
Chaining Transactions for Effective Concurrency
Management in Hardware Transactional Memory

Vı́ctor Nicolás-Conesa, Rubén Titos-Gil, Ricardo Fernández-Pascual, Manuel E. Acacio, Alberto Ros

Computer Engineering Department, University of Murcia, Murcia, Spain
Email: victor.nicolasc@um.es, rtitos@um.es, rfernandez@ditec.um.es, meacacio@um.es, aros@ditec.um.es

Abstract—Hardware Transactional Memory (HTM) offers the
opportunity to ease parallel programming. However, driven
by hardware limitations, commercial implementations eschew
the complexity involved in early sophisticated proposals from
academia, and, among other things, opt for simple conflict
resolution policies that inevitably increase transaction aborts. To
increase thread level parallelism, previous works propose conflict
resolution schemes that, instead of aborting, add a second level
of speculation consisting in using not-yet-committed data from
another transaction. This policy, which we refer to as requester-
speculates, has not yet been considered in the context of the kind
of best-effort HTM support provided by commercial processors.

This work proposes CHAining TransactionS (CHATS), a
simple yet effective realization of the requester-speculates con-
flict resolution policy in which cyclic dependencies between
transactions are avoided and the commit ordering respects the
dependencies that transactions make once speculative values
are communicated. The ultimate result is a best-effort HTM
implementation that forces a partial order between transactions
in a way that ensures effective utilization of forwarded data
and that gets away from the complexity of previous proposals.
Simulations using gem5 demonstrate the effectiveness of CHATS
in both commercial-like setups and academic state-of-the-art
best-effort systems (22% and 16% reduction in execution time,
on average, respectively). These improvements are achieved by
requiring less than 280 bytes of extra storage.

I. INTRODUCTION

Beginning roughly two decades ago with the advent of
multicores, Hardware Transactional Memory (HTM) sparked
great interest among researchers, who picked up on the seminal
work by Herlihy and Moss [17] because of its potential
to simplify synchronization in parallel programs. The 2000s
witnessed a myriad of publications in transactional memory
(TM), where researchers attempted to broaden the kinds of
transactions supported in hardware with the goal of simpli-
fying their use as a synchronization primitive, for instance,
by accommodating large, coarse-grain transactions or ensuring
progress despite high contention. Years later, the semiconduc-
tor industry began to commercialize HTM-equipped chips [1],
[18], [20], [23], [42] that have proved significant advantages
over traditional locks in specific niches [22], [43].

In spite of such success stories, the limitations exhibited by
most commercial HTM implementations, commonly referred
to as best-effort HTM, have prevented a broader shift away
from locks. This is because HTM support found in real-
world chips gives no assurances that a transaction will ever

commit [18], [44]. Though transactions might fail for a variety
of reasons, like lack of buffering resources or the need to
handle hardware interrupts, the prevalent cause of aborts
are conflicts. In fact, a frequent critique of HTM today is
that system performance quickly deteriorates when multiple
transactions are trying to access the same data at the same
time and, at least one of them, is trying to update it. Behind
this shortcoming lays the decision adopted by manufacturers
of employing the simplest possible approach for resolving
conflicts, which consists in rolling back a transaction whenever
it observes a remote memory access to a block in its read or
write sets that would threaten atomicity [9], [32], [38], [44]. As
a result of this choice, programs using existing HTM support
are liable to experience livelocks [9], [31], [32], [44]. To
escape from them, the use of HTM support must be combined
with an alternative fallback path employing traditional locks to
ensure forward progress [10], [44]. Because mutual exclusion
is required to guarantee the atomicity of transactions executed
non-speculatively, transactional workloads often take a severe
performance hit as soon as moderate contention arises and the
fallback path is taken more frequently [7], [9], [10], [44].

An alternative approach to manage conflicts, rather than
aborting at least one of the transactions involved, is to allow
the requester to speculate past the conflicting access as if
no conflict had happened, so that a transaction can consume
not-yet-committed data from another transaction (or update
data that is still in its read-write set). This conflict resolu-
tion policy, referred to in this paper as requester-speculates,
unlocks additional concurrency and, as shown in this work,
can achieve conflict serializability and ensure forward progress
by means of simple mechanisms that respect the producer-
consumer dependencies created by the forwardings. Several
prior works have exploited this idea [2], [29], [34], [35],
[39], yet they represent a significant departure in terms of
hardware complexity from a typical best-effort HTM: they
modify critical components such as the coherence protocol
(e.g., extra states), the communication fabric (e.g., dedicated
signals/messages to enforce commit order) or virtual memory.

Part of the complexity brought by prior works implement-
ing requester-speculates stems from the desire to allow the
speculative forwarding of data that has itself been received
speculatively, which requires tracking multiple versions of the
same conflicting cache block [34], [35]. This means that cache

3.
80

2.
33

0.00
0.25
0.50
0.75
1.00
1.25
1.50

genome

intruder

kmeans−l

kmeans−h

labyrinth
ssca2

vacation−l

vacation−h
yada

geomean

N
or

m
al

iz
ed

ex
ec

ut
io

n
tim

e

Fig. 1: Normalized execution time of a naive realization of the
requester-speculates policy over a best-effort baseline

ownership over the conflicting block needs to be transferred
(i.e., updated in the directory) from the forwarder to the
requester transaction as if no conflict had occurred, so that
subsequent conflicting requests can obtain the latest specu-
lative version. Furthermore, it also requires to keep precise
information of dependencies between transactions to meet
ordering requirements, significantly increasing the complexity
of the design in general and of checking the correctness
of the speculation in particular. Therefore, we advocate for
a slightly restricted but much simpler approach, in which
coherence ownership for conflicting cache blocks is never
relinquished until the owner (producer) transaction commits,
and the coherence information in the directory is not updated
in case of a speculative forwarding. Our design allows for
the creation of long chains of transactions due to successive
forwardings, as long as the involved cache blocks are different.

Although other authors [30] have explored a similar strategy
to incorporate requester-speculates into an HTM design, such
prior work also has several important shortcomings. First, it
builds atop a full-blown virtualized HTM [28] so as to leverage
its expensive timestamp-based deadlock avoidance scheme.
Second, their design conservatively imposes severe restric-
tions that dramatically reduce the scenarios where requester-
speculates policy can be utilized, disallowing the creation of
chains of length greater than 1. Third, it does not consider
the producer-consumer dependencies when resolving conflicts,
leading to cascading aborts. Thus, said prior work comes short
of demonstrating the full potential of requester-speculates and
its applicability in the context of a best-effort HTM designs
that reuse existing hardware components.

Indeed, implementing requester speculates in a best-effort
system may seem easy to do in principle, since it can be
treated as a value speculation problem using a validation
mechanism that aborts transactions in case of misspeculation.
However, a naive application of these design principles leads to
performance degradation, as shown in Fig. 1 (see Section VI
for details on the methodology). This degradation is mainly
due to ineffective cyclic dependency managing when consumer
transactions also produce data for its own producer, thus caus-
ing all transaction in the cycle to abort and hindering forward
progress. To the best of our knowledge, no previous work
has succeeded in putting forward a feasible implementation of
requester-speculates in the context of best-effort HTMs.

This work attempts to fill such gap, by describing a practical
realization that employs very simple mechanisms to create
CHAins of TransactionS (CHATS). A fundamental observa-

tion of this work is that to effectively implement requester
speculates in best-effort systems is that forwarding of specu-
lative data creates a producer-consumer relationship between
transactions that cannot be ignored. Firstly, these relationships
must not be cyclic to be able to find a valid serialization
of the involved transactions that allows to commit all of
them. Secondly, these dependencies need to be respected upon
commit, so that a transaction that has received speculative data
from another can never commit before the producer.

CHATS piggybacks standard coherence traffic and relies on
the usual transfer of coherence permissions when isolation
is released over conflicting blocks upon commit or abort. It
also performs value-based validation to ensure the correct-
ness of input values. Our solution also allows for chains of
transactions of any length and width (as long as conflicts
occur on different cache blocks). Unlike prior works, CHATS
does not need explicit communication between producers and
consumers for commit ordering, nor deadlock avoidance.

With minimal hardware modifications and less than
280 bytes of extra storage, CHATS obtains average reductions
of 22% in execution time when compared to a commercial-like
best-effort HTM implementation that resembles the Intel RTM
support [18]. Moreover, performance advantage increases to
28% on average when CHATS is combined with a state-of-
the-art approach, PowerTM [12], that manages transactions
using two different levels of priority. All of the above comes
as a consequence of the significant reduction in the number
of aborts that CHATS implies (34% and 49%, respectively).

The paper makes the following contributions:
• We show that blindly forwarding speculative data in a

best-effort HTM system brings no performance benefits.
• We show that the Position in Chain (PiC), a small integer

per core, is enough to encode sufficient information about
producer-consumer relationships between transactions to
be used to guide later forwarding decisions and to infer
a good commit order.

• We show how to avoid the creation of cyclic dependencies
using the information encoded in the PiC by choosing
for each conflict whether to apply a requester-speculates
policy or the underlying baseline policy.

• We propose CHATS, which provides support for effective
use of a requester-speculates policy on top of a best-effort
HTM with minimal complexity and hardware overhead.

• We demonstrate that CHATS can be effectively combined
with a state-of-the-art proposal, PowerTM [12], which
uses dual priority to bring even more performance gains.

II. BACKGROUND AND RELATED WORK

HTM systems must guarantee that all instructions within a
transaction are either completed in its entirety or not executed
at all, while providing each transaction with the illusion
of having exclusive access to shared memory. The simplest
approach to ensure correctness that existing best-effort HTM
realizations take, is to abort the transactions whose atomicity is
threatened. However, such rollbacks are not strictly required as
long as conflicting transactions commit in the adequate order.

2

Implementing conflict serialization in HTM can enhance
performance at the cost of higher complexity [2], [34], [35].
Dependencies among transactions running in different cores
must be tracked, as this information is essential for enforcing
commit order, avoiding deadlocks that stem from circular
dependencies, propagating abort to dependent transactions, etc.
Additional challenges that must be addressed include ensuring
that a transaction observes the correct version for a speculated
cache block (depending on its position in the dependency
chain), and dealing with the fact that dependencies among
transactions may not be visible to all cores.

Ramadan et al. [35] were pioneers in proposing a requester-
speculates HTM design, DATM. It augments a coherence
protocol with additional states to track forwarded and received
data, while taking advantage of a bus-based environment to
greatly simplify deadlock avoidance (as information about
dependencies is easily kept consistent across all cores).

Titos et al. [39] adopted a simpler yet more restricted
approach to requester-speculates HTM that extends LogTM
[28] to enable reader-writer sharing in a distributed directory-
based protocol. The authors propose extensions to allow writer
transactions to obtain exclusive ownership over blocks in the
read-set of other transactions, while ensuring that readers
commit first and observe the correct data version.

