BOOSTING DATA CENTERS PERFORMANCE WITH THE ENTANGLING INSTRUCTION PREFETCHER

Alberto Ros

University of Murcia, Spain

Dec 2, 2021

DATA CENTERS

- Data centers serve most devices
 - Internet of things, smartphones, self-driving cars, ...
 - Energy costs expected to reach 8% of the global consumption by 2030¹

Dec 2, 2021

2/1

¹ Andrae et al. *On Global Electricity Usage of Communication Technology: Trends to 2030*. Callenges 2015.

DATA CENTERS

- Data centers serve most devices
 - Internet of things, smartphones, self-driving cars, ...
 - Energy costs expected to reach 8% of the global consumption by 2030¹
- They run increasingly complex applications
 - Deep software stacks

2/1

¹ Andrae et al. *On Global Electricity Usage of Communication Technology: Trends to 2030*, Callenges 2015.

DATA CENTERS

- Data centers serve most devices
 - Internet of things, smartphones, self-driving cars, ...
 - Energy costs expected to reach 8% of the global consumption by 2030¹
- They run increasingly complex applications
 - Deep software stacks
- Instruction footprint constantly growing
 - Far from fitting in small instruction caches (L1I)
 - And growing by 20% per year!²

² Kanev et al. *Profiling a warehouse-scale computer*, ISCA 2015.

¹ Andrae et al. *On Global Electricity Usage of Communication Technology: Trends to 2030*, Callenges 2015.

DATA CENTERS BOTTLENECKS3

³ Ayers et al. AsmDB: Understanding and Mitigating Front-End Stalls in Warehouse-Scale Computers, ISCA 2019.

Dec 2, 2021

3/1

Alberto Ros 6th HotDC, Beijing

DATA CENTERS BOTTLENECKS

FRONT-END LATENCY (13.8%)

- Dominated by instruction cache (L1I) misses
 - Hiting in the second level cache (L2) or last level cache (LLC)
- Latency more important than bandwidth
- Critical as processors need to keep the pipeline full

BACK-END MEMORY (20.5%)

- Due to data cache (L1D) misses
 - Many of them reaching main memory
- Cause significant stalls and late detection of BAD SPECULATION (15.4%)

PREFETCHING TO THE RESCUE

- High-performance processors would need a very large memory with a low access latency
- This is not possible due to technology limitations
- Computer architects already came with a solution to this problem: prefetching

PREFETCHING TO THE RESCUE

- High-performance processors would need a very large memory with a low access latency
- This is not possible due to technology limitations
- Computer architects already came with a solution to this problem: prefetching

PREFETCHING

Predict which memory addresses will be accessed by the processor and fetch them before the processor requests them

• Two prefetchers with a strong focus on timeliness

- Two prefetchers with a strong focus on timeliness
 - The BL∪E Data Prefetcher⁴
 - An LLC prefetcher
 - Winner of the 1st ML-based Data Prefetching Competition
 - Organized by Google
 - With a non-ML solution!

7/1

⁴ Ros, *BL*∪*E: A Timely, IP-based Data Prefetcher*, ML-DPC-1 2021

- Two prefetchers with a strong focus on timeliness
 - The BL∪E Data Prefetcher⁴
 - An LLC prefetcher
 - Winner of the 1st ML-based Data Prefetching Competition
 - Organized by Google
 - With a non-ML solution!
 - 2 The Entangling Intruction Prefetcher⁵
 - An L1I prefetcher
 - Winner of the 1st Instruction Prefetching Championship
 - Organized by Intel
 - Follow up paper published at ISCA'21

7/1

⁴ Ros, BL∪E: A Timely, IP-based Data Prefetcher, ML-DPC-1 2021

⁵ Ros and Jimborean, *The Entangling Instruction Prefetcher*, IPC-1 2020

THE ENTANGLING INSTRUCTION PREFETCHER

- Server and cloud apps getting larger, far from fitting in L1I
 - ⇒ stalls processor front-end, performance degradation

THE ENTANGLING INSTRUCTION PREFETCHER

- Server and cloud apps getting larger, far from fitting in L1I
 - ⇒ stalls processor front-end, performance degradation
- Prefetching instructions is fundamental for performance
 - Even when a decoupled front-end is implemented

