]. As most of the
locality appears to be captured by size 56, and it is typical of modern
processors, we choose it for the remainder of our experiments.

4 THE STORE-BUFFER-CACHE
To use the SQ/SB to reduce L1/TLB accesses we need to (1) improve
its hit ratio without increasing CPU stalls from running out of
capacity during store-misses, and, (2) avoid accessing the L1/TLB
on SQ/SB hits.

4.1 The Cache Portion of the SQ/SB
The first step in making the SQ/SB into an effective cache is to
improve its hit ratio. Simply delaying write-backs from the SQ/SB
is not ideal as it could increase CPU stalls due to the decreased
capacity available to the SQ to handle bursts of writes.

Filter Caching for Free: The Untapped Potential of the Store-Buffer ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

To delay writing stores in the SQ/SB to memory without increas-
ing CPU stalls, one would need to predict when more capacity will
be needed in the SQ/SB in time to write out enough entries to free
that capacity. This requires: (1) accurately predicting store-misses,
(2) doing so sufficiently early to perform enough writes to the L1
to free enough entries for the new stores, and (3) predicting how
many entries are required to hide the store-miss latency, to avoid
writing back too many entries. Building such a predictor would
be a challenge. Instead, we propose using a portion of the unified
SQ/SB storage as a Store-Buffer-Cache (SBC), and we refer to this
unified structure as the S/QBC and the logical portion that holds
copies of written out data as the SBC.

Instead of delaying stores in the SB to increase hits, the S/QBC
writes stores to the L1 as soon as possible, as in a traditional SB.
However, a copy of the store is kept in the SBC. The S/QBC uses
the same storage as a traditional unified SQ/SB, but now with the
three logical partitions: the SQ holds not yet committed stores, the
SB holds committed, but not yet written to L1 stores, and the SBC
holds copies of committed stores that have been written to the
L1. We implemented the S/QBC storage as a circular FIFO queue,
where the head of one queue precedes the tail of the next. Thus
the movement of stores between the different queues is simply a
pointer increment, and no physical copying is required. This is
possible because writes to the L1 are performed in FIFO order, and
therefore every new entry added to the SBC will have been the
oldest entry in the SB. As a result, the SBC is effectively free, as
moving data from the SB to the SBC does note require a copy and
all stores are already written into this shared structure when they
were installed in the SQ for correctness.

The S/QBC is able to keep the results of stores as long as possible
as evictions only happen when a new entry is needed. Since the
stores in the SBC were already written back to memory, evictions
can be done silently and immediately whenever space is needed for
new writes in the SQ. This maximizes hits in the S/QBC, by keeping
data around as long as there is space, without causing extra CPU
stalls due to lack of available space for new stores, but means that
the copies in the S/QBC need to address synonyms and be kept
coherent.

4.2 Store-Buffer-Cache Synonyms
A translation from virtual to physical address is required to detect
possible incorrect forwardings due to synonyms, even on S/QBC
hits. We can elide the traditional TLB access on S/QBC hits since
the load queue (LQ), SQ, SB and SBC hold both virtual and physical
addresses [21]. A load that matches a virtual address from the SQ,
SB or SBC, can copy the same physical address of the matching store
entry as well: virtual-to-physical mapping is one-to-one. One-to-
many mappings (homonyms) are avoided by the operating system.

A load hit on an SBC entry whose physical address has not yet
been retrieved requires only a single TLB access to translate both
the earlier store and the later load. This eliminates the need for a
second TLB access for the later load. Moreover, as noted by Lustig
et al. [21], some loads can get their data from a store using only
virtual addresses, if it can be guaranteed that no synonym exists in
between them in program order. The S/QBC can therefore ensure

that all load hits will have correct physical addresses, even though
they do not need separate TLB accesses.

4.3 Store-Buffer-Cache Coherence
Keeping clean copies of the data in the S/QBC creates a coherence
problem: As the store has already written its data out to the L1, any
other core can access the data block and modify it unbeknownst
to the S/QBC. Hits in the S/QBC in such cases return incoherent
values. Lack of coherence is devastating for a consistency model
such as TSO, but also needs to be addressed in weaker models in
relation to memory ordering fences. In this work we address the
coherence problem for TSO and we discuss its handling on weaker
models. We assume a MESI invalidation protocol, but our approach
can be easily adapted to more complex protocols (MOESI/MESIF).

A naïve solution is to forward any invalidation that reaches
the L1 and any L1 eviction to the S/QBC. In this way, we could
selectively invalidate individual entries in the SBC portion of the
S/QBC. This is already done for the load queue: invalidations and
evictions search the load queue for speculative loads that violate
consistency ordering and squash them. Selectively invalidating
individual entries in the S/QBC would be energy-expensive, as it
would require additional CAM ports for searching, and complex, as
it would require compacting the entries in the SBC to recover the
capacity of invalidated entries. At the other extreme, the simplest
approach is to bulk-flush the SBC on any invalidation or eviction
from the L1. Such an approach does not require any associative
searches, but wipes out all SBC entries, and would thereby reduce
the S/QBC hit ratio.

We can simplify how we handle coherence by noting that stores
are treated differently from loads in the coherence domain. Specifi-
cally, a store that is written to the L1 implies that the local L1 has
ownership of the data block (in a MESI protocol the cache line is
in state MODIFIED) because its data are dirty. As a result, L1 inval-
idations or evictions of EXCLUSIVE/SHARED, clean cache lines are
irrelevant to the SBC, and can be ignored. However, if we lose own-
ership of a cache line, either through an invalidation, an eviction,
or simply because of a read request from another core that forces
the local cache line to downgrade to SHARED (and become clean),
then we are no longer able to detect that the coherence actions on
that line affect our SBC. In this case one of our own prior stores has
been affected by a coherence action, and if a corresponding clean
copy exists in the store-buffer-cache, it must be stale.

More specifically: (1) An invalidation reaching a MODIFIED, dirty
cache line, means that another core is writing the cache line and
therefore a copy of the data in the SBC is now stale. (2) An eviction
of a MODIFIED cache line does not necessarily mean that a copy in
the SBC is stale, but we lose the ability to track any future changes
to the data block (wewill not get an invalidation if it is written in the
future) and therefore we should also remove the copy from the SBC.
(3) If we receive a read request from another core and downgrade
to SHARED (writing back the dirty data and going to a clean state),
there is the potential again to lose track of any future changes to the
data block, as a SHARED, clean copy can be silently conflict-evicted.
Across these cases, the key property that governs the validity of
the copies in the SBC is the local ownership of the cache line, or,
equivalently, holding the cache line in a dirty state in the private L1.

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Ricardo Alves, Alberto Ros, David Black-Schaffer, and Stefanos Kaxiras

Any action that effectively downgrades the ownership or cleans
the cache line is a cause to invalidate the corresponding data in the
SBC. (Note that copies in the SBC portion of the S/QBC are always
“clean” with respect to the L1, as they can only be cached in the
SBC portion once they have been written to the L1.)

