
Analysis of the Interactions Between ILP and TLP
With Hardware Transactional Memory

Vı́ctor Nicolás-Conesa, Rubén Titos-Gil, Ricardo Fernández-Pascual, Alberto Ros, Manuel E. Acacio
Computer Architecture and Parallel Systems Group University of Murcia

Murcia, Spain
{victor.nicolasc, rtitos, ricardof, aros, meacacio} @um.es

Abstract—Hardware Transactional Memory (HTM) allows the
use of transactions by programmers, making parallel program-
ming easier and theoretically obtaining the performance of fine-
grained locks. However, transactions can abort for a variety
of reasons, resulting in the squash of speculatively executed
instructions and the consequent loss in both performance and
energy efficiency. Among the different sources of abort, conflict-
ing concurrent accesses to the same shared memory locations
from different transactions are often the prevalent cause.

In this work, we characterize, for the first time to the best of
our knowledge, how the aggressiveness of the cores in terms of
exploiting instruction-level parallelism can interact with thread-
level speculation support brought by HTM systems. We observe
that altering the size of the structures that support out-of-order
and speculative execution changes the number of aborts produced
in the execution of transactional workloads on a best-effort
HTM implementation. Our results show that a small number
of powerful cores is more suitable for high-contention scenarios,
whereas under low contention it is preferable to use a larger
number of less aggressive cores. In addition, an aggressive core
can lead to performance loss in medium-contention scenarios
due to an increase in the number of aborts. We conclude
that depending on contention, a careful choice over processor
aggressiveness can reduce abort ratios.

Index Terms—Hardware Transactional Memory, Out-of-Order
and Speculative Execution, Multicore, Characterization.

I. INTRODUCTION

Architectural support for transactional memory (TM), avail-
able in commercial multicore processors [1]–[3], enables eas-
ier synchronization of parallel programs, by shifting to the
hardware the responsibility of guaranteeing that certain regions
of code appear to be executed atomically and in isolation with
respect to any other thread. The idea behind TM is that the
programmer only needs to declare which code needs to be
synchronized (i.e., transactions), leaving the burden of how
to achieve it to the underlying TM system [4]. Although
hardware TM (HTM) systems can provide the aforementioned
transactional properties at low overhead by leveraging pri-
vate caches and coherence protocols, their performance and
efficiency get hindered by the occurrence of conflicts, i.e.,
concurrent memory accesses to shared data originating from
different threads that pose a risk to the atomicity and isolation
of a given transaction. Such conflicts must be detected and

This work was supported by the Spanish MCIU and AEI, as well as
European Commission FEDER funds, under grant RTI2018-098156-B-C53,
and the European Research Council (ERC) under the Horizon 2020 research
and innovation program (grant agreement No 819134).

dealt with at runtime, typically resulting in the abort and re-
execution of competing transactions. Aborts lead to a waste
of energy and time due to the speculative work discarded.

Existing HTM implementations adopt an eager approach to
detect conflicts as each memory access instruction performs in
cache. Once detected, a conflict can be resolved in a number
of ways, but the simplest approach, found in commercial
processors, opts for favoring the requesting cache. Under this
requester-wins policy, the transaction running on a core is
aborted when its private cache controller observes a conflicting
coherence request: an exclusive-ownership request for a block
that has been read by the transaction (remote write, local read),
or a request for a block that is currently speculatively modified
in cache (remote read/write, local write).

In such eager HTM implementations, both the order in
which memory accesses within a transaction are performed in
cache, as well as the lifetime of each block in the read-write
set (i.e., cycles that each cache block remains as part of it,
since the first access until commit), can have an influence on
the number of aborts, as they affect the length of the window
of vulnerability for the transaction, this is, the cycles that it is
exposed to aborts due to remote conflicting accesses.

Since first introduced by Herlihy and Moss [5], a myriad
of research works have proposed alternative HTM designs
and analyzed their performance. However, nearly all prior
work has invariably considered the HTM implementation in
isolation from the processing core, treating it as a black box
that generates a trace of memory accesses, and very often
assuming oversimplified CPU models based on single-issue
in-order execution [6]–[9], which are far from representative
of today’s execution cores.

In contrast, in this work, we analyze the interactions be-
tween the mechanisms used by modern commercial multicore
processors to bring high performance at core level (aimed
at exploiting Instruction-Level Parallelism or ILP) with the
HTM support intended to provide high performance at system
level (aimed at exploiting Thread-Level Parallelism or TLP).
We find that there are relevant interactions between the HTM
system and processor aggressiveness, including instruction-
level speculation brought by out-of-order (OoO) cores.

This study shows that the characteristics of the processing
core have implications on HTM performance and contention
between transactions. Under high contention scenarios, our
results show that it is preferable to use fewer powerful cores,



being the opposite of low contention. Interestingly, in certain
scenarios with low to medium contention we observed that
overall performance may not benefit from employing more
complex cores, as the loss caused by an increase in the number
of aborts offsets the gains achieved by exploiting ILP more
aggressively. Our work suggests that proper management of
the aggressiveness of the cores during HTM execution in
modern multicore designs is a promising approach as it can
bring performance and efficiency gains.

