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Abstract—Transient execution attacks like Spectre and its vari-
ants can cause information leakage through a cache hierarchy.
There are two classes of techniques that mitigate speculative
execution attacks: delay-based and invisible speculation. Invisible
speculation-based techniques like GhostMinion are the high-
performing yet secure techniques that mitigate all kinds of spec-
ulative execution attacks. Similar to a cache system, hardware
prefetchers can also cause speculative information leakage. To
mitigate it, GhostMinion advocates on-commit prefetching on
top of strictness ordering in the cache system. Our experiments
show that the GhostMinion cache system interacts negatively with
the hardware prefetchers leading to redundant traffic between
different levels of cache. This traffic causes contention and
increases the miss latency leading to performance loss. Next, we
observe that on-commit prefetching enforced by GhostMinion
leads to performance loss as it affects the prefetcher timeliness.

We perform the first thorough analysis of the interaction
between state-of-the-art prefetching techniques and the secure
cache system. Based on this, we propose two microarchitectural
solutions that ensure high performance while designing secure
prefetchers on top of secure cache system. The first solution
detects and filters redundant traffic when updating the cache
hierarchy non-speculatively. The second solution ensures the
timeliness of the prefetcher to compensate for the delayed
triggering of prefetch requests at commit, resulting in a secure
yet high-performing prefetcher. Overall, our enhancements are
secure and provide synergistic interactions between hardware
prefetchers and a secure cache system. Our experiments show
that our filter consistently improves the performance of secure
cache systems like GhostMinion in the presence of state-of-the-
art prefetchers (by 1.9% for single-core and 19.0% for multi-
core for the top-performing prefetcher). We see a synergistic
behavior of the filter with our proposed secure prefetcher, which
leads to a further increase in performance by 6.3% and 23.0%
(over the top-performing prefetcher), for single-core and multi-
core systems, respectively. Our enhancements are extremely
lightweight incurring a storage overhead of 0.59 KB per core.

I. INTRODUCTION

Transient execution attacks, pioneered by Spectre [28] but
followed rapidly by other attacks [9], [15], [17], [18], [33] take
advantage of the cache state affected by transient instructions.
Transient instructions are speculative instructions that do not
commit. Speculative execution is a fundamental technique
used by high-performance processors, and hence, it cannot
be disabled in pursuit of security. To mitigate the speculative
execution attacks that exploit the cache, various proposals [10],
[11], [27], [36]-[38], [45], [46], [48] strive to provide security

with minimal performance loss. In general, there are two kinds
of mitigation techniques proposed in the literature: delay-
based and invisible speculation. In delay-based approaches,
the transmission of secret-dependent values is stalled until it
is considered safe to proceed. The determination of safety
can be complex and requires sophisticated mechanisms to
accurately identify when an instruction can be considered
safe for execution. In invisible speculation, secret-dependent
loads are permitted to execute. However, the effects of these
executions are concealed from the cache hierarchy and other
microarchitectural structures.

Among all the proposals, GhostMinion [11], Speculative
Taint Tracking (STT) [48], and Non-speculative Data Access
(NDA) [45] are the strictest as they mitigate backward-in-time
attacks such as speculative interference attacks [15]. Between
STT, NDA, and GhostMinion, GhostMinion is the lightweight
and high-performing mitigation technique. GhostMinion is
an invisible speculation technique that enforces a strictness
ordering that ensures the mitigation of varieties of speculative
execution attacks through the cache system: cache hierarchy,
miss status holding registers (MSHRs), and hardware prefetch-
ers [10]. GhostMinion uses a small speculative cache (GM)
that stores the data corresponding to speculative loads, and
when a load commits, the data is communicated to L1D. When
the same data is evicted from L1D, the data is communicated
to the L2, and on eviction from L2, the data is communicated
to the LLC. On average, GhostMinion incurs a performance
loss of around 5% as compared to a non-secure cache system.

Data prefetchers play an important role in improving cache
performance by converting cache misses into hits. Recent
advances in data prefetchers have pushed the limit of single-
thread performance with average performance boosts of 3%
to 5% [13], [16], [31], [32]. In the last decade, two ISCA
championships on data prefetching [1], [5] have helped in this
trend. Unfortunately, hardware prefetchers, which are trained
and triggered on speculative loads, can also be used as a source
of information leakage even on a secure cache system [10],
[11]. A speculative attack using prefetchers works as follows:
(1) The attacker primes the cache; The corresponding cache
has a prefetcher; (ii) The victim loads secret data similar to
the Spectre attack; (iii) The speculative load generated by the
victim trains and triggers the hardware prefetcher; (iv) The



prefetcher request data as per its address prediction that comes
to the cache; (v) Finally, the attacker probes the cache.

GhostMinion makes a case for secure hardware prefetching
through on-commit prefetching: A secure prefetcher should
be trained on commit and prefetching should only happen on
commit. This way the prefetcher will not affect the cache and
MSHR state speculatively, and transient instructions cannot
exploit the prefetcher for information leakage. We show that
data prefetching can indeed alleviate the performance loss
of a secure cache system. Despite the importance of data
prefetching, no detailed study has been carried out about the
impact of secure prefetching techniques.

In this paper, we analyze for the first time the interaction
between a wide range of state-of-the-art hardware prefetchers
and a high-performing secure cache system. We evaluate
IP-stride [12], the well-known prefetcher used in industry,
Bingo [13], SPP+PPF [16], IPCP [32] (winner of the 3rd
data prefetching championship [5]), and Berti [31], on a
secure cache system like GhostMinion. Berti is the state-
of-the-art L1D prefetcher (with an accuracy of almost 90%)
that orchestrates its requests across the cache hierarchy. We
discover that prefetchers interact negatively with secure cache
systems like GhostMinion. We find that two main factors
prevent them from reaching their optimal performance and
propose microarchitectural solutions to overcome them.