Since we now have restricted the cases where we must react, we
can relax the the specificity of our reaction: instead of invalidating
specific data in the SBC (which would require an associative search
and compaction) we opt to bulk-flush all cached data in the SBC,
but only under these more restricted circumstances. In our unified
S/QBC, such a bulk-flush simply requires moving the head SBC
pointer to coincide with the head SB pointer. This is the cheapest
method to enforce coherence in the store-buffer-cache: it requires
no change in the L1, and just a lone signal from the L1 cache
controller to the S/QBC to reset the SBC pointer when the L1 cache
loses local ownership of a cache line2.

Although restricting bulk-flushes to coherence changes to cache
lines that are locally owned provides correctness at a reasonable
performance, it is overly conservative as cache lines tend to live in
the cache much longer than cached data in the S/QBC. It might very
well be the case that a downgrade of a locally owned cache line
corresponds to a very old store that left the S/QBC a long time ago.
As a result of this difference in the recency of data in the SBC and
L1, a bulk-flush of the current cached data in the SBC is extreme.
On the other hand, associatively searching the cached data in the
S/QBC for a specific address requires additional CAM probe ports
and compaction or loss of capacity. To address this, we need to
incorporate a notion of recency in our design in an effective and
low-cost manner.

Multicolored dirty bits: The problem we seek to address is
that coherence events on much older, locally owned cache lines in
the L1 force flushes of the much more recent data in the SBC. We
can address this by coarsely tracking the age of dirty data with the
use of a dirty bit of a different color. On L1 coherence events that
require SBC flushes, we need only flush the SBC entries that have
the same color dirty bit. By periodically switching the currently
active dirty bit color for new writes, we can avoid having to flush
the writes in the SBC that are using the current color when lines
with an older color are downgraded.

The simplest example is to assume two dirty bits (per cache line)
of different colors: a red dirty bit and a black dirty bit. Only one of
them can be set at any point in time, and either means that the cache
line is dirty. The SB operates in red periods and in black periods.
When it is in a red period it sets the red dirty bit when writing in
the cache, and vice versa for black periods. The SB changes from
a red period to a black period and back on any bulk-flush caused
by a coherence action. In addition, the bulk-flush signal from the
cache controller indicates whether it is a red or black dirty line
that is experiencing a downgrade. We then institute the following
policy: when a downgrade happens in the cache for a cache-line
of a specific color we cause a bulk-flush in the SBC only if it is in
a period of the same color, otherwise we ignore it. An example of
the operation with two dirty bits is given in Figure 6. Two colors

2To avoid vulnerability windows the bulk-flush, it must be acknowledged by the L1
before the handling of the coherence action on the part of the cache controller.

give us a restricted sense of recency in our actions, and reduces the
number of SBC entries that need to be evicted.

C C

C C C

C C

C

Red

4. Red epoch writes: Dirty data from the SB is written to the L1
with the red dirty bit set and cached in the SBC.

L1 Cache
(C=clean lines, X=invalidate)

SQ/SB/SBC

C C

C C C C

C CBlack

1. Black epoch writes: Dirty data from the SB is written to the L1
with the black dirty bit set and cached in SBC.

C C

C C C C

C CBlack

2. Invalidates/downgrades to non-black data: Coherence that
affects non-black data does not need any action in the SBC.

Epoch

C C

C C C C

C CRed

3. Invalidates/dowgrades to black data: Coherence that affects
black data cause SBC flushes and switch the epoch to red.

C C

C C C

C C

C

Red

5. Invalidates/downgrades to black data: Coherence that
affects black data no longer cause SBC flushes because no
black data remains.

C C

C C C

C C

C C

Black

6. Invalidates/downgrades to red data: Coherence that affects
red data cause SBC flushes and switch the epoch to black.

Figure 6: Operation of the S/QBC with red/black dirty bits. Only co-
herence actions on L1 data that affect dirty data from the current
epoch result in flushes of the SBC and a color change.

More specifically: if the SB is in a black period, a downgrade of a
black cache line from the L1 that is related to the writes in the SBC
will be black. This ensures correctness. However, a downgrade to a
black line in the L1 may also be much older, in which case there is
no correctness concern, but we unnecessarily flush the buffer-cache.
If the downgraded L1 cache line is of a red color, then it certainly
corresponds to a store of the previous period (or any other older red
period) that was bulk-flushed in the most recent switch to the black
period. This means that we can safely ignore all red downgrades.

The two-color example can be generalized to any number of
“colors” (or epochs) to trade-off the overhead of tracking and the risk
of unnecessary flushing. Note that with two dirty bits we can encode
the clean state (e.g., {0,0}) and three colors. In the steady state, after
many switches from color to color, we expect that the cache will
contain a mixture of dirty blocks in all three colors and, on average,
we expect to be able to ignore two-thirds of the downgrades that
are of different color than the current period. With n bits we can
encode the clean state and (2n) − 1 colors, thereby expecting to
reducing the SBC flushes to 1/((2n)− 1) of the naïve approach with
only a single dirty bit. We show in Section 5 that in practice just
three colors captures most of the the potential.

Filter Caching for Free: The Untapped Potential of the Store-Buffer ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

Alternatively, we can approximate unlimited number of colors
with only two dirty bits if our cache architecture supports selective
flush-reset of the dirty bits. In this case, we only need two colors:
Red, indicates that the line is dirty and it might be in the SBC, and
Black, indicates that the line is dirty and cannot be in the SBC.
All writes leaving the SB are marked as red, to indicate that they
may still be in the SBC. When we get an invalidation/eviction on
a red line from the L1, we flush the SBC and selectively flash-reset
all red lines in the L1 to black. Since we flushed the SBC, none of
the previously red lines in the L1 can still be in the SBC. Now,
we are susceptible to evictions/invalidations only from the current
period. The trade-off of this approach is that it approximates infinite
colors with no additional dirty bit overhead, but requires support to
selectively flash-reset. The circuit for doing this needs to be applied
independently to each dirty bit pair, but it consists of only one
AND gate. Designers can select the approach that best fits their L1
architecture.

Coherence forweakermemorymodels:The above approach
can be used to provide a correct coherence substrate for any mem-
ory model weaker than TSO. However, in weaker models some
incoherence may be tolerated by the model itself, as other exam-
ples of coherence protocols such as DeNovo [9] or VIPS [31] have
shown, in relation to Data-Race-Free (DRF) software. In such cases,
the coherence of the clean data in the SBC can be tied to memory
ordering fences specified by the consistency model. For example, in
Release Consistency (RC) there is no strict requirement to see the
latest value written by another core, unless we cross an Acquire
fence. In such a case, the clean data of the SBC should be invalidated
by the fence. In this work we tackle the (harder) problem of the
stronger TSO model, and leave the evaluation of weaker models
for future work.