THE ENTANGLING INSTRUCTION PREFETCHER

- Server and cloud apps getting larger, far from fitting in L1I
 - ⇒ stalls processor front-end, performance degradation
- Prefetching instructions is fundamental for performance
 - Even when a decoupled front-end is implemented
- Solution: The Entangling instruction prefetcher⁶
 - Entangling: adaptive correlation based on latency
 - A cost-effective prefetcher
 - Prefetcher code is available⁷

⁶ Ros and Jimborean, *A Cost-Effective Entangling Prefetcher for Instructions*, ISCA 2021

⁷ https://github.com/alberto-ros/EntanglingInstructionPrefetcher

9/1

· access a · access b prefetch 1 access c access d · access e fill access 1 hit done

```
· access a
    (access b)
prefetch 1
     access c
    access d
    · access e
   fill
access 1
   hit
  done
```


Quantum entanglement
(Image: © MARK GARLICK/SCIENCE
PHOTO LIBRARY/Getty)

Quantum entanglement
(Image: © MARK GARLICK/SCIENCE
PHOTO LIBRARY/Getty)

THE ENTANGLING PREFETCHER FOR INSTRUCTIONS

WHAT TO PREFETCH ON AN ACCESS TO a?

Alberto Ros

• Too much? (Max entangled = 6, Max BB size = 64)

- Too much? (Max entangled = 6, Max BB size = 64)
 - Most of the time no prefetches are issued (no head of basic block)
 - Average number of prefetches per access to head of basic block ranging from ≈ 9 to ≈ 17
 - Remember: Front-end latency more imporant than bandwidth⁸

Alberto Ros 6th HotDC, Beijing Dec 2, 2021 12 / 1

⁸ Kanev et al. *Profiling a warehouse-scale computer*, ISCA 2015.

DESIGN OF THE ENTANGLING PREFETCHER

DESIGN OF THE ENTANGLING PREFETCHER

13 / 1

DESIGN OF THE ENTANGLING PREFETCHER - ISSUING PREFETCHES

DESIGN OF THE ENTANGLING PREFETCHER - ISSUING PREFETCHES

Design of the Entangling Prefetcher - Fixing

LATE PREFETCHES

DESIGN OF THE ENTANGLING PREFETCHER - FIXING LATE PREFETCHES

Update entangled destination (d_x)

Alberto Ros

access a

prefetch 1

access 1

miss

done

DESIGN OF THE ENTANGLING PREFETCHER -

CONFIDENCE FOR ENTANGLED PAIRS

DESIGN OF THE ENTANGLING PREFETCHER - CONFIDENCE FOR ENTANGLED PAIRS

DESIGN OF THE ENTANGLING PREFETCHER

COMPRESSING DESTINATIONS

m		destination	conf
Mode 1	3	58	2

COMPRESSING DESTINATIONS

	m		conf				
Mode 1	3		58 2				
	m	dst	COI	nf dst	conf		
Mode 2	3	28	2	28	2		

COMPRESSING DESTINATIONS

METHODOLOGY

- ChampSim develop branch (nov 2020)
- Baseline:
 - Sunny Cove-like system
 - Decoupled front-end (64-entry fetch queue)
 - 32KB L1I
- ENTANGLED:
 - History buffer: 16 entries
 - Entangled table: 2K, 4K and 8K entries
- Applications
 - 959 traces from the Championship Value Prediction (provided by Qualcomm)
 - Cloud Suite
- Analysis both for virtual and physical prefetching

16 / 1

16 / 1

CONCLUDING REMARKS

- Data centers need good prefeteching techniques
- Timeliness as a key property for a prefetcher
- Entangle heads of basic blocks to trigger timely prefetches
- Near ideal L1I performance with just 40KB

BOOSTING DATA CENTERS PERFORMANCE WITH THE ENTANGLING INSTRUCTION PREFETCHER

Alberto Ros

aros@ditec.um.es

Thank you!

ECHO, ERC Consolidator Grant (No 819134)

Alberto Ros 6th HotDC, Beijing

18 / 1