
IEEE COMPUTER ARCHITECTURE LETTERS, VOL. ?, NO. ?, DATE? 1

WoperTM: Got nacks? Use them!
Vı́ctor Nicolás-Conesa, Rubén Titos-Gil, Ricardo Fernández-Pascual, Manuel E. Acacio, Alberto Ros

University of Murcia
Email: victor.nicolasc@um.es, rtitos@um.es, rfernandez@ditec.um.es, meacacio@um.es, aros@ditec.um.es

Abstract—The simplicity of requester-wins has made it the
preferred choice for conflict resolution in commercial imple-
mentations of Hardware Transactional Memory (HTM), which
typically have relied on conventional locking to escape from
conflict-induced livelocks. Prior work advocates for combining
requester-wins and requester-loses to ensure progress for higher-
priority transactions, yet it fails to take full advantage of the
available features, namely, protocol support for nacks. This
paper introduces WoperTM, a dual-policy, best-effort HTM
design that resolves conflicts using requester-loses policy in the
common case. Our key insight is that, since nacks are required
to support priorities in HTM, performance can be improved
at nearly no extra cost by allowing regular transactions to
benefit from requester-loses, instead of only those involving a
high-priority transaction. Experimental results using gem5 and
STAMP show that WoperTM can significantly reduce squashed
work and improve execution times by 12% with respect to power
transactions, with negligible hardware overhead.

Index Terms—Transactional memory, conflict resolution.

I. INTRODUCTION

HArdware Transactional Memory (HTM) can simplify
parallel programming by shifting the complexity of

synchronizing threads from the programmer to the hardware.
The hardware then makes use of speculative execution to run
critical sections from multiple threads concurrently. Specula-
tive transactions can be executed and committed in parallel as
long as no conflicts arise among them —a conflict occurs when
two or more threads access the same shared memory location
and at least one those accesses is a write—. Thus, HTM
systems implement conflict detection (CD) and resolution (CR)
mechanisms to handle these conflicts, aborting the transactions
involved to guarantee correctness. When a transaction aborts,
its speculative updates must be discarded as if it had not been
executed at all. To this end, HTM systems implement a version
management (VM) scheme. CD, CR and VM are the three
main dimensions in the HTM design space [1], and there are
alternatives for each of these dimensions [2], [3].

Existing best-effort implementations of HTM have opted
for eager CD and lazy VM policies, given their easier integra-
tion into existing designs. Eager CD leverages the messages
generated by the cache coherence protocol to detect conflict
upon each memory access, while lazy VM takes advantage of
private L1 caches to keep a transaction’s speculative updates
invisible to other threads. The additional complexity of lazy
CD or eager VM disqualifies such policies from cost-effective
HTM implementations in the context of best-effort HTM sys-
tems [3]. This leaves CR as the only major design dimension
that computer architects may consider exploring.

Despite being prone to livelocks during contention [2],
commercial HTM implementations appear to have opted for

a requester-wins (RW) approach [3]. This choice of CR is
part of the reasons why HTM support has only demonstrated
performance benefits in lightly contended workloads [2], [3].
As contention raises and transactions begin squashing each
other, performance quickly deteriorates, not only because of
the work discarded, but also the need to switch to the slow path
to ensure progress: the TM runtime resorts to non-speculative
execution in mutual exclusion using a single global lock.

Among the alternatives to RW, the most relevant policies are
requester-loses (RL) [4] and requester-stalls (RS) [1]. Both can
offer better overall performance than RW during contention.
This is particularly true for RS, as it can resolve conflicts
through stalls rather than aborts, though its need for a deadlock
avoidance scheme makes RS less appealing than RL for best-
effort HTM. Unlike RW, the main downside of RL, shared also
by RS, is that it requires extending typical cache coherence
protocols with messages to allow for unsuccessful comple-
tion of requests. In directory-based coherence, supporting RL
means introducing negative acknowledgments (nacks) sent in
response to conflicting memory requests.

Prior work on best-effort HTM systems has demonstrated
the performance benefits of supporting RL [5], [6]. Dice et
al. propose a CR scheme in which a power transaction can
survive conflicts by responding to offending requests with
nacks, while regular transactions invariably favor the requester,
effectively creating a dual-priority, RW/RL HTM design. The
resulting design improves concurrency by reducing the fre-
quency in which the slow path is used while experiencing
contention, since an intermediate power path prioritizes a
chosen transaction to guarantee progress without resorting
to mutual exclusion. Considering that the protocol must be
extended to support both RW and RL, a naturally occurring
question is which of the two policies to use by default. Prior
work has opted for RW, so that at most one transaction at a
time benefits from nacks, while the rest will remain subject to
the friendly fire pathology of RW.