4.4 Predicting S/QBC Hits
The most straightforward solution to improve energy efficiency is
to serialize the access to S/QBC and the L1/TLB. However, even
taking advantage of all locality available in the S/QBC, such an
approach would increase the latency of >80% of the loads, while
saving L1/TLB energy on the remainder that hit in the S/QBC. (See
Section 3.) To avoid this loss of performance, while retaining the
energy savings, we need to predict whether a load will hit in the
S/QBC so that we can choose to disable the L1/TLB probe, without
incurring a latency penalty for loads that do not hit.

Fortunately, determining in which cache level a load is expected
to hit is a well-studied problem [20, 22, 40], as knowing the latency
of memory operations is essential for scheduling of load dependent
instructions [2, 12, 23, 29]. For the S/QBC, the prediction we need is
whether a load will hit in the S/QBC. This problem is simplified by
the memory dependence predictor, which already exists to predict
if a load-dependent instruction will have its data forwarded from
the SQ/SB, and inform the instruction scheduler in an effort to
avoid instruction replays.

For our study we select an established memory dependence
predictor technique based on store-distances [40] using a 1K table.
The predictor is able to correctly predict S/QBC hits and misses
in 93.6% of the cases (95.4% for the Standard SQ/SB), with worst
application being gobmk at 89.7%. (See Figure 7.)

as
ta

r
bw

av
es

bz
ip

2
ca

ct
us

ad
m

ca
lc

ul
ix

de
al

ii
ga

m
es

s
gc

c
ge

m
sf

dt
d

go
bm

k
gr

om
ac

s
h2

64
re

f
hm

m
er

lb
m

le
sl

ie
3d

lib
qu

an
tu

m
m

cf
m

ilc
na

m
d

om
ne

tp
p

pe
rl

po
vr

ay
sj

en
g

so
pl

ex
sp

hi
nx

3
to

nt
o

w
rf

xa
la

n
ze

us
m

p
G
eo

m
ea

n

0
10
20
30
40
50
60
70
80
90

100
False negative False positive Correct prediction (Miss) Correct prediction (Hit)

%

Figure 7: Memory dependency predictor accuracy using dynamic
store-distances. Overall, it is able to predict 93.6% of S/QBC accesses
correctly.

It is important to note that only correctly predicted hits will
deliver energy benefits, while correctly predicted misses are impor-
tant to minimize load latency by probing the S/QBC and L1/TLB in
parallel. This means that false negatives (predicting misses for hits)
reduces the energy benefit and false positives (predicting hits for
misses) increase load latency. The breakdown of false positives and
false negatives are shown in Figure 7, and their impact is discussed
further in Section 5.

5 EVALUATION
5.1 Simulation and Modeling
Weuse 10 uniformly-distributed checkpoints for each SPEC-2006 [11]
benchmark and a single checkpoint of the area of interest for PAR-
SEC [5] (excluding freqmine due to OpenMP/simulator issues).
Checkpoints are warmed for 100M instructions and results ex-
tracted from 10M instructions of detailed simulation.We use gem5 [6]
to simulate a large out-of-order X86_64 CPU (Intel Skylake-like
8-wide, 224 entry ROB, 56 entry unified SQ/SB). The first-level
cache is dual-ported with pipelined loads and stores. Each core has
private L1/L2 caches and 4 cores share an L3. (See Table 1.) For
energy evaluations we use CACTI [26] with a 22nm technology
node 3.

We evaluate the performance and energy for several configura-
tions:
• Standard SQ/SB (aggressive write): the baseline configuration
with a standard SQ/SB write back policy.
• Optimal SQ/SB (delayed write): the optimal SB/SQ write-back
policy where stores are delayed until space for new entries is
required, thereby maximizing SQ/SB hits.
• StoreBufferCache, S/QBC (3, 7, 15 colors):Our unified S/QBC
with 3, 7, or 15 colors (2, 3, or 4 dirty bits) for tracking write
epochs.

3For energy modeling, we model a 64 entry, 4-way set-associative dTLB to match the
first-level TLB of the Intel Skylake architecture. For performance modeling we simulate
a 512 entry fully-associative TLB. This models the low energy of hitting in a small
first-level TLB without the unrealistic performance from not having a larger second-
level TLB. We chose this approach to overcome gem5’s inability to model multi-level
TLBs.

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Ricardo Alves, Alberto Ros, David Black-Schaffer, and Stefanos Kaxiras

as
tar

bw
av

es
bz

ip2

ca
ctu

sa
dm

ca
lcu

lix
de

ali
i

ga
mes

s
gc

c

ge
msfd

td

go
bm

k

gr
om

ac
s

h2
64

ref

hm
mer lbm

les
lie

3d

lib
qu

an
tu

m mcf
milc

na
md

om
ne

tp
p

pe
rl

po
vra

y
sje

ng

so
ple

x

sp
hin

x3
to

nt
o wrf

xa
lan

ze
us

mp

Ge
om

ea
n

0

5

10

15

20

25

30

35

40

45

50
Standard SQ/SB Optimal SQ/SB S/QBC (no colors) S/QBC (3 colors) S/QBC (7 colors) S/QBC (15 colors) S/QBC flash-reset

H
it

ra
tio

 (%
)

Figure 8: Hit ratio for a Standard SQ/SB (aggressive write back) and Optimal SQ/SB (delayed write back), and our store-buffer-cache (S/QBC),
with no extra dirty bits to avoid flushing (no colors), 2, 3, and 4 dirty bits (3, 7, 15 colors), and using the flash-reset strategy (2 dirty bits, but
equivalent to infinite colors). (higher is better)

Frequency 3.6GHz
IssueWidth/Ld,St Units 8/2,2

SQ/LQ/IQ/ROB 56/72/50/224
iTLB/dTLB 512/512 fully-assoc
Caches L1I/L1D/L2/L3
Size 32KB/32KB/256KB/8MB

Latency 1c/4c/12c/38c
Associativity 8w/8w/8w/16w

DRAM DDR3, 1600MHz, 64bits
Table 1: Gem5 simulator configuration. 4 cores share an L3 for the
multi-threaded simulations.

• Store Buffer Cache, S/QBC flash-reset: Our unified S/QBC
that flash resets red cache lines to black on SBC flushes. This is
equivalent to an infinite number of colors, while just requiring 2
dirty bits in the L1.

5.2 Hit Ratio
Figure 8 compares the load hit ratios for all configurations. The
S/QBC hit ratio increases with the number of colors used to differ-
entiate write epochs as they avoid extraneous flushes. For no colors,
e.g., flushing on every L1 eviction or downgrade, the hit ratio is
84% of the optimal, while with only 3 colors (2 dirty bits per line
total) we obtain 95% of the optimal hit ratio.

Additional bits further improve the hit ratio, with the flash-reset
strategy (using 2 dirty bits total, but equivalent to infinite colors)
being almost identical to the optimal solution (18.2% vs 18.4%). 3 and
4 dirty bits (7 and 15 colors) preserve 98% and 99% of the optimal
hit ratio respectively.