Our observations. First, we analyze the performance im-
provements of the evaluated prefetchers both on a non-secure
cache system and a secure cache system like GhostMinion
for both SPEC CPU 2017 and GAP workloads (see Sec-
tion VI for simulation details). We observe that prefetching
techniques improve performance both for secure and non-
secure cache systems, but the gap between them is high.
The performance gap is because of an increase in memory
access latency due to additional memory traffic introduced to
update the cache hierarchy with invisible loads. On average,
GhostMinion introduces additional traffic of more than 1.5x
to L1D when compared to a non-secure cache system with
hardware prefetchers (Section III).

Next, we analyze the impact of implementing a secure
prefetcher on a secure cache system, that is, the impact of
training and prefetching on-commit, instead of on-access.
Fig. 1 shows the performance improvements obtained by
our prefetchers in a secure cache system when they are
trained and triggered on-access (second bar) and on-commit
(third bar). We observe a consistent performance loss of 3%-
4% for all prefetchers with training/prefetching on-commit
compared to prefetching on-access. We find that the key factor
is timeliness, not the inability to capture the applications’
access patterns (Section IIT). A major part of the performance
loss for on-commit prefetching is due to a new class of late
prefetch requests which we coin as ‘“‘commit-late”: misses
whose prefetching had not been initiated when the processor
requested the data, but that would have been initiated if the
prefetch request had been triggered on access. In summary, on
average, compared to on-access prefetching on a non-secure
cache system, we see a performance loss of around 10% with
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Fig. 1. Speedup of state-of-the-art prefetchers normalized to a non-secure

cache system with no prefetching.

on-commit prefetching on a secure cache system.

Our contributions. In this paper, we shed some light on
the reasons behind low-performance secure prefetchers and
propose a low-cost yet effective solution to recover the perfor-
mance loss and enable the full potential of secure prefetching,
closing the gap to non-secure cache systems.

This paper brings the following contributions:

o We show that prefetchers lose relative performance on a
secure cache system due to (i) the additional memory
traffic introduced by the secure cache system and (ii)
prefetch timeliness issues (Section III).

¢ We propose a mechanism to filter out the superfluous non-
speculative updates performed in a secure cache system.
Our filter is lightweight and incurs a storage overhead of
0.12KB (Section 1V).

o We propose a mechanism to ensure the timeliness of a
prefetcher that is trained and issues prefetch requests at
commit, making a case for a secure yet timely and high-
performing prefetcher. The end result is the first high-
performance secure prefetcher with a storage overhead
of 0.47KB (Section V).

e« We show that our enhancements on top of the state-
of-the-art prefetcher helps in bridging the performance
gap between a non-secure cache system and a secure
cache system. For SPEC CPU2017 and GAP benchmarks,
our enhancements improve performance by 6.3% (our
filter contributes to around 30% of the improvement
and the rest comes from the better-trained on-commit
prefetcher). For a 4-core system, our mechanisms im-
prove performance by 23.0% over on-commit state-of-the
art prefetcher in a secure cache system (Section VII).

II. BACKGROUND & RELATED WORK
A. Threat model

We assume the following capabilities in our transient ex-
ecution attacker: (i) (S)he is capable of mounting attacks
like Spectre and speculative interference [15] through the
cache system. (ii) (S)he can exploit a hardware prefetcher by
speculative training and prefetching that can change the cache
state, as mentioned in Muontrap [10]. (iii) The attacker and
the victim can be part of the same process or two different



TABLE I
SUMMARY OF MITIGATION TECHNIQUES. *WE USE THE SECURE IMPLEMENTATION OF GHOSTMINION AS SUGGESTED IN PENSIEVE [47]. DOM,
MUONTRAP, INVISISPEC, AND CLEANUPSPEC ARE NOT SECURE AS THESE TECHNIQUES DO NOT MITIGATE THE SPECULATIVE INTERFERENCE [15]
ATTACKS. WE CATEGORIZE PERFORMANCE SLOWDOWN INTO THREE BINS: LOW (<5%), MEDIUM (5% TO 10%), AND HIGH (>10%).

Mitigation techniques Classification Secure? | Storage overhead | Performance slowdown
CleanupSpec [36] Undo-based No <1KB Medium
NDA [45] Delay-based Yes ~ 150 bytes High
STT [48] Delay-based Yes ~ 1.4 KB Medium
NDA + Doppelganger [29] Delay-based Yes ~ 13.5 KB Medium
DoM [38] Delay+invisible speculation-based No ~ 0.4 KB High
DoM + Doppelganger [29] | Delay+invisible speculation-based No ~ 13.9 KB High
STT + Doppelganger [29] Delay-based Yes ~ 14.9 KB Low
InvisiSpec [46] Invisible speculation No ~ 9.5 KB High
MuonTrap [10] Invisible speculation No 2 KB Low
GhostMinion* [11] Invisible speculation Yes 2 KB Low

processes. The attacker can run arbitrary code but cannot
access secret data directly, i.e., the attacker is running within a
sandbox either at the user or at the kernel level. (iv) There are
timing-based side and covert channels involving hardware data
prefetchers and caches [19], [20], [41] that can be mitigated
by existing spatial isolation techniques [22], [35].

B. Recent mitigation techniques

A self-contained Table I summarizes recent mitigation tech-
niques keeping security, performance, and storage in mind. As
mentioned in Section I, mitigation techniques fall into one of
the two broad approaches: delay-based [38], [45], [48] and
invisible speculation [10], [11], [37], [46]. For performance
evaluation, we use SPEC CPU2017 [43] and GAP [8] bench-
marks. Among all the delay based approaches, STT provides
security guarantees with minimum performance overhead.
STT operates on the premise that it is safe to forward the secret
data to dependent speculative loads unless those instructions
are forming a covert channel. In the case of explicit covert
channels, it simply blocks the LOADs whose source registers
contain speculatively derived value. A recent performance
enhancement technique called Doppelganger [29] improves the
performance of delay-based approaches, which includes STT.
Compared to delay-based techniques that incur high storage
overhead, invisible speculation techniques like GhostMinion
entail lower performance penalties with minimum storage
overhead. Therefore, in this paper, we select GhostMinion as
our secure cache system.