Within the scope of simultaneous multithreading (SMT)
processor design, Qian et al. proposed a design [33] that takes
advantage of the fast communication between local contexts
to enable concurrency between dependent transactions.

A subsequent proposal by the same authors [34] proposes
a scheme for serialization of conflicting transactions in a
distributed directory environment, without employing any cen-
tralized hardware structure to track dependencies. A downside
of OmniOrder is that it requires broad modifications across
the memory hierarchy and dedicated commit/abort messages.
Apart from replicating history buffers and successor registers
across the directory, OmniOrder keeps a history of speculative
updates for each word that makes it unable to reuse the
L1 cache for speculative versioning. Instead, an L0 cache
solely dedicated to keep speculatively modified blocks is used,
potentially affecting the critical path of all memory accesses.

The works by Pant et al. [29], [30] have also investigated
how to improve concurrency of conflicting transactions atop
LogTM [28]. In VP-TM [29], the authors explore the potential
of resolving conflicts by means of a centralized, memory-
level value predictor, while in LEVC [30] they propose a
constrained design based on their prior observations. These
proposals share a key similarity with our work, as neither of
them update the coherence state for a conflicting block when
its value is forwarded to another transaction, unlike other prior
works. A key shortcoming is that LEVC is liable to livelocks,
because the underlying deadlock avoidance scheme it relies
upon is unaware of the dependencies created due to forwarding
of speculative values: The highest-priority transaction may
be aborted after having consumed speculative data from a
lower-priority transaction that the underlying timestamp-based
scheme selects as victim. Moreover, it also imposes draconian

restrictions in both the length of dependency chains and the
number of speculative consumers of a data block.

In SONTM [2], the authors propose a hardware implemen-
tation of a conflict serializability technique previously shown
to improve performance for software transactions, based on
assigning each access a serial number. To manage such
numbers, extensive changes, including operating system and
virtual memory, are required. A fundamental drawback is the
complexity and lack of scalability of commit: a centralized
lock must be held to ensure atomicity, while serial numbers
are broadcast to other cores and written to a data structure
in virtual memory. This bottleneck, coupled with intrinsic
instrumentation overheads and the complexity of managing
serial numbers, make it an unappealing solution for adopting
requester-speculates into a best-effort HTM system.

Finally, Jafri et al. investigated how to combine a token-
coherence-based HTM system [8] with software support to
achieve conflict serializability of transactions [21]. In Wait-
n-GoTM, a great deal of the complexity involved by depen-
dence tracking found in prior works is shifted to software:
exception handlers are invoked on commit and abort are
used to identify dependent transactions, enforce ordering for
conflicting transactions, etc. However, because it builds atop
token coherence [26], the mechanisms proposed do not fit into
today’s multicores that employ directory-based coherence.

III. CHAINED TRANSACTIONS (CHATS)

We propose CHATS (alluding to the chatty behavior of
transactions) as an innovative extension to typical best-effort
HTM implementations, aimed at providing better concurrency
management by supporting a requester-speculates conflict res-
olution. The main goal of CHATS is to reduce the number
of aborts due to conflicts through the forwarding of not-
yet-committed (speculative) values. To maximize chances of
profitable value forwarding, our proposal ensures a commit or-
dering that respects the dependencies created by forwardings.

By keeping imprecise yet sufficient information about
producer-consumer dependencies, CHATS avoids forwarding
in cases of potential cycles. This way, CHATS can effectively
serialize the commit of the transactions involved when the
requester-speculates conflict resolution policy kicks in.

Let us consider as example two concurrent transactions,
one of them attempting to read data modified by the other.
The only privately cached copy of the block resides in the
writer’s cache, and so the transactional load will miss in
caches, a request will be sent to the coherence directory,
which will redirect the request to the current block owner.
When the cache observes that the block is part of the write
set, a conflict is detected. In HTM systems that implement
requester-wins conflict resolution [42], [43] the transaction
gets immediately aborted, the speculative values in cache are
discarded, and the request gets serviced by lower levels with
the non-speculative data version. The operation of CHATS
starts to diverge from a typical HTM at this point: instead of
aborting, the writer transaction detects the conflict and sends
a copy of the data block (the current speculatively modified

3

version) to the requester, with the hope that no more stores
from that transaction will target the block. The forwarding
of the data initiates the chat between transactions, builds the
chain of transactions, and dictates commit order. The requester
obtains a speculative copy of the block, stores it in its cache,
adds it to the write set and serves the load miss. Meanwhile,
another copy of the speculatively received data is saved in
a buffer away from cache and later used for validation. The
directory is informed that the request was denied, so that the
writer stays as block owner.

A. Validation of forwarded data

Validation of the speculatively received data involves re-
questing exclusive ownership for each data block, until non-
speculative data is received with coherence permissions. Trans-
actions are not permitted to commit until all blocks that have
been received speculatively are successfully validated.

Upon each validation attempt, the data received in response
is compared against the speculatively consumed value that was
saved when the originating cache miss was serviced:
Value mismatch: The transaction must abort. Such valida-
tion failures can happen in three scenarios: i) the producer
transaction has overwritten the data (the consumed data was
an intermediate version); ii) the producer has aborted (the
response contains an earlier non-speculative version, or a
speculative version forwarded by a different producer); iii)
the producer has committed but the block was subsequently
modified by other core before this consumer validates it.
Value match: No abort is signaled, but the block cannot be
considered validated until a response with non-speculative data
is received and the requester becomes actually the owner for
the block. Only when that happens, the validation of the block
is successful and the original copy buffered is discarded. The
copy allocated in cache as part of the write set becomes the
current version. Note that data are only discarded from the
aforementioned buffer, not from the cache.

This validation mechanism involves minor modifications to
the coherence protocol: avoiding ownership transitions during
forwarding. In fact, the directory is oblivious to the forwarding
and it receives a cancellation (unblock) of its request. Instead,
the burden of checking the correctness of the speculation lies
entirely on the consumer.

Executing transactions using non-committed data may lead
to accesses to out-of-bounds memory addresses or to endless
loops. The first case is already covered by the HTM support
as exceptions result in aborting transactions. To cover endless
loops, the validation process must be performed periodically
to ensure the detection of incorrectly speculated data.

Our approximation of value-based validation eliminates the
need for tracking of producer-consumer dependencies and
allows for graceful handling of common situations that prior
works resolve through dedicated hardware support for com-
munication of commit/abort signals:
Cascading aborts: When a producer transaction aborts, the
abort is propagated to all dependent transactions through
validation, without requiring any explicit message sent by the

producer. If a value received by a validation request differs
from the original speculative data, it triggers an abort for the
consuming transaction due to the detected inconsistency. This
abort will propagate in the same way through all the levels of
the chain.
Multiple consumers: When several transactions receive spec-
ulative copies of the same data block from a producer, they
serialize their commit one after another. For instance, consider
transactions T1 and T2, both consumers of data from T0; then
T0 commits, and eventually both T1 and T2 attempt validation.
If T1’s validation request arrives first at the directory, it
becomes the next owner of the block. Then, T2 will receive
speculative data from T1 in its next validation attempt and its
commit will be serialized after T1. This happens through the
usual coherence protocol, without having to adjust any state
specific to forwarding. If T1 modified the speculative data it
received from T0, T2 will abort when it observes the value
mismatch; otherwise, if T1 did not modify the data, T2 will
be allowed to commit after T1 commits (e.g., when it obtains
a non-speculative copy of the data).

As it can be noted from the previous example, the best-
effort approximation we adopt in CHATS trades off stricter
serialization orders for simplicity, reusing existing mechanisms
found in typical best-effort HTMs whenever possible. In
the aforementioned example, while T2 may not have true
dependencies with T1, our design serializes their commit.
In particular, we opt for inserting a speculatively received
block in cache and mark it as being part of the write set to
simplify its management, since that ensures that it never leaves
the cache unless the transaction commits: if the transaction
aborts, the block will be discarded by the conditional gang-
invalidation of write-set blocks that L1 caches in best-effort
HTM typically support. Similarly, the eviction of said block
from cache will result in a capacity-induced abort, as it would
with the eviction of any other block from the write-set.

B. Avoidance of cyclic forwarding

The forwarding of data creates a producer-consumer re-
lationship between transactions. This relationship needs to
be acyclic to be able to serialize the committing of the
transactions and thus should drive the commit order. The
validation mechanism described in the previous section en-
sures the commit order of acyclic chains, because transactions
cannot commit until they have validated all their speculatively
received blocks, and that validation implies that the producers
have already committed. But transactions would not be able
to commit if they are involved in a cyclic chain. Hence, it is
necessary to avoid the formation of cycles.

Keeping full track of producer-consumer relationships is ex-
pensive and involves excessive complexity. As an alternative,
CHATS implements a straightforward yet powerful method
based on storing imprecise yet sufficient information of the
dependencies among transactions. Our method keeps a local
value in each core, known as Position in Chain (PiC) that
represents the place of the transaction in a chain of transactions

4

that have forwarded values among them. If a transaction is not
a producer nor a consumer then its PiC is invalid.

The PiC is sent along with data requests and speculative
responses. On a conflicting request, the local and the remote
PiCs of the transactions are compared, and the conflict is
resolved in the following way:

• Requester-speculates: speculative data can be sent to the
requester when either (i) any of the transactions has an
invalid PiC (i.e., was not part of a chain), (ii) the received
value (of the requester) is lower than the local PiC, or (iii)
the local transaction has not received any speculative data
yet or has validated all the speculatively received data (so
it can increase its PiC value). In all those cases, the local
transaction (producer) ends up with a PiC higher than
the remote transaction (see Section IV for details), thus
preventing cyclic forwarding scenarios.

• Requester-wins: Local transaction must abort when it has
received speculative data which has not yet been validated
(so it cannot increase its PiC without potentially matching
the PiC of its producer) and either the received value
is higher than the local PiC or both PiCs are identical.
Cycles are hence resolved in those scenarios by aborting
transactions.

Section IV offers further details about how and why CHATS
use PiC to choose between those conflict resolution policies.

C. Correctness guarantees

CHATS relies on the fact that the order of memory opera-
tions inside a transaction is irrelevant from the point of view
of the rest of the threads, since all the accesses will be made
effective atomically at the serialization point, i.e., when the
transaction commits [32], [41].

When a conflict occurs in CHATS, the thread that responds
(TP –producer) continues undisturbed once it has answered
with the current data of the conflicting location (L). When the
requesting transaction (TC –consumer) receives that response,
from the point of view of the rest of the system it continues
executing as if no conflict had happened, and as if the memory
access had not been attempted. In fact, neither the coherence
state nor ownership information change in the directory. The
execution continues assuming some value (X) for that access
which may be correct or incorrect in the end. A correct value
(Y) would be one that TC would have received if it stopped
its execution until TP committed, and then reattempted the
memory access. Note that Y would not necessarily be the
data written at L by TP when it commits, because other
transactions or non-transactional accesses can write to that
location between the commit and the reattempted access.

