Espacios Métricos Booleanos

Antonio Avilés Lopez

Tesina de Licenciatura

DEPARTAMENTO DE MATEMATICAS

UNIVERSIDAD DE MURCIA
2002



D. Juan Martinez Hernandez

CERTIFICA
que la presente memoria con titulo ESPACIOS METRICOS BOOLEANOS

ha sido realizada bajo su direccién por el licenciado en Mateméticas Anto-
nio Avilés Lépez y constituye su tesina.

Y para que asi conste, en cumplimiento de la legislacion vigente, firmo la
presente en Murcia, a 22 de julio de 2002

V°B® Juan Martinez Herndndez



D. José Luis Garcia Hernandez, director del Departamento de Ma-
tematicas de la Universidad de Murcia,

CERTIFICA

que la presente memoria con titulo ESPACIOS METRICOS BOOLEANOS
ha sido realizada por el licenciado en Matematicas Antonio Avilés Lopez
y constituye su tesina.

Y para que asi conste, en cumplimiento de la legislacion vigente, firmo la
presente en Murcia, a 22 de julio de 2002

V°B° José Luis Garcia Hernandez



Quiero mostrar mi agradecimiento a mi director, Juan Martinez Hernén-
dez, asi como a los profesores Matias Raja Bano y Manuel Saorin Castano,
que, de diferentes maneras, me han ayudado en la realizacion de esta memo-
ria.



Indice General

0 Preliminares

0.1 Terminologia y notaciéon béasicas . . . . . . . . . .. ... ...
0.2 AnillosdeBoole . . . . . . ... ... ... .. ... ...
0.3 Anillos regulares . . . . .. ..o

1 Espacios métricos booleanos
1.1 Definiciéon y ejemplos . . . . . . ...
1.2 Combinaciones convexas . . . . . . . . . . . . .. ...
1.3 Elespacio B . . . . . . . . . ... ..

2 Ortogonalidad en FGC-espacios
2.1 Sistemas de referencia . . . . ... ..o
2.2 Sumas ortogonales . . . . ... ..o
2.3 Representacion matricial . . . . . .. ...

3 Geometria algebraica sobre FGC-anillos

4 Estructura de los FGC-anillos
4.1 Caracterizaciones de los FGC-anillos . . . . . . ... ... ..
4.2 Envolturas booleanas de anillos . . . . . . ... ... ... ..
4.3 Teorema de estructura para FGC-anillos . . . . ... ... ..

5 Teorema de estructura para FGC-espacios
6 Extension de aplicaciones contractivas

7 Dualidad

8 Aplicacion a la topologia

9 Espacios acotados

13
14
17
21

24
25
29
33

36

42
42
45
47

51

56

66

71

74



Introduccion

En un primer momento, el objetivo de este trabajo es el estudio de las ecua-
ciones booleanas, en las que las incognitas y constantes son conjuntos y las
operaciones que las relacionan son las operaciones conjuntistas (unién, in-
terseccion y diferencia), o, mas en general, el estudio de las aplicaciones
polinémicas (es decir, las que admiten una expresién en términos de opera-
ciones conjuntistas) de P(2)" en P(Q2)™ donde P(2) son las partes de un
conjunto §2. El problema se puede plantear en terminos mas generales para
un anillo de Boole, que no es mas que un conjunto en el que tenemos defini-
das operaciones +, - y V y un orden < cumpliendo las mismas propiedades
aritméticas que las operaciones conjuntistas A, Ny U y el orden de la inclu-
sién respectivamente, cumpliéndose que (B, +, ) es un anillo (el simbolo A
representa la diferencia simétrica de conjuntos, a Ab = (a\ b) U (b\ a)).

La clave para el desarrollo que seguiremos es el siguiente teorema, donde
la distancia entre dos tuplas se define como d(z,y) = \/lf(:cz +y;) € B para
v=(v1,...,7),y = (y1,...,u) € B~.

Teorema 1 Sea B un anillo de Boole y f : B" — B™. Son equivalentes:
1. f es polinomica.
2. d(f(z), fly)) < d(x,y) para cada z,y € B".

3. fO0 aii) = Y1 aif(x;) para cualesquiera xq,...,xs € B™ y cuales-
quiera ay,...,as € B con Zi a; =1y aa; =0 cuando i # j.

Las distintas implicaciones se hallan probadas, en contextos mas genera-
les, en el Teorema 1.15 (2 < 3), el Lema 1.28 (1 = 3) y el Teorema 1.29
(3=1).

La aplicacion d : B* x B¥ — B satisface las propiedades formales de
una distancia:

1. d(z,y) =0siy solosixz=y.



2. d(z,y) = d(y, z).
3. d(z,z) < d(x,y) Vdy,=z).

Esto sugiere el siguiente punto de partida para nuestro estudio: Conside-
rar espacios (X, d) donde d : X x X — B satisface los axiomas 1,2 y 3 (esto
es lo que llamaremos un espacio métrico booleano sobre B) y aplicaciones
entre estos espacios que reduzcan distancias (aplicaciones contractivas).

Si nos fijamos ahora en la condicién 3 del teorema, ésta viene a decir que
una aplicacién es polinémica si y sélo si conmuta con combinaciones lineales
en las que los coeficientes forman una particiéon (esto es lo que llamamos
combinaciones convexas). Esta caracterizaciéon es importante, porque per-
mite utilizar métodos analogos a los usados, por ejemplo, en algebra lineal.
Pudiera parecer que esta herramienta se pierde al pasar al contexto general
de los espacios métricos pero no es asi, porque en un espacio métrico sobre B
estan definidas de manera intrinseca las combinaciones convexas y las apli-
caciones entre espacios métricos que conmutan con combinaciones convexas
son exactamente las que reducen distancias.

Lo anteriormente expuesto constituye el contenido del capitulo 1. Como
referencia en el campo de las ecuaciones booleanas podemos citar [12], donde,
aunque se demuestra la equivalencia de 1y 3 en el Teorema 1 (Teorema 4.6),
se utiliza s6lo como un resultado auxiliar y no como fundamento basico de
la teoria. En cuanto a los espacios métricos booleanos, fueron introducidos
en algunos algunos trabajos en los anos 50 y 60 como [3],[2] y [8], en los que
se traté de trasladar a estos espacios los problemas clasicos de la geometria
de los espacios métricos reales. En general, el espiritu de esos trabajos estéa
bastante alejado del de esta memoria, con dos excepciones: los articulos [13]
y [9] sobre la geometria booleana de los p-anillos. Algunos de nuestros resul-
tados constituyen generalizaciones de los obtenidos por Zemmer y Melter.

En el capitulo 2, se profundiza en el estudio de un tipo particular de
espacios métricos booleanos: los FGC-espacios, que son aquéllos para los
que existe un subconjunto finito de tal modo que el espacio esta formado
por todas las combinaciones convexas de elementos de ese conjunto (esto es,
poseen un subconjunto generador finito). Los espacios B" son de este tipo.
La idea aqui sera encontrar subconjuntos generadores adecuados, llamados
referenciales, de tal manera que cada elemento del espacio se exprese de ma-
nera unica (en cierto sentido) como combinacién convexa de los elementos
del referencial. Esto permite introducir coordenadas.



En el capitulo 3, se generaliza el Teorema 1 para una clase de anillos, que
incluye a los anillos de Boole, que hemos llamado FGC-anillos. De hecho
se prueba que la categoria de variedades algebraicas sobre un FGC-anillo es
equivalente a la categoria de FGC-espacios sobre un anillo de Boole. Mas
concretamente, si A es un FGC-anillo, entonces A" tiene estructura natural
de espacio métrico sobre un anillo de Boole y entonces un subconjunto V'
de A™ es una variedad algebraica (el conjunto de soluciones de una canti-
dad finita de ecuaciones polinémicas) si y sélo si es un FGC-espacio y una
aplicacion entre variedades algebraicas es una aplicacién polinémica si y sélo
reduce distancias.

En el capitulo 4, se hace una clasificaciéon completa de los FGC-anillos,
que habian aparecido en el capitulo 3, mostrandose que existe una biyeccion
entre las clases de isomorfismo de FGC-anillos y las “combinaciones lineales
formales” de clases de isomorfismo de cuerpos finitos con coeficientes clases
de isomorfismo de anillos de Boole.

En el capitulo 5, se da una clasificaciéon completa de los FGC-espacios
sobre un anillo de Boole (o lo que es lo mismo de las variedades algebraicas
sobre un FGC-anillo), mostrandose que existe una biyeccién entre las clases
de isometria de FGC-espacios sobre B y las cadenas decrecientes finitas de
elementos no nulos de B.

En el capitulo 6, se plantea el problema de cudndo una aplicacién con-
tractiva (repectivamente isometria) definida en un subespacio de un espacio
métrico booleano puede extenderse a una aplicacién contractiva (resp. iso-
metria) definida en todo el espacio.

En el capitulo 7, se identifica la categoria dual de la de FGC-espacios
sobre un anillo de Boole B con la categoria de las B-algebras booleanas fieles
finitamente presentadas como médulos. Identificando FGC-espacios con va-
riedades algebraicas sobre B, lo que se hard es asociar a cada variedad V' su
"éalgebra de coordenadas”’, el algebra de las funciones polinémicas de V en B.

En el capitulo 8, generalizamos el Teorema 1 al caso en el que B es el anillo
de las partes de un espacio topoldgico y las funciones que se consideran son
aquéllas que admiten una expresion en términos de operaciones conjuntistas
(en este caso admitimos que las uniones e intersecciones puedan ser infinitas)
y las funciones adherencia e interior. LLamando ¢ : P(Q2) — P(Q) a la
funcién adherencia y c-polindmicas a las funciones antes descritas el resultado
que se obtiene es el siguiente:



Teorema 2 Sea f:P(Q)" — P(Q). Son equivalentes:
1. f es c-polinomica.

2. d(f(z), f(y)) < cld(x,y)) para cada z,y € P(Q)™.

Finalmente, en el capitulo 9, se hace un intento de generalizar el teorema
de clasificacion obtenido en el capitulo 5 para FGC-espacios a una clase
mas general de espacios métricos booleanos, que llamamos espacios acotados.
Esta generalizacion resulta posible sélo para ciertos anillos de Boole, que
hemos denominado pequenos. Se discute la pequenez de algunos anillos de
Boole.



Capitulo 0

Preliminares

Introducimos aqui brevemente la notacién y terminologia que se empleara en
lo sucesivo. Asi mismo, se exponen algunos resultados elementales acerca de
los anillos de Boole y los anillos regulares, que serdan fundamentales en los
capitulos siguientes.

0.1 Terminologia y notacién basicas
Se denotard la diferencia simétrica de conjuntos como
AANAB:=(A\B)U(B\A).

Los anillos seran siempre conmutativos y con uno, mientras que los médulos
seran siempre unitarios. Como referencias bésicas en algebra conmutativa
pueden tomarse [1] y [6].

El ideal de un anillo A generado por los elementos a4, ..., a, se denotara
como Aay + -+ Aa, 6 (ay,...,a,).

El nilradical de un anillo A, N(A) = {z € A: 2" =0 para algin n € N}
es el conjunto de los elementos nilpotentes de A, que coincide con la inter-
seccién de los ideales primos de A. Un anillo se dice reducido si N(A) = 0.

Para un elemento & de un mdédulo M sobre el anillo A, el anulador de x

es Ann(z) = {a € A : ax = 0}.

Un elemento a de un anillo A se dice que es idempotente si a®> = a. El
conjunto de los elementos idempotentes de A se denotard por B(A). Una



familia completa de idempotentes ortogonales en A son ey, ..., e, € A idem-
potentes con e;e; = 0sii # jy Y,j e = 1. En este caso cada Ae; es un
anillo con neutro e; y se tiene una descomposicion A = Ae; X -+ - X Ae,.

0.2 Anillos de Boole

Definiciéon 0.1 Un anillo B se dice de Boole si todo elemento de B es idem-
potente.

De aqui en adelante, B sera siempre un anillo de Boole. Nétese que esto
implica que B tiene caracteristica 2 pues —1 = (—1)> = 1. Un ejemplo de
anillo de Boole es Z,. El producto arbitrario de anillos de Boole es anillo de
Boole, asi como el cociente de un anillo de Boole por un ideal, o un subanillo
de un anillo de Boole. Otro ejemplo, pues, lo constituyen anillos del tipo Z
y sus subanillos, que se pueden interpretar en el siguiente modo:

Proposicién 0.2 Sea Q2 un conjunto y P(S2) sus partes. Entonces la terna
(P(Q), A,N) constituye un anillo de Boole isomorfo a Z. Un subanillo de
P(Q2) es lo que denominaremos un anillo de conjuntos en §Q.

PRUEBA: Consideramos f : Z§ — P(Q) dada por f(z) = {w € Q:z, = 1}.
Esta aplicacion es biyectiva, como se comprueba inmediatamente viendo que
su inversa es g : P(Q) — Z$} dada por g(A4) = (xa(w))weq, donde x4 es la
funcién que vale 1 sobre A y 0 fuera de A. Es también inmediato verificar
que f(z +y) = f(x) & f(y) y flzy) = f(x) N f(y) para cada z,y € Z5. La
biyectividad de f y estas dos propiedades implican que (P(£2), A,N) es un
anillo de Boole y que f es un isomorfismo. O

Lema 0.3 Sea p un ideal primo de un anillo de Boole B. Entonces B/p =
Zs. En particular, p es mazrimal.

PRUEBA: B/p es un anillo de Boole, asi que para cada x € B/p se tiene
r(rx+1) = 2%+ 2 =0y como ademds B/p es un dominio, r =00x+1=0
para cada x € B. Asi pues B/p = {0,1} y por tanto B/p = Z,. El hecho de
que p sea maximal se sigue de que B/p = Zj es un cuerpo. 0]

Teorema 0.4 Todo anillo de Boole es isomorfo a un anillo de conjuntos.



PRUEBA: Basta ver que cada anillo de Boole B se sumerge en un anillo
del tipo Z$}. Consideramos 2 el conjunto de los ideales primos de B y el
homomorfismo de anillos f : B — [[ c B/p dado por f(z) = (= + p)peq-
Por el Lema 0.3 HpEQ B/p = Z$}, asf que basta probar que f es inyectivo. Si
x € ker f, entonces = esta en todos los ideales primos de B y por tanto es

nilpotente, y también idempotente por ser B anillo de Boole. Asi que x = 0.
O

En un anillo de conjuntos, ademas de las operaciones de diferencia simétrica
e interseccion, también podemos considerar la unién, la complementacion y
el orden dado por inclusién, que verifican:

e AUB=AABA(ANB).
o A°=AANQ.
e ACBsiysélosi A=ANB.

Estas relaciones nos permiten generalizar estas operaciones y relaciones
a anillos de Boole arbitrarios del siguiente modo:

Definicién 0.5 Sea B un anillo de Boole y a,b € B.
1. Definimos a Vb= a+ b+ ab.
2. Definimos a = a + 1.

3. Escribiremos a < b cuando se verifique ab = a.

Es claro que cualquier homomorfismo de anillos entre anillos de Boole
f : B — B’ preserva estas operaciones y el orden, es decir,

flavb) = f(a)V f(b);
f@) = f(a)
a<b = f(a) < f(b)

para cada a,b € B. Como, por el Teorema 0.4, todo anillo de Boole es
isomorfo a un anillo de conjuntos, deducimos que cualquier propiedad de
estas operaciones y relaciones valida para anillos de conjuntos, vale también
para anillos de Boole arbitrarios. Por ejemplo:

e La relaciéon < en B es una relacién de orden para la cual, el infimo de
ay besaby el supremo es a V b.



e La operacién (V) y el producto son mutuamente distributivas.
e a+b=ab+ ab para cada a,b € B.
Proposicién 0.6 Sean a,b € B. Son equivalentes:
1. a <b (es decir, ab = a).
2. ab=0.
3. a € Bb.
4. aB CbB.

PrRUEBA: Todas las implicaciones son inmediatas. 0

Proposicién 0.7 Sea R un subanillo finitamente generado de un anillo de
Boole B. Entonces R es finito.

PRUEBA: Hacemos induccion en n, el nimero de generadores de R. Para
n = 1, se tiene que el subanillo generado por a € B es {0,1,a,1 + a} que es
finito. Si R esta generado por n + 1 elementos, entonces R = R'[a] donde R’
estd generado por n elementos, y por hipotesis de induccién es finito. Ahora
bien, R = R'[a] = {b+ ca : b,c € R'}, luego si R’ es finito, también R lo es.
O

Proposicién 0.8 Sea [ C B un subconjunto no vacio de B. Son equivalen-
tes:

1. I es un ideal.

2. Para cada a,b € I, y cada c < a se tienece I, aVbel.

PRUEBA: Se sigue de las relaciones a +b = abVab, aVb=a+b+aby
c<a<cé€ Ba. O

Proposiciéon 0.9 Dadosx € B y K C B, x es el supremo de K si y solo si
es el supremo del ideal que genera.

PRUEBA: Basta ver que a € B es cota superior de K si y sélo si lo es de su
ideal generado BK. Si a es cota de K, entonces K esta contenido en el ideal
Ba, asi que BK C Ba y a es cota superior de BK. O



Proposicién 0.10 Todo anillo de Boole infinito posee un ideal no principal
cuyo supremo es 1.

PRUEBA: Obsérvese que si Bz es un ideal principal de B entonces {a,a} es
una familia completa de idempotentes ortogonales de B y B = Ba ¢ Ba.
Mas en general, siempre que ab = 0 se tendrd B(a V b) = Ba & Bb. De aqui
deducimos que si Ba es infinito entonces existe b < a con Bb infinito (basta
tomar 0 < ¢ < a 'y como Ba = Bc @ Bac es infinito, o bien Bc es infinto
o bien Bac es infinito). Esto nos permite, para B infinito, construir una
sucesion estrictamente decreciente (a,) de elementos de B. Se tiene entonces
una sucesion estrictamente creciente de ideales (Ba,) cuya unién es un ideal
que no puede ser finitamente generado. Una vez conseguido un ideal I no
principal, se toma J = I & Ann(I) que no es principal (si fuera J = aB
entonces a =b@® ccon b € I, c € Ann(I) y se tendria I = bB) y su supremo
es 1 (Si z es cota superior de J, lo es de I asi que T € Ann(l) C J y eso
implica que & < x). OJ

Definicién 0.11 Un anillo de Boole se dice completo si todo subconjunto
Suyo posee un Supremo.

0.3 Amnillos regulares

Definicién 0.12 Un anillo A diremos que es reqular si a?A = aA para cada
a€ A.

La terminologia habitual para referirse a estos anillos es la de anillo con-
mutativo regular en el sentido de Von Neumann o anillo conmutativo abso-
lutamente plano. Puesto que no existe aqui riesgo de confusién con otros
conceptos, hemos optado por referirnos a ellos simplemente como anillos re-
gulares.

En el siguiente teorema damos varias caracterizaciones de estos anillos. La
condicion 7 nos es util para la demostracién del resultado, pero el concepto de
localizacion no volvera a aparecer en este trabajo. Comentar también que se
podria haber anadido a la lista las condiciones de que todos los médulos sobre
A sean planos y de que todos los médulos simples sobre A sean inyectivos.

Teorema 0.13 Sea A un anillo. Son equivalentes:

1. A es reqular

10



I? = I para cada ideal I de A.
Cada ideal principal de A estd generado por un idempotente.

Para cada a € A existe un unico e(a) € B(A) tal que aA = e(a)A.

S

Cada elemento de A se expresa como producto de una unidad y un
tdempotente.

6. A es reducido (i.e. el nilradical de A es trivial) y cada ideal primo de
A es mazimal.

7. Toda localizacion de A en un ideal primo es un cuerpo.

PRUEBA: [2 = 1] Trivial.