The effectiveness of the coloring strategies in avoiding SBC
flushes can be seen in Figure 9. Using two dirty bits (3 colors) is
enough to prevent 78% of the SBC flushes seen with no colors. Using
more colors (7 and 15) reduces the flushes even further (preventing
95% and 99% of the flushes compared to S/QBC (no colors)). This
shows that a simple 2 dirty bit strategy is enough to significantly
reduce unduly SBC flushes.

as
ta

r
bw

av
es

bz
ip

2
ca

ct
us

ad
m

ca
lc

ul
ix

de
al

ii
ga

m
es

s
gc

c
ge

m
sf

dt
d

go
bm

k
gr

om
ac

s
h2

64
re

f
hm

m
er

lb
m

le
sl

ie
3d

lib
qu

an
tu

m
m

cf
m

ilc
na

m
d

om
ne

tp
p

pe
rl

po
vr

ay
sj

en
g

so
pl

ex
sp

hi
nx

3
to

nt
o

w
rf

xa
la

n
ze

us
m

p
G
eo

m
ea

n

0

10

20

30

40

50

60

70

80

90

S/QBC (no colors) S/QBC (3 colors) S/QBC (7 colors)
S/QBC (15 colors) S/QBC flash-reset

L1
 e

vi
ct

io
ns

 th
at

 fl
us

hs
 S

\Q
B

C
 (%

)

Figure 9: Percent of cache line evictions from L1 that cause a S/QBC
flush with, 2, 3, 4 dirty bits (3, 7, 15 colors) and using flash-reset.
(lower is better)

For the rest of the paper we evaluate only the 3-color (2 dirty bits)
configuration, our least accurate coloring strategy; and flash-reset
(2 dirty bits, with a flash reset circuit), our most accurate coloring
strategy.

5.3 Hit Prediction
While the S/QBC obtains essentially the same hit ratio as the Opti-
mal SQ/SB, the hit ratio alone is insufficient. In addition, we need
to be able to predict S/QBC hits accurately enough avoid L1/TLB
probes (to save energy) without causing unnecessary serialization
of the L1/TLB accesses (and hurting performance).

Figure 10 shows how much the memory dependence predictor
reduces the effective S/QBC hit ratio for the 3-color and flash-reset
S/QBC. This includes the false negatives, which are hits in the
S/QBC that deliver no energy benefit since they were incorrectly
predicted to be S/QBC misses. Overall, the use of the predictor
reduces the 3-color solution’s filter rate from 17.4% (perfect) to
16.5% (with predictor) and the flash-reset solution’s filter rate from
18.2% (perfect) to 17.2% (with predictor).

Filter Caching for Free: The Untapped Potential of the Store-Buffer ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA
as

ta
r

bw
av

es
bz

ip
2

ca
ct

us
ad

m
ca

lc
ul

ix
de

al
ii

ga
m

es
s

gc
c

ge
m

sf
dt

d
go

bm
k

gr
om

ac
s

h2
64

re
f

hm
m

er
lb

m
le

sl
ie

3d
lib

qu
an

tu
m

m
cf

m
ilc

na
m

d
om

ne
tp

p
pe

rl
po

vr
ay

sj
en

g
so

pl
ex

sp
hi

nx
3

to
nt

o
w

rf
xa

la
n

ze
us

m
p

G
eo

m
ea

n

0

5

10

15

20

25

30

35

40

45

50

S/QBC (3 colors) perfect S/QBC (3 colors) with predictor
S/QBC flash-reset perfect S/QBC flash-reset with predictor

H
it

ra
tio

 (%
)

Figure 10: S/QBC hit ratio when factoring in the memory depen-
dence predictor accuracy. This is the effective ratio of loads that hit
in the S/QBC that are filtered, i.e. total hit ratio minus the false neg-
ative errors. (higher is better)

as
ta

r
bw

av
es

bz
ip

2
ca

ct
us

ad
m

ca
lc

ul
ix

de
al

ii
ga

m
es

s
gc

c
ge

m
sf

dt
d

go
bm

k
gr

om
ac

s
h2

64
re

f
hm

m
er

lb
m

le
sl

ie
3d

lib
qu

an
tu

m
m

cf
m

ilc
na

m
d

om
ne

tp
p

pe
rl

po
vr

ay
sj

en
g

so
pl

ex
sp

hi
nx

3
to

nt
o

w
rf

xa
la

n
ze

us
m

p
G
eo

m
ea

n

0

5

10

15

20

25

30

35
Standard SQ/SB Optimal SQ/SB S/QBC flash-reset S/QBC (3 colors)

D
yn

am
ic

 e
ne

rg
y

im
pr

ov
em

en
t (

%
)

Figure 11: Dynamic energy savings (S/QBC and L1/TLB) of disabling
L1/TLB probes on predicted SQ/SB hits, comparing the Standard
SQ/SB (aggressive write) and Optimal SQ/SB (delayed write) with
perfect hit predictors to the S/QBC with the memory dependence
predictor. (higher is better)

5.4 Energy
Figure 11 shows the dynamic energy reduction (S/QBC and L1/TLB
data accesses) normalized to the Standard SQ/SB with parallel
L1/TLB probes. The configurations evaluated are the Standard
SQ/SB and Optimal SQ/SB, with perfect avoidance of L1/TLB ac-
cesses on hits, and the S/QBC with 3-colors and the flash-reset,
with the memory dependence predictor4. The Optimal SQ/SB, by
improving the store-buffer hit ratio and perfectly selecting between
serial/parallel access, gives an upper-bound on the potential energy
savings of 13% on average. The benchmarks with the highest hit
ratios are the ones that show the best improvement: perl, povray
and gobmk, with a hit ratios of 46.6%, 35.4% and 34.4%, improve
dynamic energy by 28.7%, 19% and 20.4%, respectively.

The S/QBC flash-reset reduces dynamic energy by 11.8% on aver-
age, achieving 91% of the energy improvement of the Optimal SB/SQ.
The most improvement is seen in perl, cactusadm and calculix with
4Since the dTLB consumes only 1.3% of energy of a dL1 cache per access, the energy
graph does not discriminate between the two.

as
ta

r
bw

av
es

bz
ip

2
ca

ct
us

ad
m

ca
lc

ul
ix

de
al

ii
ga

m
es

s
gc

c
ge

m
sf

dt
d

go
bm

k
gr

om
ac

s
h2

64
re

f
hm

m
er

lb
m

le
sl

ie
3d

lib
qu

an
tu

m
m

cf
m

ilc
na

m
d

om
ne

tp
p

pe
rl

po
vr

ay
sj

en
g

so
pl

ex
sp

hi
nx

3
to

nt
o

w
rf

xa
la

n
ze

us
m

p
G
eo

m
ea

n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Load Instructions

R
at

io
 o

f l
oa

d
in

st
ru

ct
io

ns

Figure 12: Percentage of load instructions in each benchmark. As
the S/QBC can only hit on load instructions accessing previous
stores, themore store instructions an application has, the fewer hits
are possible.

an improvement of 26.4%, 18.6% and 17.8% respectively. Povray and
gobmk show lower benefits than with the Optimal SQ/SB due to
inaccuracies of the memory dependence predictor (Figure 7).