To check whether speculation succeeded, TC must perform
the access again at some point before commit and obtain
requested permissions and non-speculative data (Y). If X and Y
are equal, speculation succeeded. Otherwise, X was wrong and
TC must abort. The important detail is that, from the point of
view of the consistency model, the access has occurred only
once atomically at commit time along the rest of accesses
performed by the transaction. One could say that no real data

forwarding occurs, only value speculation. The trick is that the
speculation is done after another thread informs of the value
of L at some point in time, and we bet that the value will be
the same if we perform the access later. Speculation will often
succeed as long as TC commits after TP (which provides the
speculative data as a hint), but it can fail not only if TP decides
later to modify the data before it commits, but also if another
transaction that commits between them (or a non-transactional
access) writes a different value to L.

Note that the speculation can succeed even if the location
is modified between the commits of TP and TC as long as
the value Y read by TC is equal to the X that it speculated.
The atomicity of committing transactions is ensured by the
underlying HTM mechanisms, which we do not modify. The
commit ordering enforced by the PiC mechanism increases the
probability of successful speculation (but does not guarantee
it) and ensures that no cycles can appear, which could lead
to livelock situations due to repeated aborts. Livelocks due to
wrongly speculated values are handled by performing periodic
validation, as explained in III-A.

The above description may raise concerns about the case
where the same location is written repeatedly by more than
one transaction, but ends up with the same value as originally
(ABA problem). Say a first transaction, T1, speculates a value
A for an access to memory location L, because it receives
a message from a second transaction, T2, which previously
had written A. Later, a third transaction, T3, writes a B
value to L, and then, a fourth one, T4, writes again at L
the value A. The speculation done by T1 will be correct if
it tries to commit just after T2 or T4, but not if it does
so after T3 (note that, in this case, CHATS ensures that T1

would be aborted). For correctness, it does not matter that
T1 guessed the value A because it was provided by T2 or
T4, or whether it just obtained the value randomly: it got
the correct value A for address L anyway. Note that, in each
case, all the non-speculative values read by T1, including the
one used to validate the speculation, are those written by all
the previously committed transactions (serialized) and non-
speculative accesses, and the observed behavior is the same
as if no speculation had occurred.

IV. IMPLEMENTATION OF CHATS

An advantage of CHATS is its simplicity, as it requires no
CPU modifications and no complex logic. CHATS requires
minor modifications to the cache coherence protocol), a 4-
entry Validation State Buffer (VSB) used to keep the original
copy of each speculatively received block, a 5-bit register per
core to keep track of the PiC, and a one-bit register named
Cons to record if the transaction is currently consuming any
speculative data pending of validation (Section IV-C). Fig. 2,
depicts the hardware structures employed by CHATS. Utilizing
the standard 64-byte cache line granularity and assuming 48
bits for physical addresses, the overall cost in terms of memory
overhead of CHATS is less than 280 bytes (279.5 bytes) per
core.

5

L1 cache

.

.

.

0

N

Validation
pointer

Timer V Addr Data

V Addr Data

Controller

VSB

CPU

PiC Reg

Cons
bit

Fig. 2: CHATS overview (extra structures in blue)

A. Modifications to the coherence protocol

The coherence protocol requires minimal changes. It needs
to be extended to allow private caches to answer with spec-
ulative data responses (SpecResp) to requests forwarded to
them by the directory from other cores. In a typical best-effort
system using the requester-wins policy, such a conflicting
forwarded request would cause an abort of the transaction prior
to sending a response with data and possibly a transference
of ownership (if the request was exclusive). However, when
using CHATS the cache receiving the request can choose to act
exactly the same as just described or, instead, to neither abort
the transaction nor relinquish the ownership of the data block,
but still answer to the requester with a SpecResp message
including speculative data and inform the directory that the
request has been canceled. Note that whenever a conflicting
non-transactional request is received, the system always resorts
to requester-wins and aborts the transaction.

When a SpecResp is received, the requester cache will
update its state as if it was a standard response with data
and exclusive access to the block (even if the original request
was only a read); however, it will also insert a copy for
later validation in the VSB and, crucially, it will inform the
directory that the coherence request has been canceled and the
coherence state and ownership for the block must remain un-
changed. Thus, the forwarder remains as the exclusive owner
of the cache block from the point of view of the coherence
protocol. The core will work with the copy of the data stored
in the cache as if it had effectively acquired ownership of the
data in all respects. The validation mechanism described in
Section IV-B will ensure that such fiction becomes actually
real before the transactions commits. The only behavioral
difference between such speculatively received blocks and
those genuinely owned by the transaction is that the former
cannot be forwarded speculatively to another transaction,
simply because the core does not observe coherence traffic
for them.

B. The VSB and validation of speculative data

As mentioned in Section III, a requester that receives a
speculative response must keep an unmodified copy of the data
for later validation of the speculation. The unmodified copy
of the block is saved in the Validation State Buffer (VSB).
The VSB keeps copies of speculative data received from other
caches until they have been validated, and must be empty
before a transaction can commit. The contents of the VSB
are immediately discarded upon abort.

Each VSB entry contains a valid bit, the block address, and
a copy of the speculatively received data block, as shown in
Fig. 2. The VSB has two associated pointers: one points to
the next available entry and another to the entry that must
be validated next. The VSB includes a simple controller that
takes care of the validation process.

An associated timer periodically triggers the validation
process if there is any block present in the VSB. Each time this
happens, the controller makes an exclusive coherence request
for the address of the block located at the entry pointed by the
validation pointer, and increases that pointer. The timer will
be activated again once the response is received.

When a response is received, it could be again a SpecResp
or a standard coherence response granting ownership of the
block. In either case, the received data is compared against
the copy in the VSB. If it does not match, it means that the
data has been modified by the original forwarder (or someone
else) after we received it and hence the transaction must be
aborted immediately. It the data matches, the transaction can
continue; additionally, if the response was not a SpecResp but
a standard coherence message, then the speculative data of the
block has been validated, the core is now the real owner of
the data, and the block can be removed from the VSB.

During the validation process, the PiC of each response
is compared with the local PiC (that of the consumer). If
the local PiC is higher or equal than the remote PiC, the
local transaction is aborted. This is necessary to handle cycles
created due to race conditions as mentioned at the end of
Section IV-C.

When the transaction has validated all the speculated data,
the VSB becomes empty and the Cons bit can be reset, but
the PiC still remains valid until the transaction commits, as it
may be the producer of another data.

C. Using the PiC to avoid cycles

As explained in Section III, CHATS encodes the producer-
consumer relationships created by value forwardings using the
Position in Chain (PiC), which represents the position of the
transaction in a chain of forwardings. If set for a transaction,
its PiC will always be higher than that of all transactions that
have received speculative data from it. If unset, it means that
the transaction is not part of any forwarding chain.

Also, every request message or forwarded probe and every
SpecResp message must include the current PiC of the core.
PiCs are expected to be very small numbers (5 bits), but their
range limit the length of the chains supported by CHATS. Note
also that to ease extending chains from either end, the initial
value of PiCs (PiCinit) should be in the middle of the range.
Another value should be reserved to denote an unconnected
transaction with unset PiC (PiC∅).

Fig. 3 explains how the PiC is updated. Upon reception
of a conflicting request, if current PiC is invalid (PiC∅),
indicating that the transaction has not received or forwarded
any speculative data, the PiC is set to the its initial value
(PiCinit). This PiC is then transmitted to other transactions
along with coherence messages (a response in this case).

6

PiC∅ ⇨
 PiCinit-1

GETX A - (PiC∅)

SpecResp A - (PiCinit)

PiC∅ ⇨
 PiCinit

PiCinit-1

PiC∅ ⇨
PiCremote-1

GETX B - (PiC∅)SpecResp B - (PiCinit - 1)

PiCinit PiCinit-1

SpecResp A - (PiCinit + 1)

PiCinit ⇨
PiCinit+1

PiCinit

GETX A (PiCinit)

PiCinit-1

GETX A - (PiCinit)

PiCinit
PiCinit-1

PiCinit

PiCinit

GETX A - (PiCinit - 1)

PiCinit-1

PiCremote = PiClocal & isReceiver ⇨ abort

A) B) C)

D) E)

PiCremote > PiClocal ⇨ abort

1

2

3

4

1

2

3

1
2

3

1

2

1

2 PiCinit-1

SpecResp A -
(PiCremote) + 1 GETX A - (PiCinit)

PiCinit

PiCinit ⇨
PiCremote+1

PiCinit-1

F)

1

2

3

G)

SpecResp A - (PiCinit)

PiC∅ ⇨
 PiCinit

PiC∅ ⇨
 PiCremote+1

GETX A (PiC∅)

GETX A (PiCinit-1)

PiC∅ ⇨
 PiCinit-1

SpecResp A - (PiCinit)

1

2

3

4

Fig. 3: A) Starting point for CHATS, two unconnected transactions PiC = PiC∅ and one requester. B) PiC usage allow
already receiving transactions to become forwarders to other unconnected or with lower PiC transactions. C) A transaction
can forward data to other transactions if it was already doing it. Checkings over PiC will be made in this case, ensuring that
it cannot be modified if the transaction has already received an SpecResp. D) A transaction that already received speculative
data cannot forward anything to other with same or higher PiC. E) A transaction that already received speculative data cannot
forward anything to other with same or higher PiC. F) A transaction that already forwarded data becomes forwarder to another
producer E) and D) will raise an abort signal. G) Two transactions produce to a consumer

The requester will set its own PiC to PiCfwd − 1 if it was
not already set. Note that the PiC of a transaction cannot
be changed once the transaction uses any speculative value
received from another transaction. In case of transactional
abort, PiC is reset to PiC∅.

In the event of a conflict between two transactions, the
exact course of action depends on the PiC of the requester
(PiCremote), the PiC of the transaction that receives the re-
quest PiClocal, and whether it has already received speculative
data not yet validated:

• If both are PiC∅ (as depicted in Fig. 3A), this means
that these transactions are not part of any chain, and a
requester-speculates policy can be used to handle this
request. The forwarder sets its PiC to PiCinit, and
transmits it to the requester along a SpecResp message.
On the requester side, the PiC is set to one less than the
received value (PiCinit − 1), marking these transactions
as chained, and the Cons bit is set.

• If an unchained transaction (PiClocal = PiC∅) receives
a request from a chained transaction (PiCremote ̸=
PiC∅), it will use a requester-speculates policy too,
but in this case it will set PiClocal to PiCremote + 1
(Fig. 3C).