Our key insight is that, if designers are willing to incorporate
nacks, they can be leveraged more effectively than what has
been proposed. In this work, we propose WoperTM1, a best-
effort HTM design built on the ideas of power transactions.
WoperTM employs RL as the default policy, and only reverts
to RW if the requester has higher priority. Our evaluation with
gem5 and STAMP shows that WoperTM, requiring only one
extra bit in coherence requests, consistently outperforms power
transactions in contended workloads by minimizing discarded
work from aborted transactions.

1A wordplay flipping the first two consonants of ”Power”, highlighting how
our approach inverts the conflict resolution strategy of power transactions.



IEEE COMPUTER ARCHITECTURE LETTERS, VOL. ?, NO. ?, DATE? 2

II. BACKGROUND AND RELATED WORK

Given the ability to deny invalidation or ownership transfer
requests for a cache block under certain conditions, a simple
approach to CR could handle all conflicts by sending a nack
response, which would abort the requester. Different flavors
of the nack response have been described in academia [5]
and industry (e.g., AMBA CHI’s Retry Ack response). Under
this always-RL policy, transactions become more and more
immune to aborts as their read and write sets grow larger,
heuristically tending to favor transactions that have done more
work at the point of the conflict, minimizing wasted work upon
aborts. However, such a naive RL approach is subject to a
different performance pathology which indefinitely hinders the
progress of writer transactions attempting to modify a cache
block that is accessed by many concurrent readers [2].

Preventing starving writer pathology in RL is possible as
long as RW is also supported by the coherence substrate,
simply by adopting a hybrid RL/RW policy that allows writers
to simultaneously abort concurrent readers [2]. In today’s
multicores, RW can be supported without extending the co-
herence protocol, by leveraging the existence of two levels of
private cache: Only minor behavioral changes in the private
cache controllers are required to ensure that remote conflicting
requests always obtain the non-speculative version of the cache
block from L2. Therefore, support for nacks does not hard-
wire RL as the only CR policy, but rather enables the system
to dynamically choose between RL and RW at each conflict.

An alternative strategy when combining RW and RL is
to give higher priority to all accesses made by a certain
transaction. This is the approach followed by Dice et al.
with power transactions, an example of hardware-software co-
design that manages priorities with minimal ISA changes, in
order to have two modes for running speculative transactions,
regular or power. Using software-controlled entry into power
mode, the complexity of determining whether it is safe to
execute a transaction with high priority is shifted to the TM
runtime —a regular lock ensures that at most one power
transaction exists at a time—. The choice of CR policy made
by private cache controllers then depends on the local power
mode bit for that core. When a conflicting remote request is
observed by the cache controller and the power mode bit is
unset, the local transaction aborts (RW policy). On the other
hand, if the local power mode bit is set, then the speculative
status of the remote request must be considered to select the
policy, since conflicts with non-speculative code cannot be
resolved using RL, for safety. Thus, the proposal by Dice et al.
had to augment coherence requests with an extra speculative
bit to distinguish requests originating from transactions.

III. WOPERTM

Our observation is that employing RL as default CR policy
is an alternative design to power transactions that makes
better use of nacks. In this way, conflicts caused either by
power transactions or by non-transactional code are resolved
similarly, using RW as the CR policy, whereas conflicts among
regular transactions are resolved using RL, in order to make

Ti
m

e

T0 T1 T2

Rd A
Wr B

Abort

Rd A
Wr B

Commit

Rd C
Wr A

Abort

Rd C
Wr A

Abort

Rd C

Wr A

Commit

Rd A
Wr D

Abort

Rd A
Wr D

Abort

Rd A
Wr D

Commit

T0 T1 T2

T3

Rd A
Wr B

Commit

Rd C
Wr A

Abort

Rd C

Wr A
Commit

Rd A
Wr D

Commit

Rd A

Abort

Fig. 1: Power versus WoperTM. Red arrows are nacks.

the best out of the effort made to augment the coherence
protocol to support nacks.

Fig. 1 illustrates the key behavioral differences between
prior work (PowerTM) [6] (left) and our proposal, WoperTM
(right). For this example, we assume that after a conflict-
induced abort, threads will attempt to enter the power mode, if
the token is available. The figure depicts a scenario where two
threads run non-conflicting transactions T0 and T2 —readers
of location A—, while another thread runs T1 and writes
location A. In the case of PowerTM, the use of RW as default
policy results in friendly fire among the three transactions: T1
aborts T0 and T2 when writing A, and then T1 is aborted
after T0 (or T2) restarts and re-reads A. A subsequent restart
of T1 will once again abort T2 when reading C, before T1
itself is squashed upon receiving a nack from T0 (now in
power mode), which denied T1’s write to A. T2 might be
able to read A and commit as long as it completes before T1
writes A, which now commits in power mode. In the case of
WoperTM, resolving conflicts using RL allows T0 and T2 to
commit in parallel, since none of them are vulnerable to the
conflicting write to A from T1. After being denied its write to
A, T1 restarts in power mode and thus will win any potential
conflicts that may arise with subsequent reader transactions
(T3), effectively escaping the starving writer pathology.

Fig. 2 depicts the architectural changes required to support
WoperTM, PowerTM and RL policies, compared to a baseline
RW design. The speculative bit (S) that tracks whether the
core is running a transaction is present in all four designs.
To prevent nacking of non-transactional requests, the S bit
must propagated to coherence requests generated in all cases
except RW. PowerTM and WoperTM extend the HTM state
with a power mode bit (P), and a new ISA instruction to
begin a transaction in said mode. The key difference between
PowerTM and WoperTM is that coherence requests generated
by transactions must also carry the P bit in WoperTM, while in
PowerTM this bit is never propagated outside the core. Thus,
in WoperTM, conflicting remote requests observed by private
cache controllers are resolved based on their P and S bits.

Any policy other than RW needs minor changes in both
private cache controllers and the directory controller in order
to account for the case where a request is denied due to a
conflict, so that a coherence transaction can complete without



IEEE COMPUTER ARCHITECTURE LETTERS, VOL. ?, NO. ?, DATE? 3

CPU
HTM engine

S P

Private Cache

Cache
controller

Cache
data

CPU
HTM engine

S P

Private Cache

Cache
controller

Cache
data

Cache coherence protocol

Nack GETS/X S P Unblock

Directory/LLC cache

PowerTM Requester-loses WoperTM

S Speculation bit P Priority bit

Fig. 2: Requirements of PowerTM, RL, and WoperTM

TABLE I: System parameters.

Cores 16, out-of-order, x86-64
Struct. size ROB: 512, LQ: 192, SQ: 114, IQ: 140
L1I cache Private, 32KiB, 8-way, 1-cycle hit latency
L1D cache Private, 48KiB, 12-way, 1-cycle hit latency
L2 cache Private, 1.25MiB, unified, 10-way, 4-cycle min. roundtrip
L3 cache Shared, 32MiB, unified, 16-way 30-cycle min. roundtrip

obtaining the required data/permissions. On the private cache
controller side, besides the nack response itself, a new type of
nacked-unblock message must be sent to the directory, so as
to inform that the request did not succeed. When the directory
controller receives such a nacked-unblock, it does not update
the coherence state for the block nor its sharers/owner; instead,
the coherence state for the block transits back to its initial state,
as if the request had not been served.

IV. METHODOLOGY AND EVALUATION

We use Gem5 in full-system mode to model an Intel RTM-
like HTM system with lazy VM and eager CD, whose key
parameters are shown in Table I. The L1 cache is used for
speculative versioning, writing back non-speculative version
to L2 before speculation when needed. Write sets are tracked
using one bit per L1 cache line, while read-set blocks can
reside in either private level. The replacement policy takes
into account such bits to minimize capacity aborts.

We conducted our experiments using the STAMP bench-
mark suite, excluding bayes due to its high variability. We run
16-thread configurations with standard medium inputs.

Four CR flavours are evaluated: our proposed WoperTM,
PowerTM [6] and their respective fixed-policy underlying
design (RL and RW, respectively). PleaseTM [5] is a well-
known CR policy that avoids the use of nacks and is out-
performed by PowerTM [6] and nack-based RL implementa-
tions [5]. Furthermore, its lack of atomicity during validation

re-fetch complicates the implementation of a priority-based
mechanism like WoperTM due to parallel memory accesses
from different cores. Consequently, we excluded it from our
experiments.

A fallback global lock ensures progress despite capacity
limitations or exceptions. Page-fault-induced aborts arising
from STAMP’s simplistic memory allocator are mitigated
through prefaulting.For RL and RW, the abort handler takes
the fallback lock after 6 and 10 retries, respectively. WoperTM
and PowerTM employ identical abort handlers, where an extra
lock serves as a power token that threads attempt to acquire
after a conflict-induced abort.

Fig. 3 presents the execution time across the benchmarks
split in four regions. No Transactional represents the time
the CPU spent executing code outside transactional regions.
Committed and Aborted correspond to the time spent in
transactional regions that resulted in a commit or an abort,
respectively. Finally, Wait Fallback Lock measures the time
that CPUs waited for another core to release the global
lock. All values are normalized to RW. Fig. 4 illustrates
the proportion of aborted cycles relative to total transactional
cycles, categorized by atomic region in the source code (TID)
to help us attribute performance differences among CR policies
to specific data access patterns. As we can see in Fig. 4, ssca2
and vacation have very light contention levels and thus are
unaffected by the choice of CR policy. In labyrinth, the lack
of early release support in HTM limits available parallelism
and leads lots of wasted transactional cycles.

The choice of CR policy impacts performance in workloads
with moderate to high contention, such as genome, intruder,
kmeans-h or yada. As we can see, WoperTM emerges as a
robust alternative that balances efficiency and performance,
consistently outperforming the state-of-the-art in all bench-
marks. Overall, WoperTM stands out as the most efficient
CR policy among the four configurations, with remarkable
reductions in aborted cycles that lead to an average reduction
in execution times of 12% when compared to PowerTM.

The best results for WoperTM are seen for yada, obtaining
speedups of around 2x and 3x, respectively, when compared
to PowerTM and RW. Despite its simplicity, WoperTM has
a unique ability to exploit irregular parallelism available in a
very large transaction with moderate contention, as is the case
of yada’s main transaction: TID-2 performs triangle refinement
and often reaches read set sizes well above one hundred cache
lines. WoperTM’s performance stems from its two salient
features, namely, its trend towards favoring transactions that
have done more work (i.e., accessed more cache lines) and
its ability to escape starving writer without aborting unrelated
transactions. On their part, RW and PowerTM suffer a wide
window of vulnerability to conflicts resulting from the very
long transaction duration. In RL, the key bottleneck is wasted
work stemming from the huge cost of entering the fallback
path: when a writer repeatedly fails to make progress and
acquires the fallback lock, it causes the squash of thousands
of speculative cycles in most other threads. In contrast, in
WoperTM, the power-mode writer only causes the abort of
truly conflicting readers, while unrelated transactions working
on independent parts of the mesh continue unaffected.



IEEE COMPUTER ARCHITECTURE LETTERS, VOL. ?, NO. ?, DATE? 4

genome intruder kmeans−l kmeans−h labyrinth ssca2 vacation−l vacation−h yada arithmean

RW RL

Pow
er

TM

W
op

er
TM

RW RL

Pow
er

TM

W
op

er
TM

RW RL

Pow
er

TM

W
op

er
TM

RW RL

Pow
er

TM

W
op

er
TM

RW RL

Pow
er

TM

W
op

er
TM

RW RL

Pow
er

TM

W
op

er
TM

RW RL

Pow
er

TM

W
op

er
TM

RW RL

Pow
er

TM

W
op

er
TM

RW RL

Pow
er

TM

W
op

er
TM

RW RL

Pow
er

TM

W
op

er
TM

0.0
0.2
0.4
0.6
0.8
1.0
1.2

E
x.

 ti
m

e(
no

rm
al

iz
ed

)

Ex. time split by regions No_Transactional Committed Aborted Wait_Fallback_Lock

Fig. 3: Normalized execution time split in several regions.

genome intruder kmeans−l kmeans−h labyrinth ssca2 vacation−l vacation−h yada

RW RL

Pow
er

TM

W
op

er
TM

RW RL

Pow
er

TM

W
op

er
TM

RW RL

Pow
er

TM

W
op

er
TM

RW RL

Pow
er

TM

W
op

er
TM

RW RL

Pow
er

TM

W
op

er
TM

RW RL

Pow
er

TM

W
op

er
TM

RW RL

Pow
er

TM

W
op

er
TM

RW RL

Pow
er

TM

W
op

er
TM

RW RL

Pow
er

TM

W
op

er
TM

0.00
0.25
0.50
0.75
1.00

C
yc

l. 
ab

or
te

d 
/ T

x 
cy

cl
.

Transaction identifier 0 1 2 3 4 5

Fig. 4: Proportion of aborted transactional cycles (Cycles aborted / Total transactional cycles).

The case of genome showcases a key advantage of Wop-
erTM: efficiency. Because priorities guarantee progress during
contention, regular transactions never resort to the fallback
lock and thus may be subject abort each other until each
one of them eventually becomes a power transaction. This
is perhaps the key shortcoming found in the state-of-the-
art: the additional concurrency enabled often buys marginal
performance gains at the cost of lots of wasted work. Precisely
this happens in genome TID-0: Although PowerTM achieves
slightly better performance than RL, by avoiding the switch
to the fallback path, it nearly doubles the aborted cycles
compared to RL and WoperTM.

Kmeans’ main transaction (TID-0, update of the new clus-
ter centers) performs a read-modify-write (RMW) access to
increment the centers length, followed by a loop where cluster
centers are updated. In RW, this pattern makes the transaction
vulnerable to any concurrent access since its very beginning,
since the write to the contended variable occurs shortly after
transaction start. On the other hand, in RL, this pattern acts
as a shield that quickly makes the transaction invulnerable to
concurrent accesses to the same cluster center. Furthermore,
because the compiler generates an exclusive load for the
RMW access, the contended cache line jumps from core to
core in exclusive ownership. This prevents the starving writer
pathology and explains why RL and Woper perform alike.

As for intruder, the extremely high contention in TID-0
(queue pop) harms overall performance, despite the fact that
most of the parallel work is done by TID-1 (traversal of a
tree of lists). RL manages to reduce aborted work in the
main transaction (TID-1), yet it fares worse than RW because
the RMW access pattern to the queue pop pointer seen for
TID-0: several concurrent transactions read it and then all
of them fail in their attempt to modify it. While RW can

make progress in this scenario (since the first upgrade request
to reach the directory will abort all other readers), recurring
aborts in TID-0 constantly switch to the fallback path for both
RL and RW. WoperTM and PowerTM side-step this switch,
but the limitation of having only two priority levels limits
further improvements: TID-0 and TID-1, though independent,
compete for the power token to deal with contention. As in
yada, WoperTM can handle contention in TID-1 better than
Power, by allowing readers that have already navigated the tree
to survive eventual write attempts to remove specific nodes.

V. CONCLUSION

We presented WoperTM, a dual-policy CR that improves
performance and efficiency of HTM systems. WoperTM al-
lows regular transactions to benefit from nacks at barely
no cost, in order to make them more capable of surviving
conflicts, while offering a way to escape pathological scenarios
without the penalty of falling back to mutual exclusion.

REFERENCES

[1] K. Moore, J. Bobba, M. Moravan, M. Hill, and D. Wood, “Logtm:
Log-based transactional memory,” in International Symposium on High-
Performance Computer Architecture, 2006, pp. 254–265.

[2] J. Bobba, K. Moore, H. Volos, L. Yen, M. Hill, M. Swift, and D. Wood,
“Performance pathologies in hardware transactional memory,” in Interna-
tional Symposium on Computer Architecture, 2007, p. 81–91.

[3] T. Harris, J. Larus, and R. Rajwar, Transactional Memory, 2nd Edition,
ser. SLCA. Morgan & Claypool Publishers, 2010.

[4] M. Herlihy and J. E. B. Moss, “Transactional memory: architectural
support for lock-free data structures,” in Proc. of the International
Symposium on Computer Architecture, 1993, p. 289–300.

[5] S. Park, M. Prvulovic, and C. J. Hughes, “Pleasetm: Enabling transaction
conflict management in requester-wins hardware transactional memory,”
in International Symposium on High Performance Computer Architecture,
2016, pp. 285–296.

[6] D. Dice, M. Herlihy, and A. Kogan, “Improving parallelism in hardware
transactional memory,” Transactions on Architecture and Code Optimiza-
tion (TACO), vol. 15, no. 1, pp. 1–24, 2018.