C. The GhostMinion secure cache system

GhostMinion uses a small 2KB cache called the GM,
accessed concurrently along with the L1D, that stores the
data of speculative instructions till they commit (or retire).
On a demand miss generated by a speculative instruction at
GM, it searches for the data at L1D, L2, and LLC similar
to a conventional cache hierarchy. However, on a hit at L1D,
L2, or LLC, the cache state (replacement policy priority bits)
is not updated. On a miss at the L1D, L2, and LLC, the
response is directly filled into GM, bypassing L1D, L2, and
LLC (Fig. 2, “). On a commit, the data of the committed
instruction is transferred to the L1D cache from GM if it is a
GM hit, through on-commit writes. If the data is later evicted
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Fig. 2. GhostMinion secure cache system

from L1D it is then moved to the L2 cache, with further
evictions at the L2 leading to its communication to the LLC
(Fig. 2, ). In case of a GM miss, re-fetching of data is
done into the non-speculative cache hierarchy (L1 to LLC)
(Fig. 2, ). GM is neither inclusive nor exclusive to the rest
of the cache hierarchy. Within GM, instructions are restricted
to see the eviction or insertion of others depending on their
temporal order. The temporal order is maintained based on the
timestamp. TimeGuarding used by GhostMinion makes sure
the insertions and the evictions are invisible under multiple
speculations. To hide contention at MSHRs, the timestamp
metadata propagates into the MSHRs at each cache level,
allowing younger loads to be canceled and replaced by the
older loads (leapfrogging). Also, in GhostMinion, a block can
only be in a shared or invalid state and the coherence states
of GM and non-speculative caches are not altered until an
instruction is committed.

ITII. MOTIVATION
A. Impact of secure cache system on hardware prefetching

This section analyzes what prevents the prefetcher effective-
ness on secure cache systems like GhostMinion. Fig. 3 shows
the increase in L1D accesses for the prefetchers evaluated
in this work with a GhostMinion secure cache system and
for on-access prefetching. On a non-secure system with no
prefetching, the average L1D accesses per kilo instructions
(APKI) is 199, which goes up to 375 in GhostMinion because
of commit requests that update the cache state as discussed



in Section II-C. With Berti on GhostMinion, the APKI goes
up to 570. The trend persists for all the prefetchers. For L2
prefetchers like Bingo and SPP+PPF there is no access from
the prefetcher to L1D as the prefetch requests are generated
from L2.

The increase in APKI results in additional traffic causing
an increase in L1D miss latency as shown in Fig. 4. One of
the primary contributors to this additional miss latency is the
following interesting trend that makes the latency worse es-
pecially in the presence of hardware prefetching. On average,
for the Berti prefetcher, with a secure cache system, there is a
10.4% increase in L1D MSHR occupancy and the L1D MSHR
becomes full for an additional 8.7% of the time. Also, without
prefetching, the L1D MSHR occupancy decreases by 15.9%
when we move from a non-secure to a secure system because
demand misses are first served by the GM.

To dig deep into the interesting interactions, we choose
605.mcf_s-1554B and perform a detailed analysis.
Fig. 5(a) shows the normalized performance with respect
to a non-secure baseline without prefetching. A significant
reduction in performance is observed when the prefetchers
are applied to a secure cache system (for Berti, it is more
than 300%). Fig. 5(b) shows the increase in traffic at L1D
contributed by load, prefetch, and commit requests from
GhostMinion. Fig. 5(c) shows a significant increase in L1D
miss latency. When we analyze the MSHR occupancy num-
bers, without prefetching, L1D MSHR occupancy decreases
by 16.2% when we move from a non-secure to a secure
cache system because the demand requests are first served
by GM. However, with prefetching, there is an increase in
L1D MSHR occupancy of 10.1% when we move from a
non-secure to a secure cache system. This happens because,
with a non-secure cache system, the L1ID MSHR only has
to deal with demand and prefetch requests, while with a
secure cache system, it also has to handle prefetch requests
on top of GhostMinion requests, which increases the pressure
on the MSHR. Without prefetching, L1D MSHR is almost
never full. However, with prefetching, there is an increase
in the percentage of time L1D MSHR is full (from 6.3% to
20%). In Section IV, we propose a mechanism that resolves
the additional traffic-induced performance loss when hardware
prefetching is enabled.

B. Impact of secure hardware prefetching

As described in GhostMinion [11], on-commit prefetching
results in no leaking of information due to speculative exe-
cution. However, as shown in Fig. 1, moving state-of-the-art
prefetchers to the commit stage results in 3%-4% performance
loss compared to on-access prefetching.

Fig. 6 shows the average demand misses per kilo instruc-
tions (MPKI) across the workloads analyzed in this work. The
MPKI is shown for the cache level where the prefetcher works,
namely, L1D for IP-stride, IPCP, and Berti, and L2C for Bingo
and SPP+PPFE. In addition, each prefetcher is evaluated both
with on-access and on-commit prefetching. The MPKI has
been divided into the following four categories:
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Fig. 4. Average L1D load miss latency with on-access prefetching

(1) Commit late prefetch: This is a new kind of late prefetch
request that we introduce in this work and it only appears
when the prefetcher is placed at the commit stage. We define
it as follows: at the time of a demand cache miss, a prefetch
request for the target cache line has not been triggered yet
by the on-commit prefetcher, but it would have been triggered
by an on-access prefetcher. Importantly, this type of prefetch
does not fall in the traditional late prefetch category.
(ii) Late prefetch: This is the typical late prefetch, where a
demand miss finds in the MSHR a prefetch request for the
target cache line, and merges both requests.
(iili)Missed opportunity: The demand miss is for a cache line
that would have been predicted correctly by an on-access
prefetch but it was missed by on-commit prefetch as it is
trained in a different order. This kind of prefetch is also only
present for on-commit prefetching and gives information about
the negative impact of training at commit.
(iv) Uncovered: Demand misses that did not fall in any of
the previous categories. We observe a common trend for
all evaluated prefetchers: the uncovered demand misses are
reduced when moving the prefetcher to on-commit. Even if
we add the missing opportunity bar to the uncovered one,
in general, the resulting MPKI (excluding the MPKI coming
from the commit late prefetch requests) is lower for on-
commit prefetchers. The Uncovered misses of L1D/L2-MPKI
are reduced with on-commit as some uncovered ones are now
classified as on-commit late.