• If a chained transaction (PiClocal ̸= PiC∅) receives
a request from an unchained transaction (PiCremote =
PiC∅), the requester-speculates policy will be used, and
its PiClocal will be unchanged. A SpecResp message will
be sent, which will cause the remote transaction to update
its PiC to PiClocal − 1 and set its Cons bit (Fig. 3B).

• If both are different than PiC∅ and PiCremote >
PiClocal, that means that the local transaction has not
sent speculative data to the requester nor any of its
producers, but may have received speculative data from

them. In this case, the local transaction reads its Cons
bit to check if it has indeed received any speculative
value. If it has, then its PiClocal cannot be updated
because doing so could increase this PiC past that of
a producer of this transaction; therefore, the requester-
wins conflict resolution policy must be used, and the local
transaction is aborted (Fig. 3D and Fig. 3E). If, on the
contrary, the Cons bit is unset, this transaction has not
received any speculative value or it has already validated
all those values, which implies that all its producers have
already committed. In this case, the requester-speculates
policy can be used, and a SpecResp message is sent to
the requester after updating PiClocal to PiCremote + 1
(Fig. 3F).

In any of the above cases, if the updates required to the PiC
in either the local or the remote transaction would cause an
overflow or underflow, then the requester-wins policy needs to
be used (aborting the local transaction).

Note that the PiC received by the local transaction may
be outdated once it is used to choose the response policy.
Hence, in some cases, cycles can actually be created by our
forwarding mechanism. These cycles will be detected during
the validation process by looking at the local PiC and the PiC
of the received message, aborting the validating transaction
if necessary, which will cause cascading aborts to the rest of
transactions in the cycle.

V. INTERACTIONS WITH COHERENCE AND CONSISTENCY
AND PROGRESS GUARANTEES

Our proposal aims to minimize the necessary hardware
modifications, in line with existing best-effort HTM designs.
This section elaborates on the (minimal) changes to the cache
coherence protocol required by CHATS, and discusses its

7

interactions with the memory consistency model, and liveness
guarantees.

A. Interactions with cache coherence

As stated in Section IV-A, CHATS needs a mechanism
that allows a transaction that receives a conflicting request
to ignore it with respect to coherence (i.e., not perform the
request) and instead send a SpecResp message in response.
The meaning of those messages from the coherence protocol
point of view is to inform the requester that the memory access
has not been completed and may be re-tried later. This kind
of NACK message has also been introduced in other previous
HTM proposals to implement requester-loses or requester-
stalls policies [9], [12], [25].

Additionally, in CHATS these messages carry some data
that is communicated to the requester in the response. It is
important to highlight that the mentioned data is just a hint that
may be used or not by the requester to speculate values, but the
content is irrelevant from the point of view of the coherence
protocol. Once this message is sent, the responder notifies the
directory that it did not give away the permissions. Thus, if
the requester continues to execute, it must do so speculating
the conflicting value. A requester speculating on a value needs
to later reissue the request for such value, which will be done
by the validation mechanism described in Section IV-B. A
transaction will acquire permissions for the block only after a
successful validation.

In addition, whenever a requester receives a SpecResp in
response, it buffers the speculative data, stores it in the L1
cache, and adds it to its write-set. This addition to write-set
is critical as it allows to reuse the usual HTM mechanisms
to detect further conflicts and to discard the data in case of
misspeculation. Thus, if a transaction aborts, any speculated
block stored in cache is invalidated along with the blocks
modified inside the transactional region. Additionally, if a
validation is successful, there is no need to take any extra step
as the data speculation proves to be correct, and therefore any
later modifications locally performed to the involved block
are valid as well. However, this can lead to false capacity-
induced aborts if speculative read blocks are evicted from the
cache (although this situation is unlikely since the replacement
algorithm favors write-set blocks).

B. Interactions with consistency model

As previously stated in Section III-C, any memory access
that receives a SpecResp message as a response remains
speculative until validation. From the point of view of the
transaction it can be seen as delaying the memory operation,
but it is guaranteed that it will be validated (i.e. actually
performed) before committing. Since memory accesses within
transactions are made visible to the memory system atomically,
delaying loads or stores inside a transaction does not affect
the consistency model. Therefore, delaying any subsequent
operation over any speculative block does not affect or interact
in any way with the memory consistency model. This has been
shown in previous works where transactional memory accesses

TABLE I: System parameters.

CPU Settings
Cores 16, out-of-order
Core width Fetch: 6, Decode: 6, Rename: 6, Issue: 12,

Commit: 8
Structure size ROB: 512, LQ: 192, SQ: 114, IQ: 140
Branch predictor (BP) L-TAGE [37]

Memory Settings
L1 D cache Private, 48KiB, 12-way, 1-cycle hit latency
L1 I cache Private, 32KiB, 8-way, 1-cycle hit latency
L2 cache Private, 1.25MiB, unified, 10-way, 4-cycle

minimum roundtrip
L3 cache Shared, 32MiB, unified, 16-way 30-cycle

minimum roundtrip
Memory 8GiB DDR4-2400
Protocol MESI, directory-based

Network Settings
Topology Crossbar
Flit size / Message size 16 bytes / 5 flits (data), 1 flit (control)
Link latency / bandwidth 1 cycle / 1 flit per cycle

are delayed but performed before commit, like [41]. Any races
are therefore avoided, including the ABA problem as explained
in Section III-C.

C. Forward progress guarantees

CHATS is a best-effort HTM implementation, and as such,
no guarantees over forward progress are offered at hardware
level, just as in all other HTM proposals evaluated in this
work. CHATS, as any other best-effort HTM, resorts to a
software fallback lock mechanism [10], [12] to guarantee
forward progress. On the other hand, our transaction ordering
mechanism based in PiC guarantees that all transactions either
commit respecting any dependency induced by speculation or
abort if a potential cyclic situation is detected. This guarantee
covers those cases where races may result in the transmission
of out-of-date PiC values, as stated in Section IV-C. Finally,
the validation mechanism is ensured to always finish, checking
that forwarded data is correct and continuing, or detecting
modifications to speculated blocks and aborting, thus avoiding
any livelock situation due to data periodic validation.

VI. METHODOLOGY

A. Simulation environment

We use the gem5 simulator [5] to evaluate the benefits of
CHATS. We use the full-system simulation mode to boot an
unmodified Ubuntu Linux 16.04, kernel 4.8.13. The simulated
system is a 16-core, out-of-order x86-64 processor with a
three-level cache hierarchy. Table I shows the relevant con-
figuration parameters of the simulated system, which have
been set to resemble a modern microarchitecture such as
Golden Cove [4], [11], [36]. We use DRAMsim3 [24] to
accurately model main memory and HeteroGarnet [3] for the
interconnection network.

B. HTM systems evaluated

Baseline. We choose as baseline an Intel RTM-like (Re-
stricted Transactional Memory) best-effort system with lazy
versioning and eager conflict detection. In our chosen baseline,
the L1 data cache is used for speculative versioning, by
introducing a speculatively modified (SM) bit per cache line to
track write-set blocks. Non-speculative values are written back

8

to L2 before a block in L1 is speculatively modified thus, L2
is used to store non-speculative values. On abort, conditional
gang-invalidation of SM blocks in L1 suffices to discard
speculatively written values, while the coherence protocol
tolerates such silent invalidations of exclusively owned blocks.
Following the features seen in commercial RTM implementa-
tions, which can accommodate transactions whose read-sets
easily exceed the size of the private cache level [14], [43], we
use a perfect signature [6], [15] to track read sets.

Naive requester-speculates (Naive R-S) This configu-
ration extends the baseline by allowing implementing the
naive requester-speculates conflict resolution policy, whose
performance results were reported in Section I. This naive
nature allows transactions to always forward speculative data
without restrictions. To break cyclic dependencies, consumer
transactions use a counter that gets decremented upon each
unsuccessful validation attempt for a speculatively received
block; the counter is reset on a successful validation. If the
counter drops to zero, the transaction aborts to escape from
potential deadlocks. We use a 4-bit global counter on each core
that allows up to 16 unsuccessful validations before aborting.

CHAined TransactionS (CHATS) It extends the baseline
with all the elements described in Section III and Section IV
to achieve transaction chaining. The concept of PiC eliminates
the need to limit validation attempts since cyclic dependen-
cies are prevented. For simplicity, we refrain from imposing
restrictions on the number of sharers a transaction can have
for speculative data or the number of transactions included in
a chain (which are limited by the 5-bit PiC register).

Power transactions (Power). We implement a system
similar to PowerTM [12], where software triggers an elevated
priority status after the second conflict-induced abort. Our
runtime environment ensures the existence of at most one
Power transaction, and conflicts involving both elevated and
non-elevated priority transactions consistently favor the for-
mer. Following [12], we implemented a mechanism to allow
negative coherence responses without invalidating the data in
the cache. These nacks can only be sent by transactions with
elevated priority.

Powered CHAined TransactionS (PCHATS). This con-
figuration combines CHATS with PowerTM [12] as they can
synergize and yield additional performance benefits together.
Here, Power transactions are exclusively producers of spec-
ulative data, never consumers, and are always at the top of
the priority chain (they do not need a PiC). Conflicts are
systematically resolved in favor of Power transactions, and
transactions receiving data from a Power transaction do not
modify their PiC. The validation mechanism alone is sufficient
to ensure commit serialization against Power transactions.

Limited Early Value Communication over Best-efffort
idealized (LEVC-BE-Idealized). This is a best-effort adapta-
tion of the ideas presented in [30]. LEVC is built over a non-
best-effort mechanism [28] which would not be appropriate to
evaluate in the context of this work. We have designed LEVC-
BE-idealized by applying techniques used by LEVC for value
forwarding and cycle avoidance but applying them on top of a

TABLE II: HTM system configurations.

System Block state Retries VSB size Cycles valid.
Baseline NA 6 NA NA
Naive R-S Rrestrict/W 2 4 50
CHATS Rrestrict/W 32 4 50
Power NA 2 NA NA
PCHATS Rrestrict/W 1 4 50
LEVC-BE-Idealized Rrestrict/W 64 4 0

best-effort requester-stall design. Our LEVC model uses ideal
timestamps that never roll over, are instantly acquired and
propagated in all coherence messages at no extra overhead.
Whenever a conflict happens, the requested transaction sends
a speculative version of the value along with a nack message.
The amount of speculative data blocks that can be consumed
is the same than for CHATS (VSB size) for better comparison.
Additionally, as this implementation is best-effort we have
determined the optimal number of retries, specified in Table II.

C. Benchmarks

To conduct our experiments, we utilized the STAMP bench-
mark suite [27] with the recommended medium inputs. We run
16 threads as the scalability of most of the STAMP bench-
marks is very limited beyond this number. Due to the inherent
randomness exhibited by bayes, whose search algorithm may
result in varying amounts of work for the same input [13], we
opted to exclude it from our evaluation.