The S/QBC (3 color) configuration is predictably worse than
the S/QBC flash-reset configuration due to the lower S/QBC hit
ratio caused by more frequent flushes. Despite this, the S/QBC (3
color) is able to improve energy over the baseline by 11.5%, only
0.3 percentage point bellow the S/QBC flash-reset results. This
suggests that the largest cause of inefficiency is the accuracy of
the memory dependence predictor and not the S/QBC hit ratio: the
simplest (2 dirty bit) extension to L1 is sufficient to extract most
of the energy benefit using the memory dependence predictor as a
S/QBC hit-predictor.

Note that there is not a one-to-one relationship between bench-
marks with the highest hit ratios and the highest energy improve-
ments. The difference comes from two sources: (1) the ratio of
load instructions (which can hit in the S/QBC) to store instructions
(which cannot), and, (2) the predictor accuracy. Figure 12 shows
the percentage of load accesses per benchmark. gcc and omnetpp
stand out as having some of the highest S/QBC hit ratios (34.1%
and 33.1%,) but having energy improvements (Figure 11) compa-
rable to zeusmp, which has a low hit ratio (Figure 10), due to the
low percentages of loads in their memory accesses (53% and 63%
respectively).

The largest effect of predictor accuracy is seen in gobmk, where
the energy improvement for the optimal policy would be 20.4%,
while the S/QBC flash-reset obtains only 17.6%. This directly corre-
lates with having the largest number of false negative errors from
the predictor (4.8%, see Figure 7). Even though gobmk shows the
largest deviance from optimal, the S/QBC is still able to achieve
91% of the dynamic energy benefit that the optimal implementation
would.

To complete the study, we also evaluated the potential energy
benefits of the Standard SQ/SB policy using a perfect serial/parallel
access predictor Figure 11. We see that the default aggressive write
policy severely limits the ability of the SQ/SB to reduce L1/TLB
energy. On average, the Standard SQ/SB is only able to improve
energy by 4.3%, with cactusadm delivering the highest improvement

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Ricardo Alves, Alberto Ros, David Black-Schaffer, and Stefanos Kaxiras
as

ta
r

bw
av

es
bz

ip
2

ca
ct

us
ad

m
ca

lc
ul

ix
de

al
ii

ga
m

es
s

gc
c

ge
m

sf
dt

d
go

bm
k

gr
om

ac
s

h2
64

re
f

hm
m

er
lb

m
le

sl
ie

3d
lib

qu
an

tu
m

m
cf

m
ilc

na
m

d
om

ne
tp

p
pe

rl
po

vr
ay

sj
en

g
so

pl
ex

sp
hi

nx
3

to
nt

o
w

rf
xa

la
n

ze
us

m
p

G
eo

m
ea

n

0

1

2

3

4

5

6
Optimal SQ/SB S/QBC flash-reset S/QBC (3 colors)

IP
C

 im
pr

ov
em

en
t (

%
)

Figure 13: IPC improvement (%) of the Optimal SQ/SB and S/QBC (3
colors and flash-reset) over the baseline Standard SQ/SB. (higher is
better)

of 10.3%. This demonstrates that even with accurate hit prediction,
increasing the hit ratio is essential for improving energy efficiency.

5.5 Performance
Figure 13 shows the IPC impact of the Optimal SQ/SB and the
S/QBC configurations compared to the Standard SQ/SB. The Op-
timal SQ/SB improves IPC by 1.7% on average and xalan sees the
biggest improvement of 5.3%. This small performance improvement
is expected for two reasons: (1) the latency difference between the
SQ/SB and L1 cache is small (data access of 1 cycle vs. 4 cycles), and,
(2) the aggressive OoO cpu core is able to hide a significant amount
of this latency difference, reducing the impact of the lower latency
accesses. It is reasonable to expect that a smaller core would see
more performance benefit, but such cores also tend to have smaller
SQ/SBs, and would therefore have less potential to hit in a unified
S/QBC.

The S/QBC flash-reset is able to improve performance by 1.5%
on average with the largest improvement of 4.7% for xalan. Some
applications are hurt by false positive errors that serialize the S/QBC
and L1/TLB accesses, thereby increasing hit latency. This is most
evident in the gromacs and bzip2 benchmarks, which have two of
the highest false positive error rates (5.5% and 3.5% respectively)
and are sensitive to load latency, causing the largest drop in IPC
compared to the optimal configuration. S/QBC (3 colors) has similar
results, and deviates from the optimal solution for the same reasons
as the S/QBC flash-reset. The further decrease in IPC of the S/QBC
(3 color) compared to the S/QBC flash-reset is due to the decreased
overall hit-ratio. S/QBC (3 color) improves IPC by 1.4%, only 0.1
percentage points behind S/QBC flash-reset.

Overall, S/QBC achieves the goal of improving L1/TLB access
energy without hurting performance. This demonstrates that we
are able to keep stores in the S/QBC without increasing processor
stalls, and even benefit modestly (1.5% on S/QBC flash-reset) from
the reduced latency of the increased hits.

5.6 Instruction Scheduling Implications
Pipelines in an aggressive OoO processors have several cycles of
delay between the issue and execution stages, which means that
dependent instructions have to be scheduled speculatively to be

able to execute back to back. Variable load latency (e.g., from hit-
mispredictions) will therefore force instruction replays of depen-
dent instructions and hurt performance and energy [29]. For this
study we assume zero issue-to-execute delay of instructions (the
default in gem5). This choice is consistent with the baseline, which
uses the same predictor, and as such will have a similar prediction
accuracy. As a result, the number of replays in both cases will be
the same.

The only difference in scheduling prediction between the base-
line and the S/QBC is that when a SQ/SB hit is mispredicted it
takes one additional cycle to access the data from the L1 in the
S/QBC configuration, due to the serialization of the L1/TLB access.
However, in both designs the unexpected difference in latency from
such amisprediction will cause dependent instructions to be flushed
and replayed. The overhead of the flush-and-replay is significantly
longer than the single cycle difference in returning the data. As a
result, both designs will see very similar performance impacts from
mispredictions, and the impact of not modeling replays in detail
is unlikely to significantly change the relative performance of the
designs.

5.7 Parallel Workloads
As the targeted energy reductions are in the private L1/TLB, and
the vast majority of memory accesses are to private data, we do not
expect parallel workloads to behave significantly differently from
single-threaded applications. However, since the S/QBC does have
to participate in coherence, there could be an increase in flushes,
and hence a reduction in effectiveness, with multiple cores. To
examine this, we simulated the PARSEC benchmarks.