In the remaining sections we will give some background
about instruction-level parallelism and hardware transactional
memory, relating it to the state of the art (Section II). Af-
terward, we will show the system and methodology used to
obtain the results from this study (Section III. Then we will
display the results obtained from the experiments (Section IV.
And finally, we will discuss the conclusions derived from this
work (Section V).

II. BACKGROUND AND RELATED WORK

A. Superscalar ILP processors

Current high performance processors are equipped with a
variety of techniques aimed at exploiting ILP to improve
single-thread performance through superscalar, speculative,
out-of-order (OoO) execution [10]–[13], among others. A
typical OoO core relies on certain structures to ensure that
sequential semantics of the program are preserved, and the
memory consistency rules are met. Among the most relevant of
such structures, we find the reorder buffer (ROB) and the load-
store queue (LSQ) [13], [14], as their size partially determines
the aggressiveness of the pipeline at exploiting ILP: the larger
these structures are, the more instructions can be considered
by the dynamic scheduling logic for execution when their
operands are ready. In the analysis presented in subsequent
sections, we will focus on the size of the ROB and LSQ as
key parameters of an OoO core.

B. Hardware Transactional Memory

HTM systems provide atomicity and isolation to transac-
tions at low overhead through the hardware implementation of
two basic mechanisms: conflict detection and data versioning.
Both mechanisms have been incorporated at relatively low cost
into commercial multicore processors by leveraging existing
structures, namely private caches and the cache-coherence
protocol [15]. Private caches are typically extended with two
bits per block used for tracking the read and write sets of
the transaction. Additionally, the cache is extended with logic
to perform conditional gang-invalidation of all blocks that
have the speculatively modified bit asserted, so that tentative
updates isolated in the private cache can be discarded in a
few cycles when a transaction aborts. In turn, committing
a transaction only requires clearing both bits for all cached
blocks at once, publishing the updates to the rest of the
system in an atomic manner. On the other hand, using the
L1 cache for tracking read-write sets and data versioning has
the drawback of limiting them to the cache size, which can
cause capacity aborts whenever a block in the read or write set

gets evicted from cache [16]. Some other ways to implement
book-keeping include the use of Bloom filters or signatures,
which conservatively track any number of addresses at the cost
of introducing additional conflicts due to false positives [15],
[17], [18].

Conflicts in an HTM implementation are detected by lever-
aging the cache coherence protocol: to write a block in cache,
exclusive ownership must be acquired on the block, which in
turn will notify any concurrent readers through invalidation
messages, allowing them to detect a conflict if the block is in
the read-set of an active transaction. Similarly, any conflicting
read to a block that is currently in the write set of a transaction
will be detected as the block will be exclusively owned by the
writer. In order to resolve conflicts, the most commonly used
policy is requester-wins because of its simplicity of integration
into existing protocols. With this policy, the transaction that
generates the coherence request will cause the abort of any
other conflicting transaction. The key drawback of requester-
wins is that livelocks may appear if transactions fire each
other repeatedly. As a result of employing requester-wins
resolution as well as the limits in buffering capacity imposed
by private caches, commercially available HTM implemen-
tations are best-effort: the system tries its best but gives no
guarantees about the commit of any transaction. Thus, to
ensure forward progress despite contention-induced livelocks
or capacity limitations, at the beginning of a transaction
an alternative software fallback path must be provided. If
the transaction aborts, execution will continue through this
specified code section [19]. Depending on the abort status
code returned, the abort handler may attempt to re-execute the
transaction speculatively several times before resorting to the
non-speculative execution of the transaction, using a global
lock which all transactions must subscribe to (have in their
read set).

C. Related Work

Several previous works have proposed the use of contention
managers to reduce the negative impact of transactional con-
flicts, e.g. [20] or [21]. Contention managers act whenever a
transaction aborts due to conflicts and try to avoid a new con-
flict or even the same to happen, usually by making transaction
wait (back-off) before re-executing [22]. Some techniques try
to avoid energy waste even while using a contention manager,
e.g., turning the CPU on a low-power mode while it is waiting
to re-execute a transaction, as explained in [8].

There have been previous works that tried to resize the
LSQ and ROB based on their occupation to reduce energy
consumption without negatively impacting performance. More
precisely, [23] observes that these structures are not totally
used most part of the time, and so reducing them causes
passive and active energy savings [24] and does not entail
a really great performance loss. The same work also shows
that occupation is not the same on every application and
that within the same application there are moments of high
and low occupancy and structures size can vary depending
on this. All of the former has been done with traditional,



non-transactional applications, thus neglecting the interplay
between ILP mechanisms and HTM, which is the focus of
this work.