We also implemented two synthetic microbenchmarks, llb
and cadd, to measure the effectiveness of CHATS. These
are implemented having in mind patterns typically employed
in software. llb emulates several threads traversing a linked
list where elements are searched, then modified. We run it
using two inputs for low/high contention flavours using 16/64
elements per thread, in both cases with lists lengths of 512 and
256 iterations. As for cadd, it uses a vector populated with
queues of integers, called clusters. Every thread modifies a
shared variable and iterates over all the elements in the cluster
calculating the sum of every element plus the modified version
of the variable. We run cadd with 512 clusters of length 64.
The results obtained for the microbenchmarks are shown in
Figs. 4 to 7, yet they have not been accounted for in the
calculation of the arithmetic and geometric means (to avoid
overstating the benefits that could be seen in practice).

We make use of our TM library with functions for transac-
tional begin and end that follow RTM recommendations [19]
in regards of eager lock subscription. To isolate our evaluation
from side effects such as page-fault-induced aborts, we employ
a software scheme of pre-faulting [40].

D. Configuration parameters defined in CHATS

CHATS defines several configuration parameters that dictate
its concrete behavior. They must be adjusted at design time
considering the particular characteristics of the underlying
hardware. We include in Table II the optimal values for our
hardware setup. Section VII-A includes a sensitivity analysis
to quantify their impact on abort rate and performance.

Blocks that can be forwarded. We consider three configu-
rations that differ in which blocks are eligible for forwarding:

9

• Forward all (or R/W): blocks belonging to both read and
write sets are allowed to be forwarded.

• Forward written (or W): Blocks belonging only to the
write set can be forwarded.

• Forward restricted read and written (or Rrestrict/W):
blocks belonging to the read and write sets are allowed
to be forwarded. However, a heuristic check for currently
in-flight writes from the local core is performed to
avoid forwarding blocks known to be invalidated shortly
afterward.

Retries before resorting to the fallback path. All config-
urations are best-effort, and thus, all of them need to specify a
fallback path. It will be executed either with power token, in
configurations based on PowerTM [12], or by holding a global
lock to ensure execution serialization [10], in the rest.

Maximum number of forwarded blocks and validation
periodicity. Validation relies on the Validation State Buffer
(VSB) to track received speculative blocks and conduct peri-
odic checks. The frequency of validation can impact perfor-
mance (besides network traffic), as modifications or commits
to speculated blocks may be detected sooner or later. The size
of the VSB dictates the maximum number of cache lines that
each transaction can receive speculatively.

VII. RESULTS

We start our evaluation with the execution time achieved
by CHATS compared to the other configurations discussed in
Section VI-B, shown in Fig. 4 (the lower, the better). Execution
time is always normalized to the baseline.

Ssca2 and vacation exhibit very low contention between
transactions (the total number of aborts ranges between 0
and 10 for the entire execution) and hence all configurations
achieve virtually the same performance. In this case, there are
no opportunities to forward values between transactions. On
the other hand, labyrinth shows no improvements given its
scarce parallelism when its shared data structure cannot be
early released [16] from the read set of its main transaction.

For the other four STAMP benchmarks (genome, intruder,
kmeans, and yada), we observe large improvements in ex-
ecution time with CHATS and PCHATS. In kmeans, there
is a shared structure with points that need to be classified
using clustering. Most of the transactional code is dedicated
to updating the centers of each cluster for each point. There
are three transactions, the first is the most contended one,
where the centers are updated, while the rest are just to update
two global variables. Contention occurs when more than one
transaction acts on the same center. In any case, this update
is a minimal task and every thread memory access pattern is
the same when accessing the centers. As a result, kmeans is a
benchmark that hugely benefits from correct data forwarding
as contending threads have the same data access patterns. Once
a transaction modifies one of the dimensions for the center,
there is no further update, so this data can be safely forwarded
to other threads. This migration pattern is successfully ex-
ploited using CHATS. The use of our mechanism results in
a noticeable reduction in the amount of produced conflicts as

can be observed in Fig. 5 reducing the occurrence of conflicts
in roughly 75% in both, CHATS and PCHATS, mostly due to
fewer forwarder transactions being aborted as shown in Fig. 6.
In high contention situations as in kmeans-h, it significantly
reflects in performance. In genome, the same behavior is
expected since genome sequencing follows an analogous be-
havior of producer-consumer dependencies. Nevertheless, the
contention is lower and although less reflected in performance,
CHATS is still able to give a solid improvement of 25% in
execution time and 75% reduction in conflicts.

Another benchmark with huge potential is yada, which
implements long-running transactions to perform re-
triangulation. During transactional execution, several random
memory locations are accessed in a read-modify-write fashion
which CHATS can easily exploit. In particular, whenever a
transaction modifies a memory location, it would not modify it
again, following a migration pattern. This pattern is exploited
by CHATS allowing sharers to read and use the modified data
speculatively to perform other calculations on other triangles.
This is reflected in Fig. 5 where conflict-induced aborts are
consistently reduced to roughly 50% using CHATS with
respect to the baseline. Even for Power, where aborts are
expected to rise due to its ability to provide progress despite
contention without resorting to the fallback lock, PCHATS
manages to reduce aborts by far more than 50% compared
to Power baseline and only increases them by roughly 25%
compared to the baseline.

Intruder attempts to emulate a network intrusion system and
only two steps from this detection are enclosed by transactions
capture and reassembly. In capture an intrusion data structure
is popped from a FIFO queue. In this transaction, however,
there is a time gap between reading and modifying the struc-
ture pointer, which can be read by multiple transactions simul-
taneously. For policies where the requester is not necessarily
the transaction that wins the conflict, this could be a source
of problems. For example, if the winner of the conflict is the
requested transaction, then the transaction trying to execute
the last modification will try to acquire write permissions but
will be systematically denied by other readers. This will cause
a livelock because no transaction will be able to complete,
showing a clear pathology of starving writers [9]. A similar
phenomenon occurs in CHATS, but in this case, the problem
is not caused by starving writers, but by false positives at
cycle detection. Whenever two transactions try to write to the
same address at the same time, cycles are erroneously detected
due to receiving an outdated PiC as discussed in sections V-C
and IV-C. This will cause all involved transactions to abort,
creating a livelock situation that must be resolved by resorting
to fallback-lock. The other source of contention comes from
reassembly where a red-black tree is traversed to add nodes
and occasionally re-balanced. Transactions in this case again
exhibit a producer-consumer behavior with the inclusion of
events that can cause generalized aborts to all transactions
traversing the tree due to re-balance. Additionally, another
transaction covers up recovering data from the queue where
results are deposited in reassembly which can often cause

10

3.
80

2.
33

Microbenchmark STAMP (STAMP)

llb−l llb−h cadd genome intruder kmeans−l kmeans−h labyrinth ssca2 vacation−l vacation−h yada geomean

0.00
0.25
0.50
0.75
1.00
1.25

E
x.

 T
im

e
(n

or
m

al
iz

ed
)

HTM system Base Naive R−S CHATS Power PCHATS

Fig. 4: Performance results in terms of execution time

2.
2

4.
54

2.
46

2.
12

7.
33

6.
81

2.
84

Microbenchmark STAMP (STAMP)

llb−l llb−h cadd genome intruder kmeans−l kmeans−h labyrinth ssca2 vacation−l vacation−h yada mean

Bas
e

Naiv
e R

−S

CHAT
S

Pow
er

PCHAT
S
Bas

e

Naiv
e R

−S

CHAT
S

Pow
er

PCHAT
S
Bas

e

Naiv
e R

−S

CHAT
S

Pow
er

PCHAT
S

Bas
e

Naiv
e R

−S

CHAT
S

Pow
er

PCHAT
S
Bas

e

Naiv
e R

−S

CHAT
S

Pow
er

PCHAT
S
Bas

e

Naiv
e R

−S

CHAT
S

Pow
er

PCHAT
S
Bas

e

Naiv
e R

−S

CHAT
S

Pow
er

PCHAT
S
Bas

e

Naiv
e R

−S

CHAT
S

Pow
er

PCHAT
S
Bas

e

Naiv
e R

−S

CHAT
S

Pow
er

PCHAT
S
Bas

e

Naiv
e R

−S

CHAT
S

Pow
er

PCHAT
S
Bas

e

Naiv
e R

−S

CHAT
S

Pow
er

PCHAT
S
Bas

e

Naiv
e R

−S

CHAT
S

Pow
er

PCHAT
S

Bas
e

Naiv
e R

−S

CHAT
S

Pow
er

PCHAT
S

0.0
0.5
1.0
1.5
2.0

A
bo

rt
s

(n
or

m
al

iz
ed

)

Abort causes Capacity Conflicts Explicit FwdCapacity FwdValidation Other

Fig. 5: Aborted transactions split by the reasons that caused the abort

2.
27

2.
67

2.
07

Microbenchmark STAMP (STAMP)

llb−l llb−h cadd genome intruder kmeans−l kmeans−h labyrinth ssca2 vacation−l vacation−h yada mean

Naiv
e R

−S

CHAT
S

PCHAT
S

Naiv
e R

−S

CHAT
S

PCHAT
S

Naiv
e R

−S

CHAT
S

PCHAT
S

Naiv
e R

−S

CHAT
S

PCHAT
S

Naiv
e R

−S

CHAT
S

PCHAT
S

Naiv
e R

−S

CHAT
S

PCHAT
S

Naiv
e R

−S

CHAT
S

PCHAT
S

Naiv
e R

−S

CHAT
S

PCHAT
S

Naiv
e R

−S

CHAT
S

PCHAT
S

Naiv
e R

−S

CHAT
S

PCHAT
S

Naiv
e R

−S

CHAT
S

PCHAT
S

Naiv
e R

−S

CHAT
S

PCHAT
S

Naiv
e R

−S

CHAT
S

PCHAT
S

0.0

0.5

1.0

1.5

2.0

F
or

w
ar

de
r

T
x

(n
or

m
al

iz
ed

)

Forwarder transaction ending states abort commit_modified commit_not_modified

Fig. 6: Amount of executed transactions that conflicted and forwarded data. Bars are split marking how the transaction finished
its execution.

1.
47

4.
93

2.
44

2.
76

2.
52

9.
96

4.
40

3.
32

4.
43

1.
53

5.
08

1.
50

3.
98

1.
70

Microbenchmark STAMP (STAMP)

llb−l llb−h cadd genome intruder kmeans−l kmeans−h labyrinth ssca2 vacation−l vacation−h yada geomean

0.00
0.25
0.50
0.75
1.00
1.25

N
et

w
or

k
us

ag
e,

 fl
its

(n
or

m
al

iz
ed

)

HTM system Base Naive R−S CHATS Power PCHATS

Fig. 7: Normalized network usage in flits sent through the interconnection network

STAMP

genome intruder kmeans−l kmeans−h labyrinth ssca2 vacation−l vacation−h yada geomean

0.00
0.25
0.50
0.75
1.00
1.25

E
x.