Despite this trend, performance is worse when compared
to on-access prefetching. The reason is timeliness. Although
traditional late prefetch requests practically do not increase
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when moving from on-access to on-commit, our new defined
class of commit late is the culprit of the increase in overall
MPKI for on-commit prefetching. That is, prefetch requests
need to be triggered earlier to compensate for the delays
entailed by on-commit prefetching. Fortunately, as we show
in this work, it is possible to compensate for this lack of
timeliness. Section V proposes a mechanism that mitigates
the lack of timeliness.

IV. PREFETCH-FRIENDLY SECURE CACHE SYSTEM

Secure cache systems, based on invisible speculation, update
the cache hierarchy when memory instructions are not spec-
ulative, e.g., when committing. In the case of GhostMinion,
this entails re-fetching the cache line on a miss in the GM
or sending on-commit write requests (for clean cache lines) to
the rest of the cache hierarchy on a hit in the GM as discussed
in Section II-C. The goal of this extra data movement is to
populate the cache hierarchy, which was left intact when the
data was speculatively requested by the core, to minimize
cache misses in the subsequent accesses.

Both re-fetching and write propagation have an important
impact on memory hierarchy traffic. The extra traffic, however,
does not come with a noticeable performance degradation in a
memory system that is not heavily contended, as one with
prefetching mechanisms. However, prefetching mechanisms
stress the cache hierarchy queues and MSHRs, preventing
the prefetcher from improving performance as shown in Sec-
tion III-A. We observe that many requests aimed at restoring
the cache hierarchy are indeed not necessary and cause severe
contention. For example, triggering a re-fetch for data that
was provided by the L1D would consume L1D ports to just
update the LRU replacement policy. In the same context,
the on-commit write requests propagate up in the memory
hierarchy until the data is already found in a cache level.
The access to the cache level already containing the cache
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Fig. 6. Average L1D/L2 demand MPKI in terms of coverage and lateness.

line could be therefore avoided. Driven by this observation,
we propose the secure update filter (SUF). SUF records the
cache level that provided the data when requested. Then, at
commit time, either filters the re-fetching when the data was
provided by the L1D or stops the on-commit write propagation
at the level previous to the one that provided the cache line.
In case the SUF mispredicts, because the fetched cache line
may have been evicted in the interim, a subsequent fetch
request would incur extra latency since it will be served from
a higher level. Thanks to SUF’s high accuracy, the number of
cache accesses is reduced, and consequently, the amount of
traffic generated. SUF works independently of the underlying
prefetching technique, in a transparent way.

Identifying the cache level holding a cache line. SUF
uses the lower level (L1D is the lowest level and LLC is the
highest level of the cache) holding a cache line to decide if
filtering should be employed. The cache level can be learned
when the processor requests the data, by propagating down
the hierarchy the cache level that served the cache line. That
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information is encoded using 2 bits indicating if the data comes
from L1D (or GM, which is accessed in parallel), L2C, LLC,
or DRAM. The 2-bit hit-level information is stored along with
the requested data in the memory operation entry at the load
queue (LQ) ( Fig. 7, step a).

Filtering updates. Once a speculative load is committed,
it checks the GM in order to decide if re-fetching the cache
line down the hierarchy (GM miss) or propagating the cache
line up in the hierarchy (GM hit) is required. SUF checks
the hit-level field, and proceeds as follows. In the case of
the data being provided by the L1D (value 00), SUF drops
the update (both for re-fetching and on-commit propagation).
Otherwise, the re-fetch or propagation is done as usual that
causes the cache line to move from GM to L1D (step g).
Upon eviction of the cache line from either L1D or L2, the
decision to propagate the writeback block is determined by
the GhostMinion writeback bit. The value of the GhostMinion
writeback bit at L1D and L2 are evaluated at commit time
using the hit-level and propagated along with the writeback
block. Each cache line at L1D stores the L2 writeback bit as
well, so that it gets propagated to L2 upon writeback (step
9). Finally, during the eviction from L2, the GhostMinion
writeback bit is once again employed to determine whether to
propagate or not (step 9).

Applicability. SUF is applicable to any secure cache system
based on invisible speculation that updates the cache hierarchy
on commit.

Storage overhead. SUF is implemented with only 0.12 KB
of additional storage: 0.03 KB at the LQ and 0.09 KB at the
L1D. Each of the 128 entries in the LQ is extended with a
two-bit hit-level field and each of the 768 entries of the L1D
is extended with a single L2 writeback bit.

V. TIMELY SECURE PREFETCHER

As discussed in Section III-B, transitioning prefetchers from
on-access to on-commit leads to an average performance

loss of 3% to 4%. This performance degradation stems from
the new timeliness constraints, which introduces commit-late
prefetch requests and missed prefetching opportunities. These
factors contribute to lower prefetch accuracy and coverage. We
observe that this behavior can be fixed by adjusting prefetch
timeliness for prefetchers like IP-stride and IPCP. One of the
ways to improve prefetch timeliness is to increase the prefetch
distance to cover more distant memory requests, which can
lead to fewer commit-late prefetch requests. However, we find
that even with adaptive approaches, all the prefetchers fail to
beat the Berti prefetcher.

Another option for addressing the timeliness issue is to
modify the learning process of the hardware prefetcher. We
pursue this approach with Berti. We focus on Berti because
(1) it shows the best performance improvements over its peers
and (ii) its learning is unaffected by the order of memory
access streams (on-access vs on-commit) as it operates on
timely deltas, which is not the case with other prefetchers.

A. Berti prefetcher: 10K feet view

Training the prefetcher. Berti trains for deltas for a given
IP, which is known as the local deltas. For an IP, local deltas
are defined as the difference between the cache line addresses
of two demand accesses. The goal of the training mechanism
is to estimate the coverage of each delta per IP, considering
those deltas that would result in a timely prefetch. The training
consists of measuring fetch latency, learning timely deltas, and
computing the coverage of the deltas.