Figure 14 shows the energy and IPC improvement5 of the S/QBC
flash-reset over the baseline for these parallel applications. In keep-
ing with the single-threaded results, we see an average IPC im-
proved of 0.4% (vs. 1.5% for single-thread) with swaptions showing
the largest improvement of 3.2%. S/QBC and L1/TLB energy im-
proved by 11.2% (vs. 11.8% for single-threaded) with swaptions again
having the best improvement of 32.1%. The results are similar to
those of the single-threaded benchmarks for similar reasons: hit
ratio, load instruction ratio, and memory dependence predictor
accuracy.

The only difference between the parallel and serial workloads
was the potential increase in number of SBC flushes caused by
coherence traffic. While flush requests on single-threaded bench-
marks were caused exclusively by dirty cache line evictions, on
multi-threaded benchmarks, invalidations and downgrade request
from other cores can also cause flushes. While coherence traffic
indeed caused extra SBC flushes, they were far fewer than the
flushes caused by dirty cache lines evictions (at least one order of
magnitude fewer), thus did not significantly affect the S/QBC hit
ratio.

5As the effect of the S/QBC on locks will be seen through increased flushes, which
will hurt energy savings but not change inter-core synchronization latency, we do not
expect to change the number of instructions spent in locks.

Filter Caching for Free: The Untapped Potential of the Store-Buffer ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

bla
ck

sc
ho

les

bo
dy

tra
ck

ca
nn

ea
l

de
du

p
fer

ret

flu
ida

nim
ate

str
ea

m
clu

ste
r

sw
ap

tio
ns vip

s
x2

64

Ge
om

ea
n

0

5

10

15

20

25

30

35

0

1

2

3

4

5
Energy improvement IPC improvement

E
ne

rg
y

im
pr

ov
em

en
t (

%
)

IP
C

 im
pr

ov
em

en
t (

%
)

Figure 14: Performance and energy improvements for the parallel
applications from PARSEC. (higher is better)

5.8 S/QBCWorst Case Scenarios
There are two ways in which the S/QBC can fail: if the application
has little read locality or if the predictor is inaccurate. For applica-
tions with little read locality, the overhead of our extra L1 bit (0.2%
area) will be very small compared to the energy/latency of search-
ing and missing in the L1 in the first place. (Even “low-locality"
applications show >30% L1 read hits [1].) The impact of predictor
inaccuracies will not hurt energy vs. a standard SQ/SB as both need
to check the SQ/SB, but it may cause serialization of the S/QBC and
L1 accesses. The four scenarios are:
• Locality+Accurate: If the application has L1 read locality and
the predictor is accurate, the S/QBC will improve energy (by
avoiding L1 probes) and improve performance (by returning
data from S/QBC).
• Locality+Inaccurate: If the application has L1 read locality but

the predictor is inaccurate, the S/QBCwill have the same energy
(probes both S/QBC and L1) and the same performance (both
S/QBC, L1 probed in parallel).
• No-locality+Accurate: If the application has no L1 read locality
and the predictor is accurate, the S/QBC will have the same
energy (probes both S/QBC and L1) and the sameperformance
(both S/QBC, L1 probed in parallel).
• No-locality+Inaccurate: If the application has no L1 read lo-
cality and the predictor is inaccurate, the S/QBC will have the
same energy (probes both S/QBC and L1) but may degrade
performance (due to false positives causing serialization of the
S/QBC search and L1 search).
The only situation in which the S/QBC might be worse than the

baseline is if the memory dependence predictor is inaccurate when
there is no locality. Other cases may not save energy, but do not hurt
performance. For this worst-case to occur, the store-load instruction
pairs must regularly change behavior to cause incorrect predictions.
In applications with little L1 locality, the predictor learns that there
is no load-store dependency, delivering the same performance as
the baseline. This can be seen by looking at libquantum, mcf and
milc in Figures 4 (poor locality) and 7 (but accurate prediction).
Further, if the predictor was terribly inaccurate, bad instruction
scheduling would likely outweigh additional load latency.

Parallel applications with significant sharing can also see lower
energy benefits as the S/QBC will be flushed more due to invalida-
tions from coherence requests. However, this should not cause any
additional overhead compared to the baseline since prediction is
based on store distance, so flushes will also update the predictor and
thereby avoid useless searches. Cores that are spinning on locks
will have little opportunity to benefit from the S/QBC (no stores to
put it in the SBC) but they will also not cause frequent flushes in
other non-spinning cores (the data will only be in the other cores
after a write).

6 RELATEDWORK
Filter or L0 caches. Filter caches [4, 14, 19] improve energy effi-
ciency and latency of memory accesses by decreasing the access
energy and latency compared to the L1 due to their small capacity.
This strategy is successful when there is enough locality to over-
come the energy and latency overheads of probing and copying
data to/from the filter cache and the increase in latency of filter
cache misses. Unfortunately, for heavily out-of-order processors,
the performance benefit of the slightly lower latency is often mini-
mal, and the energy cost of moving data for a low hit ratio is often
high [3]. Our solution differs in the sense that the data installation
and probing is necessary for correctness in the unified SQ/SB, so
there is no additional overhead of using the same structure as a
filter cache. These characteristics come with the downside that only
loads can benefit, while filter caches can improve both loads and
stores energy.

Energy efficient caches. Other solutions improve energy effi-
ciency not by reducing the number of cache accesses but by improv-
ing efficiency of the accesses themselves. Way-predictors [7, 15,
18, 30, 38] sacrifice some access latency due to mispredictions, but
reduce the cost (number of ways probed). Way-estimators [13, 41]
have no mispredictions, but can increase the number of bits read
over a way-predictor. Other techniques trade-off hit ratio [17] to
improve access energy efficiency. These techniques could be used
on top of our proposal for further benefits.

Delaying writes. Policies for delaying writes have been pro-
posed for single-thread [16, 37] and multi-thread applications [32]
with the aim of coalescing stores to increase the effective SB size and
reduce the number of write transactions to execute and track [33]
or with the aim of avoiding L1 accesses in processors with non-
associative LQs [34]. These approaches delay writes and start writ-
ing back when a high water mark is reached to avoid stalling. In
our design we need no high water mark as evictions are performed
immediately and silently. This is possible thanks to the fact that we
do not delay the writes, but perform the writes immediately and
only keep a copy.

Filtering L1 accesses. The cached load store queue transforms
a unified load/store queue into a more traditional filter cache to
reduce L1 accesses [27]. As it targets loads, it requires additional
storage and data movement to hold the load data that would other-
wise not be present in a load queue, and because it combines loads
and stores in a single cache, all entries must fully participate in
coherence traffic, as well as the CAM-accesses. The design serializes
LSQ and L1 accesses to save energy. Carazo, et. al. [8] proposed
combining two different predictors to switch between parallel and

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Ricardo Alves, Alberto Ros, David Black-Schaffer, and Stefanos Kaxiras

serial L1 accesses on hits in the cached load store queue. By only
targeting stores we are able to deliver a far simpler design. The
S/QBC is able to filter L1 accesses without hurting performance,
increasing data movement, adding storage, requiring complex co-
herence, or adding additional predictors. The downside is that the
S/QBC only targets load instructions.

Store-buffer optimization. Existingwork on store-buffers aims
to reduce their cost by reducing the frequency of accesses [28], the
number of entries probed [35], or removing the structure com-
pletely [36, 39]. These techniques focus on making the access to the
buffer itself more efficient, but do not target reducing the energy of
the L1/TLB.

Memory dependence prediction. Memory dependence pre-
diction started with the work of Moshovos et al. [24] who were the
first to show that dependencies between loads and stores are very
stable and can be predicted with high accuracy. Subsequent work
by Chrysos et al. expanded the idea to predict the dependence of a
load not to a single store but to a set of stores, thereby expanding
its reach [10]. Retaining the identity of the stores in the predictor
was deemed unnecessary (since we only care to predict when we
see the program counter of the load) and the notion of store distance
was introduced to give a sense of how far in the instruction stream
a load’s dependence is expected to be encountered [40]. The high
accuracy of such predictors, coupled with measure of distance that
can be correlated to the chance of finding a store in the store buffer,
is a compelling argument to use them in this work. Memory depen-
dence prediction has also been used to completely eliminate the
store queue by predicting store-load forwardings at the stores and
bypassing store values to loads without ever using an intermediary
storage area (store queue) [36]. Instead of going to such an extreme,
we make the case that the intermediary storage area of the SQ and
the SB can be put to very good use by increasing the number of
store-load forwardings using our techniques.

7 CONCLUSION
Store-queues and store-buffers are ubiquitous parts of modern out-
of-order microprocessors to ensure that bursts of writes do not stall
the pipeline while waiting to be committed and written back to
the cache. This requires that all writes be installed in the SQ/SB
and that all loads probe it for data, which essentially costs the
energy overhead of a filter cache. However, the low hit ratio, due
to aggressively writing back entries to avoid stalls, and accessing it
in parallel with the L1/TLB, to avoid increased latency, means that
hits do not deliver any energy or performance benefits.

In this paper we introduced a unified S/QBC store-buffer-cache,
which adds a third logical partition to the SQ/SB that keeps copies
of data that has already been written back. As a result we are able to
increase the S/QBC hit ratio to 18.2% (just 0.2 percentage points shy
of an Optimal SQ/SB). By leveraging the existing memory depen-
dence predictor, we are also able to accurately predict hits/misses in
our unified S/QBC 93.6% of the time, which allows us to avoid 17.2%
L1/TLB probes. However, by keeping copies of data, we need to
include the S/QBC in coherence. To achieve this we take advantage
of only needing to update the S/QBC on changes locally owned
(dirty) data in the L1. This allows us to cheaply track whether dirty

data in the L1 could be in the S/QBC by adding one additional dirty
bit, and flushing the S/QBC copies only when such data is affected.

The overall design has essentially no overhead (0.2% additional
L1 storage for one additional dirty bit per line and one additional
S/QBC tail pointer) and does not increase data movement energy
(moving entries from the SB to the SBC is only a logical pointer
update). With this work we are now able to take advantage of
the existing storage capacity of the SQ/SB and accesses to reduce
dynamic L1 and TLB energy by 11.8% with no performance impact
(indeed, a marginal 1.5% improvement).

ACKNOWLEDGMENTS
This work was supported by: the Knut and Alice Wallenberg Foun-
dation through the Wallenberg Academy Fellows Program; the
European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (grant No 715283);
the SSF Strategic Mobility 2017 (grant SM17-0064); the Spanish
Ministerio de Economía, Industria y Competitividad — Agencia
Estatal de Investigación (grant ERC2018-092826); and EU Horizon
2020 EPEEC Project (www.epeec-project.eu) (grant No 801051).

REFERENCES
[1] Sam Ainsworth and Timothy M. Jones. 2016. Graph Prefetching Using Data

Structure Knowledge. In International Conference on Supercomputing (ICS). ACM,
39:1–39:11.

[2] Ricardo Alves, Stefanos Kaxiras, and David Black-Schaffer. 2018. Dynamically Dis-
abling Way-prediction to Reduce Instruction Replay. In International Conference
on Computer Design (ICCD). IEEE, 140–143.

[3] Ricardo Alves, Nikos Nikoleris, Stefanos Kaxiras, and David Black-Schaffer. 2017.
Addressing Energy Challenges in Filter Caches. In International Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD). IEEE, 49–
56.

[4] Nikolaos Bellas, IbrahimHajj, and Constantine Polychronopoulos. 1999. Using dy-
namic cachemanagement techniques to reduce energy in a high-performance pro-
cessor. In International Symposium on Low Power Electronics and Design (ISLPED).
ACM/IEEE, 64–69.

[5] Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D. Dissertation.
Princeton University.

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit.
News 39, 2 (2011), 1–7.

[7] Brad Calder and Dirk Grunwald. 1996. Predictive Sequential Associative Cache.
In International Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 244–253.

[8] Pablo Carazo, Rubén Apolloni, Fernando Castro, Daniel Chaver, Luis Pinuel,
and Francisco Tirado. 2010. L1 data cache power reduction using a forwarding
predictor. In International Workshop on Power and Timing Modeling, Optimization
and Simulation. Springer, 116–125.

[9] Byn Choi, Rakesh Komuravelli, Hyojin Sung, Robert Smolinski, Nima Honar-
mand, Sarita V. Adve, Vikram S. Adve, Nicholas P. Carter, and Ching-Tsun Chou.
2011. DeNovo: Rethinking the Memory Hierarchy for Disciplined Parallelism.
In International Conference on Parallel Architectures and Compilation Techniques
(PACT). IEEE, 155–166.

[10] George Z Chrysos and Joel S Emer. 1998. Memory dependence prediction
using store sets. In International Symposium on Computer Architecture (ISCA).
ACM/IEEE, 142–153.

[11] Standard Performance Evaluation Corporation. 2006. SPEC CPU2006. http:
//www.spec.org/cpu20066

[12] Dan Ernst, Andrew Hamel, and Todd Austin. 2003. Cyclone: A Broadcast-free
Dynamic Instruction Scheduler with Selective Replay. In International Symposium
on Computer Architecture (ISCA). ACM/IEEE, 253–263.

[13] Mrinmoy Ghosh, Emre Özer, Simon Ford, Stuart Biles, and Hsien-Hsin S. Lee.
2009. Way Guard: A Segmented Counting Bloom Filter Approach to Reducing
Energy for Set-Associative Caches. In International Symposium on Low Power
Electronics and Design (ISLPED). ACM/IEEE, 165–170.

[14] Roberto Giorgi and Paolo Bennati. 2007. Reducing leakage in power-saving
capable caches for embedded systems by using a filter cache. In Workshop on

http://www.spec.org/cpu20066
http://www.spec.org/cpu20066

Filter Caching for Free: The Untapped Potential of the Store-Buffer ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

MEmory performance: DEaling with Applications, systems and architecture. ACM,
97–104.

[15] Koji Inoue, Tohru Ishihara, and Kazuaki Murakami. 1999. Way-predicting set-
associative cache for high performance and low energy consumption. In Inter-
national Symposium on Low Power Electronics and Design (ISLPED). ACM/IEEE,
273–275.

[16] Norman P. Jouppi. 1993. Cache Write Policies and Performance. In International
Symposium on Computer Architecture (ISCA). ACM/IEEE, 191–201.

[17] Georgios Keramidas, Polychronis Xekalakis, and Stefanos Kaxiras. 2007. Apply-
ing decay to reduce dynamic power in set-associative caches. In International
Conference on High-Performance Embedded Architectures and Compilers (HiPEAC).
Springer, 38–53.

[18] Richard E Kessler, Richard Jooss, Alvin Lebeck, andMarkDHill. 1989. Inexpensive
implementations of set-associativity. In International Symposium on Computer
Architecture (ISCA). IEEE, 131–139.

[19] Johnson Kin, Munish Gupta, and William H Mangione-Smith. 1997. The filter
cache: an energy efficient memory structure. In International symposium on
Microarchitecture (MICRO). IEEE, 184–193.

[20] Yongxiang Liu, Anahita Shayesteh, Gokhan Memik, and Glenn Reinman. 2004.
Scaling the issue window with look-ahead latency prediction. In International
Conference on Supercomputing (ICS). ACM, 217–226.

[21] Daniel Lustig, Geet Sethi, Margaret Martonosi, and Abhishek Bhattacharjee. 2016.
COATCheck: Verifying memory ordering at the hardware-OS interface. ACM
SIGOPS Operating Systems Review 50, 2 (2016), 233–247.

[22] Gokhan Memik, Glenn Reinman, and William H Mangione-Smith. 2005. Precise
instruction scheduling. Journal of Instruction-Level Parallelism 7 (2005), 1–29.

[23] Pierre Michaud and André Seznec. 2001. Data-flow prescheduling for large
instruction windows in out-of-order processors. In International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 27–36.

[24] Andreas Moshovos, Scott E Breach, Terani N Vijaykumar, and Gurindar S Sohi.
1997. Dynamic speculation and synchronization of data dependences. In Interna-
tional Symposium on Computer Architecture (ISCA). ACM/IEEE, 181–193.

[25] Andreas Moshovos and Gurindar S Sohi. 1997. Streamlining inter-operation mem-
ory communication via data dependence prediction. In International Symposium
on Microarchitecture (MICRO). ACM/IEEE, 235–245.

[26] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P. Jouppi. 2009.
CACTI 6.0. Technical Report HPL-2009-85. HP Labs.

[27] Dan Nicolaescu, Alex Veidenbaum, and Alex Nicolau. 2003. Reducing data cache
energy consumption via cached load/store queue. In International Symposium on
Low Power Electronics and Design (ISLPED). ACM/IEEE, 252–257.

[28] Il Park, Chong Liang Ooi, and T. N. Vijaykumar. 2003. Reducing Design Com-
plexity of the Load/Store Queue. In International Symposium on Microarchitecture
(MICRO). ACM/IEEE, 411–422.

[29] Arthur Perais, André Seznec, Pierre Michaud, Andreas Sembrant, and Erik Hager-
sten. 2015. Cost-effective speculative scheduling in high performance processors.
In International Symposium on Computer Architecture (ISCA). ACM/IEEE, 247–
259.

[30] Michael D Powell, Amit Agarwal, TN Vijaykumar, Babak Falsafi, and Kaushik
Roy. 2001. Reducing set-associative cache energy via way-prediction and selec-
tive direct-mapping. In International Symposium on Microarchitecture (MICRO).
ACM/IEEE, 54–65.

[31] Alberto Ros and Stefanos Kaxiras. 2012. Complexity-Effective Multicore Co-
herence. In International Conference on Parallel Architectures and Compilation
Techniques (PACT). IEEE, 241–252.

[32] Alberto Ros and Stefanos Kaxiras. 2016. Racer: TSO Consistency via Race Detec-
tion. In 49th IEEE/ACM Int’l Symp. on Microarchitecture (MICRO).

[33] Alberto Ros and Stefanos Kaxiras. 2018. Non-speculative store coalescing in
total store order. In International Symposium on Computer Architecture (ISCA).
ACM/IEEE, 221–234.

[34] Alberto Ros and Stefanos Kaxiras. 2018. The Superfluous Load Queue. In Interna-
tional Symposium on Microarchitecture (MICRO). ACM/IEEE, 95–107.

[35] Tingting Sha, Milo MK Martin, and Amir Roth. 2005. Scalable store-load forward-
ing via store queue index prediction. In International Symposium on Microarchi-
tecture (MICRO). ACM/IEEE, 159–170.

[36] Tingting Sha, Milo MK Martin, and Amir Roth. 2006. Nosq: Store-load communi-
cation without a store queue. In International Symposium on Microarchitecture
(MICRO). ACM/IEEE, 285–296.

[37] Kevin Skadron and Douglas W. Clark. 1997. Design Issues and Tradeoffs for Write
Buffers. In International Symposium on High-Performance Computer Architecture
(HPCA). IEEE.

[38] Kimming So and Rudolph N. Rechtschaffen. 1988. Cache Operations by MRU
Change. IEEE Trans. Comput. 37, 6 (1988), 700–709.

[39] Samantika Subramaniam and Gabriel H Loh. 2006. Fire-and-forget: Load/store
scheduling with no store queue at all. In International Symposium on Microarchi-
tecture (MICRO). ACM/IEEE, 273–284.

[40] Adi Yoaz, Mattan Erez, Ronny Ronen, and Stephan Jourdan. 1999. Speculation
techniques for improving load related instruction scheduling. In International
Symposium on Computer Architecture (ISCA). ACM/IEEE, 42–53.

[41] Chuanjun Zhang, Frank Vahid, Jun Yang, and Walid Najjar. 2005. A Way-Halting
Cache for Low-Energy High-Performance Systems. Transactions on Architecture
and Code Optimization (TACO) 2, 1 (2005), 34–54.

	Abstract
	1 Introduction
	2 Background
	2.1 The Store-Queue/Store-Buffer (SQ/SB)
	2.2 SQ/SB Utilization and Hit Ratio
	2.3 Filter Caches and the SQ/SB

	3 Motivation and Potential
	3.1 Maximizing the SQ/SB Hit Ratio
	3.2 Sensitivity to Store-Buffer Size

	4 The Store-Buffer-Cache
	4.1 The Cache Portion of the SQ/SB
	4.2 Store-Buffer-Cache Synonyms
	4.3 Store-Buffer-Cache Coherence
	4.4 Predicting S/QBC Hits

	5 Evaluation
	5.1 Simulation and Modeling
	5.2 Hit Ratio
	5.3 Hit Prediction
	5.4 Energy
	5.5 Performance
	5.6 Instruction Scheduling Implications
	5.7 Parallel Workloads
	5.8 S/QBC Worst Case Scenarios

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