 T
im

e
(n

or
m

al
iz

ed
)

Forward mechanism: Allowed forwarding CHATS: R/W CHATS: Rrestrict/W CHATS: W PCHATS: R/W PCHATS: Rrestrict/W PCHATS: W

Fig. 8: Effect of enabling different types of blocks to be forwarded. R/W, W and Rrestrict/W types are considered according
to what explained in Section VI-D. All results are normalized to CHATS with R/W.

11

conflicts in transactions that are finishing the execution of this
phase. CHATS and more notably PCHATS can circumvent all
those obstacles for concurrency exploitation. CHATS easily
handles traversing the shared structure, but tree balancing and
external dependencies with structures can pose difficulties in
avoiding cyclic situations. PCHATS can observe not only lo-
cally generated context information such as PiC but also which
transaction is experiencing more contention via the power
token. In addition, even with such contended transactions,
CHATS can forward data without risking the survivability
of the producer as observed in Fig. 6, ensuring that data
forwarded by it will be potentially correct. CHATS shows per-
formance degradation over the baseline, but PCHATS manages
to improve its performance by more than 30%.

We stated that CHATS correctly manages traversing data
structures that are being modified. We confirm this with
the llb benchmark where contention is consistently reduced
when an affordable amount of shared memory locations are
modified by all transactions. Nevertheless, we state the limits
on CHATS with its high contention version, where all threads
are modifying all memory locations randomly and causing
extra aborts due to the need for transactional serialization.
Even in this case, with an extra quantity of aborts as observed
in Fig. 6, CHATS and PCHATS benefit from those producers
that did not abort and committed unmodified values, thus
performing better than the baseline and the naive requester-
speculates versions. The behavior exposed by the intruder’s
capture phase is resembled in cadd. We observe how, even
if transactions hold a shared modified memory address for a
long time, CHATS manages to exploit parallelism by allowing
several transactions to have local copies of those locations,
leading to more transactions eventually committed.

In terms of efficiency, one might anticipate CHATS to
exacerbate the utilization of the interconnection network due
to the periodic validations that it requires. However, as ob-
served in Fig. 7, the amount of flits (information units) sent
through the interconnect is lower for CHATS and PCHATS
configurations. This perhaps unexpected outcome is reasonable
due to the reduction in the number of aborts, resulting in
less wasted work and traffic. On the other hand, requester-
speculates policies that do not incorporate any cycle avoidance
mechanism, experience a significant increase in intercommu-
nication network usage. This is attributed to a considerable
rise in the number of aborts, as previously observed in Fig. 5.

A. Implementation decisions and sensitivity analysis

We performed several sensitivity analyses for the parameters
mentioned in Section VI-D for each HTM system under
consideration. The evaluation in the previous section uses the
best cost-effective configuration for each system to guarantee
a fair comparison between them.

1) Blocks to forward: In CHATS and, by extension,
PCHATS, one configurable aspect is the selection of the type
of data blocks eligible to be forwarded. There are two main
options: allow forwarding of modified blocks only, or allow
forwarding of both shared and modified blocks. Speculative

●
● ● ● ● ● ●

●
●

● ● ● ● ● ● ● ● ●

●
● ● ● ● ●

●

●

●

 1
.3

4

●

● ●
●

●

●

 1
.7

1

 3
.0

0

 4
.6

4

 6
.1

2

 7
.4

2

 1
.4

3
11

.7
6

 2
.0

3
 2

.4
0

17
.0

6
 2

.9
4

 3
.3

2
22

.1
5

 3
.8

2
 4

.2
7

27
.4

1

●

● ● ● ● ● ● ● ●

●

● ● ● ●
●

●

●
● 1

.4
3

 1
.7

2

 1
.8

9

 2
.0

6

●

● ● ● ●
●

●

●
●

 1
.3

7

 2
.0

8

 2
.8

3

 3
.5

9

 4
.3

5

 7
.3

4

12
.3

5
 1

.6
1

15
.4

9
 1

.5
3

17
.3

4

● ● ● ● ● ● ● ● ●

●

●
● ● ●

●

●

●

●

 1
.3

7

 2
.4

0

 4
.1

5

 5
.0

2
 1

.3
3

 5
.4

4

●
● ● ● ● ● ● ● ●

yada geomean

labyrinth ssca2 vacation−l vacation−h

genome intruder kmeans−l kmeans−h

1 2 4 6 8 16 32 48 64 1 2 4 6 8 16 32 48 64

1 2 4 6 8 16 32 48 64 1 2 4 6 8 16 32 48 64 1 2 4 6 8 16 32 48 64 1 2 4 6 8 16 32 48 64

1 2 4 6 8 16 32 48 64 1 2 4 6 8 16 32 48 64 1 2 4 6 8 16 32 48 64 1 2 4 6 8 16 32 48 64
0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2

N. of retries until fallback/power

E
x.

 T
im

e
(N

or
m

al
iz

ed
)

Config

● Base

Power

Naive R−S

CHATS

PCHATS

Fig. 9: Sensitivity analysis of execution time for a given
number of transactional retries before resorting to fallback path

data blocks are forwarded via SpecResp messages, like mod-
ified values. This allows CHATS to forward, not only locally
modified versions of data but blocks that have been only
read too. Additionally, we introduced a heuristic that assesses
whether an address slated for forwarding is already associated
with an in-flight GETX, as explained in Section VI-D. Its
effectiveness is demonstrated in our findings, as shown in
Fig. 8. The results indicate a slight advantage in employing our
heuristic across all implementations of CHATS. This strategy
reduces the likelihood of unnecessary aborts by ensuring that
forwarding decisions are informed by the current state of data
requests.

2) Retry threshold until fallback path: Another critical
configuration parameter to consider is the number of retries
allowed before resorting to fallback mechanisms to guarantee
forward progress. In Fig. 9 we observe that for the best-
effort configuration, the best option is to use 6 retries in most
benchmarks, while for Power-based systems it is better to
reduce this number to 2. In PCHATS, using only 1 retry gives
the best results. This makes sense because acquiring the Power
token allows other transactions to be executed simultaneously
without applying serialization. However, CHATS performs
better with 32 retries for the same reason that PCHATS does
with only 1. With a higher threshold, more transactions are
allowed to re-execute and forward their data, giving more
chances to exploit parallelism by acquiring potentially correct
data and values for PiC. In PCHATS, the same happens, but
power transactions themselves allow it while the token is in
use.

3) Validation periodicity and VSB size: As a final measure-
ment point, we conducted a study on key configurations for
value forwarding: the periodicity of validations and how many
blocks a transaction can speculate with simultaneously. Fig. 10
shows the execution time normalized to the left/down square
(50 cycles / 1 block). We found a sweet spot for CHATS
and PCHATS in terms of performance, efficiency, and cost-
effectiveness with 4 VSB entries. With this small number of

12

1.000

0.988

0.976

0.972

0.971

0.971

0.998

0.994

0.983

0.980

0.978

0.980

1.006

0.999

0.992

0.987

0.985

0.991

1.023

1.018

1.013

1.008

1.005

1.006

1.046

1.061

1.048

1.048

1.040

1.047

1.098

1.123

1.116

1.111

1.111

1.105

50 100 200 400 800 1600

1

2

4

8

16

32

Validation period(cycles)

M
ax

. r
ec

ei
ve

d
bl

oc
ks

1.00

1.04

1.08

1.12

Exec.
time
Norm. by
(1, 50)

(a) Execution time: CHATS

1.000

0.987

0.883

1.009

0.879

0.959

1.057

0.931

0.971

0.930

0.956

1.047

1.141

0.983

0.916

0.908

1.057

1.017

1.048

0.994

1.092

1.123

1.056

1.036

1.116

1.171

1.055

1.027

1.083

0.906

1.468

1.264

1.150

1.183

1.156

1.237

50 100 200 400 800 1600

1

2

4

8

16

32

Validation period(cycles)

M
ax

. r
ec

ei
ve

d
bl

oc
ks

0.9

1.0

1.1

1.2

1.3

1.4

Aborts
Norm. by
(1, 50)

(b) Aborts: CHATS

1.000

0.996

0.989

0.996

0.996

0.989

1.003

0.996

1.002

0.992

0.999

0.995

1.004

1.006

1.001

1.002

1.002

0.996

1.009

1.014

1.011

1.010

1.016

1.010

1.028

1.032

1.032

1.028

1.026

1.024

1.037

1.052

1.053

1.050

1.047

1.050

50 100 200 400 800 1600

1

2

4

8

16

32

Validation period(cycles)

M
ax

. r
ec

ei
ve

d
bl

oc
ks

0.99

1.00

1.01

1.02

1.03

1.04

1.05

Exec.
time
Norm. by
(1, 50)

(c) Execution time: PCHATS

1.000

0.923

0.847

0.868

0.894

0.921

0.922

0.894

0.991

0.925

0.887

1.001

0.981

0.892

1.072

0.858

0.968

0.957

0.896

0.961

0.946

0.945

1.064

0.854

1.055

0.963

0.847

1.025

0.879

0.828

1.100

0.969

0.949

0.869

0.890

0.944

50 100 200 400 800 1600

1

2

4

8

16

32

Validation period(cycles)

M
ax

. r
ec

ei
ve

d
bl

oc
ks

0.9

1.0

Aborts
Norm. by
(1, 50)

(d) Aborts: PCHATS

Fig. 10: Sensitivity analysis showing how execution time (left)
and aborts (right) change as the VSB size (Y-axis) and the
validation interval (X-axis) vary

1.
56

0.00

0.25

0.50

0.75

1.00

1.25

genome

intruder

kmeans−l

kmeans−h

labyrinth
ssca2

vacation−l

vacation−h
yada

geomean

E
x.

 ti
m

e
(n

or
m

al
iz

ed
 −

 B
as

e)

HTM system CHATS PCHATS LEVC−BE−Idealized

Fig. 11: Execution time over the best-effort baseline

entries, we manage to introduce a minor storage overhead of
just 280 bytes. In addition, we lose only 0.005% of the average
performance compared to the version that uses 32 entries for
CHATS while having the best result in terms of aborts. For
PCHATS, 4 entries remain the best option.

B. Comparison against similar proposals

We compare the relative performance of CHATS with an
idealized version of LEVC [30] since both are requester-
speculates approaches. Fig.11 summarizes the results regard-
ing execution time, with all values normalized to the requester-
wins best-effort baseline.