Apart from [23], some other works have also analyzed
the occupation of these structures while executing non-
transactional code. Dimova et al. [25] study the effects over
performance of modifying ROB size too and conclude that
increasing ROB beyond certain limits can even hurt perfor-
mance. In Mathis et al. [26], LSQ occupancy is observed using
SMT (Simultaneous MultiThreading) on POWER5 processors
and the authors find that these structures are not fully utilized
most of the time. Unlike prior works, we characterize for the
first time to our knowledge the occupation of OoO structures
when running transactional workloads, and analyze the inter-
actions between ILP and HTM mechanisms.

III. EXPERIMENTAL METHODOLOGY

We use a full-system simulator based on gem5 [27] to
perform our evaluation. While the gem5 simulator has official
support for HTM since release 20.1 (currently limited to the
Arm ISA), in this work we use an in-house HTM model
for the x86 ISA developed earlier atop gem5-17 in which
we merged the HTM support for the memory system found
in the Ruby module of Wisconsin GEMS [28], with the
CPU models of gem5 appropriately adapted to support HTM.
Using this modified version of gem5, we model a tiled chip
multiprocessor whose cache hierarchy has two levels: the L1
is private to each core, and L2 is shared and distributed among
the tiles (one L2 bank per tile). It uses a MESI cache coherence
protocol properly extended to support cache-based HTM. The
key configuration parameters are shown in Table I, including
those for the baseline out-of-order CPU model.

Our HTM model resembles the Intel RTM (Restricted
Transactional Memory) ISA extensions introduced in the
Haswell microarchitecture [2]. The conflict resolution policy
used is requester-wins and the book-keeping technique used
to track read sets is a perfect signature that allows to track
read-set blocks even after evicted from the L1 cache [18],
[29]. Loads are added to the read set at the moment they are
retired from the pipeline. For keeping track of the write set, a
speculatively modified (SM) bit in each of the L1 cache lines is
used. We employ eager lock subscription and our abort handler
ensures forward progress by acquiring the fallback lock in case
of capacity-induced and fault-induced aborts, as well as when
the number of retries after a conflict-induced abort exceeds a
given threshold (set to 8 in our experiments).

In the analysis presented in the following section, we vary
the following system configuration parameters:

Core models: To analyze the interactions between the
execution model and the HTM support, we consider both the
TimingSimpleCPU and O3CPU models of gem5. The timing
CPU is in-order, single-issue, and non-memory instructions
take 1 cycle, while memory access instructions stall the CPU
until completed in cache. On the other hand, the O3CPU re-
sembles a modern superscalar, out-of-order execution pipeline
with dynamic instruction scheduling and a large instruction

TABLE I
SYSTEM PARAMETERS.

Out-of-order baseline core Settings
Cores out-of-order (execute/commit width: 8)
Load queue 72
Store queue + store buffer 56
ROB 192

Memory Settings
L1 I&D caches Private, 32KiB, 8-way, 1-cycle hit latency
L2 cache Shared, 512KiB per Tile, unified, 16-way

24(tag)+12(data)-cycle latency
Memory 3GB, 200-cycle latency
Protocol MESI, directory-based

Network Settings
Topology and Routing 2-D mesh (2×2), X-Y
Flit size / Message size 16 bytes / 5 flits (data), 1 flit (control)
Link latency / bandwidth 1 cycle / 1 flit per cycle

window. Apart from these two well-known CPU models, in
the following evaluation, we also consider a variation of the
out-of-order model in which we have removed speculation at
the instruction level by stalling instruction fetch whenever an
unresolved branch is in-flight.

LSQ and ROB occupancy: To study the actual occupation
of the LSQ and ROB structures, we use probe-like tracing
measuring the number of entries occupied on these structures
for 2048 cycles every 16000 cycles.

Number of cores: To observe how contention affects the
obtained results, we use two different systems sizes (4 and
16 cores) and run the benchmarks at the corresponding thread
counts matching the number of cores.

The benchmark suite that has been used for this study is
STAMP [30], which includes diverse workloads with different
characteristics in terms of contention, transaction size, read-
write set size, etc. The recommended medium inputs [30]
were used to run all the benchmarks. We opted for excluding
Bayes from our evaluation, as it implements a search algo-
rithm whose non-deterministic behavior exhibits a very high
variability in execution time depending on the specific thread
interleaving (arriving at different solutions for the same input).

IV. EXPERIMENTAL RESULTS

In Fig. 1 we compare execution time and key HTM per-
formance metrics under varying CPU models (out-of-order,
out-of-order without speculation, and in-order). The purpose
of this experiment is to determine how the execution model
used by the cores interacts with the HTM support. In this
figure, all the results are normalized to the OoO CPU model
with speculation.