1. Measuring fetch latency. In order to learn the deltas that
are timely, it is necessary to measure the time required to fetch
data to the L1D. This measurement is performed for any cache
line in L1D, both for demand misses and prefetch requests.
Fetch latency can be measured by keeping a timestamp for
any L1D miss inserted into the MSHR and prefetch request
inserted into the PQ. On an L1D fill, the latency is computed
by subtracting the stored timestamp from the current cycle.

2. Learning timely and accurate deltas. Once the fetch
latency is obtained for each L1D fill, Berti looks up past
accesses (from the same IP) that could have triggered a
timely prefetch for the current request. Timely deltas are then
computed by subtracting the address of each timely access in
the history from the current address.

3. Computing the coverage of deltas. On every search
in history, Berti obtains a set of timely deltas. Deltas that
frequently appear in the search would cover a significant
fraction of misses, while deltas that rarely appear would result
in low coverage. It is important to note that high local (per
IP) coverage translates into high global accuracy.

Issuing prefetch requests. For a given IP, deltas with
highest coverage are selected, added to the current load address
to form the prefetch requests. Berti orchestrates the prefetch
requests across the cache hierarchy depending on the coverage
of each delta and the L1D MSHR occupancy.

B. Issues with the secure prefetcher

As explained in the previous subsection, Berti relies on
the fetch latency to guide its learning mechanism. For secure
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Fig. 8. Timeline representing working of on-commit Berti (red) and TSB (green). The timeline represents the access/commit of consecutive executions of the

same load instruction, with each step representing one cycle.

prefetching, we identify two main issues: (i) the latency seen
by the prefetcher is a misleading on-commit latency (instead
of the actual on-access latency) and (ii) the deltas selected are
timely at commit but not at access when data are needed.

To understand these problems better we start by describing
the on-commit version of Berti implemented on GhostMinion.
Berti is located at the L1D cache and utilizes post-commit
L1D accesses and fills for training. Since GhostMinion spec-
ulatively fills the GM and moves that cache line to L1D
on commit, Berti observes the on-commit write latency from
the GM to LID, instead of the fetch latency from a higher
level of the memory hierarchy to GM. This alteration in fetch
latency disrupts the learning process, leading to inaccurate
delta learning and prefetch requests, which in turn translates
into performance degradation. Fig. 8 (in red) provides a visual
example of the training and prefetch request issuance process
for on-commit Berti in GhostMinion. The timeline shows a
+1 delta for a given load. All L1D accesses are misses that
take three cycles to fill GM and one cycle for on-commit write
from GM to L1D. We focus on the process of how on-commit
Berti issues a prefetch request for cache line @5.

Upon the commit of the load for @2 (C@2), the learning
process initiates. When cache line @2 fills the L1D cache from
the GM (via on-commit write), the latency of one cycle is
recorded. Consequently, Berti searches for the nearest commit
instruction capable of triggering a timely prefetch request. In
this example, this instruction is C@1. Berti then learns the
appropriate delta, for the writeback latency, which in this case
is +1. From this point forward, Berti triggers a prefetch request
with delta +1 upon each instruction commit. When the load
for @4 is committed (C@4), Berti issues a prefetch request
for line@5 (PF@5). However, this prefetch request takes three
cycles to fill the cache, resulting in a late prefetch request since
the access to cache line @5 is performed two cycles later. This
occurs because the learning process is performed (i) with the
writeback latency, not with the fetch latency, and (ii) the deltas
selected are timely at commit (C@2) but not at access (A@2).
Note that this late prefetch will occur even if Berti searches
for deltas based on the cache access time (A @2) rather than
the commit time (C@2). Hence, both problems should be
addressed in order to achieve timely secure prefetching.

C. Timely training of the secure prefetcher

Driven by the previous two observations, we propose Timely
Secure Berti (TSB), a new timely training mechanism for Berti
that utilizes the fetch latency to GM and computes the right
delta using the access times. This way the training mechanism
emulates the latency that future demand accesses will face.

TSB works as follows: first, when the demand load miss
happens, it speculatively saves the necessary information for
training Berti correctly, including the access time and the fetch
latency to GM. At the time of commit, the commit time for
each demand miss is saved in history table. While training
at commit, TSB searches committed instructions, which could
have triggered a timely prefetch for the current load. Timely
deltas are calculated by subtracting the address of each timely
commit from the current address. As we show in Fig. 8(in
green), when cache line @2 fills the GM, the fill latency is
calculated as the difference between the fill timestamp and
the cache access timestamp and saved until commit. When
instruction @2 commits (C@2) and Berti is ready to be
trained: the fill latency is used to search the commit that can
trigger a timely prefetch request that will hit in the access of
cache line @2; once the commit is known (in our example,
C@0), the delta is calculated (+2). Unlike the default on-
commit version, TSB will trigger prefetch requests with delta
+2, which means that C@3 triggers the prefetch request for
cache line @5, resulting in a timely prefetch request.

Storage overhead. TSB uses X-LQ, an extension of the
LQ needed to propagate the actual fetch latency. The X-LQ
is dual-ported and it contains as many entries as the LQ (128
entries in our modeled system) and it is indexed with the LQ
entry id (one-to-one mapping). Each entry contains a valid
bit, a bit indicating that the access was a hit on a prefetched
cache line (Hit,), a 16-bit access timestamp, and a 12-bit fetch
latency. TSB incurs a storage overhead of only 0.47 KB over
Berti (3.01 KB over no-prefetch). Fig. 9 shows an overview of
TSB, where the light gray represents the Berti hardware and
the dark gray represents the additional TSB hardware.

On an L1D miss, the valid bit is set, and the access
timestamp is filled with information from the clock of the
local processor (the last 16 bits of the current cycle). When
the cache fill in the GM is done, the fetch latency is also
recorded. On a hit to a prefetched cache line, both the valid
bit and the Hit, bit are set. In this case, the access timestamp is
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TABLE I
SIMULATION PARAMETERS OF THE BASELINE SYSTEM.

Core Out-of-order, hashed perceptron branch predictor [25], 4 GHz
with 6-issue width, 4-retire width, 352-entry ROB

TLBs L1 iTLB/dTLB: §4 entries, 4-way, 1 cycle
STLB: 1536 entries, 12-way, 8 cycles

L1I 32 KB, 8-way, 4 cycles, 8 MSHRs, LRU

L1D 48 KB, 12-way, 5 cycles, 16 MSHRs, LRU

L2 512 KB, 8-way, 15 cycles, 32 MSHRs, LRU, non-inclusive

LLC 1 bank per core, each bank: 2 MB, 16-way, 35 cycles,
64 MSHRs, LRU, non-inclusive
Controller: One channel/4-cores, 6400 MTPS [21], FR-FCFES,

DRAM write watermark: 7/8th, Chip: 4 KB row-buffer, open page,
trp: 12.5 ns, trep: 12.5 ns, teas: 12.5 ns

also recorded, but the fetch latency corresponds to the latency
of the prefetched line (which has been previously computed
and stored along with the L1D cache [31]). On a regular
hit, the valid bit is not set, since no action will be taken at
commit. When a load commits, the history table is filled for
both misses and prefetch hits using commit timestamp, and
the timely deltas are searched by using the fetch latency and
access timestamp in X-LQ.

TSB security guarantees. TSB is trained and triggered on
commit, which ensures that it is not trained on any transient
instructions, and hence no prefetch requests can be generated
based on transient information. In the speculative phase, the
access time and fill latency of a particular request are stored
in the X-LQ. The only vulnerable information is fill latency,
which may be altered by a transient instruction. Any aberration
to the fill latency through resource contention by a transient
instruction could lead to prefetcher-based side channels. If the
fill latency of a bound-to-commit instruction is altered by a
transient instruction (e.g. backward-in-time attack), then the
security is compromised. However, this is not possible with
GhostMinion as a transient instruction can not affect the timing

of a bound-to-commit instruction thanks to strictness ordering
ensured by time-guarding. Also, as the X-LQ is flushed on
a domain switch, the transient information stored in the X-
LQ cannot be exploited by a malicious process. Moreover, the
information stored by a particular load instruction in the X-LQ
is accessible only by that instruction and only at commit time.
No other instruction can access the information corresponding
to any other instructions. This makes it secure as there is no
possibility of data leakage.

TSB applicability. TSB applies to all secure cache systems
(both invisible speculation and delay-based).

D. Timely training of non-self-timing prefetchers

Berti is a self-timing prefetcher. However, prefetchers like
IP-stride, IPCP, Bingo, and SPP+PPF are not. To make these
prefetchers secure, they should be trained and triggered on
commit. The prefetch tables should not be updated on spec-
ulative requests. To compensate for the performance loss as
shown in Figure 1, we make them timely.

IP-stride and IPCP. For prefetchers like IP-stride and IPCP,
the prefetch distance should be tuned based on the lateness. We
use a mechanism that increases the distance with an increase in
prefetch lateness. We calculate prefetch lateness as the ratio of
late prefetch requests to useful prefetch requests. We monitor
prefetch lateness every 512 misses (size of the L1 in terms
of the number of cache lines) and if the prefetch lateness
increases for two consecutive intervals, then we increment
the prefetch distance by one. Updating distance based on the
lateness of only the previous interval leads to noisy decision-
making.

SPP+PPF. For SPP+PPF, we use the same mechanism of
prefetch lateness-driven adaptive distance selection as done
with IP-stride and IPCP. However, SPP is a different prefetcher
that uses the predicted delta in the signature used for finding
out the next delta, recursively. To make it adaptive, we con-
tinue the learning of SPP with on-commit requests. However,
we skip the next k deltas before we start prefetching, where k
is driven by the prefetch lateness. Based on empirical analysis,
we find that for timely prefetching, the value of k is between
two to five. As SPP is an L2 prefetcher, the monitoring interval
used is 4096 misses (one-half of the size of the L2).

Bingo. Bingo is a region-based prefetcher, similar to SMS [42]
where introducing timeliness is a non-trivial task. We extend
Bingo with temporal information as suggested in Tempo [44]
using a local tempo buffer and global tempo buffer. We then
change its distance dynamically based on the prefetch lateness.

For all the prefetchers, we use the lateness threshold of 0.14,
which is just less than the average lateness while we perform
on-commit prefetching. However, with Bingo, the prefetch
lateness threshold that we use is 0.05. In general, with Bingo,
the number of late prefetch requests is lower than IP-stride,
IPCP, and SPP+PPF, as shown in Figure 6. We also use a
phase change detector as used in prior works [26] and on an
application phase change, we reset the prefetch distance to the
base distance used.



TABLE III
CONFIGURATIONS OF EVALUATED PREFETCHERS

Prefetcher Configuration Size
IP-Stride 1024 entries 8KB
128-entry IP table, 8-entry RST table, and
IPCP [32] 128-entry CSPT table 0.87KB
256-entry ST, 512-entry 4-way PT, 8-
entry GHR, Perceptron weights: 4096x4,
SPP+PPF [16] | 2048x2, 1024x2, and 128x1 entries, | 39.2 KB
1024-entry prefetch and reject tables
. 128-entry History Table, 16-entry Delta ta-
Bert [31] ble with 16 deltas 255 KB
Bingo [13] 2 KB region, 64/128/16K-entry FT/AT/PHT | 124 KB
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Fig. 10. Speedup of timely secure (TS) version of state-of-the-art prefetchers
normalized to a non-secure cache system with no prefetching

VI. METHODOLOGY

We use ChampSim [7], a trace-driven simulator used for
the 2nd and 3rd Data Prefetching Championships (DPC-2 [1]
and DPC-3 [5]). Recent prefetching proposals are also coded
and evaluated on ChampSim [13], [16], [31], [32], [39]. The
version employed in DPC-3 has been extended with a decou-
pled front-end [34], a detailed memory hierarchy support for
address translation, and a faithful DRAM model. We calculate
the dynamic energy consumption of the memory hierarchy
(caches and DRAM) with CACTI-P [30] and the Micron
DRAM [2] power calculator on 7 nm process technology.
Table II details our baseline system configuration, similar to
an Intel Sunny Cove microarchitecture [3], [4], [24].

We employ publicly available traces [6], [8] from the SPEC
CPU2017 [43] and single-threaded GAP [14] benchmark
suites. We limit our study to the 65 memory-intensive traces
(45 from SPEC CPU2017 and all from GAP) that exhibit
at least one miss per kilo-instruction (MPKI) at the LLC
in our baseline system. We run both single- and multi-core
simulations. We collect statistics for 200M sim-point instruc-
tions after a 50M-instruction warm-up [40]. For multi-core,
we simulate 150 randomly generated heterogeneous mixes of
SPEC CPU2017 and GAP traces and report weighted speedup.

We evaluate the effectiveness of SUF and TSB on a
GhostMinion [11] secure cache system with a 2KB GM with
1 cycle latency for different data prefetchers: IP-Stride [23]
(the Intel and AMD LI1D prefetcher), IPCP [32], Bingo [13],
SPP+PPF [16], and Berti [31]. We use the tuned implementa-
tions of each prefetcher using the parameters listed in Table III.
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Fig. 11. Speedup normalized to non-secure cache system with no prefetching.

VII. RESULTS

This section shows the benefits of our two main contribu-
tions: the secure update filter (SUF) and the timely secure
Berti (TSB) prefetcher. All normalized graphs are relative
to a non-secure system without prefetching. If a red line
is present, it represents a GhostMinion secure cache system
without prefetching. When averaging results, we use the
geometric mean when normalizing values and the arithmetic
mean otherwise. In graphs showing average numbers, each
bar represents a prefetch configuration: on-access prefetch in
a non-secure cache system (white bar), on-commit prefetch
in a GhostMinion cache system (gray bar), and on-commit
prefetch in a GhostMinion system with the SUF mechanism
(black bar).

A. Performance

Speedup with timely secure prefetching The average single-
thread speedup of the prefetchers with their timely secure
versions is shown in Fig. 10. We name the timely secure
versions of all the evaluated prefetchers as TS-stride, TS-
IPCP, TS-Bingo, TS-SPP+PPF, and TSB. With GhostMinion
as secure cache system, TS-stride, TS-IPCP, TS-Bingo, and
TS-SPP+PPF outperform on-commit versions of IP-stride,
IPCP, Bingo, and SPP+PPF by 3.1%, 2.84%, 1.92%, and
2.64%, respectively as shown in Fig. 10. Overall, TSB is
the high-performing and secure prefetcher outperforming the
timely secure version of all prefetchers by 4.1%.
Speedup with SUF. Next, we show the effect of SUF with
and without timely secure prefetching (Fig. 11). The first
(white) bar shows the speedup of the non-secure version of
the prefetchers. The second (gray) bar shows the speedup
obtained in a GhostMinion secure cache system by the same
prefetchers, now being secure. All prefetchers exhibit a perfor-
mance loss (between 7.3% and 9.6%) when transitioning from
non-secure to secure, in part due to the ~5% performance
degradation of GhostMinion (red line).

The next bar shows the speedup achieved by SUF, which
improves the performance of all secure prefetchers with the
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Fig. 12. Speedup of Berti, TSB, and TSB+SUF normalized to a non-secure system without prefetcher. The higher the better.

highest improvement of 3.7% for Bingo and the lowest of 100

. . i OOn-access Pref (Non-secure cache system)
1.9% for Berti. SUF improves the effectiveness of all the & 0n-commit Pref (Secure cache system) -
prefetchers irrespective of their timely secure versions. Over- mOn-commit Pref + SUF (Secure cache system)
all, TSB with SUF outperforms all other prefetchers. TSB § %1 M
without SUF achieves the same speedup as secure Berti + SUF §
(23.0%). When SUF is added to TSB, the speedup increases by ¢ 60
4.2%, reaching a total of 28.4% (over baseline). Importantly, §
TSB+SUF mitigates the performance degradation of using a g
secure system from 5.1% (in a system without prefetching) & 401
to 2.1% (in a system with prefetching). Finally, TSB can also
be applied to non-secure cache systems, thus removing any 20 L || ||
speculative side-channel attack induced by the prefetcher. In %\@Q %\(@@ {262 {2(52 é)\(\c&’ Q,,\Qq" XQQQ XQQQ %0& &
that case, TSB performs on par with respect to on-access Berti QT & & & R %QQ
(speedup for TSB 1.310 (not shown in Fig. 11) vs. speedup <&

for Berti 1.311).

Individual speedup. Fig. 12 shows the individual speedup
for on-commit Berti, TSB, and TSB+SUF. For SPEC traces,
TSB improves performance by more than 5% in 7 out of
45 traces (15.6% of all traces) when compared with the
on-commit Berti. For 603.bwaves_s-2931B, performance im-
proves by 24.9% over Berti, because it has a large fetch latency
which is learned correctly in TSB. Our new learning system
allows TSB to learn better and more accurate deltas, which
provides better accuracy and coverage. TSB+SUF achieves
more than 5% performance improvement in 18 out of 45
traces (40% of all traces), with a maximum improvement of
75.8% in 605.mcf_s-1554B. After analyzing its behavior, we
detected that this improvement comes from the reduction in
the number of cycles that the L2 MSHR is found full, which
drops by 42.2%. TSB and TSB+SUF only sees a performance
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Fig. 13. Average prefetch accuracy. The higher the better.

drop of more than 1% in one application, 605.mcf_s-1536B.
As for GAP, TSB achieves better performance in all bfs
traces with an average improvement of 10.8%, also because
of their large fetch latency. TSB+SUF achieves slightly better
performance in all benchmarks, with more than 3.8% average
performance improvement in sssp traces due to the inclusion
of the SUF filter. Interestingly, TSB and TSB+SUF do not
degrade performance in any trace. This is because, on aver-
age, SUF filters accurately for 99.3% of the time, with the
maximum accuracy of 99.9% for 654 . roms_s-1613B and
a minimum of 87.26% for 605.mcf_s-1554B, improving
the effectiveness of GhostMinion with prefetching.
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Prefetch accuracy. Fig. 13 shows the accuracy of the
different prefetchers. Compared to the on-access prefetcher,
on-commit prefetchers experienced a decrease in accuracy in
all prefetchers, with a maximum of 24.0% in IPCP and a
minimum of 4.1% in Bingo. Because SUF does not affect the
timeliness of the prefetcher, it does not modify the accuracy of
any prefetcher. The improvements in accuracy with timely se-
cure versions is visible. TS versions of IP-stride, IPCP, Bingo,
SPP+PPF, and Berti improve prefetch accuracy, significantly.

Prefetch coverage. When transitioning from an on-access
non-secure system to an on-commit secure system, the average
MPKI increase across all prefetchers is 4.3%, 7.4%, and 8.3%
at the L1D, L2, and LLC, respectively. As with accuracy,
since SUF does not change the way that prefetchers work, its
coverage remains the same for all of the prefetchers. All the
timely secure prefetchers improve coverage by atleast ~2%.
TSB, achieves an MPKI reduction of 2.4%, 4.9%, and 8.8% at
the L1D, L2, and LLC caches, respectively, compared to on-
commit prefetcher (Berti). TSB and TSB+SUF have the same
coverage as on-access Berti in a non-secure cache system.
The superior coverage of TSB can be attributed to the correct
latency seen by it, which provides the least late and incorrect
prefetch requests.

Memory hierarchy traffic. GhostMinion adds traffic due
to the writeback and re-fetch requests. Across all prefetchers,
the average traffic increase compared to the on-access version
is 54.7% for L1D, 46.6% for L2, and 40.4% for LLC. SUF
mitigates the increase in traffic generated by GhostMinion with
all the prefetchers.

L1, L2, and LLC access Latency. The utilization of a
secure system cache increases the latency of all prefetchers at
all levels, with a significant increase in the L1D cache. On av-
erage, across all the on-commit prefetchers, latency increases
by 34.8% in the L1D cache, 5.2% in the L2 cache, and 8.8%
in the LLC cache with respect to its on-access counterpart.
Among all the prefetchers, Berti is the one whose latency
is most affected, with a maximum increase of 49.4% in the
L1D cache (from 87.8 cycles to 131.2 cycles). This is because
Berti is the most aggressive of all the prefetchers, triggering
more prefetch requests and increasing memory traffic. Thanks
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to the reduction in traffic between cache levels, SUF is able
to reduce the latency penalty introduced by GhostMinion by
more than 12% at all cache levels, which translates into higher
performance.

Energy. There is a direct correlation between traffic and
dynamic energy consumption overhead in the memory hierar-
chy (Fig. 14). The secure system has extra traffic generated
by GM, which increases the base energy consumption for all
prefetchers. The on-commit version of the prefetcher increases
energy consumption by an average of 41.8%, compared to the
on-access version. SUF is able to reduce this increase in energy
from 41.8% to 30.0%. On-commit IP-Stride+SUF as well as
TS-stride are able to consume less than the system without
prefetching, thanks to SUF reducing all the redundant traffic
from GM. TSB and TSB+SUF show higher dynamic energy
consumption than prefetchers like IP-Stride or Berti because
they trigger a greater number of prefetch requests, but they
also achieve better performance.

B. Multi-core performance

Fig. 15 shows the performance of SUF and TSB on a 4-core
simulated system. The mixes have been sorted in increasing
order of speedup. Compared to the non-secure baseline, Ghost-
Minion incurs an average performance overhead of 16.8%.
Only 14 mixes show a performance improvement. Similar to
the single-core scenario, SUF does not improve performance
significantly without a prefetcher when used in a multi-core
system. In the case of a multi-core system with SUF turned
ON, we observe a slight performance improvement of 0.9%
over GM without SUF.

With prefetcher ON, as multi-core execution increases the
traffic in the higher levels of the cache, it increases the latency
of memory requests. Hence, the benefits of SUF reducing
the traffic are more acute than in the single-core execution.
The SUF filter improves performance over a secure cache
system in all mixes. TSB+SUF improves the performance over
the non-secure baseline by 16.1%, followed by on-commit
Berti+SUF (12.4%). When compared with secure on-commit
Berti, TSB+SUF improves performance by 23%. Note that
SUF’s average accuracy drops marginally from 99.95% in
single-core to 99.25% in a multi-core system. This marginal
accuracy drop is because of the cross-core evictions at the
shared LLC, and this drop does not affect overall performance.

SMT-based multi-core systems. The effectiveness of SUF
is driven by its accuracy and in an SMT core, one thread
can evict cache lines of other threads from both L1D and
L2. When we apply SUF and TSB on a 2-way SMT-
based multi-core processor, we find that the average accu-
racy is still over 99%. The reason is that, on average, it
takes 200 cycles from the time a speculative load request
is generated till it gets committed. This latency is as low
as 46.93 cycles for 603.bwaves-2931B. So, the proba-
bility of an eviction at L1/L2/LLC that can lead to a mis-
prediction by SUF is extremely low, which is also evident
from high accuracy. There are mixes with multiple copies of
605.mcf-1554B, cc-14B, bc-0B, and bc-5B where
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the accuracy dropped to 91.74%. In summary, the effectiveness
of SUF and SUF+TSB remains similar in multicore systems as
shown in Figure 15 and also in SMT-based multicore systems.

VIII. CONCLUSION

Secure cache systems mitigate transient execution attacks
like Spectre by providing strictness ordering. We showed that
hardware prefetching is fundamental for hiding the perfor-
mance overhead of a secure cache system. We performed, for
the first time a comprehensive evaluation of the interaction
between state-of-the-art prefetch mechanisms on a secure
cache system. Our analysis shows that (i) state-of-the-art
secure memory hierarchies prevent prefetchers from achieving
their true potential and even in some cases turning significant
speedups into no performance at all, and (ii) prefetching
techniques perform sub-optimally when moving to commit
due to loss of timeliness. We addressed these two prob-
lems and improved the effectiveness of hardware prefetchers.
Our enhancements improve the effectiveness of a variety of
prefetchers, with TSB being the best among all the secure
prefetchers. In summary, our proposal improves the single-
thread performance by 6.3% and the multi-core by 23.0% (over
the top-performing Berti prefetcher) with 0.59 KB of storage
overhead per core.
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