For intruder, CHATS and LEVC-BE-Idealized both struggle
to avoid cyclic dependencies. However, PiC’s local context
information yields superior results in avoiding cycles than the
static timestamp-based transactional ordering mechanism of
LEVC-BE-Idealized. In LEVC-BE-Idealized, a producer can
forward speculative data only to a single consumer, while
CHATS does not have this limitation. In kmeans-h, CHATS
performs optimally because of its ability to exploit producer-

consumer dependencies, in contrast with the timestamp-based
policy on which LEVC-BE-Idealized is based. In yada,
CHATS performs worse than LEVC-BE-Idealized, mainly be-
cause its large transactions benefit from mechanisms that allow
stalling. However, PCHATS outperforms LEVC-BE-Idealized
in yada. Overall, we find that CHATS and PCHATS achieve
average performance improvements of 4.6% and 12.3%, re-
spectively, over LEVC-BE-Idealized, whose mechanism is
considerably more complex.

VIII. CONCLUSION

Requester-speculates constitutes an effective conflict resolu-
tion policy for HTM, particularly useful in high contention sce-
narios. However, its implementation can significantly increase
the complexity of HTM systems, requiring a careful manage-
ment of speculative data and cyclic dependencies avoidance,
and had not yet been explored in commercial-like systems,
which are best-effort and abort-based.

We have proposed CHAined TransactionS (CHATS), a best-
effort mechanism that dynamically selects between requester-
speculates and requester-wins conflict resolution policies,
based on dependencies created by previous speculatively for-
warded data blocks, to avoid cycles. CHATS uses a simple
mechanism to validate speculation, ensures proper commit
order, avoids the transfer of ownership of speculated data, and
encodes dependencies with negligible overhead.

With very little hardware overhead (280 bytes per core),
CHATS can effectively increase concurrency between trans-
actions, though impeding cyclic chains that would need to be
broken and would cause cascaded aborts. As a result of this
increased overlap in transactional execution, CHATS brings
remarkable reductions in execution time (22% on average).
Additionally, we show that our mechanism is capable of
improving the performance of a state-of-the-art proposal (Pow-
erTM), also conceived for best-effort HTM implementations
(average reductions of 16% in execution time). Finally, we
also demonstrate that the performance advantage obtained
from the combination of CHATS and PowerTM (what we call
PCHATS) increases to 28% on average.

ACKNOWLEDGMENTS

This project has received funding from the European
Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (ECHO,
grant agreement No. 819134), from the Spanish
Ministry of Science, Innovation and Universities (MCIN)
MCIN/AEI/10.13039/501100011033/ and the “ERDF
A way of making Europe”, EU (DAMAS, grant
PID2022-136315OB-I00), and from the MCIN grant
MCIN/AEI/10.13039/501100011033/ and the European
Union NextGenerationEU/PRTR (HEEDA, grant TED2021-
130233B- C33).

REFERENCES

[1] Arm Ltd. (2020) Arm transactional memory extensions documentation.
[Online]. Available: https://developer.arm.com/documentation/101028/
0012/16--Transactional-Memory-Extension--TME--intrinsics

13

https://developer.arm.com/documentation/101028/0012/16--Transactional-Memory-Extension--TME--intrinsics
https://developer.arm.com/documentation/101028/0012/16--Transactional-Memory-Extension--TME--intrinsics

[2] U. Aydonat and T. S. Abdelrahman, “Hardware support for relaxed con-
currency control in transactional memory,” in International Symposium
on Microarchitecture (MICRO), 2010, pp. 15–26.

[3] S. Bharadwaj, J. Yin, B. Beckmann, and T. Krishna, “Kite: A family of
heterogeneous interposer topologies enabled via accurate interconnect
modeling,” in Design Automation Conference (DAC), 2020, pp. 1–6.

[4] K. Bhati. (2021) In-depth analysis of intel 12th generation core
alder lake, thread director, and other tech. SparrowsNews. [Online].
Available: https://sparrowsnews.com/2021/08/20/intel-12th-generation-
core-alder-lake/

[5] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Computer Architecture News, vol. 39, no. 2, p. 1–7, 2011.

[6] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[7] C. Blundell, A. Raghavan, and M. M. Martin, “Retcon: Transactional
repair without replay,” in International Symposium on Computer Archi-
tecture (ISCA), 2010, p. 258–269.

[8] J. Bobba, N. Goyal, M. D. Hill, M. M. Swift, and D. A. Wood,
“Tokentm: Efficient execution of large transactions with hardware trans-
actional memory,” in International Symposium on Computer Architecture
(ISCA), 2008, p. 127–138.

[9] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M. Swift,
and D. A. Wood, “Performance pathologies in hardware transactional
memory,” SIGARCH Computer Architecture News, vol. 35, no. 2, pp.
81–91, 2007.

[10] I. Calciu, T. Shpeisman, G. Pokam, and M. Herlihy, “Improved single
global lock fallback for best-effort hardware transactional memory,” in
Transact 2014 Workshop, 2014, p. 54.

[11] Chips and cheese. (2021) Popping the hood on golden cove.
[Online]. Available: https://chipsandcheese.com/2021/12/02/popping-
the-hood-on-golden-cove/

[12] D. Dice, M. Herlihy, and A. Kogan, “Improving parallelism in hardware
transactional memory,” Transactions on Architecture and Code Opti-
mization (TACO), vol. 15, no. 1, pp. 1–24, 2018.

[13] A. Dragojevic and R. Guerraoui, “Predicting the scalability of an
stm: A pragmatic approach,” in SIGPLAN Workshop on Transactional
Computing, 2010.

[14] B. Goel, R. Titos-Gil, A. Negi, S. A. McKee, and P. Stenstrom,
“Performance and energy analysis of the restricted transactional memory
implementation on haswell,” in International Parallel and Distributed
Processing Symposium (IPDPS), 2014, pp. 615–624.

[15] T. Harris, J. Larus, and R. Rajwar, Transactional memory, 2022.
[16] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III, “Software

transactional memory for dynamic-sized data structures,” in Proceedings
of the twenty-second annual symposium on Principles of distributed
computing, 2003, pp. 92–101.

[17] M. Herlihy and J. E. B. Moss, “Transactional memory: Architectural
support for lock-free data structures,” SIGARCH Computer Architecture
News, vol. 21, no. 2, p. 289–300, 1993.

[18] Intel Corporation. (2013) Intel® transactional
synchronization extensions (intel® tsx) programming
considerations. WaybackMachine/Intel. [Online]. Available:
https://web.archive.org/web/20131031020527/http://software.intel.com/
sites/products/documentation/doclib/stdxe/2013/composerxe/compiler/
cpp-win/GUID-54A84479-DEC6-4D2F-9895-46D278EDA820.htm

[19] Intel Corporation. (2023) Intel® 64 and ia-32 architectures
optimization reference manual: Volume 1. [Online]. Avail-
able: https://cdrdv2.intel.com/v1/dl/getContent/671488?explicitVersion=
true&fileName=248966-Software-Optimization-Manual-048.pdf

[20] C. Jacobi, T. Slegel, and D. Greiner, “Transactional memory architecture
and implementation for ibm system z,” in International Symposium on
Microarchitecture (MICRO), 2012, pp. 25–36.

[21] S. A. R. Jafri, G. Voskuilen, and T. Vijaykumar, “Wait-n-gotm: im-
proving htm performance by serializing cyclic dependencies,” SIGPLAN
Notices, vol. 48, no. 4, pp. 521–534, 2013.

[22] T. Karnagel, R. Dementiev, R. Rajwar, K. Lai, T. Legler, B. Schlegel,
and W. Lehner, “Improving in-memory database index performance
with intel® transactional synchronization extensions,” in International
Symposium on High Performance Computer Architecture (HPCA), 2014,
pp. 476–487.

[23] H. Q. Le, G. L. Guthrie, D. E. Williams, M. M. Michael, B. G. Frey,
W. J. Starke, C. May, R. Odaira, and T. Nakaike, “Transactional memory

support in the ibm power8 processor,” IBM Journal of Research and
Development, vol. 59, no. 1, pp. 8:1–8:14, 2015.

[24] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “Dramsim3: A
cycle-accurate, thermal-capable dram simulator,” Computer Architecture
Letters (CAL), vol. 19, no. 2, pp. 106–109, 2020.

[25] M. Lupon, G. Magklis, and A. González, “Fastm: A log-based hardware
transactional memory with fast abort recovery,” in International Con-
ference on Parallel Architectures and Compilation Techniques (PACT).
IEEE, 2009, pp. 293–302.

[26] M. M. K. Martin, M. D. Hill, and D. A. Wood, “Token coherence:
decoupling performance and correctness,” in International Symposium
on Computer Architecture (ISCA), 2003, p. 182–193.

[27] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “Stamp: Stanford
transactional applications for multi-processing,” in International Sympo-
sium on Workload Characterization (IISWC), 2008, pp. 35–46.

[28] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood,
“Logtm: Log-based transactional memory,” in International Symposium
on High-Performance Computer Architecture (HPCA), 2006, pp. 254–
265.

[29] S. M. Pant and G. T. Byrd, “Extending concurrency of transactional
memory programs by using value prediction,” in International Confer-
ence on Computing Frontiers (CF), 2009, pp. 11–20.

[30] S. M. Pant and G. T. Byrd, “Limited early value communication
to improve performance of transactional memory,” in International
Conference on Supercomputing (ICS), 2009, pp. 421–429.

[31] S. Park, C. J. Hughes, and M. Prvulovic, “Forgive-tm: Supporting
lazy conflict detection in eager hardware transactional memory,” in
International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2019, pp. 192–204.

[32] S. Park, M. Prvulovic, and C. J. Hughes, “Pleasetm: Enabling transaction
conflict management in requester-wins hardware transactional memory,”
in International Symposium on High-Performance Computer Architec-
ture (HPCA), 2016, pp. 285–296.

[33] X. Qian, B. Sahelices, and J. Torrellas, “Bulksmt: Designing smt
processors for atomic-block execution,” in International Symposium on
High-Performance Computer Architecture (ISCA), 2012, pp. 1–12.

[34] X. Qian, B. Sahelices, and J. Torrellas, “Omniorder: Directory-based
conflict serialization of transactions,” SIGARCH Computer Architecture
News, vol. 42, no. 3, pp. 421–432, 2014.

[35] H. E. Ramadan, C. J. Rossbach, and E. Witchel, “Dependence-aware
transactional memory for increased concurrency,” in International Sym-
posium on Microarchitecture (MICRO), 2008, pp. 246–257.

[36] A. Scherer and G. Sohi, “Special issue on hot chips 33,” IEEE Micro,
vol. 42, no. 03, pp. 6–6, may 2022.

[37] A. Seznec, “A 256 kbits l-tage branch predictor,” Journal of Instruction-
Level Parallelism (JILP), vol. 9, pp. 1–6, 2007.