Fig. 1 shows, as expected, that in every benchmark the
average number of cycles for committed transactions increases
when using the in-order and OoO without speculation when
compared to the OoO. By exploiting ILP and branch pre-
diction, the OoO aggressive core is able to execute all the
applications faster (execution time grows up to ×5.7 and ×4.2
for the in-order and OoO simpler models, respectively), in
kmeans-l. Interestingly, results from the transactional informa-
tion reveal that the number of aborts and the duration of the
transactions are affected differently by the CPU model, also



0

1

2

3

4

5

6

ge
no

m
e

in
tru

de
r

km
ea

ns
−h

km
ea

ns
−l

la
by

rin
th

ss
ca

2
va

ca
tio

n−
h

va
ca

tio
n−

l

ya
da

Benchmark

N
or

m
al

iz
ed

 in
cr

ea
se TxInfo

Aborts
Tx cycles

Processor models 
execution time

Out−of−order without spec
In−order

Fig. 1. Differences between out-of-order, out-of-order without instruction
level speculation and in-order core models. Red squares represent cycles spent
in transactions, black diamonds are the number of aborts and the bars represent
execution time. All data is normalized respect to OoO model with speculation
and all architectures use 16 cores.

depending on the benchmark and its specific characteristics.
In the case of genome, vacation and yada, we can see that
the number of aborts does not change much with the CPU
model. However, there are cases like kmeans and ssca2 (short-
running transactions), where the less aggressive in-order core
experiences less contention. This happens because there are
fewer memory accesses concurrently in flight (both from
transactional and non-transactional regions). Note that ssca2
has a very small number of aborts and this reduction has
negligible impact on performance. On the other side, there are
cases like intruder and labyrinth (long-running transactions)
where the in-order core experiences more conflicts. This is
because the transactions take more time to execute, increasing
the window of time during which they are exposed to conflicts
from other transactions.

A. ROB and LSQ occupancy analysis

In Figure 2 we can see the occupancy level of the LQ, SQ
and ROB in our baseline core model (OoO with speculation),
which is equipped with a 72-entry LQ, a 56-entry SQ and a
192-entry ROB. For the sake of brevity, we only show the
results for two representative benchmarks and two different
contention levels in each case. As we can see, there is only a
small increase of approximately 5% in the LQ occupancy in
kmeans benchmark when the contention level increases. This
increase is smaller in vacation.

This increase in occupancy can also be observed in the
SQ and ROB. In the case of the ROB, the occupancy grows
around 10% of the whole queue capacity in the high contention
scenario. For the SQ, occupancy levels in the high contention
scenario are higher too. The same observations made for
kmeans benchmark can apply to vacation, although in this
case, the increase in occupancy is less noticeable.

As we can see, generally the store queue and load queue
occupancy during execution are low in most cases. Maximum
occupancy in LQ (green line) does not rise over 80% in either
kmeans nor vacation, while average occupation is around
25% in kmeans and 40% on vacation. This means that both
structures are usually not fully utilized most of the time in

0

25

50

75

100

0e+00 5e+06 1e+07
Cycles

O
cc

up
an

cy
 (

%
)

kmeans−h_LQ

0

25

50

75

100

0.0e+00 2.5e+07 5.0e+07
Cycles

O
cc

up
an

cy
 (

%
)

kmeans−l_LQ

0

25

50

75

100

0e+00 5e+06 1e+07
Cycles

O
cc

up
an

cy
 (

%
)

kmeans−h_ROB

0

25

50

75

100

0.0e+00 2.5e+07 5.0e+07
Cycles

O
cc

up
an

cy
 (

%
)

kmeans−l_ROB

0

25

50

75

100

0e+00 5e+06 1e+07
Cycles

O
cc

up
an

cy
 (

%
)

kmeans−h_SQ

0

25

50

75

100

0.0e+00 2.5e+07 5.0e+07
Cycles

O
cc

up
an

cy
 (

%
)

kmeans−l_SQ

Occupancy Mean Occupancy SD Occupancy Max

0

25

50

75

100

0e+00 1e+07
Cycles

O
cc

up
an

cy
 (

%
)

vacation−h_LQ

0

25

50

75

100

0e+00 5e+06 1e+07
Cycles

O
cc

up
an

cy
 (

%
)

vacation−l_LQ

0

25

50

75

100

0e+00 1e+07
Cycles

O
cc

up
an

cy
 (

%
)

vacation−h_ROB

0

25

50

75

100

0e+00 5e+06 1e+07
Cycles

O
cc

up
an

cy
 (

%
)

vacation−l_ROB

0

25

50

75

100

0e+00 1e+07
Cycles

O
cc

up
an

cy
 (

%
)

vacation−h_SQ

0

25

50

75

100

0e+00 5e+06 1e+07
Cycles

O
cc

up
an

cy
 (

%
)

vacation−l_SQ

Occupancy Mean Occupancy SD Occupancy Max

Fig. 2. Occupancy levels in microarchitectural OoO structures while running
kmeans and vacation. The occupation is shown as a percentage of the total
structure’s size.



1.00

1.25

1.50

ge
no

m
e

in
tru

de
r

km
ea

ns
−h

km
ea

ns
−l

la
by

rin
th

ss
ca

2

va
ca

tio
n−

h

va
ca

tio
n−

l

ya
da

Benchmark

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

rob_lq_sq
192, 72, 56
96, 72, 56
39, 72, 56
192, 46, 56
192, 6, 56
192, 72, 28
192, 72, 7

Fig. 3. Results of changing the OoO structures size executing STAMP applications. This figure shows performance expressed in cycles to execute the
application. Results are normalized to the base configuration and all experiments are run with 4 cores.

0.0

0.5

1.0

ge
no

m
e

in
tru

de
r

km
ea

ns
−h

km
ea

ns
−l

la
by

rin
th

ss
ca

2

va
ca

tio
n−

h

va
ca

tio
n−

l

ya
da

Benchmark

N
or

m
al

iz
ed

 a
m

ou
nt

 o
f a

bo
rt

s

rob_lq_sq
192, 72, 56
96, 72, 56
39, 72, 56
192, 46, 56
192, 6, 56
192, 72, 28
192, 72, 7

Fig. 4. Results of changing the OoO structures size executing STAMP applications. This figure shows contention expressed in aborts produced during
execution. Results are normalized to the base configuration and all experiments are run with 4 cores.

these benchmarks. Additionally, different phases during the ex-
ecution of kmeans are visible, with the LQ being used slightly
more during the first half of its execution. Furthermore, we can
see that the ROB follows the same occupation pattern as the
LQ, while the SQ shows the opposite pattern as the LQ.

B. Analysis with varying LQ, SQ and ROB sizes

Figures 3 and 4 show, respectively, normalized execution
time and number of aborts, when varying the number of ROB,
LQ and SQ entries, relative to our baseline OoO core. Note
that, for easier comparison across all configurations, ROB size
is deliberately not adjusted to match the changes in SQ and
LQ sizes. The figures show that halving the SQ size seems
to have little to no effect on the execution time. Performance
losses begin to appear when reducing SQ size to only 7 entries.
In most cases, like genome, kmeans, ssca2 and vacation, the
performance loss is less than 5%, while it is higher in others
like yada, labyrinth and intruder, which are the benchmarks
that have both larger write sets and highest contention. This
happens because we reduce the size of the structure further
than the average occupation seen in section IV-A. The lack of
room in the store buffer causes stalls when trying to dispatch
new stores, increasing the time to finish transactions and hence
enlarging the vulnerability window, having the same effect as
observed in Fig. 1.

Reducing LQ size from 72 to 46 entries barely harms per-
formance in any of the considered benchmarks. This confirms
the results from section IV-A where we saw that the maximum
occupation level of the LQ was about 60%. Reducing the LQ
size to 6 entries decreases the number of aborts produced
in intruder, kmeans, and ssca2, but despite discarding less
speculative work, execution time increases in all benchmarks
as a result of exploiting less available ILP. The slowdown is
more pronounced in kmeans and ssca2 than in intruder, as
the former spends most of its execution in non-transactional
code. The degradation in labyrinth and yada comes from the
longer duration of each non-speculative transaction executed,
as these benchmarks often resort to the fallback lock due to
both contention and capacity limits. In general, we can see
that reducing ROB size to 39 entries brings a similar pattern
in terms of aborts and execution time as reducing the LQ size
to 6 entries.

Because kmeans has small transactions that touch a handful
of cache blocks in a read-modify-write fashion, the more
aggressive the out-of-order pipeline is, the more contention
we have as more conflicting memory accesses to such blocks
can be in flight at a given moment, while we saw in Fig. 1
that the in-order CPU model suffered significantly less aborts
as a result of having at most one memory access per core in
flight. However, the penalty in execution time of being able to



0.00

0.25

0.50

0.75

1.00

ge
no

m
e

in
tru

de
r

km
ea

ns
−h

km
ea

ns
−l

la
by

rin
th

ss
ca

2

va
ca

tio
n−

h

va
ca

tio
n−

l

ya
da

Benchmark

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e
nprocs_rob_lq_sq

4, 38, 14, 11
4, 56, 21, 16
4, 96, 46, 28
4, 192, 72, 56
4, 220, 100, 84
16, 38, 14, 11
16, 56, 21, 16
16, 96, 46, 28
16, 192, 72, 56
16, 220, 100, 84

Fig. 5. Relative execution time for five core configuration in 4- and 16-core systems, matching the thread and core counts. Results are normalized to the
4-core system with the simplest core configuration.

0.5

1.0

1.5

2.0

2.5

3.0

ge
no

m
e

in
tru

de
r

km
ea

ns
−h

km
ea

ns
−l

la
by

rin
th

ss
ca

2

va
ca

tio
n−

h

va
ca

tio
n−

l

ya
da

Benchmark

N
or

m
al

iz
ed

 a
m

ou
nt

 o
f a

bo
rt

s

nprocs_rob_lq_sq
16, 38, 14, 11
16, 56, 21, 16
16, 96, 46, 28
16, 192, 72, 56
16, 220, 100, 84

Fig. 6. Relative number of aborts for five core configurations in the 16-core system, normalized to the simplest core configuration.

0.5

1.0

1.5

2.0

2.5

3.0

ge
no

m
e

in
tru

de
r

km
ea

ns
−h

km
ea

ns
−l

la
by

rin
th

ss
ca

2

va
ca

tio
n−

h

va
ca

tio
n−

l

ya
da

Benchmark

Fa
llb

ac
k 

lo
ck

 a
cq

ui
si

tio
ns

nprocs_rob_lq_sq
16,38,14,11
16,56,21,16
16,96,46,28
16,192,72,56
16,220,100,84

Fig. 7. Relative number of acquisitions of the fallback lock for five core configurations in the 16-core system, normalized to simplest core configuration.

exploit less ILP is lower in kmeans-h as a result of its much
smaller fraction in non-transactional code than kmeans-l.

Interestingly, we see that a benchmark like vacation does
not see its execution time affected nor a change in the number
of aborts seen, in spite of important reductions in ROB, LQ or
SQ sizes. Together with the low occupation shown earlier, this
points to the out-of-order pipeline being poorly utilized which
in turn could be an indication of scarcely available ILP or
frequent misses whose latency cannot be hidden by the OoO
engine.

C. Analysis with varying thread count

In the previous subsection, we varied the size of key proces-
sor structures while keeping the system size fixed to 4 cores.
In this subsection, we will compare results as contention levels
increase as a result of running a higher thread count in a larger
system (16 cores). In Fig. 5 we can see relative execution time
running 4 and 16 threads, for five different core configurations
of increasing complexity (larger structures), normalized to
the 4-thread configuration of lowest core complexity. On its
part, Figs. 6 and 7 show the relative number of aborts and



fallback lock acquisitions, respectively, for the same five core
configurations when running 16 threads, again normalized to
the configuration with the simplest core.

We can see in Fig. 5 that benchmarks such as labyrinth
and yada do not reduce their execution time when moving
to 16 threads, in both cases largely due to high contention
affecting long-running transactions, but also partly because
of capacity aborts suffered due to the large write sets of
their main transaction. In particular, labyrinth is one of the
benchmarks from the STAMP suite that shows the worst
scalability on best-effort HTM systems, a direct consequence
of its huge write set (a local copy of a shared matrix of
tens of kilobytes is performed inside the transaction) that
makes transactions fail due to insufficient cache capacity.
Furthermore, without hardware support for early release [31]
it becomes impossible for any transaction in labyrinth to make
progress without aborting all other concurrent transactions (as
its main transaction fully reads the shared data structure which
gets eventually modified in the same transaction).

This behavior leads to useful work being made almost ex-
clusively while all threads but one are waiting on the fallback
lock, while one executes non-speculatively to escape capacity
limits and avoid livelock situations. We see that employing a
more aggressive core improves execution time by accelerating
the serialized execution of a transaction holding the fallback
lock, but the efficiency of parallel execution is very poor.
The same considerations apply to yada, though in this case,
write capacity is not the dominant cause of aborts, but rather
the high contention coupled with the friendly-fire pathology
brought by the requester-wins policy of the underlying HTM
system. Although neither benchmark improves with higher
thread counts, we can see that labyrinth benefits more than
yada from running on aggressive cores: execution time in
labyrinth is reduced by 25% when using the most complex
core, compared to the results seen for the least complex core,
while in yada the reduction is about 12%. This is a clear
indication that labyrinth exhibits more ILP available than yada,
likely a consequence of the regular computations performed
on a matrix during the path expansion phase of labyrinth’s
main transaction, in which an aggressive core can shine due
to highly accurate branch predictions and data dependencies
not being carried across to the next loop iteration.

In the opposite end in terms of contention we find both
versions of vacation, ssca2 and kmeans-l: these are the ap-
plications from STAMP that scale best in a best-effort HTM
system. Their low to medium contention level translates into
good scaling up to 16 cores, very close to the ideal speedup.
In the case of vacation, increasing the size of OoO structures
does not improve performance, unlike in kmeans-l or ssca2,
which indicates that vacation does not exhibit enough ILP to
benefit from complex cores, partly owing to the irregular data
structures it employs (red-black trees of linked lists). Though
both kmeans-l, ssca2 as well as vacation show a similar trend
in scalability, their characteristics are very different from each
other: short-running transactions and a large non-transactional
fraction of its execution in kmeans and ssca2, versus vacation’s

long-running transactions that span most of the execution time.
Because most of the execution is non-transactional, the 3X
increase in the number of aborts and 2.5X in the number of
fallback acquisitions seen in kmeans-l for the most complex
core does not translate into any slowdown in execution: the
penalty is made up by the ability to exploit more ILP in
other phases of its execution, such as the calculation of cluster
centers, which does not require synchronization. In ssca2, the
number of aborts is negligible in the baseline configuration,
and thus a 2-3X or even higher increase does not have any
impact on execution time; on the contrary, more complex cores
bring additional gains in execution time by exploiting more
ILP. Ssca2 operates on a large, directed, weighted multi-graph,
and the adjacency list of subsequent vertices in the graph can
be inspected in parallel, without carrying data dependencies
across loop iterations. It is worth noticing how in kmeans-
l the improvement in execution time when moving from the
simplest core to the most aggressive one is more pronounced
in the 4-core system (nearly 40% improvement) than with 16
cores (around 20%). In contrast, in ssca2 aggressive cores
seem to improve performance similarly regardless of the
thread/core count.

Fig. 6 also shows that a more aggressive CPU can bring in
certain cases the opposite effect seen for kmeans-l and ssca2: a
reduction in the number of aborts. Such is the case of intruder,
and to a lesser degree genome and labyrinth. In intruder, we
can see the direct effect of micro-architectural modifications
with varying levels of contention. While Fig. 5 shows that
when running intruder with 4 threads the aggressiveness of the
core barely impacts its execution time (flat beyond a 56-entry
ROB, in a similar trend to that of vacation), when executed
with 16 threads we see a notable reduction in execution time
as the core becomes more and more aggressive: the 192-entry
ROB configuration obtains much better results compared to
the simpler core that has only 38 entries in the ROB. This
can be explained by the fact that intruder resorts much more
frequently to the fallback path with 16 threads than with 4.
Thus, having a more powerful core to run non-speculative
transactions as fast as possible is beneficial, as all other threads
are blocked until the fallback lock is released, as was the
case for labyrinth. Interestingly, as it can be seen in Fig. 6
and Fig. 7, in the case of intruder, a more aggressive core
can slightly reduce the number of aborts and consequently
the number of fallback acquisitions in comparison to thinner
cores.

V. CONCLUSION

In this work, we analyzed the interactions between the
mechanisms implemented by contemporary OoO cores to
exploit ILP, and the HTM support aimed at exploiting TLP at
a lower programming complexity. Our analysis confirms that
when the execution of transactional workloads exhibits low
contention, performance improvements achieved by increasing
the number of threads/cores to exploit more TLP exceed the
gains that can be attained by more complex OoO cores by
extracting more ILP. This work quantitatively shows that,



in the case of lightly contended workloads, integrating a
higher number of simpler OoO cores on a chip under a given
transistor budget can provide better throughput and result in
higher efficiency than opting for fewer cores with a more
aggressive microarchitecture. On the other hand, in workloads
with high contention, performance improvements brought by
more aggressive OoO pipelines are of importance, as more
complex ILP cores can accelerate execution in two ways: i) by
reducing friendly-fire aborts in a requester-wins HTM system
(as the window of vulnerability is shrunk as transaction take
fewer cycles to complete), and ii) by reducing the synchro-
nization overhead due to threads waiting on the fallback lock
to be released to resume parallel execution. An interesting
observation in this study is that, under certain conditions
and workload characteristics, reducing the aggressiveness of
the processing cores may lead to higher contention. Finally,
our analysis also reveals that the load and store queues (LQ
and SQ) are often underutilized when executing transactional
workloads. This result suggests that proper management of the
sizes of the LQ and SQ during HTM execution could bring
considerable energy savings to HTM implementations.

REFERENCES

[1] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton,
R. Silvera, and M. Michael, “Evaluation of blue gene/q hardware support
for transactional memories,” in Proceedings of the 21st International
Conference on Parallel Architectures and Compilation Techniques, ser.
PACT ’12. Association for Computing Machinery, 2012, p. 127–136.

[2] “Intel xeon e7-4809 specification sheet,”
https://ark.intel.com/content/www/es/es/ark/products/84676/intel-
xeon-processor-e7-4809-v3-20m-cache-2-00-ghz.html, 2015, accessed:
21/05/2021.

[3] “Arm transactional memory extensions documentation.”
https://developer.arm.com/documentation/101028/0012/16–
Transactional-Memory-Extension–TME–intrinsics, 2020, accessed:
27/09/2021.

[4] A.-R. Adl-Tabatabai, C. Kozyrakis, and B. Saha, “Unlocking
concurrency: Multicore programming with transactional memory,”
Queue, vol. 4, no. 10, p. 24–33, Dec. 2006. [Online]. Available:
https://doi.org/10.1145/1189276.1189288

[5] M. Herlihy and J. E. B. Moss, “Transactional memory: Architectural
support for lock-free data structures,” in Proceedings of the 20th Annual
International Symposium on Computer Architecture, May 1993, pp. 289–
300.

[6] M. M. Waliullah and P. Stenstrom, “Intermediate checkpointing with
conflicting access prediction in transactional memory systems,” in
Proceedings of the 22nd IEEE International Parallel and Distributed
Processing Symposium, April 2008.

[7] R. Titos-Gil, A. Negi, M. E. Acacio, J. M. Garcı́a, and P. Stenstrom,
“Zebra: Data-centric contention management in hardware transactional
memory,” IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 5, pp. 1359–1369, 2014.

[8] S. Sanyal, S. Roy, C. A., O. S. Unsal, and M. Valero, “Clock gate
on abort: Towards energy-efficient hardware transactional memory,” in
2009 IEEE International Symposium on Parallel Distributed Processing,
2009, pp. 1–8.

[9] M. Lupon, G. Magklis, and A. González, “A dynamically adaptable
hardware transactional memory,” in 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, 2010, pp. 27–38.

[10] J. Shen and M. H. Lipasti, Modern Processor Design: Fundamentals
of Superscalar Processors, ser. Electrical and Computer Engineering.
McGraw-Hill Companies,Incorporated, 2005. [Online]. Available:
https://books.google.es/books?id=Nibfj2aXwLYC

[11] S. Lee, Design of Computers and Other Complex
Digital Devices. Prentice Hall, 2000. [Online]. Available:
https://books.google.es/books?id=xgtTAAAAMAAJ

[12] J. Ortega-Lopera, M. Anguita-López, and A. Prieto-Espinosa,
Arquitectura de computadores. Thomson, 2005. [Online]. Available:
https://books.google.es/books?id=6WlSsQFBfNcC

[13] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantita-
tive Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2019.

[14] I. Park, C. L. Ooi, and T. Vijaykumar, “Reducing design complexity
of the load/store queue,” in Proceedings. 36th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, 2003. MICRO-36. IEEE,
2003, pp. 411–422.

[15] D. Kanter, “Analysis of haswell’s transactional memory.”
https://www.realworldtech.com/haswell-tm/3/ , 2012, accessed:
25/05/2021.

[16] R. Rajwar, “Speculation-based techniques for transactional lock-free
execution of lock-based programs,” Ph.D. dissertation, Citeseer, 2002.

[17] T. Harris, J. Larus, and R. Rajwar, Transactional Memory, 2nd Edition,
2nd ed. Morgan and Claypool Publishers, 2010.

[18] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, p. 422–426, Jul. 1970. [Online].
Available: https://doi.org/10.1145/362686.362692

[19] R. Titos-Gil, R. Fernández-Pascual, A. Ros, and M. E. Acacio, “Concur-
rent irrevocability in best-effort hardware transactional memory,” IEEE
Transactions on Parallel and Distributed Systems, vol. 31, no. 6, pp.
1301–1315, 2019.

[20] R. Guerraoui, M. Herlihy, M. Kapalka, and B. Pochon, “Robust con-
tention management in software transactional memory,” in Proceedings
of the OOPSLA 2005 Workshop on Synchronization and Concurrency in
Object-Oriented Languages (SCOOL’05), ser. OOPSLA ’05, no. CONF,
2005.

[21] G. Blake, R. G. Dreslinski, and T. Mudge, “Proactive transaction
scheduling for contention management,” in Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO 42. Association for Computing Machinery, 2009, p. 156–167.

[22] R. Guerraoui, M. Herlihy, and B. Pochon, “Polymorphic contention
management,” in International Symposium on DIStributed Computing.
Springer, 2005, pp. 303–323.

[23] D. Ponomarev, G. Kucuk, and K. Ghose, “Reducing power requirements
of instruction scheduling through dynamic allocation of multiple data-
path resources,” in Proceedings. 34th ACM/IEEE International Sympo-
sium on Microarchitecture. MICRO-34, 2001, pp. 90–101.

[24] D. Sylvester and H. Kaul, “Power-driven challenges in nanometer
design,” IEEE Design Test of Computers, vol. 18, no. 6, pp. 12–21,
2001.

[25] G. Dimova, M. Marinova, and V. Lazarov, “Performance evaluation
of heterogeneous microprocessor architectures,” Journal of Information
Technologies and Control, vol. YEAR X No. 3, pp. 31–36, 01 2012.

[26] H. M. Mathis, A. E. Mericas, J. D. McCalpin, R. J. Eickemeyer, and
S. R. Kunkel, “Characterization of simultaneous multithreading (smt)
efficiency in power5,” IBM Journal of Research and Development,
vol. 49, no. 4.5, pp. 555–564, 2005.

[27] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, no. 2,
pp. 1–7, 2011.

[28] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A. Alameldeen,
K. Moore, M. Hill, and D. Wood, “Multifacet’s general execution-
driven multiprocessor simulator (gems) toolset,” SIGARCH Computer
Architecture News, vol. 33, pp. 92–99, 11 2005.

[29] L. Yen, J. Bobba, M. Marty, K. Moore, H. Volos, M. Hill, M. Swift,
and D. Wood, “Logtm-se: Decoupling hardware transactional memory
from caches,” in 2007 IEEE 13th International Symposium on High
Performance Computer Architecture, 01 2007, pp. 261–272.

[30] Chi Cao Minh, JaeWoong Chung, C. Kozyrakis, and K. Olukotun,
“Stamp: Stanford transactional applications for multi-processing,” in
2008 IEEE International Symposium on Workload Characterization,
2008, pp. 35–46.

[31] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III, “Software
transactional memory for dynamic-sized data structures,” in Proceedings
of the twenty-second annual symposium on Principles of distributed
computing, 2003, pp. 92–101.