[1 = 3] Si a = za® tomamos ¢ = ax y entonces e es un idempotente
asociado a a.

[3 = 4] Supongamos que hubiera idempotentes e;, e € A con e; A = ey A.
Entonces e; = aey y por tanto e; — ejeg = e1(1 — e3) = aes(1 —e3) = 0 lo
que implica que eje; = e; y simétricamente ejes = es.

[4=D5]Seaac A, e=ce(a)ybec Atal que e = ba. Resulta entonces que
a=(a+1—e)e donde a+1— e es unidad con inverso be + 1 — e.

[5 = 6] Que A es reducido es trivial mientras que si p es un ideal primo
de A, A/p es un dominio en el que cada elemento se factoriza como producto
de una unidad y un idempotente asi que A/p es un cuerpo y p es maximal.

[6 = 7] Si tomamos p ideal primo de A entonces A, es un anillo local
reducido (pues la extraccién del nilradical conmuta con la localizacién) con
un sélo ideal primo (al ser p maximal). Asi pues dicho ideal primo es el nil-
radical, por tanto nulo, y a su vez es maximal. Como 0 es un ideal maximal
de A,, A, es un cuerpo.

[7 = 2] Sea I un ideal de A. Consideramos el A-médulo /1% Si p es
ideal primo de A, (I/I?), = (I,)/(I7) = 0 (al ser A, cuerpo I, sélo puede
ser igual a 0 o a A, dependiendo de si I estd contenido en p o no y lo mismo
sucede con I?). Deducimos de aqui que I/I> =0y asi [ = I*. O

11



Proposicién 0.14 Para cualquier anillo A, el conjunto B(A) tiene estruc-
tura de anillo de Boole con el producto heredado de A y la suma dada por
a+b = (a —b)* =a+b— 2ab.

La prueba es mera rutina. También es inmediato comprobar que en ese
caso, la operacién (V) de B(A) estd dada por a Vb= a+b— ab.

Proposicién 0.15 Sea A un anillo y ey, ..., e, € B(A) tales que e;e; = 0
cuando i # j. Entonces ey + - +e, =e1+---Fe, =€y V---Ve,. En este
caso denotaremos dicha suma como e; @ --- P e,.

PRUEBA: Basta demostrar la proposiciéon para n = 2. En ese caso, simple-
mente se tiene a+b=a+b—2aby aVb=a+b— ab. O

Proposicién 0.16 Sea A un anillo reqular
1. Para todo aq,...,a, € A, se tiene
Aay + -+ Aa, = Ae(a) V-~ Ve(ay)) .
En particular, todo ideal finitamente generado de A es principal.
2. Si 1,J son ideales de A, entonces INJ =1J.
3. Para cada a,b € A, a € bA si y solo sie(a) < e(b)

4. Ann(a) = e(a)A para cada a € A.

PRUEBA: (1) Basta hacer la demostracién para n = 2. Es més, puesto que
Aa = Ae(a) para todo a € A, es suficiente comprobar que Aa+ Ab = A(aVb)
para cada a,b € B(A).

aVb = a+b—abe Aa+ Ab.
a = a(aVvb)e AlaVb).
b = blaVvb) e AlaVb).

(2) Sia € INJ entonces a € a’*A C 1J.

(3) Si a € bA, entonces a = bcy e(a) = e(b)e(c). Reciprocamente, si
e(a) < e(b), entonces e(a) = e(b)e(a) asi que a € Ae(a) C Ae(b) = Ab.

(4) x € Ann(a) siy sélo si xa = 0 si y sdlo si e(z)e(a) = e(xa) = 0siy
sélo si e(x) < e(a) siy sélo si z € e(a)A. O

12



Capitulo 1

Espacios métricos booleanos

En este capitulo veremos algunas propiedades generales de los espacios métricos
booleanos, que constituiran el principal objeto de estudio del trabajo.

En la seccion 1.1, se define el concepto de espacio métrico booleano, asi
como los de funcion contractiva e isometria, que haran las veces de morfis-
mo e isomorfismo entre estos espacios. Se establecen ademas como ejemplos
genéricos ciertos subconjuntos de médulos sobre anillos regulares, llamados
medibles, que incluyen a los médulos libres de tipo finito.

En la seccion 1.2, veremos que en un espacio métrico booleano tiene sen-
tido definir combinaciones lineales en las que los coeficientes constituyan una
familia completa de idempotentes ortogonales de B. A estas combinaciones
las llamaremos combinaciones convexas, y comprobaremos que las aplicacio-
nes contractivas son exactamente aquellas que conmutan con combinaciones
convexas. Asociado a este concepto aparece de manera natural el de clausura
convexa de un espacio métrico booleano.

Finalmente, en la seccién 1.3, se incide en la estructura de espacio métrico
booleano de B y de B™, mostrandose que las aplicaciones contractivas de B"
en B™ son las aplicaciones polindmicas. Aqui aparecera el concepto de es-
pacio métrico convexo finitamente generado (abreviadamente FGC-espacio),
que serd de gran importancia en los capitulos sucesivos.

A lo largo de este capitulo A sera siempre un anillo regular.

13



1.1 Definiciéon y ejemplos
Definicién 1.1 Sea X un conjunto. Una aplicaciond : X x X — B diremos
que es una métrica booleana si se verifican para cada x,y,z € X:
1. d(z,y) =0 si y sdlo si x =vy.
2. d(z,y) =d(y,x).
3. d(z,z) < d(z,y) Vd(y,z).
En este caso, diremos también que (X, d) es un espacio métrico sobre B.

Proposicién 1.2 En la definicion anterior, el azioma 3 puede sustituirse
por cualquiera de los dos siguientes axiomas:

3" d(z, 2)d(y, z) < d(x,y).
37 d(z,z) + d(z,y) < d(z,y).

PRUEBA: (3 = 3') Basta multiplicar en la desigualdad 3 por d(y, 2).
(3’ = 3) Hacemos la operacién Vd(y, z) en la desigualdad 3’.

(3" = 3') Teniendo en cuenta la férmula a + b = ab @ ab, se tiene que

d(z,2)d(y, z) < d(z,z) +d(z,y).

(3’ = 3") Si vale 3, para cada z,y,z € X tendremos

d(z,2)d(y, z) < d(z,y) y d(y, z)d(z,z) <d(y,x),

asi que

d(z,z) +d(y, z) = d(z, 2)d(y, z) ® d(y, z)d(z, z) < d(z,y).
O

Podemos obtener ejemplos de espacios métricos booleanos mediante la
siguiente proposicion:

Proposicién 1.3 Sea X un subconjunto de un A-mddulo tal que Ann(x—1y)
es un ideal principal de A (generado por un cierto idempotente a,, € B(A))
para cada x,y € X. Entonces la aplicacion d : X x X — B(A) dada por
d(z,y) = Ggy es una métrica booleana. Un tal subconjunto X se dird que es
un subconjunto medible del modulo, y a esta métrica la llamaremos la métrica
modular en X.
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PRUEBA: Es evidente que el axioma 2 de la Definicién 1.1 se verifica. Tam-
bién el axioma 1 pues d(z,y) = 0 si y s6lo si Ann(z —y) = A. Respecto al
axioma 3, como
Ann(x —y) N Ann(y — z) C Ann(x — z),
tenemos que
AgyQy A = agyANay, A< a,,A,
asi que azyay, < ag. y
d(z,2) = Qgp < Ugyly, = Ugy V Gy, = d(x,y) V d(y, 2).
OJ

Para cada a € A, por la Proposicién 0.16, tenemos que Ann(a) = e(a)A,
asi que A es un subconjunto medible de si mismo y su métrica modular esta
dada por d(z,y) = e(x — y). Es més, para cada n € N, A" también es un
subconjunto medible de si mismo y su métrica modular esta dada por

d((z1, .y xn), Y1y Yn)) =€(x1 —y1) V- - - Ve(Tn — Yn).

Este hecho se deduce de las dos proposiciones siguientes.

Proposicién 1.4 Sean (Xi,dy),. .., (X, d,) espacios métricos sobre B, i =
1,...,n. Entonces (X; X -++ X X,,d) es también un espacio métrico sobre
B, con

d((x1, .. 20), Y1y Yn)) == di(1,91) VooV dp (T, Yn).-

A este espacio lo llamaremos el espacio producto de los (X;,d;) y a d la
llamaremos la métrica producto de las métricas d;.

La prueba es rutinaria.

Proposicién 1.5 Sea S; un subconjunto medible del A-mddulo M;, para cada
i =1...,n. Entonces, S = S X --- x S, es un subconjunto medible de
My x -+ xX M, y la métrica modular en S es igual a la métrica producto de
las métricas modulares de los S;.

PRUEBA: Sea d; la métrica modular de S;. Para cada x = (z1,...,2,) €
Yy = (y17"'7yn> en Sv

Ann(z —y) = ﬂ Ann(z; — y;) = ﬂ di(z,y)A

_ (H di<x,y)) A= (\/ di(x,y)> A
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Definicién 1.6 Sea f : X — Y wuna aplicacion entre espacios métricos sobre
B.

1. f se dice inmersion si d(z,y) = d(f(z), f(y)) para todo z,y € X.
2. f se dice isomelria si f es una inmersion biyectiva.

3. [ se dice contractiva si d(f(x), f(y)) < d(x,y) para todo x,y € X.

Proposiciéon 1.7 Sean X eY espacios métricos sobre By f : X — Y una
aplicacion contractiva. Se tiene:

1. f esuna isometria siy sélo si f es biyectiva y su inversa f~1:Y — X
es contractiva.

2. [ es una inmersion si y solo si f: X — f(X) es una isometria. En
particular, toda inmersion es inyectiva.

PRUEBA: El apartado 1 es directo. Respecto al 2, una implicacién es trivial.
Para la otra, supongamos que f es inmersién, y mostraremos que f es inyec-
tiva: si f(x) = f(y) entonces d(x,y) = d(f(z), f(y)) =0y x = y. Asi que
f: X — f(X) es una inmersién inyectiva y suprayectiva. |

Dos espacios métricos sobre B se dicen isométricos si existe una isometria
entre ellos.

Teorema 1.8 Todo espacio métrico X sobre B es isométrico a un subcon-
junto medible de un B-mddulo. Es mds, si fijamos xo € X, existe un sub-
conjunto medible S de un mddulo Mg que contiene al 0, y una isometria
g: X — S tal que g(xy) = 0.

PRUEBA: Definimos f : X — B¥ como f(z) = (d(w, 2)).cx. Para probar
que f(X) es medible y que f : X — f(X) es una isometria, es suficiente
ver que Ann(f(x) — f(y)) = d(z,y)B para todo z,y € X. Comprobamos la
doble inclusion:

Sia € Ann(f(z)+ f(y)), entonces a(d(x, z)+d(y, z)).ex = 0 asi que para

z =z, tenemos ad(y,x) = 0 y por tanto a < d(z,y).

Reciprocamente, supongamos que a € d(z,y)B, entonces por la Pro-
posicion 1.2, a(d(z,z) + d(z,y)) < ad(z,y) = 0, para todo z € X, asi
que a € Ann(f(z) + f(y)). Respecto a la dltima afirmacién, tomemos
h: f(X) — f(X)+ f(xo) dada por h(x) = x + f(xp). Entonces, h es
una isometria entre f(X) y el conjunto medible S = f(X) + f(xy) porque
Ann(h(x) — h(y)) = Ann(x — y) para todo x,y. Por tanto, g = ho f es una
isometria entre X y S que verifica g(zg) = 0. OJ
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1.2 Combinaciones convexas

A menos que se especifique lo contrario, X serd un espacio métrico sobre B.

Definicién 1.9 Sean xy,...,x, € X yay,...,a, € Bcona,&---da, = 1.

Diremos que x € X es una combinacion convexa de x1,...,x, con coeficien-
tes ay,...,a, st a;d(r,x;) =0 parai=1,... n.

Proposiciéon 1.10 S5tz € X es una combinacion convexa de xy,...,T, con
coeficientes ay, . . ., a,, entonces para cada y € X

d(z,y) = @ a;d(z;,y).

PRUEBA: Para cada i = 1,...,n, puesto que a;d(z, x;) = 0, tendremos que

aid(ziy) = ai(d(x,z;) + d(z;,y))
< ad(z,y) < ai(d(z,x;) Vd(z,y)) = ad(z;,y),

asi que a;d(x,y) = a;d(x;,y) y por tanto
d(z,y) = (Z a;)d(z,y) = Zaz‘d(iﬁuy)-

OJ

Proposicién 1.11 Si x e y son combinaciones converas de x1,...,x, con
coeficientes ay, . .., a,, entonces r =y.

PRUEBA: Por la Proposicién 1.10,

n n

d(z,y) = Zaid(x, ;) = Z a; Zajd(xjxi) = Z Zaiajd(a:j,xi).
i=1 i=1 =1

i=1 j=1

Observar que si ¢ # j entonces a;a; = 0y si @ = j entonces d(z;, ;) = 0, asi
que todos los términos de la suma son nulos, por lo que d(z,y) =0y =z = y.
OJ

Lema 1.12 Sea S un subconjunto medible de un A-modulo M. Entonces,

n

conv(S) ={a1x1 4+ +ayx, € M2, €S a; € B(A) @ai =1}

=1

es también un subconjunto medible de M.
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PRrRUEBA: Tomemos z,y € conv(S), v =Y ax; y y = > 1 bjy;. Llamemos
ci; = a;b;. Es facil comprobar que @ij%’ =1y quez = Zijcijxi e
y=>_,,cijy;- Por lo tanto,

Ann(x —y) = Ann(z cij(zi —y;))

y es rutinario el verificar que esto es igual a >, ;ciyAnn(z; — y;), que es
principal porque cada Ann(z; —y;) es principal (recuérdese que, para anillos
regulares, todo ideal finitamente generado es principal). O

La siguiente proposiciéon nos mostrara que, cuando X es un subconjunto
medible de un médulo, las combinaciones convexas en (X, d) son exactamente
las correspondientes combinaciones lineales en el modulo.

Proposicién 1.13 Sea S un subconjunto medible de un A-modulo y sean
T,T1,..., T, € S yay,...,a, € B tales que @) _, a; = 1. Entonces, x es
una combinacion convexa de xq,...,x, con coeficientes ay,...,a, sty solo
stx=a1x1+ -+ apx,.

PRUEBA: Supongamos que r = ayxq + - -+ + a,,. Tenemos que comprobar
que, para cada i = 1,...,n, a;d(x,z;) = 0. Es claro que

a; € Ann(x — ;) = d(x, x;) A,
asi que a; < d(z,x;) y por tanto, a;d(z,x;) = 0.

Reciprocamente, supongamos que x € S es una combinaciéon convexa de
T1,..., &, con coeficientes ay,...,a, . Seay = > [ a;x; € conv(S), que es
medible, por el Lema 1.12. La implicacién que ya hemos probado, nos dice
que y es una combinacién convexa de xi,...,x, con coeficientes aq,...,a,
en conv(S). Lo mismo vale para x, asi que por la Proposicién 1.11, xz = y.
O

En general, en cualquier espacio métrico X, denotaremos por » ., a;z;
o por a;xy + - - -+ a,x, la combinacién convexa de z1, ..., x, con coeficientes
ai,...,a,, en caso de que exista. Las aplicaciones contractivas pueden ser
caracterizadas como aquellas que preservan combinaciones convexas. Para
probar esto, usaremos el siguiente lema, cuya prueba es elemental.

Lema 1.14 Para cadax,y,€ X ya € B, x = ax+ay si y sélo sia > d(x,y).
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Teorema 1.15 Para una aplicacion f : X — Y entre dos espacios métricos
las afirmaciones siguientes son equivalentes:

1. f es contractiva.

2. Para cada x,x1,...,x, € X yay,...,a, € Bcona, ®---ba, =1, si

x =Y a;x;, entonces f(x) = > a;f(x;).
PRUEBA: (1 = 2) Sea = ), a;z;. Entonces, para cada 7, tenemos
0= a;d(z, ;) > aid(f(x), f(x:)),
asi que f(x) = > a;f(x;).

(2= 1) Dados z,y € X, usando el Lema 1.14, tenemos que

z=d(z,y)z +d(z,y)y.
Por tanto, por nuestra suposicién

f(z) =d(z,y)f(z) + d(z,y) f(y).

Usando la Proposicion 1.10

d(f(x), f(y)) = d(z,y)d(f(z), f(y)) + d(z,y)d(f(y), f(y))
= d(z,y)d(f(2), f(y)),

lo que nos dice que d(f(z), f(y)) < d(z,y). O

El Teorema 1.8 nos permite identificar todo espacio métrico X sobre
B con un subconjunto medible de un B-mddulo, y entonces, por el Teore-
ma 1.13, las combinaciones convexas son exactamente las correspondientes
combinaciones lineales en el modulo y la métrica es la métrica modular.

Dados z1,...,2, € X y a1,...,a, € B con @ a; = 1, puede no existir
la combinacién convexa de los z; con coeficientes a;. Asi que tenemos la
siguiente definicion:

Definiciéon 1.16 Un espacio métrico X sobre B se dice convexo si dados
cualesquiera xy,...,xr, € X y cualesquiera ay,...,a, € B con @a; = 1,

existe en X la combinacion convexa de los x; con coeficientes los a;.

Como consecuencia de la Proposicion 1.13, A™ es un ejemplo de espacio
métrico convexo.
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Definicién 1.17 Una clausura convexa de un espacio métrico X es un es-
pacto métrico convexo Y O X tal que cualquier elemento de Y es una com-
binacion convexa de elementos de X.

Proposicién 1.18 Todo espacio métrico X sobre B tiene una clausura con-
vexa.

PRUEBA: Supongamos que X = S es un subconjunto medible de un mdédulo
sobre B. Entonces, es rutinario comprobar que el conjunto conv(S) del
Lema 1.12 es una clausura convexa de X. U

Teorema 1.19 Sean X C X e Y C Y clausuras converas. Cada aplicacion
contractiva f : X — Y se extiende a una unica aplicacion contractiva
f: X —Y. Es mds,

1. f es inmersion si y solo si f lo es, y si f es isometria, también lo es

7.

2. Para dos aplicaciones contractivas f : X — Y y g:Y — Z se tiene
9f =4gf.

PRUEBA: Para cada elemento z € X, escojamos una expresién de z como
combinacién convexa de elementos de X, v = ) . a;x;. Si queremos que
f sea contractiva debe estar definida como f(z) = . a;f(x;) € Y. Esto
prueba la unicidad. Para la existencia, hemos de comprobar que, asi definida,
f es contractiva. Tomemos z,y € X, y sus correspondientes expresiones

r=> ax;ey=y by conz;,y; €X:
d(f(2), f(y) = @ aibsd(f (), (y;) < P aibyd(zs, ;) = d, ).

Si f es inmersion entonces la desigualdad es una igualdad, y concluimos que
J es una inmersion. La propiedad 2 es inmediata y a partir de ella, usando
f~! se deduce que si f es isometria también lo es f. O

Corolario 1.20 La clausura convezra de un espacio métrico es unica, salvo
1sometria.

PrUEBA: Si X C X;, X5 son dos clausuras convexas de X, entonces 1y se
extiende a una isometria f : X; — Xo. O

En adelante, conv(X) denotard una clausura convexa de X . En la siguien-
te proposicion recopilamos algunas propiedades, de demostracion directa, de
las clausuras convexas.
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Proposicién 1.21 Sean X e Y espacios convexos sobre B y U C X.

1. El conjunto de todas las combinaciones convexas de elementos de U
en X es una clausura convera de U(En esta situacion, la notacion
conv(U) se referird a este conjunto).

2. 81 f: X — Y es contractiva, entonces f(conv(U)) = conv(f(U)).

3. Si Xyq,..., X, son espacios métricos sobre B, conv(X7)X---xconv(X,)
es una clausura convexa de X; X --- x X,,.

Proposicién 1.22 Sean X e Y espacios métricos con X convexo. Una apli-
cacion contractiva f : X — 'Y es una inmersion si y solo si es inyectiva.

PRUEBA: Si f : X — Y no fuera una inmersién, existirian z,y € X tales
que a = d(f(z), f(y)) < d(z,y). Entonces, por el Lema 1.14,

f(x) =af(x)+af(y) = flax + ay)

y ar + ay # x, asi que f no es inyectiva. La otra implicacion se sigue de la
Proposicién 1.7. 0

1.3 El espacio B

Definicién 1.23 Sea X un espacio métrico sobre B. Diremos que X es
un FGC-espacio (espacio convezro finitamente generado) si es la clausura
convexa de un subespacio finito.

Se sigue de la Proposicion 1.21 que:

1. Si X es un FGC-espacio y f: X — Y es contractiva, entonces f(X)
es un FGC-espacio.

2. El producto finito de FGC-espacios es un FGC-espacio.

En el siguiente teorema, determinamos los FGC-subespacios de B. Usa-
mos la siguiente notacion, para a,b € B con a < b:

la,b] = {x € B:a <z <b}.

Teorema 1.24 Sean aq,...,a, € B, entonces
n n
conv(ay, ..., a,) = Hai, \/ a;l .
i=1 =1
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PRUEBA: Primero veremos que para a < b, se tiene conv(a,b) = [a,b]. Si
tenemos x = ca+cb € conv(a,b) entonces ra = ca+céa = ay xb = ca+cb = z,
asi que x € [a,b]; reciprocamente, si x € [a,b], entonces x = xb + Ta, que
esta en conv(a,b).

De esa propiedad deducimos que los intervalos cerrados son convexos y
queda probado que conv(ay,...,a,) C [[[} @i, V] a:i]. La otra inclusién es
ahora consecuencia de que todo subconjunto convexo de B es cerrado para
productos y para la operacién (V), ya que ab=ab+aay aV b= aa+ ab. O

Obsérvese que, en particular, los FGC-subespacios de B son exactamente
sus intervalos y que B = [0, 1] es un FGC-espacio.

Corolario 1.25 Sea X = conv(H) con H finito. Si f : X — B es una
funcion contractiva, entonces

Im(f) = [H fl), \/ f(a:)] .

zeH zeH

Corolario 1.26 Sea X = conv(H) con H finito. Si f : X — B es una
funcién contractiva, entonces la ecuacion f(x) = 0 tiene solucion si y solo si

H f(z) =0.

reH

Corolario 1.27 Sea X = conv(H) con H finito, y f; : X — B funciones
contractivas para it = 1,...,n. El sistema de ecuaciones { fi(x) = 0}, tiene

solucion si y solo si
[TV #i@) =o.

zeH i=1

Finalmente, probamos el hecho de que las aplicaciones contractivas de
B™ en B™ son exactamente las funciones polinémicas. Los Corolarios 1.26
y 1.25, cuando X = B"y H = {0, 1}", y enunciados en términos de funciones
polinédmicas se corresponden con los Teoremas 2.3 y 2.4 de [12].

Lema 1.28 Sea R un anillo y f : R* — R una funcion polinomica. Para
cada x1,...,T, € R" y cada familia completa de idempotentes ortogonales

{e1,....en} de R, tenemos f(D . eix;) = >, eif(z;).

PRUEBA: Si llamamos convexa a toda aplicacion g : R® — R que veri-
fique la conclusion del lema, es rutinario comprobar que las proyecciones
m; : R" — R son convexas (eso probaria el lema para los polinomios
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Xi,...,Xn), que las aplicaciones constantes son convexas, y que las sumas y
productos de aplicaciones convexas son convexas. Como todo polinomio es
suma de productos de constantes y las variables X;, el lema queda probado.

O

Teorema 1.29 Una aplicacion f: B™ — B™ es contractiva si y solo si es
polinomica.

PRUEBA: La aplicacién f es polindmica (respectivamente contractiva) si y
sélo si todas sus componentes lo son, asi que podemos suponer que m = 1.
Una implicacion es consecuencia directa del Lema 1.28, el Teorema 1.15 y
la Proposicién 1.13. Inversamente, supongamos que f es contractiva y cons-
truimos la aplicacion polinémica

g(x1,...,x) = Z (f(u) H T; H x,)
uef{0,1}7 0<i<n u;=0 0<i<n u;=1

La funcién g es contractiva por la implicacion que ya hemos probado, y
glgo13» = flioy». Puesto que B™ = conv{0,1}", deducimos que f = g es
una funcién polinémica. O
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Capitulo 2

Ortogonalidad en FGC-espacios

El objeto de este capitulo es estudiar la estructura de los FGC-espacios a
través de sistemas de referencia, analogamente a como se hace en algebra
lineal elemental.

En la seccion 2.1 se introducen los sistemas de referencia y las coorde-
nadas y se demuestran sus propiedades basicas, entre ellas la existencia de
referenciales en todo FGC-espacio.

En la seccién 2.2 se vera que los sistemas de referencia pueden entenderse
como casos particulares de un concepto més general de descomposicion de
espacios métricos, que denominaremos suma ortogonal.

En la seccién 2.3 se comprueban algunas propiedades relativas a la repre-
sentacién de una aplicacién contractiva mediante una matriz, usando siste-
mas de referencia y coordenadas.

Por razones técnicas, sera conveniente trabajar con espacios métricos cen-
trados. El par (X, 0) diremos que es un espacio métrico (centrado) si X es un
espacio métrico sobre B 'y 0 € X. Una aplicacién f : (X,0) — (Y, 0) serd
una aplicacién f: X — Y tal que f(0) = 0/, y expresiones como = € (X,0)
querran decir simplemente z € X.

A lo largo de este capitulo, fijamos un espacio métrico (X,0). Por el
Teorema 1.8, no es restrictivo suponer que X es un subconjunto medible
convexo de un médulo Mg y que 0 es el elemento neutro de M. En (X,0)
usaremos las siguientes notaciones:

e |z| :=d(0,z) para cada x € X.
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e Sizy,...,vpn € Xya,...,a, € Bson tales que a,a; = 0 cuando ¢ # 7,

entonces tenemos un elemento de X:
a1r1 + -+ ap®y = a0+ a1y + - - -+ apxy,

donde ag = 1+ a; + ---a, (observar que la expresién de la derecha
representa un elemento de X puesto que a9 @ ---@da, =1y X es un
espacio convexo). Una combinacién como ésta la llamaremos combina-
cién ortogonal.

e En particular ax = ax + a0 para x € X, a € B.

e Bx:={ax:a € B} = conv(0,x).

o rxy:=d(x,y)r para z,y € X.

Obsérvese que cualquier aplicacion contractiva f : (X,0) — (Y,0') pre-
serva combinaciones ortogonales.

2.1

Sistemas de referencia

Comenzamos comprobando algunas propiedades elementales:

Lema 2.1 Sean x,y € X ya,b € B. Entonces:

1.

2.
3.
4.

Las aplicaciones || : (X,0) — (B,0) y x x_: (X,0) — (X,0) son
contractivas, asi que ambas preservan combinaciones ortogonales.

ax = bz siy sélo sia+b e |z|B (siy solo sia+ |z|B=0b+]|z|B).
ax =0 siy sélo sia < |z|, yax ==z siy sdlo sia> |zl

La operacion () es conmutativa.

PRUEBA: Para la propiedad 1, es evidente que || es contractiva, mientras
que la funcién z * _ puede expresarse como composicion de las aplicaciones
y +— d(z,y), b+ by b by todas ellas son contractivas (conservan com-
binaciones convexas).

Para la propiedad 2, supongamos que X es un subconjunto medible de
un B-médulo. Entonces, ax = bx siy sélosi a+b € Ann(x —0) = d(z,0)B.

La propiedad 3 se sigue de 2.
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Para la propiedad 4, x xy = y x x si y sélo si

d(z,y)x + d(z,y)0 = d(z,y)y + d(x, y)0.

Esta igualdad es facil de comprobar, verificando que la distancia entre los
dos términos es cero usando la Proposicion 1.10. 0

Lema 2.2 Bx N By = B(z *y) para todo x,y € X.

PRUEBA: Simplemente por la definicién de x, tenemos que B(z xy) C Bz,
y simétricamente, como x es conmutativa, B(x xy) C By, asi que una de las
inclusiones esta probada. Ahora supongamos que v € Bx N By. Entonces
u = ax = by, y si llamamos ¢ = ab, tendremos

cx = baxr = bu = bby = u = aaxr = au = aby = cy.

Asi pues, cx = u = cy, y eso implica, si suponemos que X es un subconjunto
medible de un médulo, que ¢ € Ann(z —y) = d(x,y)B y

u=cx = cd(z,y)r =c(x*y).

O

Proposicién 2.3 Para dos elementos x,y € X las siguientes afirmaciones
son equivalentes:

1. xxy =0.
2. Bx N By = {0}.
3. d(z,y) = 2|V [yl.
En este caso, x y y se dird que son ortogonales y escribiremos x L y.

PRUEBA: (1 < 2) es consecuencia directa del Lema 2.2.

Para (1 < 3), se tiene x xy = 0 si y sélo si

0= |z xy| = d(z,y)lz|

si y sélo si

d(z,y)|z| = 0= d(z,y)ly|
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si y solo si
|z V y| < d(z,y).

La inversa de la tultima desigualdad es siempre cierta por el axioma 3 de la
Definicion 1.1. OJ

Obsérvese que, para z,y € (B,0), tenemos

rxy=d(z,y)r=(x+y+ 1)z =uxy,
y asi, x es ortogonal a y si y sé6lo si zy = 0.

Definicién 2.4 Un subconjunto finito R C X se dird que es ortogonal si
cualesquiera dos elementos diferentes en R son ortogonales, y 0 ¢ R. Si,
ademds, X = conv(R U {0}), diremos que R es un sistema de referencia o
un referencial de (X,0).

Proposicién 2.5 Sea R = {x1,...,2,} un sistema de referencia de (X,0)
y x € X. Eziste una dnica tupla (a1,...,a,) € B"™ que satisface las tres
propiedades siquientes:

1. aja; =0 para todo i # j.
2. Y aw; = .
3. a; <l|z;| parai=1,...,n.
A dicha tupla la llamaremos la tupla de coordenadas de x con respecto a R.

PRUEBA: Unicidad: Si ) [ a;x; = ] bix; en esas condiciones , multiplicando
por a;bj, i # j, obtenemos

CLiijL’Z' = CLibjIj € Bx; N B.CL’J' = {0},

asi que paracadat=1...,n,
a;T; = Q; E CL]'LU]' = Q; E bjxj = E aibjxj = Cll'bil'i,
J J J

y simétricamente b;x; = a;b;x; = a;x;. Por el Lema 2.1 a; + b; € wB, y
también a; + b; € |z;|B porque los a; y los b; se supone que verifican la pro-
piedad 3. Asi que a; + b; = 0 para todo i.

Existencia: Como X = conv{0,z;...,x,}, existen by,...,b, € B veri-
ficando 1 y 2. Definimos a; = |x;|b;. Los a; satisfacen trivialmente 1 y 3.
Como a; + b; = |z;|b; € |x;| B, por el Lema 2.1, a;x; = b;x; para todo i. Asi
que Y.l =Y ] bir; = w. O

27



Proposicién 2.6 En la situacion de la Proposicion 2.5, a; = |x * x;| para
i=1,...,n, y la aplicacion c : (X,0) — (B™,0) dada por las coordenadas
es contractiva e induce una isometria sobre su imagen

Im(c) ={(ay,...,a,) :aa; =0 si i # 7, a; < |z;|}

PRUEBA:

n n
TxT; = (Z aja:j> * T; = Zaj(a:j * 1) = a;(z; * ;) = a;x;.
j=1 j=1

Por tanto, |z x x;| = |a;x;| = a;|x;| = a;. La contractividad de ¢ se deduce de
esta formula, mientras que el hecho de que induzca una isometria sobre su
imagen (es decir, que sea inmersién) se sigue de la Proposicién 1.22. O

Proposicién 2.7 Sea R = {xy,...,x,} un sistema de referencia de (X,0) e
(Y,0") un espacio métrico convexo. Entonces, f : R — Y es extensible a una
(inica) aplicacion contractiva f = (X,0) — (Y,0') si y sélo si | f(x;)] < |l
parat=1,...,n.

PRUEBA: Definimos f en RU {0}, haciendo f(0) = 0'. Por el Teorema 1.19,
f admite una tal extension si y sélo si es contractiva. Si f es contractiva, es
claro que | f(z;)| < |z;| para i = 1,...,n, asi que una implicacién estd proba-
da. Reciprocamente, supongamos que |f(x;)| < |z;| para todo i. Entonces,
para cada i # j,

d(f (i), f(x5) < [f (@) VIS (25)] < Jas| V| = dlas, 25),
siendo la ultima igualdad porque z; y z; son ortogonales. 0

Comprobamos ahora que cualquier FGC-espacio posee un sistema de re-
ferencia.

Teorema 2.8 Supongamos que X = conv{0,x1,...,x,} y que el conjun-
to {x1,...,xs} es ortogonal. Entonces, eristen asiy,...,a, € B tales que
{Z1,.. ., &5, Q541T541, - ., anxy } \ {0} es un referencial de (X,0).

PRUEBA: Sea r = card{(i,j) : ; x x; # 0}. Hacemos induccién en r. El
caso r = 0 es trivial, asi que supongamos que r # 0 y que el teorema se
cumple para cualquier valor menor que r. Tomamos z;, z; con z; x x; # 0
y supongamos, sin pérdida de generalidad que i,s < j. Sea a = d(x;,x;).
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Puesto que az; x z; = ad(z;,xzj)x; = 0, tenemos que ax; L z;. Por el
Lema 1.14 z; = a(ax;) + az;, y de aqui deducimos que

conv{0, z;, z;} = conv{0, z;, az;}

y por tanto
X = conv{0,x1,...,2j_1,a%;, Tjt1,. .., Tn}.

Usando la hipétesis de induccién, se completa la prueba (en este sistema de
generadores hay al menos un par ortogonal més, porque z; L az;). 0

Corolario 2.9 Sea{xy,...,xs} un subconjunto ortogonal de un FGC-espacio
(X,0). Entonces, existen Tgyi1,...,x, € X tales que {xy,...,x,} es un refe-
rencial de (X,0).

Corolario 2.10 Todo FGC-espacio (X,0) posee un sistema de referencia.

2.2 Sumas ortogonales

Definicién 2.11 Sea (X,0) convezo y {X;}ier una familia subespacios con-
veros de X que contienen a 0. Diremos que X es suma ortogonal de los
subespacios X; si X = conv(J; X;) y X; N X; = {0} para todo i # j.

Cuando X sea la suma ortogonal de los subespacios X;, escribiremos
X=][;X;6X =Xy L --- L X, cuando se trate de una familia finita de
subespacios.

Los sistemas de referencia pueden interpretarse como sumas ortogonales
del siguiente modo:

Proposicién 2.12 Un subconjunto {x1,...,x,} € X\ {0} es un referencial
del espacio convexo (X,0) siy sélo st X = Bxy L --- L Bx,.

En la siguiente proposicion, que generaliza a la Proposicion 2.7, mostra-
remos que si X = [[;X;, entonces (X,0) es el coproducto de los espacios
(X;,0) en la categoria de espacios métricos centrados convexos.

Proposicién 2.13 Sean (X,0) e (Y,0') espacios convezos con X = [[; X;.
Para cada familia de aplicaciones contractivas {f; : (X;,0) — (Y, 0') Lier,
existe una unica aplicacion contractiva f : (X,0) — (Y,0') que extiende a
todas las f;.
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PRUEBA: Del Teorema 1.19 y de que X = conv (|J; X;) deducimos inmedia-
tamente la unicidad, y que para probar la existencia basta ver que existe una
funcién contractiva f : (|J; Xi,0) — (Y, 0) que extiende a las f;. Definimos
f como f(x) = fi(x) cuando = € X; \ {0}. Para ver que f es contractiva
basta observar que si z € X; e y € X; con ¢ # j, entonces

d(f(x), f(y)) < |F@)IVIfW)] = 1) V)] < |V yl = d(z,y),

siendo la ultima igualdad debida a que « L y, pues BxNBy C X;NX,; = {0}.
Il

Cuando I = {1,...,n} sea finito denotaremos a la funcién f del teorema
como f; L --- L f,.

Definicién 2.14 Para U C X, Ut ={z € X : x L y para todo y € U}.

Proposicién 2.15 Si tenemos (U,0) C (X,0), con U un FGC-espacio y X
convexo, entonces X = U 1L U*t. Ademds, si X es un FGC-espacio, entonces
Ut también es un FGC-espacio.

PRUEBA: Supongamos en primer lugar que X es un FGC-espacio. En ese

caso, tomamos {1, ..., T, } un sistema de referencia de (U, 0), que podemos
extender a un sistema de referencia {xy,...,z,} de (X,0). Es suficiente
probar que

Ut = conv{0, Zpy1, ..., 20}

Una inclusién es trivial. Para la otra, tomemos z € U+, z = Y 7 a;z;. Para

j=1...,m,

O=z;xx = Zai(xi*xj) = a,;x;.
1

Por tanto, z = >|" a;z;.
Pasamos ahora a suponer que X es convexo. Hay que ver que
conv(UUU™) = X.

Tomamos = € X y entonces Y = conv(U U{z}) es un FGC-espacio, y por el
caso que ya hemos probado x € conv(U U (U+ NY)). O

Nétese que no es posible omitir la hipétesis de que U sea un FGC-espacio.
Por ejemplo, si consideramos (I,0) C (B,0) un ideal no principal de B
con supremo 1 (véase la Proposicién 0.10), entonces I+ = Ann(I) = 0, y
B#I111+
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Corolario 2.16 Sean U,X,Y espacios métricos con'Y convexo, U un FGC-
espacio y U C X. Cada aplicacion contractiva f : U — Y se extiende a
una aplicacion contractiva '+ X — Y.

PRUEBA: Podemos suponer, sin pérdida de generalidad, que X es convexo.
Elegimos 0 € Uy 0/ = f(0) € Y. Sig: (U*,0) — (Y,0) es la aplicacién
constante, tomamos f'=f 1L g¢g: X =U LU+ — Y. O

Tampoco puede suprimirse en este corolario la hipétesis de que U sea
un FGC-espacio. De nuevo, si I es un ideal no principal con supremo 1,
la identidad ¢ : I — I, no puede extenderse a una aplicaciéon contractiva
F: B — I, ya que por el Corolario 1.25, la imagen de F' tendria que ser un
intervalo.

Como es natural, el concepto de suma ortogonal “interna” que hemos
definido lleva aparejado un concepto de suma ortogonal “externa’.

Definicién 2.17 Para una familia {(X;,0;)}ier de espacios convezos, lla-
maremos suma ortogonal externa de los X; al espacio

HXZ. = {(z3)ier : |zil|z;| =0 sii# 7, x; =0; para casi todo i}
I

con la métrica d((z;), (v;)) = V;d(xi, vi) y centrado en la tupla (0;).

Proposicién 2.18 Si (X,0) = [[; X, entonces (X,0) es isométrico al es-
pacio Y =[]; X;.

PRUEBA: Las inclusiones naturales u; : (X;,0) — (Y, 0) son contractivas,
asi que existe una aplicaciéon contractiva f : (X,0) — (Y, 0) que las extien-
de. Por otra parte Y = [];u;(X;) (El hecho de que Y = conv(|Jwi(X;))
viene de que (z;) = >_, o [#:|ui(2;)) y de igual manera existe una aplicacién
contractiva g : (Y,0) — (X,0) que extiende a las u; " : u;(X;) — X; C X,
Las funciones f y g son inversas ya que f o gy go f son aplicaciones con-
tractivas que coinciden con las correspondientes identidades en J; w;(X;) y
\J; Xi. Por tanto, f y g son isometrias inversas. OJ

En el caso finito, utilizaremos la notacion X = X; 1 --- 1L X, para
referirnos tanto a la suma ortogonal externa como a la interna. Con este
lenguaje, dar un sistema de referencia de (X,0) es dar una descomposicién
del espacio como suma ortogonal externa de ideales principales de B.

Finalmente, a titulo de aplicacién, damos el siguiente teorema:

31



Teorema 2.19 Sean X,Y espacios métricos convexos con X un FGC-espacio.

1. St f: X — Y es contractiva e inyectiva, existe g : Y — X contrac-
tiva con go f = 1x.

2. Si f:Y — X es contractiva y suprayectiva, existe g : X — Y contrac-
tiva con fog=1x.

PRUEBA: Fijemos 0 =z € X y {x1,...,2,} un referencial de (X, zo).

Para el caso 1, llamamos 0" = f(0). Por la Proposicién 1.22, f es una
inmersion, luego es una isometria sobre su imagen. Consideremos

hy (f(X)70/) - <X7 0)
la inversa de f sobre su imagen y
hy + (f(X)F,0') = (X,0)

la funcién constante igual a 0. La Proposiciéon 2.15 nos permite tomar ahora
g = hl 1 hg : (KO/) — (X,O)

Con respecto a 2, al ser f suprayectiva, xz; = f(u;) para i = 0,...,n.
Consideramos el espacio centrado (Y, ug) y llamamos a; := |z;| y v; := a;u;.
Se tiene que f(v;) = a;f(u;) = a;z; = ;. Ademas,

d(vi, v;) < vl V|vi| = J@|[wi| Vg [uy| < o] V] = d(g, 25)

para todo 7,j. Ahora, por el Teorema 1.19 la aplicacion z; — v; puede
extenderse a una aplicacion contractiva g : X — Y, que es la que buscabamos

pues f(g(zi)) = f(vi) = ;. O

Corolario 2.20 Sea Convg la categoria de los espacios métricos converos
sobre B y FGCg la de los FGC-espacios (en ambas los morfismos son las
aplicaciones contractivas). Todo FGC-espacio es inyectivo en ambas cate-
gorias y proyectivo en FGCp.

PRUEBA: A la vista del Teorema 2.19, s6lo queda ver que todo monomorfis-
mo en C'onvg es inyectivo y que todo epimorfismo en F'GCpg es suprayectivo.
Supongamos que f : X — Y no es inyectiva y veamos que no es monomor-
fismo encontrando g,h : B — X con fog = foh pero g # h. Se toman
xo, 1 € X distintos con f(x9) = f(x1), y se hace g(i) = x;, h(i) = x¢ para
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i=0,1.

Anélogamente, si f : X — Y no es suprayectiva, se toman centros 0 € X

y 0 =f0)eY,
g=1[L0:f(X) Lf(X) =Y — B
y h=||:Y — B. Se tiene entonces g # h pero go f = ho f. O

Conviene senalar que, salvo que B sea finito, B no es un objeto proyec-
tivo de la categoria Convg. Efectivamente, si B es inifinito, existe, por la
Proposicién 0.10 un ideal I < B no principal con supremo 1. Afirmamos
que la inclusion ¢ : I — B es un epimorfismo, que al no ser suprayectivo no
puede ser una retraccion. Supongamos que tuviéramos g, h : B — X tales
que goi = hoi (es decir g|; = h|;). Haciendo uso del Teorema 3.4, que
probaremos més adelante, tendremos que H = {z € B : d(h(x), g(z)) = 0}
es un FGC-espacio (un intervalo) que contiene a I y por tanto H = By
g =h.

2.3 Representaciéon matricial

Los sistemas de referencia y las coordenadas que hemos introducido nos per-
miten representar de manera natural las aplicaciones contractivas como ma-
trices. Trabajaremos en la siguiente situacion: (X,0) e (Y,0") serdan FGC-
espacios con referenciales R = {z1,...,2,} v R = {y1,...,yn} respectiva-
mente y f: (X,0) — (Y,0) serd una aplicacién contractiva.

Definicién 2.21 Llamaremos matriz de f respecto de R y R’ a la matriz
Mpgrf de elementos de B cuya columna j-ésima es la tupla de coordenadas
de f(z;) respecto de R'.

Proposicién 2.22 La condicion necesaria y suficiente para que la matriz
M = (a;j) de tamanio n x m sea la matriz de alguna aplicacion contractiva
f:(X,0) — (Y,0') es que se verifiquen:

1. ajjar; = 0 siempre que i # k
2. aij < |yil|z;l

PRUEBA: Supongamos que M es la matriz de f. La propiedad 1 y el hecho
de que a;; < |y;| se siguen de que las columnas de M son las coordenadas de
ciertos elementos. Méds concretamente, f(z;) = >, a;;u; v asi, para cada i,

aij = |yl < |f(z;)] < |zl
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A la inversa, supongamos que M verifica las condiciones 1 y 2. Entonces
para cada j, la tupla (a;;)i; es la tupla de coordenadas de un cierto elemento
v; € Y. Se tiene que |vj| = P, a;; < |z;|, asi que por la Proposicién 2.7,
existe f : (X,0) — (Y,0) contractiva con f(x;) = v;. O

Proposicién 2.23 En las condiciones de la definicion anterior, si para un
r € X, denotamos por [z|g la columna de las coordenadas de x respecto
de R, entonces la columna de las coordenadas de f(x) respecto de R' es

[f(@)r = Mprf-|x]g.

PRUEBA: Si [z]g = (r1,...,7)" Yy Mrrf = (a;;), hay que ver que las coor-
denadas de f(z) son los b; = @;”:1 a;;7j. El hecho de que bby = 0 si ¢ # '
se comprueba facilmente usando que rjry = 0 si j # j' y a;jay; = 0 si

i # 1. También es claro que b; < |y;| pues a;; < |y;| por la Proposicién 2.22.
Finalmente,

flz) = f(er:vj) = ijf(l"j) = erzaijyi
= Z eraijyi = Z(Z aijrj)yi-

7j=1 i=1 i=1 j=1

OJ

Proposicién 2.24 Si tenemos f: (X,0) — (Y,0) y g : (Y,0') — (Z,0")
aplicaciones contractivas y r,R" y R" referenciales de (X,0), (Y,0") y (Z,0”)
respectivamente, entonces Mrir(go f) = Mrigg- Mprf.

PRUEBA: En virtud de la Proposicién 2.23, la j-ésima columna de la matriz
Mann(go f) es [g(f(z))|wr = Mporg - [f(@;)] 1, igual a la j-ésima columna

de MR“R’g'MR/Rf- OJ
Lema 2.25 Supongamos que x,y € (X, o) tienen coordenadas (ay, ..., a,)
y (b1, ...,by,) respectivamente en el sistema de referencia {xy,...,x,}. En-
tonces, x xy tiene coordenadas (aiby, ..., a,by,).

PRUEBA: Llamemos (ci,...,¢,) a las coordenadas de z = x xy. Por la
Proposicién 2.6, ¢; = |z *y * x;] = |z x x; x y » x;|. Ahora, puesto que
xxx; € Bx;, tenemos x x x; = |r * x;|r; = a;x; y andlogamente y x x; = b;x;.
Por tanto, C; = |CLZ‘$1' *bzle = azb2|xz| = CLZbZ O

Podemos dar una descripcion sencilla de cuando una aplicacion contrac-
tiva es inyectiva en funcion de su matriz.
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Proposicién 2.26 La aplicacion contractiva f : (X,0) — (Y,0) es inyec-
tiva si y solo si su matriz A = (a;;) verifica las siguientes condiciones:

1. @, ai; = |z;| para todo j.
2. aiais =0 siT # 5.

PRUEBA: En virtud de la Proposicién 1.22, la aplicacién f es inyectiva si y
solo si es inmersion y esto, por el Teorema 1.19, si y sélo si su restriccion

a RU{zo} es una inmersién. A su vez, eso equivale a exigir |f(z;)| = |z
(condicién 1) y f(z,) L f(xs) para cada r # s (condicién 2, usando el
Lema 2.25). O
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Capitulo 3

Geometria algebraica sobre
F(GC-anillos

En este capitulo introducimos un tipo de anillos regulares, que hemos llama-
do FGC-anillos y que incluye a los anillos de Boole, para los que probaremos
que la categoria de variedades algebraicas es equivalente a la categoria de
los FGC-espacios sobre el anillo de idempotentes, generalizando asi el Teo-
rema 1.29. No damos aqui ningtin ejemplo de estos anillos porque poste-
riormente, en el Teorema 4.14, quedaran todos explicitamente descritos a
partir de determinadas construcciones con cuerpos finitos y anillos de Boo-
le. Senalar también que algunos de los resultados de este capitulo, como el
Teorema 3.4, que atanen exclusivamente a la estructura de los FGC-espacios
sobre un anillo de Boole, seran usados frecuentemente en otros capitulos.

Definicién 3.1 Un anillo reqular A se dice que es un FGC-anillo si, con su
métrica modular, es un FGC-espacio sobre B(A).

En ese caso, observar que A" (que es un A-mddulo medible para el que
la métrica producto y la métrica modular coinciden) es también un FGC-
espacio sobre B(A).

Teorema 3.2 Sea A un FGC-anillo. Una aplicacion f : A" — A™ es
contractiva si y solo si es una aplicacion polinomica.

PRUEBA: La funcién f es contractiva si y solo si todas sus componentes
lo son, y lo mismo podemos decir del hecho de que f sea polinémica, asi
que podemos suponer que m = 1. La implicacién hacia la izquierda es con-
secuencia del Lema 1.28, el Teorema 1.15, y la Proposicién 1.13. Para el
reciproco, podemos suponer f(0) = 0 (siempre podemos reducirnos a ese ca-
so considerando la composicién ho f donde h: A — A es h(x) =z + f(0)).
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Consideramos {z1,...,z,} un referencial de (A", 0). Haremos la demostra-
ciéon suponiendo primero que n = 1 para pasar después al caso general:

Caso n = 1: Consideremos el polinomio g;(z) = z[[;,;(x — z;) para
t=1,...,r. Entonces

e(gi(r:)) = e(ws) [ elw: —z;) = e(w:) [ [ di, z5)

J#i J#i
= el@) [ ] (2l v [2)]) =[] = e().
J#i
Por tanto, para cada i = 1,...,n, existe una unidad a; de A verificando que

a;g;(z;) = e(z;). Tomamos ahora la aplicacién polinémica g : A — A dada

por
T

g(x) = Z a; f(z:)gi(z).

i=1
Como A = conv{0,x1,...,2,} y f y g son contractivas, si vemos que g(x)

y f(x) coinciden para x = 0,1, ...,z,, habremos terminado. Es claro que
g(0) =0 = f(0). Para x = z;,

g(x;) = Z aif(xi)gi(x;)

y como g¢;(z;) = 0 cuando i # j,
9(x;) = a;f(x;)g;(x;) = f(x;)e(x;)
y esto vale f(z;) porque |f(x;)| < |z;| = e(x;).

Caso general: Como consecuencia del caso n = 1, tenemos que la funcién
e: A — A es polinémica. De ello se deduce que para v € A", la aplicacion
d(~,v) : A" — A es polinémica también, porque si v = (ay,...,a,) enton-
ces d(z,v) =e(xy —ay) V---Ve(r, —a,) (recuérdese que xVy =z +y —xy
para z,y € B(A)). Por tanto, podemos construir aplicaciones polinémicas
para ¢ =1,...,r dadas por

Gi(z) = |2| ] [ d(z, z;).

J#i
Definimos G(z) = >"._, f(z;)Gi(x). Veremos que G y [ coinciden sobre
{0,21,..., .}, asi que, como ambas son aplicaciones contractivas, eso pro-

bard que f = G. Es claro que G(0) = 0 = f(0) y por otra parte, puesto que
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Gi(z;) =05sii # j, tendremos que
G(z:) = f(2)Gi(z:) = f(x)|zi H d(z;, ;)
i#]

= flzi)|zi| H(|9Uz| Vizsl) = flai)|zi| = f(z),

JFi

donde la ltima igualdad se debe a que |f(z;)| < |z4]. O

Lema 3.3 Sea (X,0) = conv(H) un espacio métrico convexo con 0 € H, y
f:(X,0) = (Y,0) contractiva. Entonces

FH0) = conv{0, | f(z)|z : = € H}.

PrRUEBA: Una de las inclusiones es evidente porque todos los elementos que
aparecen en el término de la derecha est4 en el conjunto convexo f~1(0'). Por
otra parte, siz € f~1(0), en particular estd en X, as{ que podemos expresarlo
como x = Z?Zl a;x; con x; € H, y a;a; =0 cuando 7 # j. Entonces

0=|f(x)| =a|f(z1)| ® - D an|f(x,)]

y asi a;|f(x;)] = 0 lo que implica que a; = a;|f(x;)| para i = 1,...,n.
Finalmente,
= Zaixi = Z a;| f(x)|z: € conv{0, |f(z1)|x1, ..., |f(zn)|Tn}-
i=1 i=1
O

Es conveniente observar aqui que, si B es infinito, un subconjunto convexo
de un FGC-espacio no tiene por qué ser un FGC-espacio. Por ejemplo, B
es un FGC-espacio, y los ideales no principales de B (Proposicién 0.10) son
subconjuntos convexos que no son FGC-espacios.

Teorema 3.4 Sea X un FGC-espacio. EntoncesY C X es un FGC-espacio
si y sélo si existe una aplicacion contractiva f: X — B tal que Y = f~1(0).

PRUEBA: La implicacién hacia la izquierda es consecuencia del Lema 3.3.
Reciprocamente, supongamos que Y es un FGC-espacio. Si Y = () es trivial y
si no, elegimos 0' € Yy {uy, ..., u;} un referencial de (Y, 0") que extendemos
a un referencial de (X,0'), {uy,...,u,}. Por el Teorema 2.7 podemos definir
una aplicacién contractiva f : (X,0) — (B,0) tal que f(u;)) = 0sii < k

38



v f(u;) = |u;| sii > k. Es claro que Y C f7!(0) y para la otra inclusién

supongamos que x € f~1(0) tiene coordenadas (ay, ..., a,). Entonces
n n n n
0=f(z)= f(zaiui> = @%‘f(%) = @ a;lu;| = @ a;
i=1 i=1 i=k+1 i=k+1
asi que a; = O parai >k, y x = Zle a;u; € conv{0,uy,...,upt =Y. O

Corolario 3.5 Si K1, Ky son FGC-espacios contenidos en el espacio X, en-
tonces K1 N Ky es un FGC-espacio.

PRUEBA: Si K; = f71(0) y K2 = g7 *(0) con f,g : conv(K; U K;) — B
aplicaciones contractivas, entonces K; N Ky = (f V g)71(0). O]

Corolario 3.6 Sea f : X; — X, una aplicacion contractiva entre FGC-
espacios. Si K C Xy es un FGC-espacio, entonces f~1(K) es también un
FGC-espacio.

PRUEBA: Sea p : Xy — B tal que K = p~'(0). Entonces se tiene que
T HK) = (po f)~1(0), asi que f~}(K) es un FGC-espacio. O

Teorema 3.7 Sea A un FGC-anillo.

1. Un subconjunto U C A™ es una variedad algebraica (i.e. el conjunto de
soluciones a un sistema finito de ecuaciones polinémicas) si y solo si
U es un FGC-subespacio de A™.

2. Una aplicacion f : U — V entre dos variedades algebraicas es una
aplicacion polindmica (i.e. la restriccion de una aplicacion polindmica
g: A" — A™) si y sdlo si es contractiva.

PRUEBA: Si U es una variedad algebraica, entonces U = ﬂ]f f+*(0) donde
fi + A" — A son aplicaciones polindmicas, y por tanto, por el Teorema 3.2,
aplicaciones contractivas. Usando el Teorema 3.4 y el Corolario 3.5 deduci-
mos que U es un FGC-espacio.

Reciprocamente, si U es un FGC-espacio, por el Teorema 3.4, existe
una aplicacién contractiva f : A" — B(A) con U = f~!(0). Entonces
U = ¢g~'(0) donde g es la composicién A" — B(A) < A, que es contractiva
y por tanto polinémica, de nuevo por el Teorema 3.2.

Si f:U — V es una aplicacion contractiva, por el Corolario 2.16, f se

extiende a una aplicacién contractiva g : A" — V C A™ que es polinémica.
El reciproco es consecuencia directa del Teorema 3.2. 0
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Corolario 3.8 Para un FGC-anillo A, la categoria de la variedades algebrai-
cas sobre A es equivalente a la categoria de los FGC-espacios sobre B(A).

PRUEBA: El Teorema 3.7 nos proporciona un funtor inclusion de la categoria
de variedades algebraicas sobre A a la de FGC-espacios sobre B(A). Como
todo FGC-espacio posee un referencial, la Proposiciéon 2.6 nos dice que ese
funtor es representativo, ya que nos da una isometria entre un FGC-espacio
arbitrario y una variedad algebraica. 0

Vamos a terminar este capitulo exponiendo algunas consecuencias del
Lema 3.3.

Definicién 3.9 Sea Y = conv(H) un espacio métrico convexo y f : Y — B
una aplicacion contractiva. Llamaremos anillo de constantes de f respecto
de H, que denotaremos por B(s m, al subanillo de B generado por f(H).

También usaremos la siguiente notacién: Cuando X sea un espacio métrico
convexo sobre B, H un subconjunto de X y R un subanillo de B, convg(H)
denotara el conjunto de las combinaciones convexas de elementos de H con
coeficientes en R.

Proposiciéon 3.10 Si Y es un espacio métrico, f : Y — B es contractiva,
Y = conv(H) y R = B,m, entonces f~1(0) = conv(convg(H) N f~(0)).

PRUEBA: Cuando f~1(0) # 0 (que es el caso no trivial) bastard encontrar
0" € convg(H) N f71(0), pues entonces nos podremos remitir al Lema 3.3
y encontrar un sistema generador de f~!(0) formado exclusivamente por
elementos de convg(H). Tomamos x € f~1(0) y lo expresamos como combi-
nacion convexa de elementos de H:

T=a1T1 + -+ Aplp,
conz; € Hy @, a; =1. Entonces
0= f(‘/lj) = alf(x1> S D anf(xn)a

lo que implica que 0 = f(z1)--- f(x,). Como f(x;) € R, podemos aplicar el
Teorema 1.24 al anillo de Boole R, y concluir que 0 € convg(f(x1),..., f(x,)),
asi que existen b; € R con @, b; = 1 tales que ), b;f(z;) = 0. Finalmente
Yo bz € f7H0) N convg(H). O
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Corolario 3.11 Sea f : B" — B una aplicacion polinomica, y supongamos
que todas las constantes que aparecen en una expresion de f estan contenidas
en el subanillo S de B. Entonces f~1(0) = conv(S™ N f~1(0)).

PRUEBA: Aplicamos la Proposicién 3.10 a Y = B" y H = {0,1}". Notese
que, para x € {0,1}", f(z) es una expresién polinémica en el anillo .S, asi que

estd en S. Esto prueba que el anillo R de la Proposicion 3.10 esta contenido
en S, asi que

f710) = conv(convr(H) N f(0)) C conv(convs(H) N f7(0)),

y puesto que convg({0,1}") = S™ el corolario queda probado. O

Corolario 3.12 Sea f : B" — B wuna funcion polindmica en cuya expre-
siom no aparecen mds constantes que 0 y 1. Entonces,

F710) = conv({0,1}" N £70)).

41



Capitulo 4

Estructura de los FGC-anillos

El objetivo de este capitulo es el estudio de los FGC-anillos.

En la seccion 4.1 se caracteriza a los FGC-anillos como aquellos anillos
reducidos para los que existe un subconjunto finito en el que aparecen todas
las clases médulo cualquier ideal primo.

En la seccion 4.2 se describe un modo de construir estructuras algebrai-
cas (anillos, grupos...) a partir de una estructura dada y un anillo de Boole.
Partiendo de cuerpos finitos se obtendran FGC-anillos.

En la seccién 4.3 se da un teorema completo de estructura para los FGC-
anillos, mostrando que todos se expresan de manera tinica como producto de
anillos como los construidos en la seccion 4.2.

4.1 Caracterizaciones de los FGC-anillos

Lema 4.1 Sea X wun espacio métrico sobre el anillo de Boole B y sean
X1y, Tn,x € X. FEntonces x es combinacion convera de xy,...,T, Si Y
sélo si d(x,xy1)---d(z,x,) = 0.

PRUEBA: Supongamos que d(x,z1) - d(z,x,) = 0. En virtud del Lema 3.4,
existe una funcion contractiva

f:conv{z,xy,...,2,} — B
tal que f~1(0) = conv{zy,...,z,}. Por la contractividad de f tenemos que

f(x) = f(x) + fw:) < d(z, z:)
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para todo i =1,...,n, lo que nos da que
flz) <d(x,z1)---d(z,x,) =0,
y por tanto = € conv{zy,...,x,}.

Para el reciproco, observar que la funcién contractiva g : X — B dada

por g(x) = d(z,z1) - -d(x,x,) se anula en z1, ..., x, y por tanto se anula en
conv{xy,...,x,}. O
Lema 4.2 Sea A un anillo reqular y ay,...,a, € A. Son equivalentes:

1. A=conv{ay...,a,}

2. Para todo x € A, (v —ay)--- (v —a,) =0.
3. Para cada ideal primo p de A, A/p ={a1 +p,...,a, + p}
De hecho, la equivalencia 2 < 3 vale para cualquier anillo reducido.
PRUEBA: [1 < 2] Por el Lema 4.1, A = conv{a;}}, siy sélo si
d(z,ay)---d(xz,a,) =0
para todo x € A, si y sélo si
e((r—ay) - (r—ay)=elx—ay) --e(r—a,) =0
siysolosi(x—ay)---(x—a,) =0, para todo x € A.
2 < 3] Si A es reducido, la condicién 2 equivale a que
(x—ay) - (x—a,) €p
para todo x € A y todo ideal primo p de A, o lo que es lo mismo,
(z = (a1 +p))--- (= (an+p)) =0
para todo = € A/p y todo ideal primo p de A. Aplicando ahora que cada

A/p es un dominio se concluye la prueba. O

Proposicién 4.3 Sea A un anillo. Son equivalentes:

1. A es un FGC-anillo.
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2. A es reducido y existen aq, . ..,a, € A tales que para todo v € A,

(x —ag) - (x —a,) =0.

3. A es reducido y existen ag,...,a, € A tales que para todo ideal primo
p de A,
A/p={ai+p,... ,a,+p}.

PRUEBA: Basta que probemos que la condicién 3 implica que el anillo es
regular, pues lo demads es consecuencia inmediata del Lema 4.2. A su vez ese
hecho se deduce del Teorema 0.13 ya que de 3 se sigue que todo ideal primo
p de A es maximal, puesto que cada A/p es un dominio finito y por tanto un
cuerpo. ]

En la Proposicion 4.3 se ha probado que si A es un FGC-anillo, entonces
A/p es finito para cada ideal primo p de A, y de hecho si A = conv{ay,...,a,}
entonces |A/p| < n para todo primo p. Cabria preguntarse si un anillo re-
gular para el que existe un natural que acota las cardinalidades de todos sus
cocientes por ideales primos es forzosamente un FGC-anillo. La respuesta es
negativa y el contraejemplo es el siguiente anillo A para el que ademéas vamos
a dar una aplicacién contractiva f : A — A que no es polinémica:

Sea Ky = {0,1,a,b} el cuerpo de 4 elementos. Definimos A como el
subanillo de KX formado por las sucesiones en las que sélo una cantidad
finita de términos son distintos de 0 6 1.

e Es claro que A es reducido.

e Como z* + 2 = 0 para todo x € K,, la misma relacién vale para
todo z € A. Para p primo, A/p es dominio y la relacién fuerza a que
|A/p| < 4. En particular A/p es cuerpo y todo primo es maximal, asi
que A es regular por el Teorema 0.13.

e Anoesun FGC-anillo. Supongamos que fuera A = conv{z™, ... 2™}
Por la definicién de A, existe un indice k € N tal que x,(f) € {0,1} para
i =1,...,n. Tomamos y € A como la sucesién que vale 0 para todos
los indices excepto y, = a # 0, 1. En ese caso (y—zM)--- (y—2™) # 0
pues y # x,(f) para todo i. Contradecimos asi el Lema 4.2.

e Consideramos @ € K} la sucesién constantemente igual a a, y la fun-
ci6on f: A — A dada por f(z) = x(z + 1)(z + a). La funcién f es
contractiva en virtud del Lema 1.28 ya que es la restriccién de un po-
linomio en KN. Afirmamos que f no es una aplicacién polinémica en
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A. Supongamos que sf lo fuera: f(z) = > 1" D’ con cada ¢V € A.
De nuevo, ha de existir un natural k& tal que c,(;) € {0,1} para todo 1.
Para todo z € A se tendra entonces que

wr(wr+ )z +a) = fl@) =Y o,
=0

con c,(f) € {0,1} = Z,. Esto nos da una contradiccién porque la funcién
h: Ky — K, dada por h(t) = t(t+ 1)(t + a) no puede venir dada por
un polinomio con coeficientes en Zs puesto que se anula en a y no se

anula en b.

4.2 Envolturas booleanas de anillos

Sea B un anillo de Boole y sea X un conjunto en el que tenemos una familia
operaciones internas {®; : X xX — X};c; y de funciones {¢; : X — X },e.
Denotaremos por X!Z! a la clausura convexa de X como espacio métrico
discreto sobre B (es decir con la métrica d(z,y) = 1 siempre que x # y).
Podemos extender a X!l las operaciones {®;}ic; v las funciones {¢;},cs
usando el Teorema 1.19 del siguiente modo:

o 9, : X 1Bl — Xl es la tinica aplicacién contractiva que extiende a

o ®; : XIBl x XIBl = copv(X x X) — XIB es la tinica aplicacién con-
tractiva que extiende a ®; : X x X — X.

En estas condiciones se verifica:

Teorema 4.4 Sean F(xq,...,x,),G(x1,...,2,) dos “formulas” en las que
s6lo intervienen las indeterminadas x1, ..., x, , los operadores ¢; y ®; para
1€ 1,5 €Jy constantes de X. Entonces

{(@1,...,20) € (XY F(ay,...,2,) = Gxy,...,1,)} =
conv{(zy,...,x,) € X" : F(21,...,2,) = G(x1,...,2,)}.

PRUEBA: Se obtiene de la Proposicién 3.10 aplicada a Y = (X!B)» H = X",
y f:Y — B dada por f(z) = d(F(x),G(x)), teniendo en cuenta que en este
caso By uy = Zs. O
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Corolario 4.5 En las condiciones anteriores, si para todo xq,...,x, € X
vale F(xy,...,x,) = G(xy,...,x,) entonces también vale para cualesquiera
T1,. .., T, € X

Corolario 4.6 Si X es un anillo, entonces XB! también lo es.

Teorema 4.7 Si K es un cuerpo y B un anillo de Boole, entonces A = KP
es un anillo regular con B(A) = conv{0,1} = B. Ademds, si K es finito,
entonces A es un FGC-anillo.

PRUEBA: El hecho de que el conjunto B(A) de los idempotentes de A es
conv{0,1} es una consecuencia del Teorema 4.4 aplicado a las férmulas
F(z) = 2% y G(z) = x. Por otra parte, si llamamos K* = K \ {0}, en-
tonces todo elemento de U = conv{K*} es una unidad de A, como se deduce
del mismo teorema, haciendo X = K* con la funcién (~)~!, y tomando

las férmulas F(z,y) = -y 'y G(z,y) = 1. Consideramos las funciones
f:K—={0,1}C Kyg: K— K*CK dadas por:

o flx)=1siz#0y f(0)=0
e gz)=zsiz#0yg(0)=1

verifican = f(z)g(x) para todo z € K. Por tanto sus extensiones contrac-
tivas f : A — conv{0,1} y § : A — conv(K*) verifican z = f(x)§(x) para
todo x € A, lo que nos da una descomposicion de x como producto de una
unidad y un idempotente y prueba que A es regular. La extensién contracti-
va de la “inclusiéon” ¢ : {0,1} — B nos da una isometria j : B(A) — B. Es
facil ver que j es un isomorfismo de anillos. Para probar, por ejemplo, que
preserva el producto ndtese que las aplicaciones de B(A) x B(A) a B dadas
por (z,y) — j(zy) y (z,y) — j(x)j(y) son dos extensiones contractivas de
la misma funcién p : {0,1} x {0,1} — B y por tanto iguales. Respecto
al caso en que K = {ao,...,a,} es finito nétese que entonces la férmula
(x —ag) -+ (r — a,) = 0 vale para todo = € K, asi que, de nuevo por el
Teorema 4.4, vale para todo x € A y concluimos que A es un FGC-anillo,
gracias al Teorema 4.3. O

En particular, este teorema nos afirma que para cada cuerpo K y cada
anillo de Boole B podemos construir una K-algebra regular con parte idem-
potente isomorfa a B y generada por K. Podemos probar que de hecho ésta
es, salvo isomorfismo, la inica K-algebra que cumple esas condiciones.

Proposicién 4.8 Sea K un cuerpo, B un anillo de Boole y A una K-dlgebra
reqular cuya parte idempotente es isomorfa a B y tal que A = conv(K).
Entonces A = KBl
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PRUEBA: De modo analogo a la demostracién anterior, la inclusiéni : K — A
se extiende a una tnica aplicacién contractiva f : KBl — A que resulta ser un
isomorfismo de K-algebras. Para ver por ejemplo que f conserva la suma se
consideran las aplicaciones de KB x KBl en A dadas por (z,y) — f(z)+f(y)
v (z,y) — f(z + y), que son extensiones contractivas de la misma funcién
g: K x K — Ay por tanto iguales. El hecho de que f sea biyectiva viene de
que es la extension contractiva de la isometria 15 : K — K a dos envolturas
convexas de K. O

4.3 Teorema de estructura para FGC-anillos

Lema 4.9 Sea K un cuerpo finito y By, By anillos booleanos. Entonces,
K [BixBs] o~ [[B1]  [[B2]

PRUEBA: El anillo A de la derecha es una K-algebra regular (identificamos
K en A con los elementos (k, k) con k € K), y

B(KB) x KBy =~ p(KIB)) x B(KP)) =~ B, x B,.

Teniendo en cuenta la Proposicién 4.8, s6lo nos queda ver que A = conv(K).
Sabemos que

A= KB x KB — conu(K) x conv(K) = conv(K x K)

asi que basta comprobar que cada (k, k") € K x K vive en conv(K), y esto
es trivial pues (k, k") = (1,0)(k, k) + (0, 1) (K", k). O

Lema 4.10 Sea f : X — X wuna aplicacion contractiva en un FGC-espacio
X. Entonces, el conjunto {f*}ren es finito.

PRUEBA: No es restrictivo suponer que f tiene un punto fijo (pues podemos
definir f en un FGG-espacio que contenga a X donde lo tenga, por ejemplo
extendiendo a la clausura convexa g : X U {y} — X U{y} donde g(y) = v,
g(x) = f(z) y d(z,y) = 1 para todo x € X). En tal caso si consideramos
un referencial R centrado en dicho punto y M la matriz de f respecto de R,
M sélo tiene una cantidad finita de entradas y asi las entradas de M"™ viven
en un cierto anillo finito (véase la Proposicién 0.7). Por tanto, la sucesion
M, M?, M3, ... constituye un conjunto finito. Il
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Lema 4.11 Sea A un FGC-anillo y R un subanillo finitamente generado de
A. Entonces R es finito.

PRUEBA: Procedemos por induccién en el nimero de generadores, n, de R.
Paran = 0, R es el anillo primo de A (es decir {0, £1,+2,...} ), que es finito
en virtud del Lema 4.10, aplicado a la funciéon x — x 4+ 1. Supongamos el
lema cierto para n, y lo probaremos para n 4+ 1. Un subanillo generado por
n + 1 elementos es de la forma T'[z] con T generado por n elementos y por
tanto, por la hipotesis de induccion, finito. Aplicando de nuevo el Lema 4.10
a la funcién a — ax, deducimos que el conjunto {z* : k € N} es finito, y en
consecuencia, también T'[z] = {>_ a;2" : a; € T} es finito. O

Lema 4.12 Sea K un cuerpo, B un anillo de Boole, y sea p un ideal primo
de A = KB, Entonces A/p= K.

PRUEBA: Veamos que la composicién f : K < A — A/p es un isomorfismo.
Es inyectiva, porque K es un cuerpo. Es suprayectiva porque para todo
x € A, podemos expresar r como combinacién convexa de elementos de K,
r =" ak; y cuando pasamos al anillo cociente, todos los idempotentes
a; van a idempotentes del dominio A/p, o sea, 0 6 1, lo que nos dice que

r+p € (K+p)/p=Im(f). O

Lema 4.13 Todo anillo finito reducido es isomorfo a un producto de cuerpos.

PRUEBA: Se trata de un sencillo ejercicio de algebra conmutativa. Basta
aplicar el teorema chino de los restos al conjunto de los ideales primos (ma-
ximales) del anillo. O

Teorema 4.14 Sea A un FGC-anillo. FExisten Ki,..., K, cuerpos finitos
no isomorfos y By, ..., B, anillos booleanos univocamente determinados por
A (salvo isomorfismos y salvo el orden) de modo que

Az KPP s KPR

PRUEBA: Existencia de la descomposicién: Por el lemma 4.9, basta encon-
trar una descomposicion en la que quiza aparezcan cuerpos finitos isomorfos.
Supongamos que A = conv(H) donde H = {x1,...,x,}. Sea T el subanillo
generado por H, que es finito, por el Lema 4.11. T" es un anillo finito reducido
y por tanto, un producto de cuerpos finitos. Tomemos un isomorfismo

h:K =K/ x---xK, —T<— A
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Sean e; = (0;)7L; € K (la delta de Kronecker) y ¢; = h(e;). Tenemos
una descomposicién en producto de anillos A = [[", Ae; puesto que los
g; constituyen una familia completa de idempotentes ortogonales de A. La
restriccion h : K; = Ke; — Ag; nos da un homomorfismo de anillos, de tal
manera que Ae; es una K;-algebra, que es regular, porque es un factor de un
anillo regular. Si probamos que conv(h(K;)) = Ag; =: A;, podremos deducir,
por la Proposicién 4.8, que A; = K}B(Ai)] y habremos terminado. Hemos de
ver que cada elemento de A; es una combinacién convexa de elementos de
h(K;) con escalares en B(A;). Sea pues z € A;. Existe una combinacién

convexa en A, x = b;r; con r; = h(k;) € T'. Entonces,
v=elr=> (cib)(eir;) = Y _(eibs)h(eik;)
J J

y tenemos la expresion que buscabamos.

Unicidad: Supongamos dada una tal descomposicion
Az KPP o KB

donde cada A; = KZ[B"] puede verse como un ideal principal de A. Es fécil
comprobar que todo ideal primo de A es de la forma

py=Ar X X Ay X pp X Ay X0 XA,

para cierto ideal primo p; de A;, y por el Lema 4.12, K; = A;/p; = A/p¢. Por
tanto, los cuerpos K; estan univocamente determinados, salvo isomorfismo,
por A, porque son aquellos que aparecen como cociente por ideales primos.
Ademas, como A; es regular, es reducido y en consecuencia, la interseccion
de todos los ideales primos de A; es 0. Eso implica que la interseccion de
aquellos ideales primos de A cuyos cocientes son isomorfos a K; es

Ay X oo X Ay x 0 X Ajpqg X -+ X Ay

Por tanto, la interseccion de los ideales primos de A cuyos cocientes no son
isomorfos a Kj es

Ox- - x0xA;x---x0=A4.

Esto nos dice que el anillo factor de la decomposicién correspondiente a
K estd univocamente determinado por A, y también el anillo booleano B;
porque es isomorfo al anillo de idempotentes de ese anillo factor. O

Finalizamos el capitulo introduciendo el concepto de p-anillo y compro-
bando que se trata de un tipo de FGC-anillo. Los articulos [9] y [13] tratan
precisamente de la estructura de espacio métrico booleano de un p-anillo.
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Definicién 4.15 Sea p un niumero primo. Un p-anillo es un anillo A de
caracteristica p tal que a? = a para todo a € A.

Proposiciéon 4.16 Todo p-anillo es un FGC-anillo. Es mads, todo p-anillo
es de la forma ZLB] para un anillo de Boole B.

PRUEBA: Si A es un p-anillo entonces A es reducido y para cada =z € A
se tiene x(z — 1)(x —2)---(x — (p — 1)) = a? — x = 0. Por tanto, por la
Proposicién 4.3, es un FGC-anillo. En la descomposicion de A que nos da el

Teorema 4.14 el inico cuerpo que puede aparecer es Z,,. O

Esta proposicién es equivalente al Teorema 1 de [13].
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Capitulo 5

Teorema de estructura para
FGC-espacios

En este capitulo clasificaremos los FGC-espacios salvo isometria. Los sis-
temas de referencia no nos proporcionan invariantes adecuados, porque no
son 4nicos salvo isometria (por ejemplo, {1} y {a,a} son referenciales no
isométricos de (B,0)). El concepto adecuado para nuestro objetivo es el
siguiente:

Definicién 5.1 Un referencial {x1,...,x,} de (X,0) se dice que es una base

de (X,0) si 1] > |z > -+ > [za].

Probaremos que todo FGC-espacio centrado (X, 0) posee una base, y que
es Unica en el sentido del Teorema 5.6. En términos de sumas ortogonales,
esto vendra a decir que todo FGC-espacio se descompone de manera tinica
como suma ortogonal de una cadena decreciente de ideales principales de B.
Probaremos primero la unicidad y luego la existencia.

Definicién 5.2 Sea k > 0 un entero y X un espacio métrico. El k-ideal de
X (denotado por Iy(X)) serd el ideal de B generado por

{ H d(ug, uj) < ug, ..., u, € X}

0<i<j<k
Si I(X) es principal, denotaremos a su generador por oy (X).

Lema 5.3 Si X = conv(H), entonces Ix(H) = Ix(X) para todo k € N.

PRUEBA: Si U es un espacio métrico booleano cualquiera, la aplicacién fy :
Ukl — B dada por

fo(ug, ..., ug) = H d(u;, uj)

0<i<j<k
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es contractiva porque es composicion de funciones distancia y una aplicacion
polinémica (el producto). Con esta notacién, I(U) es el ideal generado por
la imagen de fy, pero

Im(fx) = fx(X*) = fx(conv(H**")) = conv(fx(H"))
= conv(Im(fy))

asi que ambas imagenes generan el mismo ideal. 0

Lema 5.4 Sea X un FGC-espacio. Entonces I;,(X) es principal para todo
k € N y existe n € N tal que I,(X) = 0 para todo k > n. Por tanto, oy (X)
existe para todo k € N y ax(X) =0 para k > n. Es mds,

ap(X) = max{ H d(u;, uj) : ug, ..., u, € X}

0<i<j<k

PRUEBA: Supongamos que X = conv(H) con H finito. Entonces, I;(X) =
I (H) es siempre un ideal finitamente generado de B, asi que es principal, y
si tomamos n = card(H), entonces 0 = [,(H) = I,(X) si k > n. Respecto a
la dltima afirmacién, observar que, siguiendo la notacion de la demostracion
del Lema 5.3, a(X) es el generador de Im(fx), que coincide con su maximo
pues Im(fx) es un intervalo por el Corolario 1.25. O

Lema 5.5 Sea {x1,...,2z,} una base de (X,0). Entonces, ap(X) = |zl
para k <n yar(X) =0 si k> n.

PRUEBA: Sélo hay que calcular ay(H) donde H = {xy = 0,21,...,2,}. Si
k > n, Es evidente que ax(H) = 0. Si k < n, llamamos y; a la reordenacién
de los z; tal que

0=lyol <y <+ < lynl

(es decir, y, = 11 si r > 0). Para i < j tenemos, por ortogonalidad,

d(yiayj) = ’yz‘ \ |yj‘ = ’?/y’

Nos preguntamos si Iy(H) = |zx|B(= |yn—k+1|B). La inclusion hacia la
izquierda se debe a que

Yn—r+1] = H |lyil = H d(yi, y;)

n>i>n—k n>i>j>n—k
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es uno de los generadores de I(H). Para la otra inclusién, veremos que todos
los generadores de I .(H) estén en el ideal |y, k. 1|B. Tomemos

U= {ug,...,ux} C H.

Por un argumento de cardinalidad, encontramos que deben existir indices
r<s<n-—=k+1tales que y,,ys € U, asi que

H d(uiauj) < d(y'mys) - |y8| < |yn—k+1|'
0<i<j<k

OJ

Teorema 5.6 Si {z1,...,2,} es una base de (X,0) e {y1,...,yn} es una
base de (X,0'), entoncesn =m y |z;| = |y;| parai =1,...,n. Es mds, existe
una isometria f: (X,0) — (X,0) tal que f(z;) =vy; parai=1,...,n.

PRUEBA: Por el Lema 5.5, sabemos que n = max{k : ay(X) # 0} =m y

|z;] = a;(X) = |y;|. Con respecto a la ultima afirmacién, en virtud de la
Proposicién 2.7, existe una aplicacién contractiva f : (X,0) — (X, 0) tal
que f(z;) = y; parai = 1,...,n. Es una isometria porque, andlogamente,

podemos encontrar una inversa g : (X,0) — (X, 0) exigiendo g(y;) = ;.
U

Lema 5.7 Supongamos que (V,0) C (X,0) son FGC-espacios y V+ = {0},
entonces V = X.

PRUEBA: Un sistema de referencia de (V,0), {x1,...,2,,} se puede extender
a un referencial de (X,0), {x1,...,2,}. Entonces, Z,,41,...,7, € VL = {0},
asi que V = conv{0, z1,...,2,} = conv{0,z1,...,2,} = X. O

Teorema 5.8 Todo FGC-espacio (X,0) posee una base.

PRUEBA: Definimos, por recursién, una sucesion (z,,)%; en X y una sucesién
(Un)22, de FGC-espacios contenidos en X:

e 1 es tal que |zi| = max{|z|: x € X}; Uy := conv{0, z1}.
e Dados z; y U; para 7+ < n, tomamos z,, tal que
|z,| = max{|z| : x € U- |}

y U, = conv{0,xy,...,2,}.
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Nétese que esos maximos existen en virtud del Corolario 1.25 , ya que UL ,
es un FGC-espacio por la Proposicion 2.15. Los x; forman un conjunto
ortogonal y verifican |z;| > |z;| cuando ¢ < j. Por tanto, {z1,...,z,} \ {0}
es una base de (U,,0). Como X es un FGC-espacio, por el Lema 5.4, existe
k>0 con 0= ag(X) > ar(Ux) = |zk|. Asi que, tomando r el mayor entero
tal que |z,| # 0, tenemos, por la definicién de z,,; = 0, que U = {0}. Asf
pues, por el Lema 5.7, U, = X y ya hemos visto que {zy,...,z,} \ {0} es
una base de (U,,0). O

Podemos dar un método para calcular una base de (X, 0) a partir de un
sistema de referencia (lo que constituye otra prueba del Teorema 5.8). En
primer lugar, si el sistema de referencia tuviera dos elementos {x, x5} en-
tonces tenemos una base {y1,y2} donde y; = |z1|z4 —|—W3¢2 e yp = |zq|za. Si
partimos ahora de un sistema de referencia arbitrario {x1,...,z,}, la cons-
truccién del caso anterior permite cambiar un par {z;,z;} por otro {y;,y;}
con |z;| V|z;| = |yil > |y;| = |zi||z;|. Repitiendo sucesivamente el proceso
de manera adecuada (por ejemplo, comparando primero z; con cada uno de
los z;, luego x5 etc.) se obtiene finalmente una base.

Corolario 5.9 Si x,y son dos elementos cualesquiera de un FGC-espacio
X, eziste una isometria f: X — X tal que f(x) =y.

PRUEBA: Consideramos bases de (X, z) y (X,y) y el Corolario 5.6 nos pro-
porciona una isometria f(X,z) — (X, y). O

Teorema 5.10 Dos FGC-espacios X eY son isométricos siy solo sioy(X) =
ag(Y') para todo k € N.

PRUEBA: La implicacién hacia la derecha es trivial. Para ver el reciproco, es-
cogemos 0 € X, 0/ € Y y bases {x1,...,2,} y{y1,- ., ym} de (X,0) y (Y, 0)
respectivamente. Entonces, n = max{k : ay(X) = o, (Y) # 0} = m y pode-
mos construir una isometria igual que en la demostracion del Teorema 5.6.

g

Proposicién 5.11 Sean X e Y espacios métricos sobre B con conv(X) e Y
FGC-espacios. Son equivalentes:

1. Existe una inmersion f: X — Y.

2. ap(X) < ap(Y) para todo k € N.
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PRUEBA: La implicacion 1 = 2 es evidente mientras que para 2 = 1 basta
considerar bases y aplicar la Proposicién 2.7. 0

Conviene hacer ahora un comentario acerca de los articulos [9] y [13].
En ellos se plantean algunos problemas acerca de la estructura de espacio
métrico de un p-anillo A. Como se vio en la Proposicién 4.16, A es de la
forma Z,[JB] y se tiene que A = conv(0,1,...,p —1) y d(i,j) = 1 para cada
i,7 € {0,...,p — 1} con ¢ # j. Eso implica que {1,,2...,p — 1} es una
base de (A4,0) y que ax(A) = 1 para k < py ax(A) = 0 para k > p. En
definitiva, un FGC-espacio X sobre B es isométrico a un p-anillo si y sélo si
existe un primo p tal que ax(X) =1 para k < py ax(X) = 0 para k > p.
Algunos de los problemas que alli se resuelven podemos obtenerlos a partir
de nuestros resultados sobre FGC-espacios. Por ejemplo, en el articulo [9]
aparecen varios resultados (Teoremas 3.5, 3.7), relativos a la posibilidad de
sumergir espacios métricos finitos en p-anillos, que se obtienen como casos
particulares de la Proposicién 5.11.
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Capitulo 6

Extension de aplicaciones
contractivas

En este capitulo vamos a tratar acerca de los dos problemas siguientes:

1. Dada una isometria f : U — V entre dos subconjuntos de un FGC-
espacio X ;Cuando podemos asegurar que puede extenderse a una iso-
metria g : X — X7

2. Dada una aplicacion contractiva f : U — V entre dos subconjuntos de
un FGC-espacio X ;Cuando podemos asegurar que puede extenderse
a una aplicacién contractiva g : X — X7

En el caso en que U y V son FGC-espacios, el primer problema esta resuelto
en el Corolario 2.16, mientras que el segundo lo resolveremos en este capitulo
mediante el Teorema 6.6. La solucién a ambos problemas en este caso es
siempre afirmativa. Después pasaremos a estudiar el caso general. Veremos
en el Teorema 6.10 que la respuesta en este caso no es siempre afirmativa, a
menos que B sea completo.

En primer lugar, necesitaremos un teorema sobre unicidad de soluciones
a una ecuacion.

Teorema 6.1 Sea (X, zq) un FGC-espacio y a € B, y supongamos que existe
una base {x1,...,x,} de (X, x9) tal que |z;] = a para i = 1,...,n. Sea
f: X — B una aplicacion contractiva tal que f~'(0) # (0. Las siguientes
afirmaciones son equivalentes:

1. card(f~1(0)) =1 (i.e., la ecuacion f(x) = 0 tiene una unica solucion).

2. d(u,v) =a= f(u)V f(v) = a para todo u,v € X.
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3. f(z;)V f(z;) = a para todo i # j, i,j =0,...,n.

PRUEBA: (3 = 2) Consideremos la aplicacién g : X? — B dada por

g(z,y) = d(z,y) + a.

Tenemos que

g7 (0) = conv{(xi, ;) : i # )
en virtud de la Proposicién 3.10, aplicada a la funcién g y a H* = {xg, ..., 2, }?
(observar que d(x;,x;) = |z;| V |z;] = a cuando i # j, asi que el anillo R
de la proposicién es R = By = {0,1,a,a} y convg(H?) = H? porque
convr(H) = H).

Por tanto, la aplicacién h : g~1(0) — B dada por h(x,y) = f(z) V f(y)
es constantemente igual a a, puesto que, por nuestra hipétesis, vale a sobre
un sistema de generadores de g~1(0). Ahora, obsérvese que, por la definicién
de g,

9710) = {(z,y) € X : d(z,y) = a}.

(2 = 3) es trivial.

(1 & 2) Sea yp una solucién de f(x) = 0. Podemos formar una base
{y1,.--,yn} de (X, yp). En virtud del Teorema 3.3 se verificara (1) si y sélo
si f(yi)ys = yo para i = 1,...,n, siy sélo si 0 = f(y;)|ys| = f(ys)a para
i >0, siysélosia< f(y;) para todo ¢ > 0, si y sélo si a = f(y;) para cada
i > 0, porque siempre |f(v;)| < |yi| = a;(X) = |x;] = a. Eso es equivalente
asuveza f(y;) V f(y;) = acuando i # j, 4,5 = 0,...,n. Ahora, usamos la
equivalencia (3 < 2) que ya hemos probado, cambiando las x; por las y; y
hemos terminado. [

Lema 6.2 Sea (X, z) finito o un FGC-espacio. Entonces, para todo n € N

a,(X) = sup{ H d(zi, i)t 1, ..., 0, € X}

0<i<j<n

PRUEBA: La desigualdad hacia la derecha se sigue de la definicién de «,.
Para la otra, supongamos primero que X es un FGC-espacio. Entonces, por
el Corolario 5.4,

(X)) = max{ H A(Yis Y5) = Yo, Y1, -+ Yn € X},

0<i<j<n
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asi que

para ciertos zg, z1,...,2, € X. Por el Corolario 5.9, existe una isometria
f:X — X con f(z9) = xo. Si llamamos x; = f(z;), tendremos que

H d(z, z;) = H d(z;, ;)

0<i<j<n 0<i<j<n

con lo que concluimos este caso. Supongamos ahora que X es finito. Defini-
mos f : conv(X)" — B como

flxy, ... x,) = H d(z;, xj).
La aplicacion f es contractiva, y
an(X) = ap(conv(X)) =sup{f(z) : z € conv(X)"}
— sup(f(conu(X"))) = sup(conu( f(X"))) = sup(f(X™).

Lema 6.3 Sean (U,0) C (X,0) FGC-espacios. Para todon € N
\/cm Jan—i(U™)

donde convenimos que an(U) = ap(U*) =

PRUEBA: Tomemos {x1, ..., 2.} {y1,...,ys} bases de U y Ut respectivamen-
te (Si¢>r oj > s, entenderemos que y; = z; = 0). En esta situacion, el
conjunto {1, ..., &, y1,...,Yst es un referencial de X. Es suficiente probar
que

Zak Jan k(U)B = Z|$k||yn kB
k=0

(convenimos aqui que |x0| = |yo| = 1). Para la inclusién hacia la izquierda,
obsérvese que uno de los generadores de I,(X) es el producto de todas las
distancias entre los elementos de la tupla (0,21,..., Tk, Y1, .-, Yn—k), qUE €S
exactamente |xy||y,—x|. Para la otra inclusién, sea

H:{Oax17"'7xray17"'ays}~
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En virtud del Lema 6.2, I,,(X) = I,,(H) estd generado por los productos de

las distancias en tuplas de la forma (0, z1, ..., z,) € H. Una de esas tuplas se
puede escribir como (0,2, ..., Tip, Yjys - -« Yjo_p), CON Gy < dg < -+ < i >k
Vi <Jo<-:+<jnr=>n—k. Elproducto de las distancias en la tupla es
entonces |z, ||y, .| < || |[yn—rl O

Teorema 6.4 Sean (U,0), (V,0) C (X,0) FGC-espacios. Si U es isométrico
a'V, entonces Ut es isométrico a V+.

PRUEBA: Para ¢ € N, llamamos
a; = Oéz(U) = Oéi(V), bz = O{i(X), r; = CYZ'(UJ_), S; — O{Z'(VJ_).

Sea d be el cardinal de una base de (X,0). En virtud del Lema 6.3, tanto los
(r:)%_, como los (s;)L, son soluciones del siguiente sistema de ecuaciones (por

simplicidad en la notacion, en estas ecuaciones se consideran como constantes
Xo=ap=1y Xgp1 =0):

X1>2Xo 22Xy (6.1)
po(X1,. . Xg) =by+ \/aniXi=0 n=1,...,d+1 (6.2)
i=0
Observar en primer lugar que (6.2) es equivalente a p:=p; V-V pgr1 =0
y (6.1) a g(X1,...,Xq) = V?;ll(XiXiH + X;) = 0. Para probar que U~ y
V1 son isométricos, tenemos que ver que
T, = Ozk(UL) = Ozk<VL) = Sk

para todo k € N. Para k > d es trivial porque entonces r, = s, = 0, asi que
solo tenemos que probar que el anterior sistema de ecuaciones tiene solucion
unica. Es decir, que si llamamos

H::g_l(O):{(xl,...,xd)EBd:I1Z"'Zxd},

la ecuacién p(z) = 0 tiene una tnica solucién con x € H. En la expresién de
g las tnicas constantes que aparecen son 0 y 1, asi que por el Corolario 3.12,

H = conv{ug = (0,...,0),u; = (1,0,...,0),uy = (1,1,0,...,0),...,uq}.

El conjunto {us, ..., us} es un sistema de referencia de (H, ug), porque es un
conjunto ortogonal. De hecho, es una base porque |u;| = 1 para 1 < i < d.
Podemos aplicar, pues, el Teorema 6.1, y concluir que la ecuacién considerada
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tiene solucién unica si y sélo si p(u;) V p(u;) =1 parai # jei, j=0,...,d.
Entendiendo que la 0-ésima coordenada de u; vale (u;)o = 1 tenemos:

pn(uj) = bn + \/ an_,-(uj)i = bn + (an_o V QAp—1 VeV CLn_j)
1=0
= Qp_j + by sij < n;

pn(uj) = b, + \/ an—i(uj); = by + ao(u;)n = by + 1

=0

= b,sij>n.
Como p=p; V---V pgr1, y teniendo en cuenta que agi1 = bgr1 =0,

p(UO) = (al—l—bl)\/(ag—f-bg)\/\/(ad-f‘bd)\/o,
p(“l) = bl V (CL1 + bQ) VeV (ad,l + bd) V ag;
plug) = by Vb V(ag+b3) V-V (ag_o+ba)Vag1;

p(u;) = by VbV (ay+bjy1) V-V (ag_j+ba)Vag jii;
p(ug_1) = b V---Vbi1V(ag+bg)Vay;
p(ug) = byV---VbgVay.
Puesto que by > by > - -+ > by podemos simplificar:

p(uo) = (a1—|—b1)\/(a2+b2)v---v(ad+bd);
plur) = b1V (a1 +bg) V-V (ag-1+ba) Vag
p(u2) = byV (a1 + bg) VeV (ad_Q + bd) Vag_1;

pug) = b V(a1 +bj1) V-V (@a—j +ba) V ag—ji1;
p(ug—1) = ba_1 V(a1 + ba) V as;
p(ug) = baVa.
Tenemos que ver que p(u;) V p(u;) = 1 para i # j siempre que by > --- > by,
esto es, cuando b = (by,...,by) € H. Basta probarlo para b € {ug,...,uq}

porque H = conv{ug,...,uq} y, si se fijan ¢, j,a4,...,aq, entonces la apli-
cacién p(u;) V p(uj) : H — B es funcién polinémica de b, y por tanto,
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contractiva. Si b = u; obtenemos:

pug) = (a+1)V---V(ap+1)Var, V- - Vag
plw)) = (@ +1D)V-V(ggr+1DVarV--Vag

p<u]) = (al+1>\/'-'V(@kfj"“1)\/ak—j+1\/-~-\/ad,j+1;
plug—1) = (@ +1)VagV---Vaggio;

plug) = arVasV---Vag_jii;

Ahora es claro que p(u;) V p(u;) = 1 para ¢ # j, porque si ¢ < j, entonces
ap—jy1 < p(ug) y ar—j1 +1 < plu;). U

Corolario 6.5 Sea f : X — Y wuna aplicacion contractiva entre FGC-
espacios isométricos. Entonces, [ es inyectiva si y solo si f es suprayectiva
sty solo si f es una isometria.

PRUEBA: Consideremos 0 € X, y (X,0), (Y, f(0)). Supongamos que f es
inyectiva. Por la Proposicién 1.22, f is inmersion, asi que es una isometria
sobre su imagen y tendremos que f(X) = X =Y. Aplicando el Teorema 6.4
F(X)t =Y+t ={f(0)}. Del Lema 5.7, concluimos que f(X) =Y, asi que f
es suprayectiva, y es isometia, pues es una inmersion suprayectiva.
Supongamos ahora que f es suprayectiva. En virtud del Teorema 2.19,
existe g : Y — X contractiva con f o g = 1y. Puesto que g es inyectiva,
es una isometria, por la implicacién que ya hemos probado. Por tanto g es
biyectiva y su inversa ha de ser f y ha de ser una isometria también. 0

Se puede dar otra demostracion del Corolario 6.5, independiente del Teo-
rema 6.4, del siguiente modo: Supongamos que f es inyectiva y pongamos
X = conv(T) e Y = conv(T") con T,T" finitos e isométricos. Expresamos
cada elemento de f(7') como combinacién convexa de elementos de 7" y for-
mamos el subanillo B’ de B generado por todos los coeficientes asi obtenidos
y por todas las distancias entre elementos de 7. El anillo B’ es finito en
virtud de la Proposicién 0.7. La restriccion f, : convg (T) — convp/(T")
es una inmersién de espacios métricos sobre B’ que son isométricos y fini-
tos. Por tanto f,. es suprayectiva y en particular 77 C Im(f) y finalmente
Y = conv(T") C Im(f).

Por otra parte, una forma equivalente de enunciar el Teorema 6.4 es la
siguiente:
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Teorema 6.6 Sea X un FGC-espacio, y H, K C X tales que H = conv(H)
y K = conv(K) son FGC-espacios. Entonces, cada isometria f: H — K
se extiende a una isometria g : X — X.

PRUEBA: Tomemos 0 € H. En virtud del Teorema 1.19 f se extiende a una
isometria f : (H,0) — (K, f(0)). Por el Teorema 6.4 existe una isometria
h : H- — K*. Por el Corolario 5.9 podemos suponer que h(0) = f(0).
Tenemos entonces una aplicacién contractiva g = f L h: X — X. Final-
mente,

9(X) 2 conv(g(H)Ug(H")) = conv(f(H)Uh(H"))
= conv(K UK?')

y com)(}_( U I_(L) = X por el Teorema 2.15. Asi pues, g es suprayectiva, y,
por el Corolario 6.5, es una isometria. O

Para el caso en el que X es un p-anillo y H y K son finitos, el Teorema 6.6
aparece probado en [13] como corolario al Teorema 5.

Vamos ahora a ver que para anillos de Boole completos, la hipotesis en el
Teorema 6.6 de que conv(H) y conv(K) sean FGC-espacios puede omitirse.

Lema 6.7 Sea X es un espacio métrico sobre B.

1. La aplicacion f : X — B es contractiva si y solo si para todo x,y € X,
d(z,y) f(y) < f(z) < fly) Vd(z,y).

2. 8i (fi + X — B)ier es una familia de aplicaciones contractivas, y
eziste el supremo punto a punto de las fi, f = \/,fi + X — B,
entonces [ es contractiva.

3. Si B es completo, X es un FGC-espacio y (K;)icr es una familia de
FGC-subespacios de X, entonces (), K; es también un FGC-espacio.

PRUEBA: Para el apartado 1, la funcién f es contractiva si y sélo si

f(@) + fly) < d(z,y)

para cada z,y € X. Como f(z)+ f(y) = f(y)f(x) ® f(z)f(y), eso que

equivale a f(y) f(z) < d(z,y) y f(2)f(y) < d(z,y).
El apartado 2 se sigue de 1.

La afirmacién 3 se deduce de 2 y del Teorema 3.4: Si K; = f;'(0) para
cierta f; : X — B contractiva, entonces (), K; = (\/, fi) ' (0). O
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Definicién 6.8 Sea X un espacio métrico sobre un anillo de Boole completo
B y U un subconjunto de X. Denotaremos por FGC(U) a la interseccion
de todos los FGC-subespacios de X que contienen a U, que es de nuevo un
FGC-espacio.

Teorema 6.9 Sean X e Y FGC-espacios sobre un anillo de Boole com-
pleto B, U y V subconjuntos de X eY respectivamente. Cada aplicacion
contractiva f : U — V se extiende a una unica aplicacion contractiva
FGC(f): FGC(U) — FGC(V). Ademas, si f es isometria, también lo es
FGC(f).

PRUEBA: Unicidad: Supongamos que g,h : FGC(U) — FGC(V) extien-
den a f. El conjunto

{r €e FGC(U) : g(x) = h(x)} ={x € FGC(U) : h(x) + g(x) = 0}

es entonces un FGC-espacio (por el Teorema 3.4) que contiene a U, asi que

contiene a FGC(U).

Existencia: Veamos primero que cada aplicacién contractiva g : U — B
se extiende a una aplicacién contractiva G : FGC(U) — B. Para cada
u € U consideramos la funcién contractiva g, : FGC(U) — B dada por

Hacemos G' = \/ o, gu. Para cada u € U, f(u) = gu,(u) < G(u) y por otra
parte para cada u,v € U tenemos que f(u)+ f(v) < d(u,v), lo que implica

que f(v)d(u,v) + f(u)d(u,v) =0y
f(v) = f(v)d(u,v) = f(u)d(u,v) = gu(v).

Tomando supremos f(v) > G(v), para todo v € U y ya tenemos que G ex-
tiende a f. Visto esto, tenemos en cuenta que el espacio Y puede sumergirse
en un espacio del tipo B". La aplicaciéon f : U — V — Y — B" se extiende
a una aplicacién contractiva h : FGC(U) — B", extendiéndola componente
a componente. Queda ver que h(FGC(U)) C FGC(V). En virtud del Teo-
rema 3.4 existe s : B — B contractiva con s7*(0) = FGC(V). La funcién
soh : FGC(U) — B extiende a la aplicacién nula 0 = so f : U — B,
asi que por la unicidad, que ya hemos probado, s(h(FGC(U))) = 0y
h(FGC(U)) C s71(0) = FGC(V). O

Teorema 6.10 Sea B un anillo de Boole. Son equivalentes:
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1. B es un anillo de Boole completo.

2. Para cada FGC-espacio X sobre B y cada isometria f : U — V entre
dos subconjuntos de X, f se extiende a una isometria F': X — X.

3. Para cada FGC-espacio X sobre B y cada aplicacion f : U — V
contractiva entre dos subconjuntos de X, f se extiende a una aplicacion
contractiva F': X — X.

4. Para cada FGC-espacio X y cada espacio convexro Y sobre B, toda
funcion contractiva f : U — Y definida en un subconjunto de X se
extiende a una aplicacion contractiva F': X — Y.

PRUEBA: (1 = 2) Gracias al Teorema 6.9, podemos extender f a una iso-
metria g : FGC(U) — FGC(V) que a su vez, por el Teorema 6.6, podemos
extender a una isometria en X.

(1 = 3,4) Andlogamente, usamos el Teorema 6.9, y luego el Corola-
rio 2.16.

(2,3,4 = 1) Supongamos que B no es completo y vamos a encontrar
un FGC-espacio X y una isometria f : U — V entre subconjuntos de X
que no puede extenderse a una aplicacién contractiva F': X — X, con lo
que daremos un contraejemplo a las propiedades 2 y 3. Puesto que B no
es completo, tiene un subconjunto S que carece de supremo. Sea [ el ideal
generado por S. Elideal I tampoco posee supremo (véase la Proposicién 0.9).
Sea J = Ann(I) = {a € B : al = 0}. Tomamos

X ={(z,y) € B* 1ay =0},
U={(z00eX:zel+J} v V=A{(r,y)eX:zelyelJ},
considerandolos espacios centrados en (0,0). La isometria
£1(0.0)— (V.0)

la definimos como la inversa de g : V. — U, dada por g(z,y) = (z + y,0).
Esta g es efectivamente una isometria ya que

dlg(z,y), 9" y) = z+y+a'+y =(x+2")+ Wy+y);
d((z,y), (2",y) = (@+2")V(y+y)

y las dos cosas son iguales cuando z, 2’ € [ e y,y € J pues en ese caso
(x+2)y+vy)elJ=0.
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Supongamos, por reduccién al absurdo, que f pudiera extenderse a una
aplicacién contractiva F' : X — X. Afirmamos que si F(1,0) = (a,b),
entonces a es el supremo de I, con lo que llegamos a una contradiccion.
Veamos que a es cota superior de I. Si x € I, entonces

(z,0) = f(x,0) = F(x,0) = F(x(1,0)) = 2F(1,0) = (ax, bx)

y asi ax = x v x < a. De manera andloga se ve que b es una cota superior
del conjunto J (siy € J, (0,y) = f(y,0) = F(y(1,0)) = (ay, by)). Sea ahora
¢ una cota superior de I y veamos que a < c¢. Del hecho de que ¢ sea cota
superior de I se deduce que ¢ € Ann(l) = J, asi que ¢ < b, ac < ab=0y
a<ec. O

Cabe hacer tres observaciones:

e Zemmer [13] prob6 que para un p-anillo A, B(A) es completo si y sdlo
si toda isometria entre subconjuntos de A se extiende a una isometria

de A.

e Aunque B no sea completo, toda isometria f : U — V entre subcon-
juntos de B se extiende a una isometria de B. Esto es porque para
cada x,y € U se tiene f(x) + f(y) = x +y y por tanto

v+ f(z)=y+fly)=acB
y entonces f estd dada por f(x) =z + a.

e Por contra, no es cierto en general que toda aplicacién contractiva
f U — V entre subconjuntos de B se extienda a una aplicacién con-
tractiva en B. Por ejemplo, sea ) un conjunto infinito, B el subanillo
de P(£2) formado por los conjuntos finitos o con complementario finito,
A un subconjunto de €2 que no esté en B,y U la familia de los subcon-
juntos finitos de Q. La aplicacién f: U — U dada por f(x) = ANz
es B-contractiva pero no puede expresarse como un polinomio con coe-
ficientes en B (tendria que ponerse como f(z) =ax+b=(aNz)Ab
con a,b € By de hecho con b =0 pues f(0) = 0).
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Capitulo 7

Dualidad

En este capitulo mostraremos que la categoria de FGC-espacios sobre B es
dual de la categoria de las B-algebras booleanas fieles que son finitamente
presentadas como B-médulos (una B-dlgebra es booleana si es booleana como
anillo).

Definicién 7.1 Sea X un espacio métrico sobre B. Llamaremos X* al con-
Junto de las aplicaciones contractivas de X a B, que tiene estructura de
B-dlgebra booleana fiel via la aplicacion B — X* que asocia a cada a € B
la aplicacion constante correspondiente.

Observar que la correspondencia X +— X* se extiende a un funtor con-
travariante de la categoria de espacios métricos sobre B a la categoria de
B-algebras booleanas, llevando cada aplicacion contractiva f : X — Y al
homomorfismo f*:Y* — X* dado por f*(a) = ao f.

Definicién 7.2 Sea A una B-dlgebra booleana. Llamaremos A* C B4 al
conjunto de los homomorfismos de dlgebras de A a B. Cuando A* sea un
subconjunto medible de B* diremos que A es una B-dlgebra medible, y en-
tonces A* tendrd estructura de espacio métrico sobre B.

De nuevo, la correspondencia A — A* se extiende a un funtor contra-
variante de la categoria de B-algebras medibles a la categoria de espacios
métricos sobre B que asocia a cada morfismo f : A — C el morfismo
f*:C* — A* dado por f*(a) =ao f.

Definicién 7.3 Una FGC-dlgebra sobre B es una B-dlgebra booleana fiel que
es finitamente presentada como B-mddulo.

Nuestro objetivo es mostrar que los funtores anteriormente definidos in-
ducen por restricciéon una dualidad de categorias entre la categoria de FGC-
espacios sobre B y la de FGC-algebras sobre B.
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Lema 7.4 5i X es un FGC-espacio, entonces X* es una B-dlgebra medible y
la inclusion natural i : X — X** dada pori(z)(a) = a(x) es una isometria.

PRUEBA: Veamos en primer lugar que i : X — X** es suprayectiva. Sea
¢ : X* — B un elemento de X**. Supongamos que X = conv(xy,...,2,) y
denotemos «a; = d(z;,~) € X*. Por el Lema 4.1 se tiene que oy -+ -, =0y
por tanto ¢(ay) - - - ¢(a,) = 0. Usando ahora el Teorema 1.24 deducimos que
0 € conv{gp(ay),...¢(an,)}. Pongamos que

0= a1¢(041) + et an¢(an>

cona;®---Pa, = 1. Afirmamos ahora que si x = a;x1+- - -+ a,x, entonces
¢ =i(x). Sea o € X* y comprobemos que ¢(a) = i(x)(a) = ax). Por ser
a contractiva tenemos que a(y) + a(z;) < d(z;,y) = o;(y) para todo y € X,
lo que nos da en X* la desigualdad o + a(z;) < «;. Aplicando ¢ obtenemos

p(a) + a(z;) < ¢(ai) y de aqui
@ ai(d(a) + afz;)) < @ a;p(e;) = 0.
Finalmente > | a;(¢(a) + a(x;)) =0y

o(a) = Zaigb(a) = Z a;o(z;) = « (Z aixi> = a(x).

La suprayectividad de ¢ queda asi probada.

Basta ahora verificar que

Ann(i(z) +i(y)) = d(x,y)B

para todo x,y € X, pues de esa identidad se deduce que X** = I'm(i) es un
subconjunto medible de BX" y que i : X — X** es una isometria. Se tiene
que a € Ann(i(z) +i(y)) siy solo si a(i(x) +i(y)) = 0 si y sdlo si

a(a(z) + ay)) = ai(z) +i(y)) (@) = 0

para cada € X*. Por una parte, tomando o = d(x, ~) encontramos que si
a € Ann(i(x) + i(y)) entonces a < d(z,y), mientras que reciprocamente, si

a < d(z,y) entonces a(a(z) + a(y)) = 0 porque a(z) + a(y) < d(x,y) al ser
a : X — B contractiva. O
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Lema 7.5 5i X es un espacio métrico sobre B, entonces las B-dlgebras X*
y conv(X)* son isomorfas.

PRUEBA: Si consideramos la inclusién j : X — conv(X), entonces el ho-
momorfismo de algebras j* : conv(X)* — X* es biyectivo en virtud del
Teorema 1.19. 0

Lema 7.6 Si X es un FGC-espacio, entonces X* es una FGC-dlgebra.

PRUEBA: Ya sabemos que X* es una B-algebra booleana fiel, luego sélo
queda ver que es finitamente presentada como B-mddulo. Supongamos en
primer lugar que X = conv(Y) donde Y es un espacio finito discreto (es
decir d(y,y’) = 1 si y # ¢'). Entonces, por el Lema 7.5, X* = Y* y como

toda aplicacién o : Y —— B es contractiva se tiene que Y* = BY que
es isomorfa como B-moédulo a B", donde n es el cardinal de Y. Si ahora
X = conv(xy,...,x,) es un FGC-espacio arbitrarioy Y = {y1,...,y,} es un

espacio discreto, entonces la asignacion y; +— x; es contractiva y se extiende
a una aplicacién contractiva f : Z = conv(Y) — X suprayectiva. Por el
Teorema 2.19 existe g : X — Z contractiva con fog = 1x. Tenemos entonces
homomorfismos de B-algebras (en particular de B-médulos) f*: X* — Z*
y g*: Z* — X* con g* o f* = 1x+. Eso implica que el B-mdédulo X* es un
sumando directo de Z* = B™ y por tanto finitamente presentado. Il

Lema 7.7 Se tiene un isomorfismo de B-dlgebras

B[X1,..., X,

an*
(XZ2+Xy,..., X2+ X))

y ambas son B-mddulos libres de tipo finito.

PRUEBA: La tltima afirmacién es clara, pues B" = conv{0,1}" es la clau-
sura convexa de un subespacio finito discreto, y ya se argumenté en la de-
mostracion del Lema 7.6 que entonces B™* es un mddulo libre de tipo finito.
Veamos pues como dar el isomorfismo. El algebra B™ no es mas que el
algebra de funciones polinémicas en n variables, asi que tenemos el morfismo
¢ : B[Xy,...,X,] — B™ que envia cada polinomio a la funcién que induce.
Basta que comprobemos que

I=(X?+X1,..., X2+ X,) = Kero.

La inclusién hacia la izquierda es trivial. Al contrario, tomamos f € Kerg.
Puesto que X" = X; mod I podemos suponer que en f no aparecen variables
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X; elevadas a potencias mayores que uno. Probamos por induccién en k que
si f € B[Xy,...,Xx| entonces f € I. El caso k = 0 (f € B) es trivial. Si
f € B[Xy,...,Xk], como no aparecen en f potencias de X; mayores que 1
podemos escribir

f=9(Xy,. ., Xpo1) + Xph(Xq, .o, X)),

Puesto que f € Ker¢, f(a) = 0 para todo a € B" y en particular, para cada
ai,...,a5_1 € B:

0= f(a1,...,ak-1,0,...,0) = glay,...,ax_1)
0= f(ar,...,a5-1,1,...,1) = glay,...,ax_1) + h(as,...,a5_1)

Esto implica que g, h € Kerg con lo que, aplicando la hipétesis de induccién,
se concluye la prueba. O

Lema 7.8 Sea A una FGC-dlgebra sobre B. Entonces A = X* para cierto
FGC-espacio X . Por tanto, por el Lema 7.4, A es medible y A* = X** = X
es un FGC-espacio.

PRUEBA: Al ser A finitamente presentada como médulo, es finitamente ge-
nerada como algebra, asi que existe un homomorfismo suprayectivo de B-
algebras ¢ : B[X1,...,X,] — A. Como A es booleana se tiene que

I=(X{+Xy,..., X"+ X,) C Kerg

y se induce, por el Lema 7.7 ¢ : B™ = B[X;,..., X,]/I — A donde ademds
B™ es libre de tipo finito. Como A es un mddulo finitamente presentado,
Keriy es un B-submédulo (y por tanto un ideal) finitamente generado de B™*.
De hecho, un ideal finitamente generado de un anillo de Boole es principal,
asi que Kery = (f) para cierto f € B™ y A = B™/(f). Tomamos ahora
X = f710) que es no vacio pues Im(f) = [a,b] por el Corolario 1.25 y
como a < f, a =1(a) < Y(f) =0. Ademds, X es un FGC-espacio por el
Teorema 3.4, y veremos que verifica

X* 2 B™/(f) = Al

Consideramos la inclusién ¢ : X — B™, que induce un homomorfismo de
B-élgebras i* : B™ — X* dado por i*(g) = g|x. Esta i* es suprayectiva
por 2.16 y f € Ker(i*), asi que bastard comprobar que Ker(i*) C (f). Sea
h € Ker(i*) (es decir, h|x = 0). Podemos considerar B™ como espacio
centrado en un punto zq € X = f~1(0) # 0, de modo que tenemos

fah': (anxO) - (B70)
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Para cada z € B"

F(f(@)z) = f@)f(x) =0,

ast que f(z)z € f71(0) = X y 0 = h(f(z)x) = h(z)f f(z). Esto nos dice que
hf =0y que por lo tanto h < f. i

Lema 7.9 Si A es una FGC-dlgebra, entonces la inclusion natural j : A —
A* dada por j(a)(s) = s(a) es un isomorfismo.

PRUEBA: Por el Lema 7.8 podemos suponer que A = X* para un FGC-
espacio X . Tenemos que comprobar que la inclusién natural j : X* — X***
es isomorfismo. Ahora bien, en el Lema 7.4 probamos que la inclusiéon natural
7 : X — X*™ era un isomorfismo. Afirmamos que * : X** — X* es
inversa de j. Puesto que ¢* es ya isomorfismo basta que comprobemos que
joi* = 1y« Para elementos ¢ : X** — B de X*™* y s = i(z) € X*
(x € X) se tiene que

J@E(@)(s) = J(ooi)(s) =s(poi) =i(z)(¢oi)=(poi)(z)
= ¢(i(x)) = (s).

O
Teorema 7.10 Eziste una dualidad de categorias entre la categoria de las
FGC-dlgebras sobre B vy la categoria de los FGC-espacios sobre B.
PRUEBA: El Lema 7.6 nos permite establecer el funtor
F = (~)": FGCesp — FGCaly,
mientras que el Lema 7.8 nos da el funtor
G = (~)": FGCalg — FGCesp.

Los Lemas 7.4 y 7.9 nos dicen que Go FF'= 1y que FoG = 1. O
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Capitulo 8
Aplicacion a la topologia

El Teorema 1.29, particularizado a un anillo de conjuntos del tipo P(£2),
caracteriza en términos de distancias las aplicaciones polindémicas de P(£2)
en P(Q), es decir, las que admiten una expresién en términos de uniones,
intersecciones, diferencias de conjuntos, etc. El objetivo de este capitulo es
generalizar ese resultado para el caso en que {2 es un espacio topolégico y las
apliaciones que se consideran son las que admiten una expresion en términos
de uniones, intersecciones (quiza infinitas), diferencias de conjuntos, adhe-
rencias, interiores, etc.

Trabajaremos en un anillo de Boole B junto con una funciénc: B — B
que verifique los siguientes axiomas, para cada x,y € B :

1. ¢(0)=0

2.z < ()

3. c(c(x)) = c(z)

4. c(zVy) = c(x) Ve(y)

Observar que el axioma 4 implica que si < y entonces ¢(z) < ¢(y). Estos
axiomas se verifican cuando B = P(€2) son las partes de un espacio topoldgico
y ¢ es la funcién adherencia.

Definicién 8.1 Sea F), la menor familia de funciones de B™ en B que veri-

fica:

1. Las proyecciones w; : B" — B y las funciones constantes estdn en F,.

2. Si f: B" — B estd en F, entonces también lo estin co f y 1o f,
donde 1: B — B es la funcién 1(x) = Z.
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3. Si tenemos una familia { f;}ier de funciones que viven en F, entonces
su supremo punto a punto \/; fi (si existe) también vive en F,.

A las funciones de la familia F, las llamaremos funciones c-polinomicas.

Observar que toda funcién polinémica es c-polindémica y que no soélo el
supremo, sino también el infimo de funciones c-polinémicas es c-polinémica,
pues A fi = 10\/(1o f;). En el caso topoldgico, la funcién interior i también
es c-polinémica pues i = 1 oco 1.

Es facil comprobar que si d : X x X — B es una métrica booleana,
entonces cod : X x X — B también lo es.

Definicién 8.2 Sea X un espacio métrico sobre B. Llamaremos X, al es-
pacio métrico sobre B cuyo conjunto subyacente es X y cuya métrica es la
composicion de la métrica de X con la funcion c.

Lema 8.3 Sean X e Y espacios métricos sobre B:
1. La funcion c: B, — B es contractiva.

2. Si f: X, — B es contractiva, entonces co f : X, — B también lo
es.

PRUEBA: Para 1, hay que probar la desigualdad c(x) + ¢(y) < ¢(x + y) para
todo x,y € B. Ahora bien, tenemos que

c(z) < clzy Vy) = c(xy) vV c(y),
lo que implica que

c(z)e(y) < c(zy) < c(zy v Ty) = c(z +y),

y andlogamente se obtiene que c(y)c(x) < c¢(x +y). Finalmente, usamos que
c(x) + cy) = c(z)c(y) @ c(y)e(x).

La propiedad 2 se sigue de 1:

d(cf(x),cf(y)) < cd(f(x), f(y)) < ced(z,y) = cd(z,y).
0J

Teorema 8.4 Una aplicacion f : B" — B es c-polindmica si y solo si
f Bl — B es contractiva.
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PRUEBA: Usando el Lema 8.3 y el Lema 6.7, encontramos que la familia de
las aplicaciones contractivas de B! en B satisface las condiciones de la De-
finiciéon 8.1. Por tanto, todas las aplicaciones c-polinémicas son contractivas
de B! en B. Para la otra implicacién, supongamos que f : B! — B es
contractiva. Para cada a,x € B™, por el Lema 6.7, sabemos que

c(d(a, ) f(a) < f(z) < fa) V c(d(z, a)).

La funcién h,(z) = ¢(d(a,z))f(a) es c-polinémica para todo a € B", asi que
basta ver que f es el supremo de las h,. Pero de hecho f es el maximo punto
a punto de las h, pues h,(x) = f(z). (Andlogamente también f es el infimo
de las g,(z) = f(a) V c(d(x,a))). O

Notese que, en general, una aplicacion c-polinémica no tiene por qué
admitir una expresion finita en términos de la funciéon ¢ y de operaciones
conjuntistas finitas. Por ejemplo, sea B un anillo de Boole infinito de cardinal
Byc: B — Bdada por ¢(r) = 1sixz # 0y ¢0) = 0. Entonces,
toda aplicacion de B, en B es contractiva y la cardinalidad del conjunto de
funciones c-polindmicaas es en consecuencia $°. En cambio el cardinal de
las expresiones finitas que podemos formar con elementos de B y simbolos
+,-,ces B <20 < 8.
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Capitulo 9

Espacios acotados

En este capitulo estudiaremos espacios métricos convexos que pueden sumer-
girse en un FGC-espacio. Veremos que, para un tipo de anillos de Boole, que
hemos llamado anillos de Boole pequenos, cada espacio acotado se descom-
pone de manera inica como suma ortogonal de una cadena de ideales. Final-
mente, se determina si son pequenos algunos anillos de Boole, apuntandose
la posibilidad de que esta condicién sea equivalente a ser hereditario.

Definiciéon 9.1 Un espacio métrico convexo X sobre B diremos que es aco-
tado si puede sumergirse en un FGC-espacio.

Proposiciéon 9.2 Todo espacio métrico acotado es suma ortogonal de ideales
de B.

PRUEBA: Sea (X,0) un espacio métrico acotado, (X,0) C (Y,0) con Y un
FGC-espacio. Podemos considerar un sistema de referencia de (Y,0) de ma-
neraque Y = Bxy L --- L Bz,. Sea X; = Bx;NX. Como Bz; es isométrico
a [0, |x;|] € B, es claro que cada uno de los espacios convexos X; es isométrico
a un ideal de B. Afirmamos que X = X; L --- L X,,. Sélo hay que ver que
X = conv(|J, X;). Para todo z € X tenemos, por la Proposicién 2.6, que

n n
xr = Z |z * x|z = Z |z * ;| (@ * x;)
=1 i=1

yxxx; € Be; N Bxr C Br; N X = Xj. O

Serd necesario volver a hacer uso del k-ideal asociado a un espacio métrico
booleano X, denotado por I(X), que introdujimos en la Definicién 5.2.

Lema 9.3 Sean Ji,...,J, ideales de un anillo de Boole B.
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1. (L L Jo) = J1 + Jo
2. Iy(Jy L Jy) =JiNJs.
3. i JiNJy =0, entonces J; + Jo es isométrico a J; L Js.
4. St J; D+ 2 J, entonces Iy(J; L --- L J,) = Jy para k < n.
PRUEBA: Para el apartado 1, si a € J; y b € J, entonces
a+b=4d((a,0),(0,b)) € I1(J; L J3)

lo que prueba que J; + Jo C I1(J; L Ja).
Reciprocamente, si (a,b), (a/,0') € J; L Jo, entonces

d((a,b),(a',b")=(a+d)V (b+1)eJ + J.

En cuanto a 2, si a € J; N Jy, entonces
a = [(a,0)]/(0,a)|d((a,0),(0,a)| € Io(Jy L Ja).

A la inversa, hemos de ver que para cualesquiera xy = (ag, by), 1 = (a1,b1) y
xo = (ag, by) se tiene que d(xg, z1)d(z1, x2)d(x1,22) € J3 N Jo. Ese producto
de distancias da

{(CL() + al) V (b(] + bl)] [(CLO + CLQ) vV (bo + bz)] [(a1 + 0@) V (bl + bg)]

donde cada a; +a; € J; y cada b; + b; € Jo. Si se aplica a esa expresién
la distributividad del producto respecto a la operacién V, todos los términos
que se obtienen estdn en J; N Jy salvo quizd (ag + a1)(ag + az)(ay + as) y
(bo + b1)(bo + b2)(b1 + b2) que en todo caso son nulos.

Para 3, hay una isometria obvia f : J; L Jo, — J; + Jo dada por
flay)=z+y.

La propiedad 4 esta probada para ideales principales en el Lema 5.5. El
caso general puede deducirse de éste. Llamemos X = J; L --- 1 J,. Para
la inclusion hacia la izquierda, si a € Ji entonces

a € I(Ba L --* 1 Ba) C Ii(X).

Reciprocamente, si a € I;(X) entonces a estd en el ideal generado por los
k . .

elementos [[; i=0 d(z;,z;) y estd por tanto en el ideal generado por una can-

tidad finita de ellos. Por tanto a € I(Y) paraun Y C X finito y si se quiere
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a € Ix(Ba; L --- L Ba,) para ciertos a; € J;. Incluso podemos suponer
a; > -+ > a, con lo que obtenemos que a € I(Ba; L --- L Ba,) = a; € Jj.
O

Proposiciéon 9.4 Sea B un anillo de Boole. Son equivalentes:

1. Cada espacio métrico centrado acotado X puede expresarse en la forma
X=hLlL---1LJ,paraJ, D---2D J, ideales de B.

2. Cada espacio métrico centrado acotado se expresa de manera unica en
la forma X = J; L --- L J, para J; D --- D J, ideales de B. FEsta
expresion es ademds independiente del centro.

3. Para cualesquiera ideales I, J de B, se tiene una isometria de espacios
centrados I L. J = (I+J) L (INJ).

4. Para cualesquiera ideales I, J de B, se tiene una inmersion de espacios
centrados (I + J,0) — (I L J,0).

5. Para cualesquiera ideales I,J de B, existen ideales I' C I y J C J
tales que I' + J' =0y I'@ J =1+ J.

6. Para cualesquiera ideales I, J de B, existe un isomorfismo de B-moddulos
ITeJ=E(I+J)oUINJ).

En este caso diremos que B es pequeno.

PRUEBA: (1 < 2) Es consecuencia inmediata del apartado 4 del Lema 9.3.

(1 = 3) De 1 se deduce que I L J es isométrico a J; L Jy para ciertos
J1 D Js. Usando el Lema 9.3, concluimos que

Jl = Il(JlLJQ):Il(IJ_J):]‘f‘J,
J2 - IQ(JlJ_JQ):[Q(IJ_J):[ﬂJ

(3 = 1) Podemos expresar X como suma ortogonal de ideales
X=L1---11,.
Aplicando el apartado 3 a I; 1 I, obtenemos
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Repetimos el proceso ahora para el 3° y 1° ideal, 4° y 1° y asi hasta el n-ésimo
y el primero obteniendo finalmente una expresion del tipo

X=0) L)Ll L1,
1

con I C > 1 I;. Podemos repetir el mismo procedimiento para el espacio
X'=1I, 1 --- LI ysucesivamente hasta obtener la expresion deseada.

(3 = 4) Trivial.

(4=5)Sea f:([+J,0) — (I L J0)inmersién. Hacemos

I'={a€el: f(a)=(a,0)} y J={beJ:f(b)=(0,b)}.
Se tiene que I'+ J = I+ J porque dado z € I + J, si f(x) = (a,b) entonces
a € I’ pues
fa) = flax) = af(x) = a(a,b) = (a,0)
y andlogamente b € J', con lo que z = |z| = |f(z)| =aVbe I'+ J. Se tie-
ne también que I'NJ’ = 0 porque si z € I'NJ" entonces (z,0) = f(z) = (0, z).

(5 = 3) Dados I, J ideales, los I’, J' del apartado 4 verifican
I = I'e(INJ),
J = Jao(nI);
INJ = (JnIe(InJ).
Aplicando ahora el apartado 3 del Lema 9.3 concluimos que

[LJ=r L(INJ)YLJ L(INJ)=2(I+J)L(InJ)

(5 = 6) Es andloga a (5 = 3).

(6 = 4) Se tendrd una inmersién f : [ + J — I @ J. Componiendo con
la aplicacién contractiva g : I & J — I L J dada por g(a,b) = (a,ba) se
obtiene una inmersion gf : [ +J — [ 1 J. Efectivamente, tanto g como
f preservan la norma, y por tanto ¢gf también. Asi, para cada x,y € J se

tiene d(z,y) =z +y = |gf(z)| + |gf ()| < d(gf(x), 9f(v)). O

Noétese que si B es un anillo hereditario (es decir, si todo ideal de B es un
B-médulo proyectivo) entonces B es pequenio pues se verifica la condicién 6
de la Proposicion 9.4, al existir una sucesion exacta corta

00— INJ—IpJ —I1+J—0
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dada por z — (z,z) y (z,y) — = +y, que escinde si [ + J es proyectivo. No
hemos encontrado argumento alguno que pruebe o descarte el reciproco. En
lo que sigue discutiremos la pequenez de algunos anillos de Boole.

Proposicién 9.5 Todo ideal numerablemente generado de un anillo de Boole
es proyectivo. Por tanto, todo anillo de Boole numerable es hereditario.

PRUEBA: Si I = (ay,as,...) y llamamos b, = a,a,_1 - - - a1, entonces

ap =by V-V by;
bib; = 0si i # j;

y se tiene I = €, , Bb,, siendo cada Bb,, un B-médulo proyectivo pues
B = Bb, & Bb,. OJ

En realidad se ha visto que todo ideal numerablemente generado es suma
directa de ideales principales. Puesto que todo médulo proyectivo es suma
directa de mddulos proyectivos numerablemente generados (véase el Lema
3.3.2 en [6]), podemos obtener como corolario que todo ideal proyectivo es
suma directa de ideales principales (o equivalentemente, estd generado por
una familia ‘disjunta’ de elementos). Por tanto un anillo de Boole es heredi-
tario si y sélo si todo ideal posee una familia disjunta de generadores.

Comentar también que, de hecho, todo anillo regular de cardinalidad
menor que XN, tiene dimensién global menor o igual que n (véase [11]).

Proposicién 9.6 Sea Q2 un conjunto y B el subanillo de P(£2) formado por
los conjuntos finitos y los que tienen complementario finito. Entonces B es
hereditario.

PRUEBA: Sea [ un ideal de B. Si existe a € I con complementario finito
entonces B/Ba = Ba es finito y por tanto I es finitamente generado. Eso
implica que I es principal y por ende proyectivo. En otro caso todo elemento
de I es finito y entonces es facil ver que I esta generado por los elementos
unipuntuales de I. Eso quiere decir que [ tiene un sistema disjunto {a;} de
generadores, y entonces I = @ Ba; es proyectivo. 0

Proposicién 9.7 Sea Q un conjunto infinito. Entonces el anillo de conjun-
tos B =P(2) no es pequeno.
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PRUEBA: Podemos suponer que el conjunto de los niimeros racionales esta
contenido en 2, Q C €. Consideramos el ideal I de B formado por los
subconjuntos acotados de Q y J el ideal de los subconjuntos discretos de
Q. Vamos a comprobar que [ y J no verifican la condicién 5 de la Pro-
posicién 9.4. Supongamos que existieran ideales I’ € I y J' C J como
aquéllos. Consideramos a = sup(l’) = |JI'. Puesto que I'J’ = 0 se tiene que
a € Ann(J') (si @ € J' entonces T es cota superior de I’). Si ahora y es un
elemento cualquiera de J, entonces ay € J C I + J y por tanto ay = u + v
conu € I',v € J ydehecho ay = aay = au + av = au € I'. En definitiva,
a es un subconjunto de Q que tiene la propiedad de que al intersecarlo con
cualquier subconjunto discreto da un subconjunto acotado de Q. Eso obliga
a que a sea acotado, a € I. Pongamos que a C [—n,n]. Entonces

b=mn+1Ln+2lNQelCci+J=I+J,

asi que b = u v conu € I'' y v € J. Pero como a es cota superior
de I’, tenemos u < a y también u < b, asi que u < ab = 0. Por tanto
b=u+v=veJ CJ,loquenos dice que b es un subconjunto discreto de
Q, llegando a una contradiccion. O

Finalmente, vamos a comprobar que si {2 es un conjunto infinito no nu-
merable, tampoco es pequeno el anillo de Boole libre con variables en ()
Zg[Xw RS Q}
(X2+X,:weQ)

Para ello, nos basamos en la teoria de la dualidad de Stone, que nos
dice que todo anillo de Boole puede representarse como el anillo de cerrado-
abiertos de un unico espacio topolégico Hausdorff compacto con una base de
cerrado-abiertos (véase, por ejemplo, el Teorema 24.4 en [5]). En concreto,
el anillo de Boole libre con variables en {2 es isomorfo al anillo de cerrado-
abiertos del espacio de Cantor generalizado {0,1}¢ (véase el Corolario 9.7
en [7]).

Conviene recordar aqui que un espacio topolégico se dice normal si para
cada par de cerrados disjuntos existen abiertos disjuntos que los contienen.

Lema 9.8 Sea T un espacio topologico compacto con una base de abiertos
formada por conjuntos cerrado-abiertos. Entonces, existe un isomorfismo de
reticulos entre el reticulo de los abiertos de T' y el reticulo de los ideales del
anillo de conjuntos B formado por los cerrado-abiertos de T.
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PRUEBA: Definimos « : Ideales — Abiertos como
a([):U{aEB:aEI}

y B : Abiertos — Ideales como
B(u) ={a € B:aCu}.

Ambas aplicaciones conservan inclusiones, asi que basta que veamos que son
inversas.

Decir que [a es la identidad es decir que para cada ideal I de B se tenga
que {b€ B:bC J,;a} = 1. Lainclusién hacia la izquierda es trivial. Para
el reciproco, si b € B entonces es cerrado en un espacio compacto, asi que es
compacto, y si b C |J,; @ existen ay, ..., a, € I tales que b C | J} a; € I.

Decir que af es la identidad es decir que para cada abierto u de T se
tenga u = |J{a € B : a C u}, y esto es consecuencia inmediata de que exista
una base de cerrado-abiertos. Il

La demostracién de la siguiente proposicion sigue una idea de Matias
Raja Bano.

Proposiciéon 9.9 Sea Q) un conjunto infinito no numerable y B el anillo de
los cerrado-abiertos del espacio topoldgico T = {0,1}*. Entonces B no es
pequeno.

PRUEBA: Supongamos por reduccion al absurdo que B cumpliera esas pro-
piedades. El espacio T verifica las hipdtesis del Lema 9.8, porque es compacto
por el teorema de Tychonoff, y los abiertos basicos de la topologia producto
nos proporcionan una base de cerrado-abiertos para T. En virtud de ese
lema, la propiedad 3 de la Proposicion 9.4 se traduciria en que dados cuales-
quiera abiertos U,V de T existen U' CU y V' C V tales que U'NV' =0y
U'uV'=UUV. Esa propiedad implica inmediatamente que todo subcon-
junto abierto de 7" es normal, en particular el abierto G = T\ {0}. Podemos
suponer que N C Q y definir a,, € T' como la tupla que tiene un 1 en lugar
n € N y ceros en el resto. La sucesiéon (a,) converge a 0 € G, asi que, como
T es un espacio de Hausdorff, el conjunto D = {a,, : n € N} C G es discreto
y cerrado en G, con lo que es continua la funcion f : D — R dada por
f(a,) = n. El teorema de Tiezte (Teorema 3.2 del capitulo 4 de [10]) nos
asegura que f se extiende a una funcién continua F': G — R. Vamos a ver
que F' esta acotada, llegando asi a una contradiccién. Para cada intervalo
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(q,7) de ntimeros racionales con F~1((q,r)) # 0 elegimos z%" € F~1((q,7)).
En esa circunstancia F~!((g,r)) contiene un entorno bdsico de z%" y existe
por tanto un conjunto finito €2, , C € de tal modo quesiy € T'y y, = 2&"
para todo w € Q. entonces y € F~((g,7)). Sea

Q’:U{QW: ¢.reQ, g<r, F'((q,r)) #0},

que es numerable y por tanto estrictamente contenido en 2. Sea también
K={reT:z,=1paratodow ¢} CQG,

que es cerrado en Ty por tanto compacto, asi que F'(K) es acotado. Vea-
mos que Im(F') estd contenida en (la adherencia de) F(K), o lo que es lo
mismo que para cada F(z) € Im(F) y cada intervalo de racionales (g,r)
que contenga a F'(x), se tenga que (¢,7) N F(K) # (. Se toma y € T\ {0}
tal que y, = 22" siw € Qy, ey, =1siw & Q,,, y se tiene que y € K y
F(y) € (g,7), ast que F(y) € F(K)N (q,r) # 0. O

Comentar finalmente que los anillos de Boole libres no numerables, al no
ser pequenos, tampoco son hereditarios. Pierce [11] probé, de hecho, que el
anillo de Boole libre con N,, generadores tiene dimensién global n.
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