[38] A. Shriraman and S. Dwarkadas, “Refereeing conflicts in hardware
transactional memory,” in International conference on Supercomputing
(ICS), 2009, pp. 136–146.

[39] R. Titos, M. E. Acacio, and J. M. Garcia, “Speculation-based conflict
resolution in hardware transactional memory,” in International Sympo-
sium on Parallel & Distributed Processing (IPDPS), 2009, pp. 1–12.

[40] R. Titos-Gil, R. Fernández-Pascual, A. Ros, and M. E. Acacio, “Pftouch:
Concurrent page-fault handling for intel restricted transactional mem-
ory,” Journal of Parallel and Distributed Computing (JPDC), vol. 145,
pp. 111–123, 2020.

[41] R. Titos-Gil, R. Fernández-Pascual, A. Ros, and M. E. Acacio, “Detras:
Delaying stores for friendly-fire mitigation in hardware transactional
memory,” Transactions on Parallel and Distributed Systems (TPDS),
vol. 33, no. 1, pp. 1–13, 2021.

[42] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton,
R. Silvera, and M. Michael, “Evaluation of blue gene/q hardware support
for transactional memories,” in International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2012, pp. 127–136.

[43] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar, “Performance
evaluation of intel® transactional synchronization extensions for high-
performance computing,” in International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis (SC), 2013, pp.
1–11.

[44] T. Zhang, “Designing practical software bug detectors using commod-
ity hardware and common programming patterns,” Ph.D. dissertation,
Virginia Tech, 2020.

14

https://sparrowsnews.com/2021/08/20/intel-12th-generation-core-alder-lake/
https://sparrowsnews.com/2021/08/20/intel-12th-generation-core-alder-lake/
https://chipsandcheese.com/2021/12/02/popping-the-hood-on-golden-cove/
https://chipsandcheese.com/2021/12/02/popping-the-hood-on-golden-cove/
https://web.archive.org/web/20131031020527/http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe/compiler/cpp-win/GUID-54A84479-DEC6-4D2F-9895-46D278EDA820.htm
https://web.archive.org/web/20131031020527/http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe/compiler/cpp-win/GUID-54A84479-DEC6-4D2F-9895-46D278EDA820.htm
https://web.archive.org/web/20131031020527/http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe/compiler/cpp-win/GUID-54A84479-DEC6-4D2F-9895-46D278EDA820.htm
https://cdrdv2.intel.com/v1/dl/getContent/671488?explicitVersion=true&fileName=248966-Software-Optimization-Manual-048.pdf
https://cdrdv2.intel.com/v1/dl/getContent/671488?explicitVersion=true&fileName=248966-Software-Optimization-Manual-048.pdf

APPENDIX

A. Abstract

This artifact consist on a whole cloud environment that gives
support for full-system execution and fast-forwarding with
virtualization over container for gem5 simulator. Additionally,
it holds the code and simulator used to perform all the exper-
iments in CHATS paper. Following the detailed instructions
given in this appendix and in the readme.md document in
the repository, the user will be able to consistently reproduce
exactly the same experiments to obtain the results that appear
in this manuscript.

B. Artifact check-list (meta-information)
• Algorithm: Container orchestration and simulation
• Program: gem5, Docker, Docker-compose, KVM, Slurm, Con-

tainerd
• Compilation: Docker: 27.1.1, Docker-compose: 2.29.1, Con-

tainerd: 1.7.19, Slurm: 24.05
• Data set: STAMP benchmarks and microbenchmarks from

section VI (included in the full-system image)
• Run-time environment: Ubuntu 20.04. Nevertheless, modules

from this version are locally binded to the container. It is
required to have KVM support.

• Hardware: Memory: min. 4GiB
• Output: All the statistic files generated from the experiments.
• Experiments: Base RW, Naive R-S, CHATS, Power, PCHATS,

LEVC-BE-idealized. Sensibility analysis and final comparison
with the best-case configuration for each system.

• How much disk space required (approximately)?: 60GiB
• How much time is needed to prepare workflow (approxi-

mately)?: 30min.
• How much time is needed to complete experiments (approx-

imately)?: Depends on your system, but around 3 days.
• Publicly available?: Yes
• Workflow automation framework used?: Docker-compose,

Make
• Archived (provide DOI)?: https://zenodo.org/doi/10.5281/

zenodo.13741948

C. Description

This artifact is contains all the instructions and specification
files to build, run and orchestrate a set of containers that will
contain the built ready-to-use gem5 simulator. Additionally,
some scripts are provided to exactly replicate all the experi-
ments that were performed for this paper.

The application itself is built up as a Slurm-based
system (modified from https://github.com/giovtorres/slurm-
docker-cluster) that can be used to submit gem5 jobs that will
be executed in every node that is isolated for this purpose. All
nodes are automatically configured and prepared to execute
when the application is built so the user do not have to mess
with any system detail. Once the simulations finish, all results
will be placed in a volume (folder) shared between the host
machine and all the containers. All this can be performed by
the user with simple commands like make build.

1) How to access: The application is fully available (source
and orquestrator instructions) at https://github.com/nikiitin/
MICRO24-521.

2) Hardware dependencies: Allow virtualization in kernel
at your BIOS/UEFI configuration.

3) Software dependencies: This application makes use of
Docker (27.1.1), Docker compose (2.29.1), Make, KVM, wget
and Shell-based command interpreter.

4) Data sets: CHATS evaluation is performed using
STAMP benchmark suite and the microbenchmarks mentioned
in section VI. All the benchmarks are already included in the
disk image loaded to the container.

D. Installation

To install the application, first clone the repository from git.
Once cloned, enter in the directory and build the application
with the following commands:

cd MICRO24_521
NOTE: here root permissions are required as docker

must be executed as sudo
sudo make build

You should have, either root privileges or be able to execute
with root permissions as docker and docker compose require it
to build. During the application build, the make script will try
to detect its missing dependencies. Whenever a dependency is
missing, the user will be asked if he wants to install it or not,
if yes (y), then it will require sudo permissions to install the
software in the kernel.

In case your machine does not have virtualization enabled,
you can avoid using KVM by building a version that uses
AtomicSimpleCPU model from gem5 to fast-forward until
region of interest begins. Note that using a simulated model
will take by far more time than using virtualization, but it
should be compatible with any system. However, sudo will
still be required as docker needs to build the containers for
the application.

sudo make build_atomic

The application additionally, will prompt the user with
the information of the current build step and what is being
performed. Along all this information, it will print the con-
figuration being used. This configuration is calculated taking
into account the system specifications to automatically tune
the container in an optimal way. Nevertheless, the user is able
to change these values from the Makefile. Finally, whenever
all the software is installed correctly and containers correctly
built, it will print a message with “Everything built correctly!”.
This is the signal to go into the next objective and do make
run, again with sudo privileges.

sudo make run

This will load and start all the containers with all the cluster
nodes and the built and ready to use gem5 application. The
next step is to connect with the container executing the slurm
controller daemon. This will be the ”user” to access the rest
of the system.

sudo make connect

This command will connect to the controller node with a
/bin/bash process directed to your shell. Here you can find
the gem5 directory, along all the system files.

15

https://zenodo.org/doi/10.5281/zenodo.13741948
https://zenodo.org/doi/10.5281/zenodo.13741948
https://github.com/giovtorres/slurm-docker-cluster
https://github.com/giovtorres/slurm-docker-cluster
https://github.com/nikiitin/MICRO24-521
https://github.com/nikiitin/MICRO24-521

E. Experiment workflow

Once inside the node, dive into the folder that contains all
the scripts to submit your experiment jobs.

cd /gem5/gem5_path/scripts/CHATS

Here you will find already configured python scripts with the
simulation parameters that were used for this manuscript. The
relation with figures is:

• config.chats.blocks.sensibility.py: Fig.10
• config.chats.fwdrvsfwdw.py: Fig.8
• config.chats.main.py: Fig.1, Fig.4, Fig.5, Fig.6, Fig.7
• config.chats.retry.sensibility.py: Fig.9

All them contains the definition for the experiments to perform
and will generate a file hirerarchy at /gem5/result folder,
which is binned to the host system. All these results will be
available to use by the host in the binned-volume at path-to-
application/results.

F. Evaluation and expected results

Those mentioned configuration files have each one matching
bash script file. Those files are the ones that must be executed
in order to submit works to slurm. Each one will be used to
submit the experiments configured with its python configura-
tion file. To execute it, use the following command in CHATS
script directory:

./generate-simulations-(Experiment) [--enqueue]

If executing without the –enqueue option, it will only generate
the file hierarchy aforementioned and write all the simulations
prepared to execute but without submitting a work for it. With
–enqueue, all those simulation scripts will be submitted to
slurm and will be executed by the nodes. You can check the
status of each simulation with following commands:

squeue
/gem5/gem5_path/scripts/check_simulations.sh /
gem5/results

The second listing is a script that prompt the user the current
status of the simulation and the folder it is stored in.

Finally, inside every simulation folder, you will find each
stats.txt file with all the results from the simulation. All those
files are available from outside the container to the host
machine due to the binded volume used in the folder path-
to-application/results. Once checked that all simulations have
finished for all experiments, there is another make rule that
produces all the plot images with the statistic files:

From the repository root file
make plot

This will execute RING-5 (https://github.com/nikiitin/RING-
5) to generate all the plots for every configuration. This tool
should had been installed at build time and will produce the
plots (along with csv files with all the results) in the plots
folder.

G. Experiment customization

You can customize the parameters for each experiment
at /gem5/gem5 paths/scripts/CHATS. In each config.chats.*.py
you can find all the explicit parameters that each job will
use. You can modify already-existing ones or make new
configuration files that are submitted by its bash script match-
ing file. You can define new parameters from those defined
at /gem5/gem5 path/scripts/run-scripts/options.py. To define
several simulations varying only one parameter, write an entry
like the following one:

parameter_to_specify: Vary(different, values),

H. Notes

For more information refer to the Readme.md file from the
repository.

16

https://github.com/nikiitin/RING-5
https://github.com/nikiitin/RING-5

	Introduction
	Background and related work
	CHAined TransactionS (CHATS)
	Validation of forwarded data
	Avoidance of cyclic forwarding
	Correctness guarantees

	Implementation of CHATS
	Modifications to the coherence protocol
	The VSB and validation of speculative data
	Using the PiC to avoid cycles

	Interactions with coherence and consistency and progress guarantees
	Interactions with cache coherence
	Interactions with consistency model
	Forward progress guarantees

	Methodology
	Simulation environment
	HTM systems evaluated
	Benchmarks
	Configuration parameters defined in CHATS

	Results
	Implementation decisions and sensitivity analysis
	Blocks to forward
	Retry threshold until fallback path
	Validation periodicity and VSB size

	Comparison against similar proposals

	Conclusion
	References
	Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes

