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Introducción

En un primer momento, el objetivo de este trabajo es el estudio de las ecua-
ciones booleanas, en las que las incógnitas y constantes son conjuntos y las
operaciones que las relacionan son las operaciones conjuntistas (unión, in-
tersección y diferencia), o, más en general, el estudio de las aplicaciones
polinómicas (es decir, las que admiten una expresión en términos de opera-
ciones conjuntistas) de P(Ω)n en P(Ω)m donde P(Ω) son las partes de un
conjunto Ω. El problema se puede plantear en terminos más generales para
un anillo de Boole, que no es más que un conjunto en el que tenemos defini-
das operaciones +, · y ∨ y un orden ≤ cumpliendo las mismas propiedades
aritméticas que las operaciones conjuntistas 4, ∩ y ∪ y el orden de la inclu-
sión respectivamente, cumpliéndose que (B,+, ·) es un anillo (el śımbolo 4
representa la diferencia simétrica de conjuntos, a4 b = (a \ b) ∪ (b \ a)).

La clave para el desarrollo que seguiremos es el siguiente teorema, donde
la distancia entre dos tuplas se define como d(x, y) =

∨k
1(xi + yi) ∈ B para

x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ Bk.

Teorema 1 Sea B un anillo de Boole y f : Bn −→ Bm. Son equivalentes:

1. f es polinómica.

2. d(f(x), f(y)) ≤ d(x, y) para cada x, y ∈ Bn.

3. f(
∑s

1 aixi) =
∑s

1 aif(xi) para cualesquiera x1, . . . , xs ∈ Bn y cuales-
quiera a1, . . . , as ∈ B con

∑s
1 ai = 1 y aiaj = 0 cuando i 6= j.

Las distintas implicaciones se hallan probadas, en contextos más genera-
les, en el Teorema 1.15 (2 ⇔ 3), el Lema 1.28 (1 ⇒ 3) y el Teorema 1.29
(3 ⇒ 1).

La aplicación d : Bk × Bk −→ B satisface las propiedades formales de
una distancia:

1. d(x, y) = 0 si y sólo si x = y.
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2. d(x, y) = d(y, x).

3. d(x, z) ≤ d(x, y) ∨ d(y, z).

Esto sugiere el siguiente punto de partida para nuestro estudio: Conside-
rar espacios (X, d) donde d : X×X −→ B satisface los axiomas 1,2 y 3 (esto
es lo que llamaremos un espacio métrico booleano sobre B) y aplicaciones
entre estos espacios que reduzcan distancias (aplicaciones contractivas).

Si nos fijamos ahora en la condición 3 del teorema, ésta viene a decir que
una aplicación es polinómica si y sólo si conmuta con combinaciones lineales
en las que los coeficientes forman una partición (esto es lo que llamamos
combinaciones convexas). Esta caracterización es importante, porque per-
mite utilizar métodos análogos a los usados, por ejemplo, en álgebra lineal.
Pudiera parecer que esta herramienta se pierde al pasar al contexto general
de los espacios métricos pero no es aśı, porque en un espacio métrico sobre B
están definidas de manera intŕınseca las combinaciones convexas y las apli-
caciones entre espacios métricos que conmutan con combinaciones convexas
son exactamente las que reducen distancias.

Lo anteriormente expuesto constituye el contenido del caṕıtulo 1. Como
referencia en el campo de las ecuaciones booleanas podemos citar [12], donde,
aunque se demuestra la equivalencia de 1 y 3 en el Teorema 1 (Teorema 4.6),
se utiliza sólo como un resultado auxiliar y no como fundamento básico de
la teoŕıa. En cuanto a los espacios métricos booleanos, fueron introducidos
en algunos algunos trabajos en los años 50 y 60 como [3],[2] y [8], en los que
se trató de trasladar a estos espacios los problemas clásicos de la geometŕıa
de los espacios métricos reales. En general, el esṕıritu de esos trabajos está
bastante alejado del de esta memoria, con dos excepciones: los art́ıculos [13]
y [9] sobre la geometŕıa booleana de los p-anillos. Algunos de nuestros resul-
tados constituyen generalizaciones de los obtenidos por Zemmer y Melter.

En el caṕıtulo 2, se profundiza en el estudio de un tipo particular de
espacios métricos booleanos: los FGC-espacios, que son aquéllos para los
que existe un subconjunto finito de tal modo que el espacio está formado
por todas las combinaciones convexas de elementos de ese conjunto (esto es,
poseen un subconjunto generador finito). Los espacios Bn son de este tipo.
La idea aqúı será encontrar subconjuntos generadores adecuados, llamados
referenciales, de tal manera que cada elemento del espacio se exprese de ma-
nera única (en cierto sentido) como combinación convexa de los elementos
del referencial. Esto permite introducir coordenadas.
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En el caṕıtulo 3, se generaliza el Teorema 1 para una clase de anillos, que
incluye a los anillos de Boole, que hemos llamado FGC-anillos. De hecho
se prueba que la categoŕıa de variedades algebraicas sobre un FGC-anillo es
equivalente a la categoŕıa de FGC-espacios sobre un anillo de Boole. Más
concretamente, si A es un FGC-anillo, entonces An tiene estructura natural
de espacio métrico sobre un anillo de Boole y entonces un subconjunto V
de An es una variedad algebraica (el conjunto de soluciones de una canti-
dad finita de ecuaciones polinómicas) si y sólo si es un FGC-espacio y una
aplicación entre variedades algebraicas es una aplicación polinómica si y sólo
reduce distancias.

En el caṕıtulo 4, se hace una clasificación completa de los FGC-anillos,
que hab́ıan aparecido en el caṕıtulo 3, mostrándose que existe una biyección
entre las clases de isomorfismo de FGC-anillos y las “combinaciones lineales
formales” de clases de isomorfismo de cuerpos finitos con coeficientes clases
de isomorfismo de anillos de Boole.

En el caṕıtulo 5, se da una clasificación completa de los FGC-espacios
sobre un anillo de Boole (o lo que es lo mismo de las variedades algebraicas
sobre un FGC-anillo), mostrándose que existe una biyección entre las clases
de isometŕıa de FGC-espacios sobre B y las cadenas decrecientes finitas de
elementos no nulos de B.

En el caṕıtulo 6, se plantea el problema de cuándo una aplicación con-
tractiva (repectivamente isometŕıa) definida en un subespacio de un espacio
métrico booleano puede extenderse a una aplicación contractiva (resp. iso-
metŕıa) definida en todo el espacio.

En el caṕıtulo 7, se identifica la categoŕıa dual de la de FGC-espacios
sobre un anillo de Boole B con la categoŕıa de las B-álgebras booleanas fieles
finitamente presentadas como módulos. Identificando FGC-espacios con va-
riedades algebraicas sobre B, lo que se hará es asociar a cada variedad V su
”álgebra de coordenadas´´, el álgebra de las funciones polinómicas de V enB.

En el caṕıtulo 8, generalizamos el Teorema 1 al caso en el que B es el anillo
de las partes de un espacio topológico y las funciones que se consideran son
aquéllas que admiten una expresión en términos de operaciones conjuntistas
(en este caso admitimos que las uniones e intersecciones puedan ser infinitas)
y las funciones adherencia e interior. LLamando c : P(Ω) −→ P(Ω) a la
función adherencia y c-polinómicas a las funciones antes descritas el resultado
que se obtiene es el siguiente:
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Teorema 2 Sea f : P(Ω)n −→ P(Ω). Son equivalentes:

1. f es c-polinómica.

2. d(f(x), f(y)) ≤ c(d(x, y)) para cada x, y ∈ P(Ω)n.

Finalmente, en el caṕıtulo 9, se hace un intento de generalizar el teorema
de clasificación obtenido en el caṕıtulo 5 para FGC-espacios a una clase
más general de espacios métricos booleanos, que llamamos espacios acotados.
Esta generalización resulta posible sólo para ciertos anillos de Boole, que
hemos denominado pequeños. Se discute la pequeñez de algunos anillos de
Boole.
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Caṕıtulo 0

Preliminares

Introducimos aqúı brevemente la notación y terminoloǵıa que se empleará en
lo sucesivo. Aśı mismo, se exponen algunos resultados elementales acerca de
los anillos de Boole y los anillos regulares, que serán fundamentales en los
caṕıtulos siguientes.

0.1 Terminoloǵıa y notación básicas

Se denotará la diferencia simétrica de conjuntos como

A4B := (A \B) ∪ (B \ A).

Los anillos serán siempre conmutativos y con uno, mientras que los módulos
serán siempre unitarios. Como referencias básicas en álgebra conmutativa
pueden tomarse [1] y [6].

El ideal de un anillo A generado por los elementos a1, . . . , an se denotará
como Aa1 + · · ·+ Aan ó (a1, . . . , an).

El nilradical de un anillo A, N(A) = {x ∈ A : xn = 0 para algún n ∈ N}
es el conjunto de los elementos nilpotentes de A, que coincide con la inter-
sección de los ideales primos de A. Un anillo se dice reducido si N(A) = 0.

Para un elemento x de un módulo M sobre el anillo A, el anulador de x
es Ann(x) = {a ∈ A : ax = 0}.

Un elemento a de un anillo A se dice que es idempotente si a2 = a. El
conjunto de los elementos idempotentes de A se denotará por B(A). Una
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familia completa de idempotentes ortogonales en A son e1, . . . , en ∈ A idem-
potentes con eiej = 0 si i 6= j y

∑n
1 ei = 1. En este caso cada Aei es un

anillo con neutro ei y se tiene una descomposición A ∼= Ae1 × · · · × Aen.

0.2 Anillos de Boole

Definición 0.1 Un anillo B se dice de Boole si todo elemento de B es idem-
potente.

De aqúı en adelante, B será siempre un anillo de Boole. Nótese que esto
implica que B tiene caracteŕıstica 2 pues −1 = (−1)2 = 1. Un ejemplo de
anillo de Boole es Z2. El producto arbitrario de anillos de Boole es anillo de
Boole, aśı como el cociente de un anillo de Boole por un ideal, o un subanillo
de un anillo de Boole. Otro ejemplo, pues, lo constituyen anillos del tipo ZΩ

2

y sus subanillos, que se pueden interpretar en el siguiente modo:

Proposición 0.2 Sea Ω un conjunto y P(Ω) sus partes. Entonces la terna
(P(Ω),4,∩) constituye un anillo de Boole isomorfo a ZΩ

2 . Un subanillo de
P(Ω) es lo que denominaremos un anillo de conjuntos en Ω.

Prueba: Consideramos f : ZΩ
2 −→ P(Ω) dada por f(x) = {ω ∈ Ω : xω = 1}.

Esta aplicación es biyectiva, como se comprueba inmediatamente viendo que
su inversa es g : P(Ω) −→ ZΩ

2 dada por g(A) = (χA(ω))ω∈Ω, donde χA es la
función que vale 1 sobre A y 0 fuera de A. Es también inmediato verificar
que f(x + y) = f(x)4 f(y) y f(xy) = f(x) ∩ f(y) para cada x, y ∈ ZΩ

2 . La
biyectividad de f y estas dos propiedades implican que (P(Ω),4,∩) es un
anillo de Boole y que f es un isomorfismo. �

Lema 0.3 Sea p un ideal primo de un anillo de Boole B. Entonces B/p ∼=
Z2. En particular, p es maximal.

Prueba: B/p es un anillo de Boole, aśı que para cada x ∈ B/p se tiene
x(x+ 1) = x2 + x = 0 y como además B/p es un dominio, x = 0 o x+ 1 = 0
para cada x ∈ B. Aśı pues B/p = {0, 1} y por tanto B/p ∼= Z2. El hecho de
que p sea maximal se sigue de que B/p ∼= Z2 es un cuerpo. �

Teorema 0.4 Todo anillo de Boole es isomorfo a un anillo de conjuntos.
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Prueba: Basta ver que cada anillo de Boole B se sumerge en un anillo
del tipo ZΩ

2 . Consideramos Ω el conjunto de los ideales primos de B y el
homomorfismo de anillos f : B −→

∏
p∈ΩB/p dado por f(x) = (x + p)p∈Ω.

Por el Lema 0.3
∏

p∈ΩB/p
∼= ZΩ

2 , aśı que basta probar que f es inyectivo. Si
x ∈ ker f , entonces x está en todos los ideales primos de B y por tanto es
nilpotente, y también idempotente por ser B anillo de Boole. Aśı que x = 0.

�

En un anillo de conjuntos, además de las operaciones de diferencia simétrica
e intersección, también podemos considerar la unión, la complementación y
el orden dado por inclusión, que verifican:

• A ∪B = A4B 4 (A ∩B).

• Ac = A4 Ω.

• A ⊆ B si y sólo si A = A ∩B.

Estas relaciones nos permiten generalizar estas operaciones y relaciones
a anillos de Boole arbitrarios del siguiente modo:

Definición 0.5 Sea B un anillo de Boole y a, b ∈ B.

1. Definimos a ∨ b = a+ b+ ab.

2. Definimos ā = a+ 1.

3. Escribiremos a ≤ b cuando se verifique ab = a.

Es claro que cualquier homomorfismo de anillos entre anillos de Boole
f : B −→ B′ preserva estas operaciones y el orden, es decir,

f(a ∨ b) = f(a) ∨ f(b);

f(ā) = f(a);

a ≤ b ⇒ f(a) ≤ f(b)

para cada a, b ∈ B. Como, por el Teorema 0.4, todo anillo de Boole es
isomorfo a un anillo de conjuntos, deducimos que cualquier propiedad de
estas operaciones y relaciones válida para anillos de conjuntos, vale también
para anillos de Boole arbitrarios. Por ejemplo:

• La relación ≤ en B es una relación de orden para la cual, el ı́nfimo de
a y b es ab y el supremo es a ∨ b.
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• La operación (∨) y el producto son mutuamente distributivas.

• a+ b = ab̄+ āb para cada a, b ∈ B.

Proposición 0.6 Sean a, b ∈ B. Son equivalentes:

1. a ≤ b (es decir, ab = a).

2. ab̄ = 0.

3. a ∈ Bb.

4. aB ⊆ bB.

Prueba: Todas las implicaciones son inmediatas. �

Proposición 0.7 Sea R un subanillo finitamente generado de un anillo de
Boole B. Entonces R es finito.

Prueba: Hacemos inducción en n, el número de generadores de R. Para
n = 1, se tiene que el subanillo generado por a ∈ B es {0, 1, a, 1 + a} que es
finito. Si R está generado por n+ 1 elementos, entonces R = R′[a] donde R′

está generado por n elementos, y por hipótesis de inducción es finito. Ahora
bien, R = R′[a] = {b+ ca : b, c ∈ R′}, luego si R′ es finito, también R lo es.
�

Proposición 0.8 Sea I ⊆ B un subconjunto no vaćıo de B. Son equivalen-
tes:

1. I es un ideal.

2. Para cada a, b ∈ I, y cada c ≤ a se tiene c ∈ I, a ∨ b ∈ I.

Prueba: Se sigue de las relaciones a + b = ab̄ ∨ āb, a ∨ b = a + b + ab y
c ≤ a⇔ c ∈ Ba. �

Proposición 0.9 Dados x ∈ B y K ⊆ B, x es el supremo de K si y sólo si
es el supremo del ideal que genera.

Prueba: Basta ver que a ∈ B es cota superior de K si y sólo si lo es de su
ideal generado BK. Si a es cota de K, entonces K está contenido en el ideal
Ba, aśı que BK ⊆ Ba y a es cota superior de BK. �
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Proposición 0.10 Todo anillo de Boole infinito posee un ideal no principal
cuyo supremo es 1.

Prueba: Obsérvese que si Bx es un ideal principal de B entonces {a, ā} es
una familia completa de idempotentes ortogonales de B y B = Ba ⊕ Bā.
Más en general, siempre que ab = 0 se tendrá B(a ∨ b) = Ba⊕Bb. De aqúı
deducimos que si Ba es infinito entonces existe b < a con Bb infinito (basta
tomar 0 < c < a y como Ba = Bc ⊕ Bac̄ es infinito, o bien Bc es infinto
o bien Bac̄ es infinito). Esto nos permite, para B infinito, construir una
sucesión estrictamente decreciente (an) de elementos de B. Se tiene entonces
una sucesión estrictamente creciente de ideales (Ban) cuya unión es un ideal
que no puede ser finitamente generado. Una vez conseguido un ideal I no
principal, se toma J = I ⊕ Ann(I) que no es principal (si fuera J = aB
entonces a = b⊕ c con b ∈ I, c ∈ Ann(I) y se tendŕıa I = bB) y su supremo
es 1 (Si x es cota superior de J , lo es de I aśı que x̄ ∈ Ann(I) ⊂ J y eso
implica que x̄ ≤ x). �

Definición 0.11 Un anillo de Boole se dice completo si todo subconjunto
suyo posee un supremo.

0.3 Anillos regulares

Definición 0.12 Un anillo A diremos que es regular si a2A = aA para cada
a ∈ A.

La terminoloǵıa habitual para referirse a estos anillos es la de anillo con-
mutativo regular en el sentido de Von Neumann o anillo conmutativo abso-
lutamente plano. Puesto que no existe aqúı riesgo de confusión con otros
conceptos, hemos optado por referirnos a ellos simplemente como anillos re-
gulares.

En el siguiente teorema damos varias caracterizaciones de estos anillos. La
condición 7 nos es útil para la demostración del resultado, pero el concepto de
localización no volverá a aparecer en este trabajo. Comentar también que se
podŕıa haber añadido a la lista las condiciones de que todos los módulos sobre
A sean planos y de que todos los módulos simples sobre A sean inyectivos.

Teorema 0.13 Sea A un anillo. Son equivalentes:

1. A es regular
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2. I2 = I para cada ideal I de A.

3. Cada ideal principal de A está generado por un idempotente.

4. Para cada a ∈ A existe un único e(a) ∈ B(A) tal que aA = e(a)A.

5. Cada elemento de A se expresa como producto de una unidad y un
idempotente.

6. A es reducido (i.e. el nilradical de A es trivial) y cada ideal primo de
A es maximal.

7. Toda localización de A en un ideal primo es un cuerpo.

Prueba: [2 ⇒ 1] Trivial.

[1 ⇒ 3] Si a = xa2 tomamos e = ax y entonces e es un idempotente
asociado a a.

[3 ⇒ 4] Supongamos que hubiera idempotentes e1, e2 ∈ A con e1A = e2A.
Entonces e1 = ae2 y por tanto e1 − e1e2 = e1(1 − e2) = ae2(1 − e2) = 0 lo
que implica que e1e2 = e1 y simétricamente e1e2 = e2.

[4 ⇒ 5] Sea a ∈ A, e = e(a) y b ∈ A tal que e = ba. Resulta entonces que
a = (a+ 1− e)e donde a+ 1− e es unidad con inverso be+ 1− e.

[5 ⇒ 6] Que A es reducido es trivial mientras que si p es un ideal primo
de A, A/p es un dominio en el que cada elemento se factoriza como producto
de una unidad y un idempotente aśı que A/p es un cuerpo y p es maximal.

[6 ⇒ 7] Si tomamos p ideal primo de A entonces Ap es un anillo local
reducido (pues la extracción del nilradical conmuta con la localización) con
un sólo ideal primo (al ser p maximal). Aśı pues dicho ideal primo es el nil-
radical, por tanto nulo, y a su vez es maximal. Como 0 es un ideal maximal
de Ap, Ap es un cuerpo.

[7 ⇒ 2] Sea I un ideal de A. Consideramos el A-módulo I/I2. Si p es
ideal primo de A, (I/I2)p

∼= (Ip)/(I
2
p ) = 0 (al ser Ap cuerpo Ip sólo puede

ser igual a 0 o a Ap dependiendo de si I está contenido en p o no y lo mismo
sucede con I2). Deducimos de aqúı que I/I2 = 0 y aśı I = I2. �
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Proposición 0.14 Para cualquier anillo A, el conjunto B(A) tiene estruc-
tura de anillo de Boole con el producto heredado de A y la suma dada por
a+̃b = (a− b)2 = a+ b− 2ab.

La prueba es mera rutina. También es inmediato comprobar que en ese
caso, la operación (∨) de B(A) está dada por a ∨ b = a+ b− ab.

Proposición 0.15 Sea A un anillo y e1, . . . , en ∈ B(A) tales que eiej = 0
cuando i 6= j. Entonces e1 + · · ·+ en = e1+̃ · · · +̃en = e1 ∨ · · · ∨ en. En este
caso denotaremos dicha suma como e1 ⊕ · · · ⊕ en.

Prueba: Basta demostrar la proposición para n = 2. En ese caso, simple-
mente se tiene a+̃b = a+ b− 2ab y a ∨ b = a+ b− ab. �

Proposición 0.16 Sea A un anillo regular

1. Para todo a1, . . . , an ∈ A, se tiene

Aa1 + · · ·+ Aan = A (e(a1) ∨ · · · ∨ e(an)) .

En particular, todo ideal finitamente generado de A es principal.

2. Si I, J son ideales de A, entonces I ∩ J = IJ .

3. Para cada a, b ∈ A, a ∈ bA si y sólo si e(a) ≤ e(b)

4. Ann(a) = e(a)A para cada a ∈ A.

Prueba: (1) Basta hacer la demostración para n = 2. Es más, puesto que
Aa = Ae(a) para todo a ∈ A, es suficiente comprobar que Aa+Ab = A(a∨b)
para cada a, b ∈ B(A).

a ∨ b = a+ b− ab ∈ Aa+ Ab.

a = a(a ∨ b) ∈ A(a ∨ b).
b = b(a ∨ b) ∈ A(a ∨ b).

(2) Si a ∈ I ∩ J entonces a ∈ a2A ⊆ IJ .

(3) Si a ∈ bA, entonces a = bc y e(a) = e(b)e(c). Rećıprocamente, si
e(a) ≤ e(b), entonces e(a) = e(b)e(a) aśı que a ∈ Ae(a) ⊆ Ae(b) = Ab.

(4) x ∈ Ann(a) si y sólo si xa = 0 si y sólo si e(x)e(a) = e(xa) = 0 si y
sólo si e(x) ≤ e(a) si y sólo si x ∈ e(a)A. �
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Caṕıtulo 1

Espacios métricos booleanos

En este caṕıtulo veremos algunas propiedades generales de los espacios métricos
booleanos, que constituirán el principal objeto de estudio del trabajo.

En la sección 1.1, se define el concepto de espacio métrico booleano, aśı
como los de función contractiva e isometŕıa, que harán las veces de morfis-
mo e isomorfismo entre estos espacios. Se establecen además como ejemplos
genéricos ciertos subconjuntos de módulos sobre anillos regulares, llamados
medibles, que incluyen a los módulos libres de tipo finito.

En la sección 1.2, veremos que en un espacio métrico booleano tiene sen-
tido definir combinaciones lineales en las que los coeficientes constituyan una
familia completa de idempotentes ortogonales de B. A estas combinaciones
las llamaremos combinaciones convexas, y comprobaremos que las aplicacio-
nes contractivas son exactamente aquellas que conmutan con combinaciones
convexas. Asociado a este concepto aparece de manera natural el de clausura
convexa de un espacio métrico booleano.

Finalmente, en la sección 1.3, se incide en la estructura de espacio métrico
booleano de B y de Bn, mostrandose que las aplicaciones contractivas de Bn

en Bm son las aplicaciones polinómicas. Aqúı aparecerá el concepto de es-
pacio métrico convexo finitamente generado (abreviadamente FGC-espacio),
que será de gran importancia en los caṕıtulos sucesivos.

A lo largo de este caṕıtulo A será siempre un anillo regular.
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1.1 Definición y ejemplos

Definición 1.1 Sea X un conjunto. Una aplicación d : X×X → B diremos
que es una métrica booleana si se verifican para cada x, y, z ∈ X:

1. d(x, y) = 0 si y sólo si x = y.

2. d(x, y) = d(y, x).

3. d(x, z) ≤ d(x, y) ∨ d(y, z).

En este caso, diremos también que (X, d) es un espacio métrico sobre B.

Proposición 1.2 En la definición anterior, el axioma 3 puede sustituirse
por cualquiera de los dos siguientes axiomas:

3’ d(x, z)d(y, z) ≤ d(x, y).

3” d(x, z) + d(z, y) ≤ d(x, y).

Prueba: (3 ⇒ 3′) Basta multiplicar en la desigualdad 3 por d(y, z).

(3′ ⇒ 3) Hacemos la operación ∨d(y, z) en la desigualdad 3’.

(3′′ ⇒ 3′) Teniendo en cuenta la fórmula a+ b = ab̄⊕ āb, se tiene que

d(x, z)d(y, z) ≤ d(x, z) + d(z, y).

(3′ ⇒ 3′′) Si vale 3′, para cada x, y, z ∈ X tendremos

d(x, z)d(y, z) ≤ d(x, y) y d(y, z)d(x, z) ≤ d(y, x),

aśı que

d(x, z) + d(y, z) = d(x, z)d(y, z)⊕ d(y, z)d(x, z) ≤ d(x, y).

�

Podemos obtener ejemplos de espacios métricos booleanos mediante la
siguiente proposición:

Proposición 1.3 Sea X un subconjunto de un A-módulo tal que Ann(x−y)
es un ideal principal de A (generado por un cierto idempotente axy ∈ B(A))
para cada x, y ∈ X. Entonces la aplicación d : X × X −→ B(A) dada por
d(x, y) = axy es una métrica booleana. Un tal subconjunto X se dirá que es
un subconjunto medible del módulo, y a esta métrica la llamaremos la métrica
modular en X.

14



Prueba: Es evidente que el axioma 2 de la Definición 1.1 se verifica. Tam-
bién el axioma 1 pues d(x, y) = 0 si y sólo si Ann(x − y) = A. Respecto al
axioma 3, como

Ann(x− y) ∩ Ann(y − z) ⊆ Ann(x− z),

tenemos que
axyayzA = axyA ∩ ayzA ≤ axzA,

aśı que axyayz ≤ axz y

d(x, z) = ax,z ≤ axyayz = axy ∨ ayz = d(x, y) ∨ d(y, z).
�

Para cada a ∈ A, por la Proposición 0.16, tenemos que Ann(a) = e(a)A,
aśı que A es un subconjunto medible de śı mismo y su métrica modular está
dada por d(x, y) = e(x − y). Es más, para cada n ∈ N, An también es un
subconjunto medible de śı mismo y su métrica modular está dada por

d((x1, . . . , xn), (y1, . . . , yn)) = e(x1 − y1) ∨ · · · ∨ e(xn − yn).

Este hecho se deduce de las dos proposiciones siguientes.

Proposición 1.4 Sean (X1, d1), . . . , (Xn, dn) espacios métricos sobre B, i =
1, . . . , n. Entonces (X1 × · · · × Xn, d) es también un espacio métrico sobre
B, con

d((x1, . . . , xn), (y1, . . . , yn)) := d1(x1, y1) ∨ · · · ∨ dn(xn, yn).

A este espacio lo llamaremos el espacio producto de los (Xi, di) y a d la
llamaremos la métrica producto de las métricas di.

La prueba es rutinaria.

Proposición 1.5 Sea Si un subconjunto medible del A-módulo Mi, para cada
i = 1 . . . , n. Entonces, S = S1 × · · · × Sn es un subconjunto medible de
M1 × · · · ×Mn y la métrica modular en S es igual a la métrica producto de
las métricas modulares de los Si.

Prueba: Sea di la métrica modular de Si. Para cada x = (x1, . . . , xn) e
y = (y1, . . . , yn) en S,

Ann(x− y) =
n⋂

i=1

Ann(xi − yi) =
n⋂

i=1

di(x, y)A

=

(
n∏

i=1

di(x, y)

)
A =

(
n∨

i=1

di(x, y)

)
A

�
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Definición 1.6 Sea f : X → Y una aplicación entre espacios métricos sobre
B.

1. f se dice inmersión si d(x, y) = d(f(x), f(y)) para todo x, y ∈ X.

2. f se dice isometŕıa si f es una inmersión biyectiva.

3. f se dice contractiva si d(f(x), f(y)) ≤ d(x, y) para todo x, y ∈ X.

Proposición 1.7 Sean X e Y espacios métricos sobre B y f : X −→ Y una
aplicación contractiva. Se tiene:

1. f es una isometŕıa si y sólo si f es biyectiva y su inversa f−1 : Y −→ X
es contractiva.

2. f es una inmersión si y sólo si f : X −→ f(X) es una isometŕıa. En
particular, toda inmersión es inyectiva.

Prueba: El apartado 1 es directo. Respecto al 2, una implicación es trivial.
Para la otra, supongamos que f es inmersión, y mostraremos que f es inyec-
tiva: si f(x) = f(y) entonces d(x, y) = d(f(x), f(y)) = 0 y x = y. Aśı que
f : X −→ f(X) es una inmersión inyectiva y suprayectiva. �

Dos espacios métricos sobre B se dicen isométricos si existe una isometŕıa
entre ellos.

Teorema 1.8 Todo espacio métrico X sobre B es isométrico a un subcon-
junto medible de un B-módulo. Es más, si fijamos x0 ∈ X, existe un sub-
conjunto medible S de un módulo MB que contiene al 0, y una isometŕıa
g : X −→ S tal que g(x0) = 0.

Prueba: Definimos f : X −→ BX como f(x) = (d(x, z))z∈X . Para probar
que f(X) es medible y que f : X −→ f(X) es una isometŕıa, es suficiente
ver que Ann(f(x)− f(y)) = d(x, y)B para todo x, y ∈ X. Comprobamos la
doble inclusión:

Si a ∈ Ann(f(x)+f(y)), entonces a(d(x, z)+d(y, z))z∈X = 0 aśı que para
z = x, tenemos ad(y, x) = 0 y por tanto a ≤ d(x, y).

Rećıprocamente, supongamos que a ∈ d(x, y)B, entonces por la Pro-
posición 1.2, a(d(x, z) + d(z, y)) ≤ ad(x, y) = 0, para todo z ∈ X, aśı
que a ∈ Ann(f(x) + f(y)). Respecto a la última afirmación, tomemos
h : f(X) −→ f(X) + f(x0) dada por h(x) = x + f(x0). Entonces, h es
una isometŕıa entre f(X) y el conjunto medible S = f(X) + f(x0) porque
Ann(h(x)− h(y)) = Ann(x− y) para todo x, y. Por tanto, g = h ◦ f es una
isometŕıa entre X y S que verifica g(x0) = 0. �

16



1.2 Combinaciones convexas

A menos que se especifique lo contrario, X será un espacio métrico sobre B.

Definición 1.9 Sean x1, . . . , xn ∈ X y a1, . . . , an ∈ B con a1⊕· · ·⊕ an = 1.
Diremos que x ∈ X es una combinación convexa de x1, . . . , xn con coeficien-
tes a1, . . . , an si aid(x, xi) = 0 para i = 1, . . . , n.

Proposición 1.10 Si x ∈ X es una combinación convexa de x1, . . . , xn con
coeficientes a1, . . . , an, entonces para cada y ∈ X

d(x, y) =
n⊕

i=1

aid(xi, y).

Prueba: Para cada i = 1, . . . , n, puesto que aid(x, xi) = 0, tendremos que

aid(xi, y) = ai(d(x, xi) + d(xi, y))

≤ aid(x, y) ≤ ai(d(x, xi) ∨ d(xi, y)) = aid(xi, y),

aśı que aid(x, y) = aid(xi, y) y por tanto

d(x, y) = (
∑

i

ai)d(x, y) =
∑

i

aid(xi, y).

�

Proposición 1.11 Si x e y son combinaciones convexas de x1, . . . , xn con
coeficientes a1, . . . , an, entonces x = y.

Prueba: Por la Proposición 1.10,

d(x, y) =
n∑

i=1

aid(x, xi) =
n∑

i=1

ai

n∑
j=1

ajd(xjxi) =
n∑

i=1

n∑
j=1

aiajd(xj, xi).

Observar que si i 6= j entonces aiaj = 0 y si i = j entonces d(xj, xi) = 0, aśı
que todos los términos de la suma son nulos, por lo que d(x, y) = 0 y x = y.

�

Lema 1.12 Sea S un subconjunto medible de un A-módulo M . Entonces,

conv(S) = {a1x1 + · · ·+ anxn ∈M : xi ∈ S ai ∈ B(A)
n⊕

i=1

ai = 1}

es también un subconjunto medible de M .
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Prueba: Tomemos x, y ∈ conv(S), x =
∑n

1 aixi y y =
∑m

1 bjyj. Llamemos
cij = aibj. Es fácil comprobar que

⊕
i,j cij = 1 y que x =

∑
i,j cijxi e

y =
∑

i,j cijyj. Por lo tanto,

Ann(x− y) = Ann(
∑
i,j

cij(xi − yj))

y es rutinario el verificar que esto es igual a
∑

i,j cijAnn(xi − yj), que es
principal porque cada Ann(xi− yj) es principal (recuérdese que, para anillos
regulares, todo ideal finitamente generado es principal). �

La siguiente proposición nos mostrará que, cuando X es un subconjunto
medible de un módulo, las combinaciones convexas en (X, d) son exactamente
las correspondientes combinaciones lineales en el módulo.

Proposición 1.13 Sea S un subconjunto medible de un A-módulo y sean
x, x1, . . . , xn ∈ S y a1, . . . , an ∈ B tales que

⊕n
i=1 ai = 1. Entonces, x es

una combinación convexa de x1, . . . , xn con coeficientes a1, . . . , an si y sólo
si x = a1x1 + · · ·+ anxn.

Prueba: Supongamos que x = a1x1 + · · ·+ anxn. Tenemos que comprobar
que, para cada i = 1, . . . , n, aid(x, xi) = 0. Es claro que

ai ∈ Ann(x− xi) = d(x, xi)A,

aśı que ai ≤ d(x, xi) y por tanto, aid(x, xi) = 0.

Rećıprocamente, supongamos que x ∈ S es una combinación convexa de
x1, . . . , xn con coeficientes a1, . . . , an . Sea y =

∑n
1 aixi ∈ conv(S), que es

medible, por el Lema 1.12. La implicación que ya hemos probado, nos dice
que y es una combinación convexa de x1, . . . , xn con coeficientes a1, . . . , an

en conv(S). Lo mismo vale para x, aśı que por la Proposición 1.11, x = y.
�

En general, en cualquier espacio métrico X, denotaremos por
∑n

i=1 aixi

o por a1x1 + · · ·+anxn la combinación convexa de x1, . . . , xn con coeficientes
a1, . . . , an, en caso de que exista. Las aplicaciones contractivas pueden ser
caracterizadas como aquellas que preservan combinaciones convexas. Para
probar esto, usaremos el siguiente lema, cuya prueba es elemental.

Lema 1.14 Para cada x, y,∈ X y a ∈ B, x = ax+āy si y sólo si a ≥ d(x, y).
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Teorema 1.15 Para una aplicación f : X −→ Y entre dos espacios métricos
las afirmaciones siguientes son equivalentes:

1. f es contractiva.

2. Para cada x, x1, . . . , xn ∈ X y a1, . . . , an ∈ B con a1 ⊕ · · · ⊕ an = 1, si
x =

∑
aixi, entonces f(x) =

∑
aif(xi).

Prueba: (1 ⇒ 2) Sea x =
∑

i aixi. Entonces, para cada i, tenemos

0 = aid(x, xi) ≥ aid(f(x), f(xi)),

aśı que f(x) =
∑
aif(xi).

(2 ⇒ 1) Dados x, y ∈ X, usando el Lema 1.14, tenemos que

x = d(x, y)x+ d(x, y)y.

Por tanto, por nuestra suposición

f(x) = d(x, y)f(x) + d(x, y)f(y).

Usando la Proposición 1.10

d(f(x), f(y)) = d(x, y)d(f(x), f(y)) + d(x, y)d(f(y), f(y))

= d(x, y)d(f(x), f(y)),

lo que nos dice que d(f(x), f(y)) ≤ d(x, y). �

El Teorema 1.8 nos permite identificar todo espacio métrico X sobre
B con un subconjunto medible de un B-módulo, y entonces, por el Teore-
ma 1.13, las combinaciones convexas son exactamente las correspondientes
combinaciones lineales en el módulo y la métrica es la métrica modular.

Dados x1, . . . , xn ∈ X y a1, . . . , an ∈ B con
⊕

ai = 1, puede no existir
la combinación convexa de los xi con coeficientes ai. Aśı que tenemos la
siguiente definición:

Definición 1.16 Un espacio métrico X sobre B se dice convexo si dados
cualesquiera x1, . . . , xn ∈ X y cualesquiera a1, . . . , an ∈ B con

⊕
ai = 1,

existe en X la combinación convexa de los xi con coeficientes los ai.

Como consecuencia de la Proposición 1.13, An es un ejemplo de espacio
métrico convexo.

19



Definición 1.17 Una clausura convexa de un espacio métrico X es un es-
pacio métrico convexo Y ⊇ X tal que cualquier elemento de Y es una com-
binación convexa de elementos de X.

Proposición 1.18 Todo espacio métrico X sobre B tiene una clausura con-
vexa.

Prueba: Supongamos que X = S es un subconjunto medible de un módulo
sobre B. Entonces, es rutinario comprobar que el conjunto conv(S) del
Lema 1.12 es una clausura convexa de X. �

Teorema 1.19 Sean X ⊆ X̄ e Y ⊆ Ȳ clausuras convexas. Cada aplicación
contractiva f : X −→ Y se extiende a una única aplicación contractiva
f̄ : X̄ −→ Ȳ . Es más,

1. f̄ es inmersión si y sólo si f lo es, y si f es isometŕıa, también lo es
f̄ .

2. Para dos aplicaciones contractivas f : X −→ Y y g : Y −→ Z se tiene
gf = ḡf̄ .

Prueba: Para cada elemento x ∈ X̄, escojamos una expresión de x como
combinación convexa de elementos de X, x =

∑
i aixi. Si queremos que

f̄ sea contractiva debe estar definida como f̄(x) =
∑

i aif(xi) ∈ Ȳ . Esto
prueba la unicidad. Para la existencia, hemos de comprobar que, aśı definida,
f̄ es contractiva. Tomemos x, y ∈ X̄, y sus correspondientes expresiones
x =

∑
aixi e y =

∑
bjyj con xi, yj ∈ X:

d(f̄(x), f̄(y)) =
⊕

aibjd(f(xi), f(yj)) ≤
⊕

aibjd(xi, yj) = d(x, y).

Si f es inmersión entonces la desigualdad es una igualdad, y concluimos que
f̄ es una inmersión. La propiedad 2 es inmediata y a partir de ella, usando
f−1 se deduce que si f es isometŕıa también lo es f̄ . �

Corolario 1.20 La clausura convexa de un espacio métrico es única, salvo
isometŕıa.

Prueba: Si X ⊆ X1, X2 son dos clausuras convexas de X, entonces 1X se
extiende a una isometŕıa f : X1 −→ X2. �

En adelante, conv(X) denotará una clausura convexa deX. En la siguien-
te proposición recopilamos algunas propiedades, de demostración directa, de
las clausuras convexas.
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Proposición 1.21 Sean X e Y espacios convexos sobre B y U ⊆ X.

1. El conjunto de todas las combinaciones convexas de elementos de U
en X es una clausura convexa de U(En esta situación, la notación
conv(U) se referirá a este conjunto).

2. Si f : X −→ Y es contractiva, entonces f(conv(U)) = conv(f(U)).

3. Si X1, . . . , Xn son espacios métricos sobre B, conv(X1)×· · ·×conv(Xn)
es una clausura convexa de X1 × · · · ×Xn.

Proposición 1.22 Sean X e Y espacios métricos con X convexo. Una apli-
cación contractiva f : X −→ Y es una inmersión si y sólo si es inyectiva.

Prueba: Si f : X → Y no fuera una inmersión, existiŕıan x, y ∈ X tales
que a = d(f(x), f(y)) < d(x, y). Entonces, por el Lema 1.14,

f(x) = af(x) + āf(y) = f(ax+ āy)

y ax + āy 6= x, aśı que f no es inyectiva. La otra implicación se sigue de la
Proposición 1.7. �

1.3 El espacio B

Definición 1.23 Sea X un espacio métrico sobre B. Diremos que X es
un FGC-espacio (espacio convexo finitamente generado) si es la clausura
convexa de un subespacio finito.

Se sigue de la Proposición 1.21 que:

1. Si X es un FGC-espacio y f : X −→ Y es contractiva, entonces f(X)
es un FGC-espacio.

2. El producto finito de FGC-espacios es un FGC-espacio.

En el siguiente teorema, determinamos los FGC-subespacios de B. Usa-
mos la siguiente notación, para a, b ∈ B con a ≤ b:

[a, b] = {x ∈ B : a ≤ x ≤ b}.

Teorema 1.24 Sean a1, . . . , an ∈ B, entonces

conv(a1, . . . , an) =

[
n∏

i=1

ai,

n∨
i=1

ai

]
.
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Prueba: Primero veremos que para a ≤ b, se tiene conv(a, b) = [a, b]. Si
tenemos x = ca+c̄b ∈ conv(a, b) entonces xa = ca+c̄a = a y xb = ca+c̄b = x,
aśı que x ∈ [a, b]; rećıprocamente, si x ∈ [a, b], entonces x = xb + x̄a, que
está en conv(a, b).

De esa propiedad deducimos que los intervalos cerrados son convexos y
queda probado que conv(a1, . . . , an) ⊆ [

∏n
1 ai,

∨n
1 ai]. La otra inclusión es

ahora consecuencia de que todo subconjunto convexo de B es cerrado para
productos y para la operación (∨), ya que ab = ab+ āa y a∨ b = aa+ āb. �

Obsérvese que, en particular, los FGC-subespacios de B son exactamente
sus intervalos y que B = [0, 1] es un FGC-espacio.

Corolario 1.25 Sea X = conv(H) con H finito. Si f : X −→ B es una
función contractiva, entonces

Im(f) =

[∏
x∈H

f(x) ,
∨
x∈H

f(x)

]
.

Corolario 1.26 Sea X = conv(H) con H finito. Si f : X −→ B es una
función contractiva, entonces la ecuación f(x) = 0 tiene solución si y sólo si∏

x∈H

f(x) = 0.

Corolario 1.27 Sea X = conv(H) con H finito, y fi : X −→ B funciones
contractivas para i = 1, . . . , n. El sistema de ecuaciones {fi(x) = 0}n

i=1 tiene
solución si y sólo si ∏

x∈H

n∨
i=1

fi(x) = 0.

Finalmente, probamos el hecho de que las aplicaciones contractivas de
Bn en Bm son exactamente las funciones polinómicas. Los Corolarios 1.26
y 1.25, cuando X = Bn y H = {0, 1}n, y enunciados en términos de funciones
polinómicas se corresponden con los Teoremas 2.3 y 2.4 de [12].

Lema 1.28 Sea R un anillo y f : Rn −→ R una función polinómica. Para
cada x1, . . . , xm ∈ Rn y cada familia completa de idempotentes ortogonales
{e1, . . . , en} de R, tenemos f(

∑
i eixi) =

∑
i eif(xi).

Prueba: Si llamamos convexa a toda aplicación g : Rn −→ R que veri-
fique la conclusión del lema, es rutinario comprobar que las proyecciones
πi : Rn −→ R son convexas (eso probaŕıa el lema para los polinomios
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X1, . . . , Xn), que las aplicaciones constantes son convexas, y que las sumas y
productos de aplicaciones convexas son convexas. Como todo polinomio es
suma de productos de constantes y las variables Xi, el lema queda probado.

�

Teorema 1.29 Una aplicación f : Bn −→ Bm es contractiva si y sólo si es
polinómica.

Prueba: La aplicación f es polinómica (respectivamente contractiva) si y
sólo si todas sus componentes lo son, aśı que podemos suponer que m = 1.
Una implicación es consecuencia directa del Lema 1.28, el Teorema 1.15 y
la Proposición 1.13. Inversamente, supongamos que f es contractiva y cons-
truimos la aplicación polinómica

g(x1, . . . , xn) =
∑

u∈{0,1}n

(
f(u)

∏
0≤i≤n ui=0

xi

∏
0≤i≤n ui=1

xi

)
.

La función g es contractiva por la implicación que ya hemos probado, y
g|{0,1}n = f |{0,1}n . Puesto que Bn = conv{0, 1}n, deducimos que f = g es
una función polinómica. �
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Caṕıtulo 2

Ortogonalidad en FGC-espacios

El objeto de este caṕıtulo es estudiar la estructura de los FGC-espacios a
través de sistemas de referencia, análogamente a como se hace en álgebra
lineal elemental.

En la sección 2.1 se introducen los sistemas de referencia y las coorde-
nadas y se demuestran sus propiedades básicas, entre ellas la existencia de
referenciales en todo FGC-espacio.

En la sección 2.2 se verá que los sistemas de referencia pueden entenderse
como casos particulares de un concepto más general de descomposición de
espacios métricos, que denominaremos suma ortogonal.

En la sección 2.3 se comprueban algunas propiedades relativas a la repre-
sentación de una aplicación contractiva mediante una matriz, usando siste-
mas de referencia y coordenadas.

Por razones técnicas, será conveniente trabajar con espacios métricos cen-
trados. El par (X, 0) diremos que es un espacio métrico (centrado) si X es un
espacio métrico sobre B y 0 ∈ X. Una aplicación f : (X, 0) −→ (Y, 0′) será
una aplicación f : X −→ Y tal que f(0) = 0′, y expresiones como x ∈ (X, 0)
querrán decir simplemente x ∈ X.

A lo largo de este caṕıtulo, fijamos un espacio métrico (X, 0). Por el
Teorema 1.8, no es restrictivo suponer que X es un subconjunto medible
convexo de un módulo MB y que 0 es el elemento neutro de M . En (X, 0)
usaremos las siguientes notaciones:

• |x| := d(0, x) para cada x ∈ X.
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• Si x1, . . . , xn ∈ X y a1, . . . , an ∈ B son tales que aiaj = 0 cuando i 6= j,
entonces tenemos un elemento de X:

a1x1 + · · ·+ anxn := a00 + a1x1 + · · ·+ anxn

donde a0 = 1 + a1 + · · · an (observar que la expresión de la derecha
representa un elemento de X puesto que a0 ⊕ · · · ⊕ an = 1 y X es un
espacio convexo). Una combinación como ésta la llamaremos combina-
ción ortogonal.

• En particular ax = ax+ ā0 para x ∈ X, a ∈ B.

• Bx := {ax : a ∈ B} = conv(0, x).

• x ? y := d(x, y)x para x, y ∈ X.

Obsérvese que cualquier aplicación contractiva f : (X, 0) −→ (Y, 0′) pre-
serva combinaciones ortogonales.

2.1 Sistemas de referencia

Comenzamos comprobando algunas propiedades elementales:

Lema 2.1 Sean x, y ∈ X y a, b ∈ B. Entonces:

1. Las aplicaciones || : (X, 0) −→ (B, 0) y x ? : (X, 0) −→ (X, 0) son
contractivas, aśı que ambas preservan combinaciones ortogonales.

2. ax = bx si y sólo si a+ b ∈ |x|B (si y sólo si a+ |x|B = b+ |x|B).

3. ax = 0 si y sólo si a ≤ |x|, y ax = x si y sólo si a ≥ |x|.

4. La operación (?) es conmutativa.

Prueba: Para la propiedad 1, es evidente que || es contractiva, mientras
que la función x ? puede expresarse como composición de las aplicaciones
y 7→ d(x, y), b 7→ b̄ y b 7→ bx y todas ellas son contractivas (conservan com-
binaciones convexas).

Para la propiedad 2, supongamos que X es un subconjunto medible de
un B-módulo. Entonces, ax = bx si y sólo si a+ b ∈ Ann(x− 0) = d(x, 0)B.

La propiedad 3 se sigue de 2.
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Para la propiedad 4, x ? y = y ? x si y sólo si

d(x, y)x+ d(x, y)0 = d(x, y)y + d(x, y)0.

Esta igualdad es fácil de comprobar, verificando que la distancia entre los
dos términos es cero usando la Proposición 1.10. �

Lema 2.2 Bx ∩By = B(x ? y) para todo x, y ∈ X.

Prueba: Simplemente por la definición de ?, tenemos que B(x ? y) ⊆ Bx,
y simétricamente, como ? es conmutativa, B(x ? y) ⊆ By, aśı que una de las
inclusiones está probada. Ahora supongamos que u ∈ Bx ∩ By. Entonces
u = ax = by, y si llamamos c = ab, tendremos

cx = bax = bu = bby = u = aax = au = aby = cy.

Aśı pues, cx = u = cy, y eso implica, si suponemos que X es un subconjunto
medible de un módulo, que c ∈ Ann(x− y) = d(x, y)B y

u = cx = cd(x, y)x = c(x ? y).

�

Proposición 2.3 Para dos elementos x, y ∈ X las siguientes afirmaciones
son equivalentes:

1. x ? y = 0.

2. Bx ∩By = {0}.

3. d(x, y) = |x| ∨ |y|.

En este caso, x y y se dirá que son ortogonales y escribiremos x ⊥ y.

Prueba: (1 ⇔ 2) es consecuencia directa del Lema 2.2.

Para (1 ⇔ 3), se tiene x ? y = 0 si y sólo si

0 = |x ? y| = d(x, y)|x|

si y sólo si
d(x, y)|x| = 0 = d(x, y)|y|

26



si y sólo si
|x| ∨ |y| ≤ d(x, y).

La inversa de la última desigualdad es siempre cierta por el axioma 3 de la
Definición 1.1. �

Obsérvese que, para x, y ∈ (B, 0), tenemos

x ? y = d(x, y)x = (x+ y + 1)x = xy,

y aśı, x es ortogonal a y si y sólo si xy = 0.

Definición 2.4 Un subconjunto finito R ⊆ X se dirá que es ortogonal si
cualesquiera dos elementos diferentes en R son ortogonales, y 0 6∈ R. Si,
además, X = conv(R ∪ {0}), diremos que R es un sistema de referencia o
un referencial de (X, 0).

Proposición 2.5 Sea R = {x1, . . . , xn} un sistema de referencia de (X, 0)
y x ∈ X. Existe una única tupla (a1, . . . , an) ∈ Bn que satisface las tres
propiedades siguientes:

1. aiaj = 0 para todo i 6= j.

2.
∑n

1 aixi = x.

3. ai ≤ |xi| para i = 1, . . . , n.

A dicha tupla la llamaremos la tupla de coordenadas de x con respecto a R.

Prueba: Unicidad: Si
∑n

1 aixi =
∑n

1 bixi en esas condiciones , multiplicando
por aibj, i 6= j, obtenemos

aibjxi = aibjxj ∈ Bxi ∩Bxj = {0},

aśı que para cada i = 1 . . . , n,

aixi = ai

∑
j

ajxj = ai

∑
j

bjxj =
∑

j

aibjxj = aibixi,

y simétricamente bixi = aibixi = aixi. Por el Lema 2.1 ai + bi ∈ |xi|B, y
también ai + bi ∈ |xi|B porque los ai y los bi se supone que verifican la pro-
piedad 3. Aśı que ai + bi = 0 para todo i.

Existencia: Como X = conv{0, x1 . . . , xn}, existen b1, . . . , bn ∈ B veri-
ficando 1 y 2. Definimos ai = |xi|bi. Los ai satisfacen trivialmente 1 y 3.
Como ai + bi = |xi|bi ∈ |xi|B, por el Lema 2.1, aixi = bixi para todo i. Aśı
que

∑n
1 aixi =

∑n
1 bixi = x. �
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Proposición 2.6 En la situación de la Proposición 2.5, ai = |x ? xi| para
i = 1, . . . , n, y la aplicación c : (X, 0) −→ (Bn, 0) dada por las coordenadas
es contractiva e induce una isometŕıa sobre su imagen

Im(c) = {(a1, . . . , an) : aiaj = 0 si i 6= j, ai ≤ |xi|}

Prueba:

x ? xi =

(
n∑

j=1

ajxj

)
? xi =

n∑
j=1

aj(xj ? xi) = ai(xi ? xi) = aixi.

Por tanto, |x ? xi| = |aixi| = ai|xi| = ai. La contractividad de c se deduce de
esta fórmula, mientras que el hecho de que induzca una isometŕıa sobre su
imagen (es decir, que sea inmersión) se sigue de la Proposición 1.22. �

Proposición 2.7 Sea R = {x1, . . . , xn} un sistema de referencia de (X, 0) e
(Y, 0′) un espacio métrico convexo. Entonces, f : R −→ Y es extensible a una
(única) aplicación contractiva f̂ : (X, 0) −→ (Y, 0′) si y sólo si |f(xi)| ≤ |xi|
para i = 1, . . . , n.

Prueba: Definimos f en R ∪ {0}, haciendo f(0) = 0′. Por el Teorema 1.19,
f admite una tal extensión si y sólo si es contractiva. Si f es contractiva, es
claro que |f(xi)| ≤ |xi| para i = 1, . . . , n, aśı que una implicación está proba-
da. Rećıprocamente, supongamos que |f(xi)| ≤ |xi| para todo i. Entonces,
para cada i 6= j,

d(f(xi), f(xj)) ≤ |f(xi)| ∨ |f(xj)| ≤ |xi| ∨ |xj| = d(xi, xj),

siendo la última igualdad porque xi y xj son ortogonales. �

Comprobamos ahora que cualquier FGC-espacio posee un sistema de re-
ferencia.

Teorema 2.8 Supongamos que X = conv{0, x1, . . . , xn} y que el conjun-
to {x1, . . . , xs} es ortogonal. Entonces, existen as+1, . . . , an ∈ B tales que
{x1, . . . , xs, as+1xs+1, . . . , anxn} \ {0} es un referencial de (X, 0).

Prueba: Sea r = card{(i, j) : xi ? xj 6= 0}. Hacemos inducción en r. El
caso r = 0 es trivial, aśı que supongamos que r 6= 0 y que el teorema se
cumple para cualquier valor menor que r. Tomamos xi, xj con xi ? xj 6= 0
y supongamos, sin pérdida de generalidad que i, s < j. Sea a := d(xi, xj).
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Puesto que axj ? xi = ad(xi, xj)xi = 0, tenemos que axj ⊥ xi. Por el
Lema 1.14 xj = a(axj) + āxi, y de aqúı deducimos que

conv{0, xi, xj} = conv{0, xi, axj}

y por tanto
X = conv{0, x1, . . . , xj−1, axj, xj+1, . . . , xn}.

Usando la hipótesis de inducción, se completa la prueba (en este sistema de
generadores hay al menos un par ortogonal más, porque xi ⊥ axj). �

Corolario 2.9 Sea {x1, . . . , xs} un subconjunto ortogonal de un FGC-espacio
(X, 0). Entonces, existen xs+1, . . . , xn ∈ X tales que {x1, . . . , xn} es un refe-
rencial de (X, 0).

Corolario 2.10 Todo FGC-espacio (X, 0) posee un sistema de referencia.

2.2 Sumas ortogonales

Definición 2.11 Sea (X, 0) convexo y {Xi}i∈I una familia subespacios con-
vexos de X que contienen a 0. Diremos que X es suma ortogonal de los
subespacios Xi si X = conv(

⋃
I Xi) y Xi ∩Xj = {0} para todo i 6= j.

Cuando X sea la suma ortogonal de los subespacios Xi, escribiremos
X =

∐
I Xi ó X = X1 ⊥ · · · ⊥ Xn cuando se trate de una familia finita de

subespacios.

Los sistemas de referencia pueden interpretarse como sumas ortogonales
del siguiente modo:

Proposición 2.12 Un subconjunto {x1, . . . , xn} ⊆ X \{0} es un referencial
del espacio convexo (X, 0) si y sólo si X = Bx1 ⊥ · · · ⊥ Bxn.

En la siguiente proposición, que generaliza a la Proposición 2.7, mostra-
remos que si X =

∐
I Xi, entonces (X, 0) es el coproducto de los espacios

(Xi, 0) en la categoŕıa de espacios métricos centrados convexos.

Proposición 2.13 Sean (X, 0) e (Y, 0′) espacios convexos con X =
∐

I Xi.
Para cada familia de aplicaciones contractivas {fi : (Xi, 0) −→ (Y, 0′)}i∈I ,
existe una única aplicación contractiva f : (X, 0) −→ (Y, 0′) que extiende a
todas las fi.
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Prueba: Del Teorema 1.19 y de que X = conv (
⋃

I Xi) deducimos inmedia-
tamente la unicidad, y que para probar la existencia basta ver que existe una
función contractiva f : (

⋃
I Xi, 0) −→ (Y, 0′) que extiende a las fi. Definimos

f como f(x) = fi(x) cuando x ∈ Xi \ {0}. Para ver que f es contractiva
basta observar que si x ∈ Xi e y ∈ Xj con i 6= j, entonces

d(f(x), f(y)) ≤ |f(x)| ∨ |f(y)| = |fi(x)| ∨ |fj(y)| ≤ |x| ∨ |y| = d(x, y),

siendo la última igualdad debida a que x ⊥ y, pues Bx∩By ⊆ Xi∩Xj = {0}.
�

Cuando I = {1, . . . , n} sea finito denotaremos a la función f del teorema
como f1 ⊥ · · · ⊥ fn.

Definición 2.14 Para U ⊆ X, U⊥ = {x ∈ X : x ⊥ y para todo y ∈ U}.

Proposición 2.15 Si tenemos (U, 0) ⊆ (X, 0), con U un FGC-espacio y X
convexo, entonces X = U ⊥ U⊥. Además, si X es un FGC-espacio, entonces
U⊥ también es un FGC-espacio.

Prueba: Supongamos en primer lugar que X es un FGC-espacio. En ese
caso, tomamos {x1, . . . , xm} un sistema de referencia de (U, 0), que podemos
extender a un sistema de referencia {x1, . . . , xn} de (X, 0). Es suficiente
probar que

U⊥ = conv{0, xm+1, . . . , xn}.
Una inclusión es trivial. Para la otra, tomemos x ∈ U⊥, x =

∑n
1 aixi. Para

j = 1, . . . ,m,

0 = xj ? x =
n∑
1

ai(xi ? xj) = ajxj.

Por tanto, x =
∑m

1 aixi.

Pasamos ahora a suponer que X es convexo. Hay que ver que

conv(U ∪ U⊥) = X.

Tomamos x ∈ X y entonces Y = conv(U ∪ {x}) es un FGC-espacio, y por el
caso que ya hemos probado x ∈ conv(U ∪ (U⊥ ∩ Y )). �

Nótese que no es posible omitir la hipótesis de que U sea un FGC-espacio.
Por ejemplo, si consideramos (I, 0) ⊂ (B, 0) un ideal no principal de B
con supremo 1 (véase la Proposición 0.10), entonces I⊥ = Ann(I) = 0, y
B 6= I ⊥ I⊥.
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Corolario 2.16 Sean U ,X,Y espacios métricos con Y convexo, U un FGC-
espacio y U ⊆ X. Cada aplicación contractiva f : U −→ Y se extiende a
una aplicación contractiva f ′ : X −→ Y .

Prueba: Podemos suponer, sin pérdida de generalidad, que X es convexo.
Elegimos 0 ∈ U y 0′ = f(0) ∈ Y . Si g : (U⊥, 0) −→ (Y, 0′) es la aplicación
constante, tomamos f ′ = f ⊥ g : X = U ⊥ U⊥ −→ Y . �

Tampoco puede suprimirse en este corolario la hipótesis de que U sea
un FGC-espacio. De nuevo, si I es un ideal no principal con supremo 1,
la identidad i : I −→ I, no puede extenderse a una aplicación contractiva
F : B −→ I, ya que por el Corolario 1.25, la imagen de F tendŕıa que ser un
intervalo.

Como es natural, el concepto de suma ortogonal “interna” que hemos
definido lleva aparejado un concepto de suma ortogonal “externa”.

Definición 2.17 Para una familia {(Xi, 0i)}i∈I de espacios convexos, lla-
maremos suma ortogonal externa de los Xi al espacio

∗∐
I

Xi = {(xi)i∈I : |xi||xj| = 0 si i 6= j , xi = 0i para casi todo i}

con la métrica d((xi), (yi)) =
∨

I d(xi, yi) y centrado en la tupla (0i).

Proposición 2.18 Si (X, 0) =
∐

I Xi, entonces (X, 0) es isométrico al es-
pacio Y =

∐∗
I Xi.

Prueba: Las inclusiones naturales ui : (Xi, 0) −→ (Y, 0) son contractivas,
aśı que existe una aplicación contractiva f : (X, 0) −→ (Y, 0) que las extien-
de. Por otra parte Y =

∐
I ui(Xi) (El hecho de que Y = conv(

⋃
ui(Xi))

viene de que (xi) =
∑

xi 6=0 |xi|ui(xi)) y de igual manera existe una aplicación

contractiva g : (Y, 0) −→ (X, 0) que extiende a las u−1
i : ui(Xi) −→ Xi ⊆ X.

Las funciones f y g son inversas ya que f ◦ g y g ◦ f son aplicaciones con-
tractivas que coinciden con las correspondientes identidades en

⋃
I ui(Xi) y⋃

I Xi. Por tanto, f y g son isometŕıas inversas. �

En el caso finito, utilizaremos la notación X = X1 ⊥ · · · ⊥ Xn para
referirnos tanto a la suma ortogonal externa como a la interna. Con este
lenguaje, dar un sistema de referencia de (X, 0) es dar una descomposición
del espacio como suma ortogonal externa de ideales principales de B.

Finalmente, a t́ıtulo de aplicación, damos el siguiente teorema:
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Teorema 2.19 Sean X, Y espacios métricos convexos con X un FGC-espacio.

1. Si f : X −→ Y es contractiva e inyectiva, existe g : Y −→ X contrac-
tiva con g ◦ f = 1X .

2. Si f : Y → X es contractiva y suprayectiva, existe g : X → Y contrac-
tiva con f ◦ g = 1X .

Prueba: Fijemos 0 = x0 ∈ X y {x1, . . . , xn} un referencial de (X, x0).

Para el caso 1, llamamos 0′ = f(0). Por la Proposición 1.22, f es una
inmersión, luego es una isometŕıa sobre su imagen. Consideremos

h1 : (f(X), 0′) → (X, 0)

la inversa de f sobre su imagen y

h2 : (f(X)⊥, 0′) → (X, 0)

la función constante igual a 0. La Proposición 2.15 nos permite tomar ahora
g = h1 ⊥ h2 : (Y, 0′) −→ (X, 0).

Con respecto a 2, al ser f suprayectiva, xi = f(ui) para i = 0, . . . , n.
Consideramos el espacio centrado (Y, u0) y llamamos ai := |xi| y vi := aiui.
Se tiene que f(vi) = aif(ui) = aixi = xi. Además,

d(vi, vj) ≤ |vi| ∨ |vj| = |xi||ui| ∨ |xj||uj| ≤ |xi| ∨ |xj| = d(xi, xj)

para todo i, j. Ahora, por el Teorema 1.19 la aplicación xi 7→ vi puede
extenderse a una aplicación contractiva g : X → Y , que es la que buscábamos
pues f(g(xi)) = f(vi) = xi. �

Corolario 2.20 Sea ConvB la categoŕıa de los espacios métricos convexos
sobre B y FGCB la de los FGC-espacios (en ambas los morfismos son las
aplicaciones contractivas). Todo FGC-espacio es inyectivo en ambas cate-
goŕıas y proyectivo en FGCB.

Prueba: A la vista del Teorema 2.19, sólo queda ver que todo monomorfis-
mo en ConvB es inyectivo y que todo epimorfismo en FGCB es suprayectivo.
Supongamos que f : X −→ Y no es inyectiva y veamos que no es monomor-
fismo encontrando g, h : B −→ X con f ◦ g = f ◦ h pero g 6= h. Se toman
x0, x1 ∈ X distintos con f(x0) = f(x1), y se hace g(i) = xi, h(i) = x0 para
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i = 0, 1.

Análogamente, si f : X −→ Y no es suprayectiva, se toman centros 0 ∈ X
y 0′ = f(0) ∈ Y ,

g = || ⊥ 0 : f(X) ⊥ f(X)⊥ = Y −→ B

y h = || : Y −→ B. Se tiene entonces g 6= h pero g ◦ f = h ◦ f . �

Conviene señalar que, salvo que B sea finito, B no es un objeto proyec-
tivo de la categoŕıa ConvB. Efectivamente, si B es inifinito, existe, por la
Proposición 0.10 un ideal I ≤ B no principal con supremo 1. Afirmamos
que la inclusión i : I −→ B es un epimorfismo, que al no ser suprayectivo no
puede ser una retracción. Supongamos que tuviéramos g, h : B −→ X tales
que g ◦ i = h ◦ i (es decir g|I = h|I). Haciendo uso del Teorema 3.4, que
probaremos más adelante, tendremos que H = {x ∈ B : d(h(x), g(x)) = 0}
es un FGC-espacio (un intervalo) que contiene a I y por tanto H = B y
g = h.

2.3 Representación matricial

Los sistemas de referencia y las coordenadas que hemos introducido nos per-
miten representar de manera natural las aplicaciones contractivas como ma-
trices. Trabajaremos en la siguiente situación: (X, 0) e (Y, 0′) serán FGC-
espacios con referenciales R = {x1, . . . , xm} y R′ = {y1, . . . , yn} respectiva-
mente y f : (X, 0) → (Y, 0′) será una aplicación contractiva.

Definición 2.21 Llamaremos matriz de f respecto de R y R′ a la matriz
MR′Rf de elementos de B cuya columna j-ésima es la tupla de coordenadas
de f(xj) respecto de R′.

Proposición 2.22 La condición necesaria y suficiente para que la matriz
M = (aij) de tamaño n ×m sea la matriz de alguna aplicación contractiva
f : (X, 0) −→ (Y, 0′) es que se verifiquen:

1. aijakj = 0 siempre que i 6= k

2. aij ≤ |yi||xj|

Prueba: Supongamos que M es la matriz de f . La propiedad 1 y el hecho
de que aij ≤ |yi| se siguen de que las columnas de M son las coordenadas de
ciertos elementos. Más concretamente, f(xj) =

∑
i aijyi y aśı, para cada i,

aij = aij|yi| ≤ |f(xj)| ≤ |xj|.
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A la inversa, supongamos que M verifica las condiciones 1 y 2. Entonces
para cada j, la tupla (aij)

n
i=1 es la tupla de coordenadas de un cierto elemento

vj ∈ Y . Se tiene que |vj| =
⊕

i aij ≤ |xj|, aśı que por la Proposición 2.7,
existe f : (X, 0) −→ (Y, 0′) contractiva con f(xj) = vj. �

Proposición 2.23 En las condiciones de la definición anterior, si para un
x ∈ X, denotamos por [x]R la columna de las coordenadas de x respecto
de R, entonces la columna de las coordenadas de f(x) respecto de R′ es
[f(x)]R′ = MR′Rf · [x]R.

Prueba: Si [x]R = (r1, . . . , rn)t y MR′Rf = (aij), hay que ver que las coor-
denadas de f(x) son los bi =

⊕m
j=1 aijrj. El hecho de que bibi′ = 0 si i 6= i′

se comprueba fácilmente usando que rjrj′ = 0 si j 6= j′ y aijai′j = 0 si
i 6= i′. También es claro que bi ≤ |yi| pues aij ≤ |yi| por la Proposición 2.22.
Finalmente,

f(x) = f(
m∑

j=1

rjxj) =
m∑

j=1

rjf(xj) =
m∑

j=1

rj

n∑
i=1

aijyi

=
m∑

j=1

n∑
i=1

rjaijyi =
n∑

i=1

(
m∑

j=1

aijrj)yi.

�

Proposición 2.24 Si tenemos f : (X, 0) −→ (Y, 0′) y g : (Y, 0′) −→ (Z, 0′′)
aplicaciones contractivas y r,R′ y R′′ referenciales de (X, 0), (Y, 0′) y (Z, 0′′)
respectivamente, entonces MR′′R(g ◦ f) = MR′′R′g ·MR′Rf .

Prueba: En virtud de la Proposición 2.23, la j-ésima columna de la matriz
MR′′R(g ◦ f) es [g(f(xj))]R′′ = MR′′R′g · [f(xj)]R′ , igual a la j-ésima columna
de MR′′R′g ·MR′Rf . �

Lema 2.25 Supongamos que x, y ∈ (X, x0) tienen coordenadas (a1, . . . , an)
y (b1, . . . , bn) respectivamente en el sistema de referencia {x1, . . . , xn}. En-
tonces, x ? y tiene coordenadas (a1b1, . . . , anbn).

Prueba: Llamemos (c1, . . . , cn) a las coordenadas de z = x ? y. Por la
Proposición 2.6, ci = |x ? y ? xi| = |x ? xi ? y ? xi|. Ahora, puesto que
x ? xi ∈ Bxi, tenemos x ? xi = |x ? xi|xi = aixi y análogamente y ? xi = bixi.
Por tanto, ci = |aixi ? bixi| = aibi|xi| = aibi. �

Podemos dar una descripción sencilla de cuándo una aplicación contrac-
tiva es inyectiva en función de su matriz.
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Proposición 2.26 La aplicación contractiva f : (X, 0) −→ (Y, 0) es inyec-
tiva si y sólo si su matriz A = (aij) verifica las siguientes condiciones:

1.
⊕n

i=1 aij = |xj| para todo j.

2. airais = 0 si r 6= s.

Prueba: En virtud de la Proposición 1.22, la aplicación f es inyectiva si y
sólo si es inmersión y esto, por el Teorema 1.19, si y sólo si su restricción
a R ∪ {x0} es una inmersión. A su vez, eso equivale a exigir |f(xj)| = |xj|
(condición 1) y f(xr) ⊥ f(xs) para cada r 6= s (condición 2, usando el
Lema 2.25). �
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Caṕıtulo 3

Geometŕıa algebraica sobre
FGC-anillos

En este caṕıtulo introducimos un tipo de anillos regulares, que hemos llama-
do FGC-anillos y que incluye a los anillos de Boole, para los que probaremos
que la categoŕıa de variedades algebraicas es equivalente a la categoŕıa de
los FGC-espacios sobre el anillo de idempotentes, generalizando aśı el Teo-
rema 1.29. No damos aqúı ningún ejemplo de estos anillos porque poste-
riormente, en el Teorema 4.14, quedarán todos expĺıcitamente descritos a
partir de determinadas construcciones con cuerpos finitos y anillos de Boo-
le. Señalar también que algunos de los resultados de este caṕıtulo, como el
Teorema 3.4, que atañen exclusivamente a la estructura de los FGC-espacios
sobre un anillo de Boole, serán usados frecuentemente en otros caṕıtulos.

Definición 3.1 Un anillo regular A se dice que es un FGC-anillo si, con su
métrica modular, es un FGC-espacio sobre B(A).

En ese caso, observar que An (que es un A-módulo medible para el que
la métrica producto y la métrica modular coinciden) es también un FGC-
espacio sobre B(A).

Teorema 3.2 Sea A un FGC-anillo. Una aplicación f : An −→ Am es
contractiva si y sólo si es una aplicación polinómica.

Prueba: La función f es contractiva si y sólo si todas sus componentes
lo son, y lo mismo podemos decir del hecho de que f sea polinómica, aśı
que podemos suponer que m = 1. La implicación hacia la izquierda es con-
secuencia del Lema 1.28, el Teorema 1.15, y la Proposición 1.13. Para el
rećıproco, podemos suponer f(0) = 0 (siempre podemos reducirnos a ese ca-
so considerando la composición h ◦ f donde h : A −→ A es h(x) = x+ f(0)).
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Consideramos {x1, . . . , xr} un referencial de (An, 0). Haremos la demostra-
ción suponiendo primero que n = 1 para pasar después al caso general:

Caso n = 1: Consideremos el polinomio gi(x) = x
∏

j 6=i(x − xj) para
i = 1, . . . , r. Entonces

e(gi(xi)) = e(xi)
∏
j 6=i

e(xi − xj) = e(xi)
∏
j 6=i

d(xi, xj)

= e(xi)
∏
j 6=i

(|xi| ∨ |xj|) = |xi| = e(xi).

Por tanto, para cada i = 1, . . . , n, existe una unidad ai de A verificando que
aigi(xi) = e(xi). Tomamos ahora la aplicación polinómica g : A −→ A dada
por

g(x) =
r∑

i=1

aif(xi)gi(x).

Como A = conv{0, x1, . . . , xr} y f y g son contractivas, si vemos que g(x)
y f(x) coinciden para x = 0, x1, . . . , xr, habremos terminado. Es claro que
g(0) = 0 = f(0). Para x = xj,

g(xj) =
r∑

i=1

aif(xi)gi(xj)

y como gi(xj) = 0 cuando i 6= j,

g(xj) = ajf(xj)gj(xj) = f(xj)e(xj)

y esto vale f(xj) porque |f(xj)| ≤ |xj| = e(xj).

Caso general : Como consecuencia del caso n = 1, tenemos que la función
e : A −→ A es polinómica. De ello se deduce que para v ∈ An, la aplicación
d(∼, v) : An −→ A es polinómica también, porque si v = (a1, . . . , an) enton-
ces d(x, v) = e(x1− a1)∨ · · · ∨ e(xn− an) (recuérdese que x∨ y = x+ y− xy
para x, y ∈ B(A)). Por tanto, podemos construir aplicaciones polinómicas
para i = 1, . . . , r dadas por

Gi(x) = |x|
∏
j 6=i

d(x, xj).

Definimos G(x) =
∑r

i=1 f(xi)Gi(x). Veremos que G y f coinciden sobre
{0, x1, . . . , xr}, aśı que, como ambas son aplicaciones contractivas, eso pro-
bará que f = G. Es claro que G(0) = 0 = f(0) y por otra parte, puesto que
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Gi(xj) = 0 si i 6= j, tendremos que

G(xi) = f(xi)Gi(xi) = f(xi)|xi|
∏
i6=j

d(xi, xj)

= f(xi)|xi|
∏
j 6=i

(|xi| ∨ |xj|) = f(xi)|xi| = f(xi),

donde la última igualdad se debe a que |f(xi)| ≤ |xi|. �

Lema 3.3 Sea (X, 0) = conv(H) un espacio métrico convexo con 0 ∈ H, y
f : (X, 0) → (Y, 0′) contractiva. Entonces

f−1(0′) = conv{0, |f(x)|x : x ∈ H}.

Prueba: Una de las inclusiones es evidente porque todos los elementos que
aparecen en el término de la derecha está en el conjunto convexo f−1(0′). Por
otra parte, si x ∈ f−1(0′), en particular está enX, aśı que podemos expresarlo
como x =

∑n
i=1 aixi con xi ∈ H, y aiaj = 0 cuando i 6= j. Entonces

0 = |f(x)| = a1|f(x1)| ⊕ · · · ⊕ an|f(xn)|

y aśı ai|f(xi)| = 0 lo que implica que ai = ai|f(xi)| para i = 1, . . . , n.
Finalmente,

x =
n∑

i=1

aixi =
n∑

i=1

ai|f(xi)|xi ∈ conv{0, |f(x1)|x1, . . . , |f(xn)|xn}.

�

Es conveniente observar aqúı que, si B es infinito, un subconjunto convexo
de un FGC-espacio no tiene por qué ser un FGC-espacio. Por ejemplo, B
es un FGC-espacio, y los ideales no principales de B (Proposición 0.10) son
subconjuntos convexos que no son FGC-espacios.

Teorema 3.4 Sea X un FGC-espacio. Entonces Y ⊆ X es un FGC-espacio
si y sólo si existe una aplicación contractiva f : X → B tal que Y = f−1(0).

Prueba: La implicación hacia la izquierda es consecuencia del Lema 3.3.
Rećıprocamente, supongamos que Y es un FGC-espacio. Si Y = ∅ es trivial y
si no, elegimos 0′ ∈ Y y {u1, . . . , uk} un referencial de (Y, 0′) que extendemos
a un referencial de (X, 0′), {u1, . . . , un}. Por el Teorema 2.7 podemos definir
una aplicación contractiva f : (X, 0′) → (B, 0) tal que f(ui) = 0 si i ≤ k
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y f(ui) = |ui| si i > k. Es claro que Y ⊂ f−1(0) y para la otra inclusión
supongamos que x ∈ f−1(0) tiene coordenadas (a1, . . . , an). Entonces

0 = f(x) = f(
n∑

i=1

aiui) =
n⊕

i=1

aif(ui) =
n⊕

i=k+1

ai|ui| =
n⊕

i=k+1

ai

aśı que ai = 0 para i > k, y x =
∑k

i=1 aiui ∈ conv{0′, u1, . . . , uk} = Y . �

Corolario 3.5 Si K1, K2 son FGC-espacios contenidos en el espacio X, en-
tonces K1 ∩K2 es un FGC-espacio.

Prueba: Si K1 = f−1(0) y K2 = g−1(0) con f, g : conv(K1 ∪ K2) → B
aplicaciones contractivas, entonces K1 ∩K2 = (f ∨ g)−1(0). �

Corolario 3.6 Sea f : X1 → X2 una aplicación contractiva entre FGC-
espacios. Si K ⊂ X2 es un FGC-espacio, entonces f−1(K) es también un
FGC-espacio.

Prueba: Sea p : X2 → B tal que K = p−1(0). Entonces se tiene que
f−1(K) = (p ◦ f)−1(0), aśı que f−1(K) es un FGC-espacio. �

Teorema 3.7 Sea A un FGC-anillo.

1. Un subconjunto U ⊆ An es una variedad algebraica (i.e. el conjunto de
soluciones a un sistema finito de ecuaciones polinómicas) si y sólo si
U es un FGC-subespacio de An.

2. Una aplicación f : U −→ V entre dos variedades algebraicas es una
aplicación polinómica (i.e. la restricción de una aplicación polinómica
g : An −→ Am) si y sólo si es contractiva.

Prueba: Si U es una variedad algebraica, entonces U =
⋂k

1 f
−1
k (0) donde

fi : An −→ A son aplicaciones polinómicas, y por tanto, por el Teorema 3.2,
aplicaciones contractivas. Usando el Teorema 3.4 y el Corolario 3.5 deduci-
mos que U es un FGC-espacio.

Rećıprocamente, si U es un FGC-espacio, por el Teorema 3.4, existe
una aplicación contractiva f : An −→ B(A) con U = f−1(0). Entonces
U = g−1(0) donde g es la composición An −→ B(A) ↪→ A, que es contractiva
y por tanto polinómica, de nuevo por el Teorema 3.2.

Si f : U −→ V es una aplicación contractiva, por el Corolario 2.16, f se
extiende a una aplicación contractiva g : An −→ V ⊆ Am que es polinómica.
El rećıproco es consecuencia directa del Teorema 3.2. �
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Corolario 3.8 Para un FGC-anillo A, la categoŕıa de la variedades algebrai-
cas sobre A es equivalente a la categoŕıa de los FGC-espacios sobre B(A).

Prueba: El Teorema 3.7 nos proporciona un funtor inclusion de la categoŕıa
de variedades algebraicas sobre A a la de FGC-espacios sobre B(A). Como
todo FGC-espacio posee un referencial, la Proposición 2.6 nos dice que ese
funtor es representativo, ya que nos da una isometŕıa entre un FGC-espacio
arbitrario y una variedad algebraica. �

Vamos a terminar este caṕıtulo exponiendo algunas consecuencias del
Lema 3.3.

Definición 3.9 Sea Y = conv(H) un espacio métrico convexo y f : Y → B
una aplicación contractiva. Llamaremos anillo de constantes de f respecto
de H, que denotaremos por B(f,H), al subanillo de B generado por f(H).

También usaremos la siguiente notación: CuandoX sea un espacio métrico
convexo sobre B, H un subconjunto de X y R un subanillo de B, convR(H)
denotará el conjunto de las combinaciones convexas de elementos de H con
coeficientes en R.

Proposición 3.10 Si Y es un espacio métrico, f : Y → B es contractiva,
Y = conv(H) y R = B(f,H), entonces f−1(0) = conv(convR(H) ∩ f−1(0)).

Prueba: Cuando f−1(0) 6= ∅ (que es el caso no trivial) bastará encontrar
0′ ∈ convR(H) ∩ f−1(0), pues entonces nos podremos remitir al Lema 3.3
y encontrar un sistema generador de f−1(0) formado exclusivamente por
elementos de convR(H). Tomamos x ∈ f−1(0) y lo expresamos como combi-
nación convexa de elementos de H:

x = a1x1 + · · ·+ anxn,

con xi ∈ H y
⊕

i ai = 1. Entonces

0 = f(x) = a1f(x1)⊕ · · · ⊕ anf(xn),

lo que implica que 0 = f(x1) · · · f(xn). Como f(xi) ∈ R, podemos aplicar el
Teorema 1.24 al anillo de BooleR, y concluir que 0 ∈ convR(f(x1), . . . , f(xn)),
aśı que existen bi ∈ R con

⊕
i bi = 1 tales que

∑
i bif(xi) = 0. Finalmente∑

i bixi ∈ f−1(0) ∩ convR(H). �
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Corolario 3.11 Sea f : Bn −→ B una aplicación polinómica, y supongamos
que todas las constantes que aparecen en una expresión de f están contenidas
en el subanillo S de B. Entonces f−1(0) = conv(Sn ∩ f−1(0)).

Prueba: Aplicamos la Proposición 3.10 a Y = Bn y H = {0, 1}n. Nótese
que, para x ∈ {0, 1}n, f(x) es una expresión polinómica en el anillo S, aśı que
está en S. Esto prueba que el anillo R de la Proposición 3.10 está contenido
en S, aśı que

f−1(0) = conv(convR(H) ∩ f−1(0)) ⊆ conv(convS(H) ∩ f−1(0)),

y puesto que convS({0, 1}n) = Sn el corolario queda probado. �

Corolario 3.12 Sea f : Bn −→ B una función polinómica en cuya expre-
sión no aparecen más constantes que 0 y 1. Entonces,

f−1(0) = conv({0, 1}n ∩ f−1(0)).
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Caṕıtulo 4

Estructura de los FGC-anillos

El objetivo de este caṕıtulo es el estudio de los FGC-anillos.

En la sección 4.1 se caracteriza a los FGC-anillos como aquellos anillos
reducidos para los que existe un subconjunto finito en el que aparecen todas
las clases módulo cualquier ideal primo.

En la sección 4.2 se describe un modo de construir estructuras algebrai-
cas (anillos, grupos...) a partir de una estructura dada y un anillo de Boole.
Partiendo de cuerpos finitos se obtendrán FGC-anillos.

En la sección 4.3 se da un teorema completo de estructura para los FGC-
anillos, mostrando que todos se expresan de manera única como producto de
anillos como los construidos en la sección 4.2.

4.1 Caracterizaciones de los FGC-anillos

Lema 4.1 Sea X un espacio métrico sobre el anillo de Boole B y sean
x1, . . . , xn, x ∈ X. Entonces x es combinación convexa de x1, . . . , xn si y
sólo si d(x, x1) · · · d(x, xn) = 0.

Prueba: Supongamos que d(x, x1) · · · d(x, xn) = 0. En virtud del Lema 3.4,
existe una función contractiva

f : conv{x, x1, . . . , xn} −→ B

tal que f−1(0) = conv{x1, . . . , xn}. Por la contractividad de f tenemos que

f(x) = f(x) + f(xi) ≤ d(x, xi)
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para todo i = 1, . . . , n, lo que nos da que

f(x) ≤ d(x, x1) · · · d(x, xn) = 0,

y por tanto x ∈ conv{x1, . . . , xn}.

Para el rećıproco, observar que la función contractiva g : X −→ B dada
por g(x) = d(x, x1) · · · d(x, xn) se anula en x1, . . . , xn y por tanto se anula en
conv{x1, . . . , xn}. �

Lema 4.2 Sea A un anillo regular y a1, . . . , an ∈ A. Son equivalentes:

1. A = conv{a1 . . . , an}

2. Para todo x ∈ A, (x− a1) · · · (x− an) = 0.

3. Para cada ideal primo p de A, A/p = {a1 + p, . . . , an + p}

De hecho, la equivalencia 2 ⇔ 3 vale para cualquier anillo reducido.

Prueba: [1 ⇔ 2] Por el Lema 4.1, A = conv{ai}n
i=1 si y sólo si

d(x, a1) · · · d(x, an) = 0

para todo x ∈ A, si y sólo si

e((x− a1) · · · (x− an)) = e(x− a1) · · · e(x− an) = 0

si y sólo si (x− a1) · · · (x− an) = 0, para todo x ∈ A.

[2 ⇔ 3] Si A es reducido, la condición 2 equivale a que

(x− a1) · · · (x− an) ∈ p

para todo x ∈ A y todo ideal primo p de A, o lo que es lo mismo,

(x− (a1 + p)) · · · (x− (an + p)) = 0

para todo x ∈ A/p y todo ideal primo p de A. Aplicando ahora que cada
A/p es un dominio se concluye la prueba. �

Proposición 4.3 Sea A un anillo. Son equivalentes:

1. A es un FGC-anillo.
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2. A es reducido y existen a0, . . . , an ∈ A tales que para todo x ∈ A,

(x− a0) · · · (x− an) = 0.

3. A es reducido y existen a0, . . . , an ∈ A tales que para todo ideal primo
p de A,

A/p = {a1 + p, . . . , an + p}.

Prueba: Basta que probemos que la condición 3 implica que el anillo es
regular, pues lo demás es consecuencia inmediata del Lema 4.2. A su vez ese
hecho se deduce del Teorema 0.13 ya que de 3 se sigue que todo ideal primo
p de A es maximal, puesto que cada A/p es un dominio finito y por tanto un
cuerpo. �

En la Proposición 4.3 se ha probado que si A es un FGC-anillo, entonces
A/p es finito para cada ideal primo p de A, y de hecho si A = conv{a1, . . . , an}
entonces |A/p| ≤ n para todo primo p. Cabŕıa preguntarse si un anillo re-
gular para el que existe un natural que acota las cardinalidades de todos sus
cocientes por ideales primos es forzosamente un FGC-anillo. La respuesta es
negativa y el contraejemplo es el siguiente anillo A para el que además vamos
a dar una aplicación contractiva f : A −→ A que no es polinómica:

Sea K4 = {0, 1, a, b} el cuerpo de 4 elementos. Definimos A como el
subanillo de KN

4 formado por las sucesiones en las que sólo una cantidad
finita de términos son distintos de 0 ó 1.

• Es claro que A es reducido.

• Como x4 + x = 0 para todo x ∈ K4, la misma relación vale para
todo x ∈ A. Para p primo, A/p es dominio y la relación fuerza a que
|A/p| ≤ 4. En particular A/p es cuerpo y todo primo es maximal, aśı
que A es regular por el Teorema 0.13.

• A no es un FGC-anillo. Supongamos que fueraA = conv{x(1), . . . , x(n)}.
Por la definición de A, existe un ı́ndice k ∈ N tal que x

(i)
k ∈ {0, 1} para

i = 1, . . . , n. Tomamos y ∈ A como la sucesión que vale 0 para todos
los ı́ndices excepto yk = a 6= 0, 1. En ese caso (y−x(1)) · · · (y−x(n)) 6= 0

pues yk 6= x
(i)
k para todo i. Contradecimos aśı el Lema 4.2.

• Consideramos â ∈ KN
4 la sucesión constantemente igual a a, y la fun-

ción f : A −→ A dada por f(x) = x(x + 1)(x + â). La función f es
contractiva en virtud del Lema 1.28 ya que es la restricción de un po-
linomio en KN

4 . Afirmamos que f no es una aplicación polinómica en
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A. Supongamos que śı lo fuera: f(x) =
∑m

i=0 c
(i)xi con cada c(i) ∈ A.

De nuevo, ha de existir un natural k tal que c
(i)
k ∈ {0, 1} para todo i.

Para todo x ∈ A se tendrá entonces que

xk(xk + 1)(xk + a) = f(x)k =
m∑

i=0

c
(i)
k x

i
k

con c
(i)
k ∈ {0, 1} = Z2. Esto nos da una contradicción porque la función

h : K4 −→ K4 dada por h(t) = t(t+ 1)(t+ a) no puede venir dada por
un polinomio con coeficientes en Z2 puesto que se anula en a y no se
anula en b.

4.2 Envolturas booleanas de anillos

Sea B un anillo de Boole y sea X un conjunto en el que tenemos una familia
operaciones internas {~i : X×X −→ X}i∈I y de funciones {φj : X → X}j∈J .
Denotaremos por X [B] a la clausura convexa de X como espacio métrico
discreto sobre B (es decir con la métrica d(x, y) = 1 siempre que x 6= y).
Podemos extender a X [B] las operaciones {~i}i∈I y las funciones {φj}j∈J

usando el Teorema 1.19 del siguiente modo:

• φj : X [B] → X [B] es la única aplicación contractiva que extiende a
φj : X −→ X.

• ~i : X [B] × X [B] = conv(X × X) → X [B] es la única aplicación con-
tractiva que extiende a ~i : X ×X −→ X.

En estas condiciones se verifica:

Teorema 4.4 Sean F (x1, . . . , xn),G(x1, . . . , xn) dos “fórmulas” en las que
sólo intervienen las indeterminadas x1, . . . , xn , los operadores φj y ~i para
i ∈ I, j ∈ J y constantes de X. Entonces

{(x1, . . . , xn) ∈ (X [B])n : F (x1, . . . , xn) = G(x1, . . . , xn)} =

conv{(x1, . . . , xn) ∈ Xn : F (x1, . . . , xn) = G(x1, . . . , xn)}.

Prueba: Se obtiene de la Proposición 3.10 aplicada a Y = (X [B])n, H = Xn,
y f : Y → B dada por f(x) = d(F (x), G(x)), teniendo en cuenta que en este
caso B(f,H) = Z2. �
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Corolario 4.5 En las condiciones anteriores, si para todo x1, . . . , xn ∈ X
vale F (x1, . . . , xn) = G(x1, . . . , xn) entonces también vale para cualesquiera
x1, . . . , xn ∈ X [B].

Corolario 4.6 Si X es un anillo, entonces X [B] también lo es.

Teorema 4.7 Si K es un cuerpo y B un anillo de Boole, entonces A = K [B]

es un anillo regular con B(A) = conv{0, 1} ∼= B. Además, si K es finito,
entonces A es un FGC-anillo.

Prueba: El hecho de que el conjunto B(A) de los idempotentes de A es
conv{0, 1} es una consecuencia del Teorema 4.4 aplicado a las fórmulas
F (x) = x2 y G(x) = x. Por otra parte, si llamamos K∗ = K \ {0}, en-
tonces todo elemento de U = conv{K∗} es una unidad de A, como se deduce
del mismo teorema, haciendo X = K∗ con la función (∼)−1, y tomando
las fórmulas F (x, y) = x · y−1 y G(x, y) = 1. Consideramos las funciones
f : K → {0, 1} ⊆ K y g : K → K∗ ⊂ K dadas por:

• f(x) = 1 si x 6= 0 y f(0) = 0

• g(x) = x si x 6= 0 y g(0) = 1

verifican x = f(x)g(x) para todo x ∈ K. Por tanto sus extensiones contrac-
tivas f̂ : A → conv{0, 1} y ĝ : A → conv(K∗) verifican x = f̂(x)ĝ(x) para
todo x ∈ A, lo que nos da una descomposición de x como producto de una
unidad y un idempotente y prueba que A es regular. La extensión contracti-
va de la “inclusión” i : {0, 1} → B nos da una isometŕıa j : B(A) −→ B. Es
fácil ver que j es un isomorfismo de anillos. Para probar, por ejemplo, que
preserva el producto nótese que las aplicaciones de B(A)×B(A) a B dadas
por (x, y) 7→ j(xy) y (x, y) 7→ j(x)j(y) son dos extensiones contractivas de
la misma función p : {0, 1} × {0, 1} → B y por tanto iguales. Respecto
al caso en que K = {a0, . . . , an} es finito nótese que entonces la fórmula
(x − a0) · · · (x − an) = 0 vale para todo x ∈ K, aśı que, de nuevo por el
Teorema 4.4, vale para todo x ∈ A y concluimos que A es un FGC-anillo,
gracias al Teorema 4.3. �

En particular, este teorema nos afirma que para cada cuerpo K y cada
anillo de Boole B podemos construir una K-álgebra regular con parte idem-
potente isomorfa a B y generada por K. Podemos probar que de hecho ésta
es, salvo isomorfismo, la única K-álgebra que cumple esas condiciones.

Proposición 4.8 Sea K un cuerpo, B un anillo de Boole y A una K-álgebra
regular cuya parte idempotente es isomorfa a B y tal que A = conv(K).
Entonces A ∼= K [B].
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Prueba: De modo análogo a la demostración anterior, la inclusión i : K → A
se extiende a una única aplicación contractiva f : K [B] → A que resulta ser un
isomorfismo de K-álgebras. Para ver por ejemplo que f conserva la suma se
consideran las aplicaciones deK [B]×K [B] en A dadas por (x, y) 7→ f(x)+f(y)
y (x, y) 7→ f(x + y), que son extensiones contractivas de la misma función
g : K×K → A y por tanto iguales. El hecho de que f sea biyectiva viene de
que es la extensión contractiva de la isometŕıa 1K : K → K a dos envolturas
convexas de K. �

4.3 Teorema de estructura para FGC-anillos

Lema 4.9 Sea K un cuerpo finito y B1, B2 anillos booleanos. Entonces,
K [B1×B2] ∼= K [B1] ×K [B2]

Prueba: El anillo A de la derecha es una K-álgebra regular (identificamos
K en A con los elementos (k, k) con k ∈ K), y

B(K [B1] ×K [B2]) ∼= B(K [B1])×B(K [B2]) ∼= B1 ×B2.

Teniendo en cuenta la Proposición 4.8, sólo nos queda ver que A = conv(K).
Sabemos que

A = K [B1] ×K [B2] = conv(K)× conv(K) = conv(K ×K)

aśı que basta comprobar que cada (k, k′) ∈ K ×K vive en conv(K), y esto
es trivial pues (k, k′) = (1, 0)(k, k) + (0, 1)(k′, k′). �

Lema 4.10 Sea f : X → X una aplicación contractiva en un FGC-espacio
X. Entonces, el conjunto {fk}k∈N es finito.

Prueba: No es restrictivo suponer que f tiene un punto fijo (pues podemos
definir f en un FGG-espacio que contenga a X donde lo tenga, por ejemplo
extendiendo a la clausura convexa g : X ∪ {y} −→ X ∪ {y} donde g(y) = y,
g(x) = f(x) y d(x, y) = 1 para todo x ∈ X). En tal caso si consideramos
un referencial R centrado en dicho punto y M la matriz de f respecto de R,
M sólo tiene una cantidad finita de entradas y aśı las entradas de Mn viven
en un cierto anillo finito (véase la Proposición 0.7). Por tanto, la sucesión
M,M2,M3, . . . constituye un conjunto finito. �
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Lema 4.11 Sea A un FGC-anillo y R un subanillo finitamente generado de
A. Entonces R es finito.

Prueba: Procedemos por inducción en el número de generadores, n, de R.
Para n = 0, R es el anillo primo de A (es decir {0,±1,±2, . . .} ), que es finito
en virtud del Lema 4.10, aplicado a la función x 7→ x + 1. Supongamos el
lema cierto para n, y lo probaremos para n + 1. Un subanillo generado por
n + 1 elementos es de la forma T [x] con T generado por n elementos y por
tanto, por la hipótesis de inducción, finito. Aplicando de nuevo el Lema 4.10
a la función a 7→ ax, deducimos que el conjunto {xk : k ∈ N} es finito, y en
consecuencia, también T [x] = {

∑
aix

i : ai ∈ T} es finito. �

Lema 4.12 Sea K un cuerpo, B un anillo de Boole, y sea p un ideal primo
de A = K [B]. Entonces A/p ∼= K.

Prueba: Veamos que la composición f : K ↪→ A −→ A/p es un isomorfismo.
Es inyectiva, porque K es un cuerpo. Es suprayectiva porque para todo
x ∈ A, podemos expresar x como combinación convexa de elementos de K,
x =

∑n
i=1 aiki, y cuando pasamos al anillo cociente, todos los idempotentes

ai van a idempotentes del dominio A/p, o sea, 0 ó 1, lo que nos dice que
x+ p ∈ (K + p)/p = Im(f). �

Lema 4.13 Todo anillo finito reducido es isomorfo a un producto de cuerpos.

Prueba: Se trata de un sencillo ejercicio de álgebra conmutativa. Basta
aplicar el teorema chino de los restos al conjunto de los ideales primos (ma-
ximales) del anillo. �

Teorema 4.14 Sea A un FGC-anillo. Existen K1, . . . , Kn cuerpos finitos
no isomorfos y B1, . . . , Bn anillos booleanos uńıvocamente determinados por
A (salvo isomorfismos y salvo el orden) de modo que

A ∼= K
[B1]
1 × · · · ×K [Bn]

n .

Prueba: Existencia de la descomposición: Por el lemma 4.9, basta encon-
trar una descomposición en la que quizá aparezcan cuerpos finitos isomorfos.
Supongamos que A = conv(H) donde H = {x1, . . . , xn}. Sea T el subanillo
generado por H, que es finito, por el Lema 4.11. T es un anillo finito reducido
y por tanto, un producto de cuerpos finitos. Tomemos un isomorfismo

h : K := K1 × · · · ×Km −→ T ↪→ A.

48



Sean ei = (δij)
m
j=1 ∈ K (la delta de Kronecker) y εi = h(ei). Tenemos

una descomposición en producto de anillos A ∼=
∏m

i=1Aεi puesto que los
εi constituyen una familia completa de idempotentes ortogonales de A. La
restricción h : Ki ≡ Kei −→ Aεi nos da un homomorfismo de anillos, de tal
manera que Aεi es una Ki-algebra, que es regular, porque es un factor de un
anillo regular. Si probamos que conv(h(Ki)) = Aεi =: Ai, podremos deducir,

por la Proposición 4.8, que Ai
∼= K

[B(Ai)]
i y habremos terminado. Hemos de

ver que cada elemento de Ai es una combinación convexa de elementos de
h(Ki) con escalares en B(Ai). Sea pues x ∈ Ai. Existe una combinación
convexa en A, x =

∑
j bjrj con rj = h(kj) ∈ T . Entonces,

x = ε2
ix =

∑
j

(εibj)(εirj) =
∑

j

(εibj)h(eikj)

y tenemos la expresión que buscábamos.

Unicidad: Supongamos dada una tal descomposición

A ∼= K
[B1]
1 × · · · ×K [Bn]

n

donde cada Ai = K
[Bi]
i puede verse como un ideal principal de A. Es fácil

comprobar que todo ideal primo de A es de la forma

pe
i = A1 × · · · × Ai−1 × pi × Ai+1 × · · · × An

para cierto ideal primo pi de Ai, y por el Lema 4.12, Ki
∼= Ai/pi

∼= A/pe
i . Por

tanto, los cuerpos Ki están uńıvocamente determinados, salvo isomorfismo,
por A, porque son aquellos que aparecen como cociente por ideales primos.
Además, como Ai es regular, es reducido y en consecuencia, la intersección
de todos los ideales primos de Ai es 0. Eso implica que la intersección de
aquellos ideales primos de A cuyos cocientes son isomorfos a Ki es

A1 × · · · × Ai−1 × 0× Ai+1 × · · · × An.

Por tanto, la intersección de los ideales primos de A cuyos cocientes no son
isomorfos a Kj es

0× · · · × 0× Aj × · · · × 0 ≡ Aj.

Esto nos dice que el anillo factor de la decomposición correspondiente a
Kj está uńıvocamente determinado por A, y también el anillo booleano Bj

porque es isomorfo al anillo de idempotentes de ese anillo factor. �

Finalizamos el caṕıtulo introduciendo el concepto de p-anillo y compro-
bando que se trata de un tipo de FGC-anillo. Los art́ıculos [9] y [13] tratan
precisamente de la estructura de espacio métrico booleano de un p-anillo.
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Definición 4.15 Sea p un número primo. Un p-anillo es un anillo A de
caracteŕıstica p tal que ap = a para todo a ∈ A.

Proposición 4.16 Todo p-anillo es un FGC-anillo. Es más, todo p-anillo
es de la forma Z

[B]
p para un anillo de Boole B.

Prueba: Si A es un p-anillo entonces A es reducido y para cada x ∈ A
se tiene x(x − 1)(x − 2) · · · (x − (p − 1)) = xp − x = 0. Por tanto, por la
Proposición 4.3, es un FGC-anillo. En la descomposición de A que nos da el
Teorema 4.14 el único cuerpo que puede aparecer es Zp. �

Esta proposición es equivalente al Teorema 1 de [13].
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Caṕıtulo 5

Teorema de estructura para
FGC-espacios

En este caṕıtulo clasificaremos los FGC-espacios salvo isometŕıa. Los sis-
temas de referencia no nos proporcionan invariantes adecuados, porque no
son únicos salvo isometŕıa (por ejemplo, {1} y {a, ā} son referenciales no
isométricos de (B, 0)). El concepto adecuado para nuestro objetivo es el
siguiente:

Definición 5.1 Un referencial {x1, . . . , xn} de (X, 0) se dice que es una base
de (X, 0) si |x1| ≥ |x2| ≥ · · · ≥ |xn|.

Probaremos que todo FGC-espacio centrado (X, 0) posee una base, y que
es única en el sentido del Teorema 5.6. En términos de sumas ortogonales,
esto vendrá a decir que todo FGC-espacio se descompone de manera única
como suma ortogonal de una cadena decreciente de ideales principales de B.
Probaremos primero la unicidad y luego la existencia.

Definición 5.2 Sea k > 0 un entero y X un espacio métrico. El k-ideal de
X (denotado por Ik(X)) será el ideal de B generado por

{
∏

0≤i<j≤k

d(ui, uj) : u0, . . . , uk ∈ X}

Si Ik(X) es principal, denotaremos a su generador por αk(X).

Lema 5.3 Si X = conv(H), entonces Ik(H) = Ik(X) para todo k ∈ N.

Prueba: Si U es un espacio métrico booleano cualquiera, la aplicación fU :
Uk+1 → B dada por

fU(u0, . . . , uk) =
∏

0≤i<j≤k

d(ui, uj)
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es contractiva porque es composición de funciones distancia y una aplicación
polinómica (el producto). Con esta notación, Ik(U) es el ideal generado por
la imagen de fU , pero

Im(fX) = fX(Xk+1) = fX(conv(Hk+1)) = conv(fX(Hk+1))

= conv(Im(fH))

aśı que ambas imágenes generan el mismo ideal. �

Lema 5.4 Sea X un FGC-espacio. Entonces Ik(X) es principal para todo
k ∈ N y existe n ∈ N tal que Ik(X) = 0 para todo k ≥ n. Por tanto, αk(X)
existe para todo k ∈ N y αk(X) = 0 para k ≥ n. Es más,

αk(X) = max{
∏

0≤i<j≤k

d(ui, uj) : u0, . . . , uk ∈ X}

Prueba: Supongamos que X = conv(H) con H finito. Entonces, Ik(X) =
Ik(H) es siempre un ideal finitamente generado de B, aśı que es principal, y
si tomamos n = card(H), entonces 0 = Ik(H) = Ik(X) si k ≥ n. Respecto a
la última afirmación, observar que, siguiendo la notación de la demostración
del Lema 5.3, αk(X) es el generador de Im(fX), que coincide con su máximo
pues Im(fX) es un intervalo por el Corolario 1.25. �

Lema 5.5 Sea {x1, . . . , xn} una base de (X, 0). Entonces, αk(X) = |xk|
para k ≤ n y αk(X) = 0 si k > n.

Prueba: Sólo hay que calcular αk(H) donde H = {x0 = 0, x1, . . . , xn}. Si
k > n, Es evidente que αk(H) = 0. Si k ≤ n, llamamos yi a la reordenación
de los xi tal que

0 = |y0| ≤ |y1| ≤ · · · ≤ |yn|

(es decir, yr = xn−r+1 si r > 0). Para i < j tenemos, por ortogonalidad,

d(yi, yj) = |yi| ∨ |yj| = |yj|.

Nos preguntamos si Ik(H) = |xk|B(= |yn−k+1|B). La inclusión hacia la
izquierda se debe a que

|yn−k+1| =
∏

n≥i>n−k

|yi| =
∏

n≥i>j≥n−k

d(yi, yj)
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es uno de los generadores de Ik(H). Para la otra inclusión, veremos que todos
los generadores de Ik(H) están en el ideal |yn−k+1|B. Tomemos

U = {u0, . . . , uk} ⊆ H.

Por un argumento de cardinalidad, encontramos que deben existir ı́ndices
r < s ≤ n− k + 1 tales que yr, ys ∈ U , aśı que∏

0≤i<j≤k

d(ui, uj) ≤ d(yr, ys) = |ys| ≤ |yn−k+1|.

�

Teorema 5.6 Si {x1, . . . , xn} es una base de (X, 0) e {y1, . . . , ym} es una
base de (X, 0′), entonces n = m y |xi| = |yi| para i = 1, . . . , n. Es más, existe
una isometŕıa f : (X, 0) −→ (X, 0′) tal que f(xi) = yi para i = 1, . . . , n.

Prueba: Por el Lema 5.5, sabemos que n = max{k : αk(X) 6= 0} = m y
|xi| = αi(X) = |yi|. Con respecto a la última afirmación, en virtud de la
Proposición 2.7, existe una aplicación contractiva f : (X, 0) −→ (X, 0′) tal
que f(xi) = yi para i = 1, . . . , n. Es una isometŕıa porque, análogamente,
podemos encontrar una inversa g : (X, 0′) −→ (X, 0) exigiendo g(yi) = xi.
�

Lema 5.7 Supongamos que (V, 0) ⊂ (X, 0) son FGC-espacios y V ⊥ = {0},
entonces V = X.

Prueba: Un sistema de referencia de (V, 0), {x1, . . . , xm} se puede extender
a un referencial de (X, 0), {x1, . . . , xn}. Entonces, xm+1, . . . , xn ∈ V ⊥ = {0},
aśı que V = conv{0, x1, . . . , xm} = conv{0, x1, . . . , xn} = X. �

Teorema 5.8 Todo FGC-espacio (X, 0) posee una base.

Prueba: Definimos, por recursión, una sucesión (xn)∞n=1 enX y una sucesión
(Un)∞n=1 de FGC-espacios contenidos en X:

• x1 es tal que |x1| = max{|x| : x ∈ X}; U1 := conv{0, x1}.

• Dados xi y Ui para i < n, tomamos xn tal que

|xn| = max{|x| : x ∈ U⊥
n−1}

y Un := conv{0, x1, . . . , xn}.
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Nótese que esos máximos existen en virtud del Corolario 1.25 , ya que U⊥
n−1

es un FGC-espacio por la Proposición 2.15. Los xi forman un conjunto
ortogonal y verifican |xi| ≥ |xj| cuando i < j. Por tanto, {x1, . . . , xn} \ {0}
es una base de (Un, 0). Como X es un FGC-espacio, por el Lema 5.4, existe
k > 0 con 0 = αk(X) ≥ αk(Uk) = |xk|. Aśı que, tomando r el mayor entero
tal que |xr| 6= 0, tenemos, por la definición de xr+1 = 0, que U⊥

r = {0}. Aśı
pues, por el Lema 5.7, Ur = X y ya hemos visto que {x1, . . . , xr} \ {0} es
una base de (Ur, 0). �

Podemos dar un método para calcular una base de (X, 0) a partir de un
sistema de referencia (lo que constituye otra prueba del Teorema 5.8). En
primer lugar, si el sistema de referencia tuviera dos elementos {x1, x2} en-
tonces tenemos una base {y1, y2} donde y1 = |x1|x1 + |x1|x2 e y2 = |x1|x2. Si
partimos ahora de un sistema de referencia arbitrario {x1, . . . , xn}, la cons-
trucción del caso anterior permite cambiar un par {xi, xj} por otro {yi, yj}
con |xi| ∨ |xj| = |yi| ≥ |yj| = |xi||xj|. Repitiendo sucesivamente el proceso
de manera adecuada (por ejemplo, comparando primero x1 con cada uno de
los xj, luego x2 etc.) se obtiene finalmente una base.

Corolario 5.9 Si x, y son dos elementos cualesquiera de un FGC-espacio
X, existe una isometŕıa f : X → X tal que f(x) = y.

Prueba: Consideramos bases de (X, x) y (X, y) y el Corolario 5.6 nos pro-
porciona una isometŕıa f(X, x) −→ (X, y). �

Teorema 5.10 Dos FGC-espacios X e Y son isométricos si y sólo si αk(X) =
αk(Y ) para todo k ∈ N.

Prueba: La implicación hacia la derecha es trivial. Para ver el rećıproco, es-
cogemos 0 ∈ X, 0′ ∈ Y y bases {x1, . . . , xn} y {y1, . . . , ym} de (X, 0) y (Y, 0′)
respectivamente. Entonces, n = max{k : αk(X) = αk(Y ) 6= 0} = m y pode-
mos construir una isometŕıa igual que en la demostración del Teorema 5.6.
�

Proposición 5.11 Sean X e Y espacios métricos sobre B con conv(X) e Y
FGC-espacios. Son equivalentes:

1. Existe una inmersión f : X −→ Y .

2. αk(X) ≤ αk(Y ) para todo k ∈ N.
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Prueba: La implicación 1 ⇒ 2 es evidente mientras que para 2 ⇒ 1 basta
considerar bases y aplicar la Proposición 2.7. �

Conviene hacer ahora un comentario acerca de los art́ıculos [9] y [13].
En ellos se plantean algunos problemas acerca de la estructura de espacio
métrico de un p-anillo A. Como se vio en la Proposición 4.16, A es de la
forma Z

[B]
p y se tiene que A = conv(0, 1, . . . , p − 1) y d(i, j) = 1 para cada

i, j ∈ {0, . . . , p − 1} con i 6= j. Eso implica que {1, , 2 . . . , p − 1} es una
base de (A, 0) y que αk(A) = 1 para k < p y αk(A) = 0 para k ≥ p. En
definitiva, un FGC-espacio X sobre B es isométrico a un p-anillo si y sólo si
existe un primo p tal que αk(X) = 1 para k < p y αk(X) = 0 para k ≥ p.
Algunos de los problemas que alĺı se resuelven podemos obtenerlos a partir
de nuestros resultados sobre FGC-espacios. Por ejemplo, en el art́ıculo [9]
aparecen varios resultados (Teoremas 3.5, 3.7), relativos a la posibilidad de
sumergir espacios métricos finitos en p-anillos, que se obtienen como casos
particulares de la Proposición 5.11.
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Caṕıtulo 6

Extensión de aplicaciones
contractivas

En este caṕıtulo vamos a tratar acerca de los dos problemas siguientes:

1. Dada una isometŕıa f : U −→ V entre dos subconjuntos de un FGC-
espacio X ¿Cuándo podemos asegurar que puede extenderse a una iso-
metŕıa g : X −→ X?

2. Dada una aplicación contractiva f : U −→ V entre dos subconjuntos de
un FGC-espacio X ¿Cuándo podemos asegurar que puede extenderse
a una aplicación contractiva g : X −→ X?

En el caso en que U y V son FGC-espacios, el primer problema está resuelto
en el Corolario 2.16, mientras que el segundo lo resolveremos en este caṕıtulo
mediante el Teorema 6.6. La solución a ambos problemas en este caso es
siempre afirmativa. Después pasaremos a estudiar el caso general. Veremos
en el Teorema 6.10 que la respuesta en este caso no es siempre afirmativa, a
menos que B sea completo.

En primer lugar, necesitaremos un teorema sobre unicidad de soluciones
a una ecuación.

Teorema 6.1 Sea (X, x0) un FGC-espacio y a ∈ B, y supongamos que existe
una base {x1, . . . , xn} de (X, x0) tal que |xi| = a para i = 1, . . . , n. Sea
f : X → B una aplicación contractiva tal que f−1(0) 6= ∅. Las siguientes
afirmaciones son equivalentes:

1. card(f−1(0)) = 1 (i.e., la ecuación f(x) = 0 tiene una única solución).

2. d(u, v) = a⇒ f(u) ∨ f(v) = a para todo u, v ∈ X.
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3. f(xi) ∨ f(xj) = a para todo i 6= j, i, j = 0, . . . , n.

Prueba: (3 ⇒ 2) Consideremos la aplicación g : X2 → B dada por

g(x, y) = d(x, y) + a.

Tenemos que
g−1(0) = conv{(xi, xj) : i 6= j}

en virtud de la Proposición 3.10, aplicada a la función g y aH2 = {x0, . . . , xn}2

(observar que d(xi, xj) = |xi| ∨ |xj| = a cuando i 6= j, aśı que el anillo R
de la proposición es R = B(g,H) = {0, 1, a, ā} y convR(H2) = H2 porque
convR(H) = H).

Por tanto, la aplicación h : g−1(0) −→ B dada por h(x, y) = f(x) ∨ f(y)
es constantemente igual a a, puesto que, por nuestra hipótesis, vale a sobre
un sistema de generadores de g−1(0). Ahora, obsérvese que, por la definición
de g,

g−1(0) = {(x, y) ∈ X2 : d(x, y) = a}.

(2 ⇒ 3) es trivial.

(1 ⇔ 2) Sea y0 una solución de f(x) = 0. Podemos formar una base
{y1, . . . , yn} de (X, y0). En virtud del Teorema 3.3 se verificará (1) si y sólo
si f(yi)yi = y0 para i = 1, . . . , n, si y sólo si 0 = f(yi)|yi| = f(yi)a para
i > 0, si y sólo si a ≤ f(yi) para todo i > 0, si y sólo si a = f(yi) para cada
i > 0, porque siempre |f(yi)| ≤ |yi| = αi(X) = |xi| = a. Eso es equivalente
a su vez a f(yi) ∨ f(yj) = a cuando i 6= j, i, j = 0, . . . , n. Ahora, usamos la
equivalencia (3 ⇔ 2) que ya hemos probado, cambiando las xi por las yi y
hemos terminado. �

Lema 6.2 Sea (X, x0) finito o un FGC-espacio. Entonces, para todo n ∈ N

αn(X) = sup{
∏

0≤i<j≤n

d(xi, xj) : x1, . . . , xn ∈ X}.

Prueba: La desigualdad hacia la derecha se sigue de la definición de αn.
Para la otra, supongamos primero que X es un FGC-espacio. Entonces, por
el Corolario 5.4,

αn(X) = max{
∏

0≤i<j≤n

d(yi, yj) : y0, y1, . . . , yn ∈ X},
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aśı que

αn(X) =
∏

0≤i<j≤n

d(zi, zj)

para ciertos z0, z1, . . . , zn ∈ X. Por el Corolario 5.9, existe una isometŕıa
f : X −→ X con f(z0) = x0. Si llamamos xi = f(zi), tendremos que

αn(X) =
∏

0≤i<j≤n

d(zi, zj) =
∏

0≤i<j≤n

d(xi, xj)

con lo que concluimos este caso. Supongamos ahora que X es finito. Defini-
mos f : conv(X)n −→ B como

f(x1, . . . , xn) =
∏

0≤i<j≤n

d(xi, xj).

La aplicación f es contractiva, y

αn(X) = αn(conv(X)) = sup{f(z) : z ∈ conv(X)n}
= sup(f(conv(Xn))) = sup(conv(f(Xn))) = sup(f(Xn)).

�

Lema 6.3 Sean (U, 0) ⊂ (X, 0) FGC-espacios. Para todo n ∈ N

αn(X) =
n∨

i=0

αi(U)αn−i(U
⊥)

donde convenimos que α0(U) = α0(U
⊥) = 1

Prueba: Tomemos {x1, . . . , xr},{y1, . . . , ys} bases de U y U⊥ respectivamen-
te (Si i > r o j > s, entenderemos que yj = xi = 0). En esta situación, el
conjunto {x1, . . . , xr, y1, . . . , ys} es un referencial de X. Es suficiente probar
que

In(X) =
n∑

k=0

αk(U)αn−k(U
⊥)B =

n∑
k=0

|xk||yn−k|B

(convenimos aqúı que |x0| = |y0| = 1). Para la inclusión hacia la izquierda,
obsérvese que uno de los generadores de In(X) es el producto de todas las
distancias entre los elementos de la tupla (0, x1, . . . , xk, y1, . . . , yn−k), que es
exactamente |xk||yn−k|. Para la otra inclusión, sea

H = {0, x1, . . . , xr, y1, . . . , ys}.
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En virtud del Lema 6.2, In(X) = In(H) está generado por los productos de
las distancias en tuplas de la forma (0, z1, . . . , zn) ⊆ H. Una de esas tuplas se
puede escribir como (0, xi1 , . . . , xik , yj1 , . . . , yjn−k

), con i1 < i2 < · · · < ik ≥ k
y j1 < j2 < · · · < jn−k ≥ n− k. El producto de las distancias en la tupla es
entonces |xik ||yjn−k

| ≤ |xk||yn−k|. �

Teorema 6.4 Sean (U, 0), (V, 0) ⊆ (X, 0) FGC-espacios. Si U es isométrico
a V , entonces U⊥ es isométrico a V ⊥.

Prueba: Para i ∈ N, llamamos

ai = αi(U) = αi(V ), bi = αi(X), ri = αi(U
⊥), si = αi(V

⊥).

Sea d be el cardinal de una base de (X, 0). En virtud del Lema 6.3, tanto los
(ri)

d
i=1 como los (si)

d
i=1 son soluciones del siguiente sistema de ecuaciones (por

simplicidad en la notación, en estas ecuaciones se consideran como constantes
X0 = a0 = 1 y Xd+1 = 0):

X1 ≥ X2 ≥ · · · ≥ Xd (6.1)

pn(X1, . . . , Xd) := bn +
n∨

i=0

an−iXi = 0 n = 1, . . . , d+ 1 (6.2)

Observar en primer lugar que (6.2) es equivalente a p := p1 ∨ · · · ∨ pd+1 = 0
y (6.1) a g(X1, . . . , Xd) :=

∨d−1
i=1 (XiXi+1 + Xi) = 0. Para probar que U⊥ y

V ⊥ son isométricos, tenemos que ver que

rk = αk(U
⊥) = αk(V

⊥) = sk

para todo k ∈ N. Para k > d es trivial porque entonces rk = sk = 0, aśı que
sólo tenemos que probar que el anterior sistema de ecuaciones tiene solución
única. Es decir, que si llamamos

H := g−1(0) = {(x1, . . . , xd) ∈ Bd : x1 ≥ · · · ≥ xd},

la ecuación p(x) = 0 tiene una única solución con x ∈ H. En la expresión de
g las únicas constantes que aparecen son 0 y 1, aśı que por el Corolario 3.12,

H = conv{u0 = (0, . . . , 0), u1 = (1, 0, . . . , 0), u2 = (1, 1, 0, . . . , 0), . . . , ud}.

El conjunto {u1, . . . , ud} es un sistema de referencia de (H, u0), porque es un
conjunto ortogonal. De hecho, es una base porque |ui| = 1 para 1 ≤ i ≤ d.
Podemos aplicar, pues, el Teorema 6.1, y concluir que la ecuación considerada
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tiene solución única si y sólo si p(ui) ∨ p(uj) = 1 para i 6= j e i, j = 0, . . . , d.
Entendiendo que la 0-ésima coordenada de uj vale (uj)0 = 1 tenemos:

pn(uj) = bn +
n∨

i=0

an−i(uj)i = bn + (an−0 ∨ an−1 ∨ · · · ∨ an−j)

= an−j + bn si j < n;

pn(uj) = bn +
n∨

i=0

an−i(uj)i = bn + a0(uj)n = bn + 1

= bn si j ≥ n.

Como p = p1 ∨ · · · ∨ pd+1, y teniendo en cuenta que ad+1 = bd+1 = 0,

p(u0) = (a1 + b1) ∨ (a2 + b2) ∨ · · · ∨ (ad + bd) ∨ 0;

p(u1) = b1 ∨ (a1 + b2) ∨ · · · ∨ (ad−1 + bd) ∨ ad;

p(u2) = b1 ∨ b2 ∨ (a1 + b3) ∨ · · · ∨ (ad−2 + bd) ∨ ad−1;

· · ·
p(uj) = b1 ∨ · · · bj ∨ (a1 + bj+1) ∨ · · · ∨ (ad−j + bd) ∨ ad−j+1;

· · ·
p(ud−1) = b1 ∨ · · · ∨ bd−1 ∨ (a1 + bd) ∨ a2;

p(ud) = b1 ∨ · · · ∨ bd ∨ a1.

Puesto que b1 ≥ b2 ≥ · · · ≥ bd podemos simplificar:

p(u0) = (a1 + b1) ∨ (a2 + b2) ∨ · · · ∨ (ad + bd);

p(u1) = b1 ∨ (a1 + b2) ∨ · · · ∨ (ad−1 + bd) ∨ ad;

p(u2) = b2 ∨ (a1 + b3) ∨ · · · ∨ (ad−2 + bd) ∨ ad−1;

· · ·
p(uj) = bj ∨ (a1 + bj+1) ∨ · · · ∨ (ad−j + bd) ∨ ad−j+1;

· · ·
p(ud−1) = bd−1 ∨ (a1 + bd) ∨ a2;

p(ud) = bd ∨ a1.

Tenemos que ver que p(ui)∨ p(uj) = 1 para i 6= j siempre que b1 ≥ · · · ≥ bd,
esto es, cuando b = (b1, . . . , bd) ∈ H. Basta probarlo para b ∈ {u0, . . . , ud}
porque H = conv{u0, . . . , ud} y, si se fijan i, j, a1, . . . , ad, entonces la apli-
cación p(ui) ∨ p(uj) : H −→ B es función polinómica de b, y por tanto,
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contractiva. Si b = uk obtenemos:

p(u0) = (a1 + 1) ∨ · · · ∨ (ak + 1) ∨ ak+1 ∨ · · · ∨ ad;

p(u1) = (a1 + 1) ∨ · · · ∨ (ak−1 + 1) ∨ ak ∨ · · · ∨ ad;

· · ·
p(uj) = (a1 + 1) ∨ · · · ∨ (ak−j + 1) ∨ ak−j+1 ∨ · · · ∨ ad−j+1;

· · ·
p(uk−1) = (a1 + 1) ∨ a2 ∨ · · · ∨ ad−k+2;

p(uk) = a1 ∨ a2 ∨ · · · ∨ ad−k+1;

p(uk+1) = p(uk+2) = · · · = p(ud) = 1.

Ahora es claro que p(ui) ∨ p(uj) = 1 para i 6= j, porque si i < j, entonces
ak−j+1 ≤ p(uj) y ak−j+1 + 1 ≤ p(ui). �

Corolario 6.5 Sea f : X → Y una aplicación contractiva entre FGC-
espacios isométricos. Entonces, f es inyectiva si y sólo si f es suprayectiva
si y sólo si f es una isometŕıa.

Prueba: Consideremos 0 ∈ X, y (X, 0), (Y, f(0)). Supongamos que f es
inyectiva. Por la Proposición 1.22, f is inmersion, aśı que es una isometŕıa
sobre su imagen y tendremos que f(X) ∼= X ∼= Y . Aplicando el Teorema 6.4
f(X)⊥ ∼= Y ⊥ = {f(0)}. Del Lema 5.7, concluimos que f(X) = Y , aśı que f
es suprayectiva, y es isomet́ıa, pues es una inmersión suprayectiva.

Supongamos ahora que f es suprayectiva. En virtud del Teorema 2.19,
existe g : Y → X contractiva con f ◦ g = 1Y . Puesto que g es inyectiva,
es una isometŕıa, por la implicación que ya hemos probado. Por tanto g es
biyectiva y su inversa ha de ser f y ha de ser una isometŕıa también. �

Se puede dar otra demostración del Corolario 6.5, independiente del Teo-
rema 6.4, del siguiente modo: Supongamos que f es inyectiva y pongamos
X = conv(T ) e Y = conv(T ′) con T, T ′ finitos e isométricos. Expresamos
cada elemento de f(T ) como combinación convexa de elementos de T ′ y for-
mamos el subanillo B′ de B generado por todos los coeficientes aśı obtenidos
y por todas las distancias entre elementos de T . El anillo B′ es finito en
virtud de la Proposición 0.7. La restricción fr : convB′(T ) −→ convB′(T ′)
es una inmersión de espacios métricos sobre B′ que son isométricos y fini-
tos. Por tanto fr es suprayectiva y en particular T ′ ⊆ Im(f) y finalmente
Y = conv(T ′) ⊆ Im(f).

Por otra parte, una forma equivalente de enunciar el Teorema 6.4 es la
siguiente:
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Teorema 6.6 Sea X un FGC-espacio, y H,K ⊆ X tales que H̄ = conv(H)
y K̄ = conv(K) son FGC-espacios. Entonces, cada isometŕıa f : H −→ K
se extiende a una isometŕıa g : X −→ X.

Prueba: Tomemos 0 ∈ H. En virtud del Teorema 1.19 f se extiende a una
isometŕıa f̄ : (H̄, 0) −→ (K̄, f(0)). Por el Teorema 6.4 existe una isometŕıa
h : H̄⊥ −→ K̄⊥. Por el Corolario 5.9 podemos suponer que h(0) = f(0).
Tenemos entonces una aplicación contractiva g = f̄ ⊥ h : X −→ X. Final-
mente,

g(X) ⊇ conv(g(H̄) ∪ g(H̄⊥)) = conv(f̄(H̄) ∪ h(H̄⊥))

= conv(K̄ ∪ K̄⊥)

y conv(K̄ ∪ K̄⊥) = X por el Teorema 2.15. Aśı pues, g es suprayectiva, y,
por el Corolario 6.5, es una isometŕıa. �

Para el caso en el que X es un p-anillo y H y K son finitos, el Teorema 6.6
aparece probado en [13] como corolario al Teorema 5.

Vamos ahora a ver que para anillos de Boole completos, la hipótesis en el
Teorema 6.6 de que conv(H) y conv(K) sean FGC-espacios puede omitirse.

Lema 6.7 Sea X es un espacio métrico sobre B.

1. La aplicación f : X −→ B es contractiva si y sólo si para todo x, y ∈ X,

d(x, y)f(y) ≤ f(x) ≤ f(y) ∨ d(x, y).

2. Si (fi : X −→ B)i∈I es una familia de aplicaciones contractivas, y
existe el supremo punto a punto de las fi, f =

∨
i fi : X −→ B,

entonces f es contractiva.

3. Si B es completo, X es un FGC-espacio y (Ki)i∈I es una familia de
FGC-subespacios de X, entonces

⋂
iKi es también un FGC-espacio.

Prueba: Para el apartado 1, la función f es contractiva si y sólo si

f(x) + f(y) ≤ d(x, y)

para cada x, y ∈ X. Como f(x) + f(y) = f(y)f(x) ⊕ f(x)f(y), eso que
equivale a f(y)f(x) ≤ d(x, y) y f(x)f(y) ≤ d(x, y).

El apartado 2 se sigue de 1.

La afirmación 3 se deduce de 2 y del Teorema 3.4: Si Ki = f−1
i (0) para

cierta fi : X −→ B contractiva, entonces
⋂

iKi = (
∨

i fi)
−1 (0). �
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Definición 6.8 Sea X un espacio métrico sobre un anillo de Boole completo
B y U un subconjunto de X. Denotaremos por FGC(U) a la intersección
de todos los FGC-subespacios de X que contienen a U , que es de nuevo un
FGC-espacio.

Teorema 6.9 Sean X e Y FGC-espacios sobre un anillo de Boole com-
pleto B, U y V subconjuntos de X e Y respectivamente. Cada aplicación
contractiva f : U −→ V se extiende a una única aplicación contractiva
FGC(f) : FGC(U) −→ FGC(V ). Además, si f es isometŕıa, también lo es
FGC(f).

Prueba: Unicidad: Supongamos que g, h : FGC(U) −→ FGC(V ) extien-
den a f . El conjunto

{x ∈ FGC(U) : g(x) = h(x)} = {x ∈ FGC(U) : h(x) + g(x) = 0}

es entonces un FGC-espacio (por el Teorema 3.4) que contiene a U , aśı que
contiene a FGC(U).

Existencia: Veamos primero que cada aplicación contractiva g : U −→ B
se extiende a una aplicación contractiva G : FGC(U) −→ B. Para cada
u ∈ U consideramos la función contractiva gu : FGC(U) −→ B dada por

gu(x) = f(u)d(u, x).

Hacemos G =
∨

u∈U gu. Para cada u ∈ U , f(u) = gu(u) ≤ G(u) y por otra
parte para cada u, v ∈ U tenemos que f(u) + f(v) ≤ d(u, v), lo que implica
que f(v)d(u, v) + f(u)d(u, v) = 0 y

f(v) ≥ f(v)d(u, v) = f(u)d(u, v) = gu(v).

Tomando supremos f(v) ≥ G(v), para todo v ∈ U y ya tenemos que G ex-
tiende a f . Visto esto, tenemos en cuenta que el espacio Y puede sumergirse
en un espacio del tipo Bn. La aplicación f : U −→ V ↪→ Y ↪→ Bn se extiende
a una aplicación contractiva h : FGC(U) −→ Bn, extendiéndola componente
a componente. Queda ver que h(FGC(U)) ⊆ FGC(V ). En virtud del Teo-
rema 3.4 existe s : Bn −→ B contractiva con s−1(0) = FGC(V ). La función
s ◦ h : FGC(U) −→ B extiende a la aplicación nula 0 = s ◦ f : U −→ B,
aśı que por la unicidad, que ya hemos probado, s(h(FGC(U))) = 0 y
h(FGC(U)) ⊆ s−1(0) = FGC(V ). �

Teorema 6.10 Sea B un anillo de Boole. Son equivalentes:
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1. B es un anillo de Boole completo.

2. Para cada FGC-espacio X sobre B y cada isometŕıa f : U −→ V entre
dos subconjuntos de X, f se extiende a una isometŕıa F : X −→ X.

3. Para cada FGC-espacio X sobre B y cada aplicación f : U −→ V
contractiva entre dos subconjuntos de X, f se extiende a una aplicación
contractiva F : X −→ X.

4. Para cada FGC-espacio X y cada espacio convexo Y sobre B, toda
función contractiva f : U −→ Y definida en un subconjunto de X se
extiende a una aplicación contractiva F : X −→ Y .

Prueba: (1 ⇒ 2) Gracias al Teorema 6.9, podemos extender f a una iso-
metŕıa g : FGC(U) −→ FGC(V ) que a su vez, por el Teorema 6.6, podemos
extender a una isometŕıa en X.

(1 ⇒ 3, 4) Análogamente, usamos el Teorema 6.9, y luego el Corola-
rio 2.16.

(2, 3, 4 ⇒ 1) Supongamos que B no es completo y vamos a encontrar
un FGC-espacio X y una isometŕıa f : U −→ V entre subconjuntos de X
que no puede extenderse a una aplicación contractiva F : X −→ X, con lo
que daremos un contraejemplo a las propiedades 2 y 3. Puesto que B no
es completo, tiene un subconjunto S que carece de supremo. Sea I el ideal
generado por S. El ideal I tampoco posee supremo (véase la Proposición 0.9).
Sea J = Ann(I) = {a ∈ B : aI = 0}. Tomamos

X = {(x, y) ∈ B2 : xy = 0},

U = {(z, 0) ∈ X : z ∈ I + J} y V = {(x, y) ∈ X : x ∈ I y ∈ J},

considerándolos espacios centrados en (0, 0). La isometŕıa

f : (U, 0) −→ (V, 0)

la definimos como la inversa de g : V −→ U , dada por g(x, y) = (x + y, 0).
Esta g es efectivamente una isometŕıa ya que

d(g(x, y), g(x′, y′)) = x+ y + x′ + y′ = (x+ x′) + (y + y′);

d((x, y), (x′, y′)) = (x+ x′) ∨ (y + y′)

y las dos cosas son iguales cuando x, x′ ∈ I e y, y′ ∈ J pues en ese caso
(x+ x′)(y + y′) ∈ IJ = 0.
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Supongamos, por reducción al absurdo, que f pudiera extenderse a una
aplicación contractiva F : X −→ X. Afirmamos que si F (1, 0) = (a, b),
entonces a es el supremo de I, con lo que llegamos a una contradicción.
Veamos que a es cota superior de I. Si x ∈ I, entonces

(x, 0) = f(x, 0) = F (x, 0) = F (x(1, 0)) = xF (1, 0) = (ax, bx)

y aśı ax = x y x ≤ a. De manera análoga se ve que b es una cota superior
del conjunto J (si y ∈ J , (0, y) = f(y, 0) = F (y(1, 0)) = (ay, by)). Sea ahora
c una cota superior de I y veamos que a ≤ c. Del hecho de que c sea cota
superior de I se deduce que c̄ ∈ Ann(I) = J , aśı que c̄ ≤ b, ac̄ ≤ ab = 0 y
a ≤ c. �

Cabe hacer tres observaciones:

• Zemmer [13] probó que para un p-anillo A, B(A) es completo si y sólo
si toda isometŕıa entre subconjuntos de A se extiende a una isometŕıa
de A.

• Aunque B no sea completo, toda isometŕıa f : U −→ V entre subcon-
juntos de B se extiende a una isometŕıa de B. Esto es porque para
cada x, y ∈ U se tiene f(x) + f(y) = x+ y y por tanto

x+ f(x) = y + f(y) = a ∈ B

y entonces f está dada por f(x) = x+ a.

• Por contra, no es cierto en general que toda aplicación contractiva
f : U −→ V entre subconjuntos de B se extienda a una aplicación con-
tractiva en B. Por ejemplo, sea Ω un conjunto infinito, B el subanillo
de P(Ω) formado por los conjuntos finitos o con complementario finito,
Λ un subconjunto de Ω que no esté en B, y U la familia de los subcon-
juntos finitos de Ω. La aplicación f : U −→ U dada por f(x) = Λ ∩ x
es B-contractiva pero no puede expresarse como un polinomio con coe-
ficientes en B (tendŕıa que ponerse como f(x) = ax + b = (a ∩ x)4 b
con a, b ∈ B y de hecho con b = 0 pues f(0) = 0).
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Caṕıtulo 7

Dualidad

En este caṕıtulo mostraremos que la categoŕıa de FGC-espacios sobre B es
dual de la categoŕıa de las B-álgebras booleanas fieles que son finitamente
presentadas como B-módulos (una B-álgebra es booleana si es booleana como
anillo).

Definición 7.1 Sea X un espacio métrico sobre B. Llamaremos X∗ al con-
junto de las aplicaciones contractivas de X a B, que tiene estructura de
B-álgebra booleana fiel v́ıa la aplicación B −→ X∗ que asocia a cada a ∈ B
la aplicación constante correspondiente.

Observar que la correspondencia X 7→ X∗ se extiende a un funtor con-
travariante de la categoŕıa de espacios métricos sobre B a la categoŕıa de
B-álgebras booleanas, llevando cada aplicación contractiva f : X −→ Y al
homomorfismo f ∗ : Y ∗ −→ X∗ dado por f ∗(α) = α ◦ f .

Definición 7.2 Sea A una B-álgebra booleana. Llamaremos A∗ ⊆ BA al
conjunto de los homomorfismos de álgebras de A a B. Cuando A∗ sea un
subconjunto medible de BA diremos que A es una B-álgebra medible, y en-
tonces A∗ tendrá estructura de espacio métrico sobre B.

De nuevo, la correspondencia A 7→ A∗ se extiende a un funtor contra-
variante de la categoŕıa de B-álgebras medibles a la categoŕıa de espacios
métricos sobre B que asocia a cada morfismo f : A −→ C el morfismo
f ∗ : C∗ −→ A∗ dado por f ∗(α) = α ◦ f .

Definición 7.3 Una FGC-álgebra sobre B es una B-álgebra booleana fiel que
es finitamente presentada como B-módulo.

Nuestro objetivo es mostrar que los funtores anteriormente definidos in-
ducen por restricción una dualidad de categoŕıas entre la categoŕıa de FGC-
espacios sobre B y la de FGC-álgebras sobre B.
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Lema 7.4 Si X es un FGC-espacio, entonces X∗ es una B-álgebra medible y
la inclusión natural i : X −→ X∗∗ dada por i(x)(α) = α(x) es una isometŕıa.

Prueba: Veamos en primer lugar que i : X −→ X∗∗ es suprayectiva. Sea
φ : X∗ −→ B un elemento de X∗∗. Supongamos que X = conv(x1, . . . , xn) y
denotemos αi = d(xi,∼) ∈ X∗. Por el Lema 4.1 se tiene que α1 · · ·αn = 0 y
por tanto φ(α1) · · ·φ(αn) = 0. Usando ahora el Teorema 1.24 deducimos que
0 ∈ conv{φ(α1), . . . φ(αn)}. Pongamos que

0 = a1φ(α1) + · · ·+ anφ(αn)

con a1⊕· · ·⊕an = 1. Afirmamos ahora que si x = a1x1 + · · ·+anxn entonces
φ = i(x). Sea α ∈ X∗ y comprobemos que φ(α) = i(x)(α) = α(x). Por ser
α contractiva tenemos que α(y) + α(xi) ≤ d(xi, y) = αi(y) para todo y ∈ X,
lo que nos da en X∗ la desigualdad α + α(xi) ≤ αi. Aplicando φ obtenemos
φ(α) + α(xi) ≤ φ(αi) y de aqúı

n⊕
i=1

ai(φ(α) + α(xi)) ≤
n⊕

i=1

aiφ(αi) = 0.

Finalmente
∑n

i=1 ai(φ(α) + α(xi)) = 0 y

φ(α) =
n∑

i=1

aiφ(α) =
n∑

i=1

aiα(xi) = α

(
n∑

i=1

aixi

)
= α(x).

La suprayectividad de i queda aśı probada.

Basta ahora verificar que

Ann(i(x) + i(y)) = d(x, y)B

para todo x, y ∈ X, pues de esa identidad se deduce que X∗∗ = Im(i) es un
subconjunto medible de BX∗

y que i : X −→ X∗∗ es una isometŕıa. Se tiene
que a ∈ Ann(i(x) + i(y)) si y sólo si a(i(x) + i(y)) = 0 si y sólo si

a(α(x) + α(y)) = a(i(x) + i(y))(α) = 0

para cada α ∈ X∗. Por una parte, tomando α = d(x,∼) encontramos que si
a ∈ Ann(i(x) + i(y)) entonces a ≤ d(x, y), mientras que rećıprocamente, si
a ≤ d(x, y) entonces a(α(x) + α(y)) = 0 porque α(x) + α(y) ≤ d(x, y) al ser
α : X → B contractiva. �

67



Lema 7.5 Si X es un espacio métrico sobre B, entonces las B-álgebras X∗

y conv(X)∗ son isomorfas.

Prueba: Si consideramos la inclusión j : X −→ conv(X), entonces el ho-
momorfismo de álgebras j∗ : conv(X)∗ −→ X∗ es biyectivo en virtud del
Teorema 1.19. �

Lema 7.6 Si X es un FGC-espacio, entonces X∗ es una FGC-álgebra.

Prueba: Ya sabemos que X∗ es una B-álgebra booleana fiel, luego sólo
queda ver que es finitamente presentada como B-módulo. Supongamos en
primer lugar que X = conv(Y ) donde Y es un espacio finito discreto (es
decir d(y, y′) = 1 si y 6= y′). Entonces, por el Lema 7.5, X∗ ∼= Y ∗ y como
toda aplicación α : Y −→ B es contractiva se tiene que Y ∗ = BY que
es isomorfa como B-módulo a Bn, donde n es el cardinal de Y . Si ahora
X = conv(x1, . . . , xn) es un FGC-espacio arbitrario y Y = {y1, . . . , yn} es un
espacio discreto, entonces la asignación yi 7→ xi es contractiva y se extiende
a una aplicación contractiva f : Z = conv(Y ) −→ X suprayectiva. Por el
Teorema 2.19 existe g : X → Z contractiva con f ◦g = 1X . Tenemos entonces
homomorfismos de B-álgebras (en particular de B-módulos) f ∗ : X∗ −→ Z∗

y g∗ : Z∗ −→ X∗ con g∗ ◦ f ∗ = 1X∗ . Eso implica que el B-módulo X∗ es un
sumando directo de Z∗ ∼= Bn y por tanto finitamente presentado. �

Lema 7.7 Se tiene un isomorfismo de B-álgebras

B[X1, . . . , Xn]

(X2
1 +X1, . . . , X2

n +Xn)
∼= Bn∗

y ambas son B-módulos libres de tipo finito.

Prueba: La última afirmación es clara, pues Bn = conv{0, 1}n es la clau-
sura convexa de un subespacio finito discreto, y ya se argumentó en la de-
mostración del Lema 7.6 que entonces Bn∗ es un módulo libre de tipo finito.
Veamos pues cómo dar el isomorfismo. El álgebra Bn∗ no es más que el
álgebra de funciones polinómicas en n variables, aśı que tenemos el morfismo
φ : B[X1, . . . , Xn] −→ Bn∗ que env́ıa cada polinomio a la función que induce.
Basta que comprobemos que

I = (X2
1 +X1, . . . , X

2
n +Xn) = Kerφ.

La inclusión hacia la izquierda es trivial. Al contrario, tomamos f ∈ Kerφ.
Puesto que Xm

i ≡ Xi mod I podemos suponer que en f no aparecen variables
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Xi elevadas a potencias mayores que uno. Probamos por inducción en k que
si f ∈ B[X1, . . . , Xk] entonces f ∈ I. El caso k = 0 (f ∈ B) es trivial. Si
f ∈ B[X1, . . . , Xk], como no aparecen en f potencias de Xk mayores que 1
podemos escribir

f = g(X1, . . . , Xk−1) +Xkh(X1, . . . , Xk−1).

Puesto que f ∈ Kerφ, f(a) = 0 para todo a ∈ Bn y en particular, para cada
a1, . . . , ak−1 ∈ B:

0 = f(a1, . . . , ak−1, 0, . . . , 0) = g(a1, . . . , ak−1)

0 = f(a1, . . . , ak−1, 1, . . . , 1) = g(a1, . . . , ak−1) + h(a1, . . . , ak−1)

Esto implica que g, h ∈ Kerφ con lo que, aplicando la hipótesis de inducción,
se concluye la prueba. �

Lema 7.8 Sea A una FGC-álgebra sobre B. Entonces A ∼= X∗ para cierto
FGC-espacio X. Por tanto, por el Lema 7.4, A es medible y A∗ ∼= X∗∗ ∼= X
es un FGC-espacio.

Prueba: Al ser A finitamente presentada como módulo, es finitamente ge-
nerada como álgebra, aśı que existe un homomorfismo suprayectivo de B-
álgebras φ : B[X1, . . . , Xn] −→ A. Como A es booleana se tiene que

I = (X2
1 +X1, . . . , X

n +Xn) ⊆ Kerφ

y se induce, por el Lema 7.7 ψ : Bn∗ ∼= B[X1, . . . , Xn]/I � A donde además
Bn∗ es libre de tipo finito. Como A es un módulo finitamente presentado,
Kerψ es un B-submódulo (y por tanto un ideal) finitamente generado de Bn∗.
De hecho, un ideal finitamente generado de un anillo de Boole es principal,
aśı que Kerψ = (f) para cierto f ∈ Bn∗ y A ∼= Bn∗/(f). Tomamos ahora
X = f−1(0) que es no vaćıo pues Im(f) = [a, b] por el Corolario 1.25 y
como a ≤ f , a = ψ(a) ≤ ψ(f) = 0. Además, X es un FGC-espacio por el
Teorema 3.4, y veremos que verifica

X∗ ∼= Bn∗/(f) ∼= A.

Consideramos la inclusión i : X → Bn, que induce un homomorfismo de
B-álgebras i∗ : Bn∗ −→ X∗ dado por i∗(g) = g|X . Esta i∗ es suprayectiva
por 2.16 y f ∈ Ker(i∗), aśı que bastará comprobar que Ker(i∗) ⊆ (f). Sea
h ∈ Ker(i∗) (es decir, h|X = 0). Podemos considerar Bn como espacio
centrado en un punto x0 ∈ X = f−1(0) 6= ∅, de modo que tenemos

f, h : (Bn, x0) −→ (B, 0).
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Para cada x ∈ Bn

f(f(x)x) = f(x)f(x) = 0,

aśı que f(x)x ∈ f−1(0) = X y 0 = h(f(x)x) = h(x)f(x). Esto nos dice que
hf̄ = 0 y que por lo tanto h ≤ f . �

Lema 7.9 Si A es una FGC-álgebra, entonces la inclusión natural j : A −→
A∗∗ dada por j(α)(s) = s(α) es un isomorfismo.

Prueba: Por el Lema 7.8 podemos suponer que A = X∗ para un FGC-
espacio X. Tenemos que comprobar que la inclusión natural j : X∗ −→ X∗∗∗

es isomorfismo. Ahora bien, en el Lema 7.4 probamos que la inclusión natural
i : X −→ X∗∗ era un isomorfismo. Afirmamos que i∗ : X∗∗∗ −→ X∗ es
inversa de j. Puesto que i∗ es ya isomorfismo basta que comprobemos que
j ◦ i∗ = 1X∗∗∗ . Para elementos φ : X∗∗ −→ B, de X∗∗∗, y s = i(x) ∈ X∗∗

(x ∈ X) se tiene que

j(i∗(φ))(s) = j(φ ◦ i)(s) = s(φ ◦ i) = i(x)(φ ◦ i) = (φ ◦ i)(x)
= φ(i(x)) = φ(s).

�

Teorema 7.10 Existe una dualidad de categoŕıas entre la categoŕıa de las
FGC-álgebras sobre B y la categoŕıa de los FGC-espacios sobre B.

Prueba: El Lema 7.6 nos permite establecer el funtor

F = (∼)∗ : FGCesp −→ FGCalg,

mientras que el Lema 7.8 nos da el funtor

G = (∼)∗ : FGCalg −→ FGCesp.

Los Lemas 7.4 y 7.9 nos dicen que G ◦ F ∼= 1 y que F ◦G ∼= 1. �
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Caṕıtulo 8

Aplicación a la topoloǵıa

El Teorema 1.29, particularizado a un anillo de conjuntos del tipo P(Ω),
caracteriza en términos de distancias las aplicaciones polinómicas de P(Ω)
en P(Ω), es decir, las que admiten una expresión en términos de uniones,
intersecciones, diferencias de conjuntos, etc. El objetivo de este caṕıtulo es
generalizar ese resultado para el caso en que Ω es un espacio topológico y las
apliaciones que se consideran son las que admiten una expresión en términos
de uniones, intersecciones (quizá infinitas), diferencias de conjuntos, adhe-
rencias, interiores, etc.

Trabajaremos en un anillo de Boole B junto con una función c : B −→ B
que verifique los siguientes axiomas, para cada x, y ∈ B :

1. c(0) = 0

2. x ≤ c(x)

3. c(c(x)) = c(x)

4. c(x ∨ y) = c(x) ∨ c(y)

Observar que el axioma 4 implica que si x ≤ y entonces c(x) ≤ c(y). Estos
axiomas se verifican cuando B = P(Ω) son las partes de un espacio topológico
y c es la función adherencia.

Definición 8.1 Sea Fn la menor familia de funciones de Bn en B que veri-
fica:

1. Las proyecciones πi : Bn −→ B y las funciones constantes están en Fn.

2. Si f : Bn −→ B está en Fn entonces también lo están c ◦ f y 1̄ ◦ f ,
donde 1̄ : B −→ B es la función 1̄(x) = x̄.
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3. Si tenemos una familia {fi}i∈I de funciones que viven en Fn entonces
su supremo punto a punto

∨
I fi (si existe) también vive en Fn.

A las funciones de la familia Fn las llamaremos funciones c-polinómicas.

Observar que toda función polinómica es c-polinómica y que no sólo el
supremo, sino también el ı́nfimo de funciones c-polinómicas es c-polinómica,
pues

∧
fi = 1̄ ◦

∨
(1̄ ◦ fi). En el caso topológico, la función interior i también

es c-polinómica pues i = 1̄ ◦ c ◦ 1̄.

Es fácil comprobar que si d : X × X −→ B es una métrica booleana,
entonces c ◦ d : X ×X −→ B también lo es.

Definición 8.2 Sea X un espacio métrico sobre B. Llamaremos Xc al es-
pacio métrico sobre B cuyo conjunto subyacente es X y cuya métrica es la
composición de la métrica de X con la función c.

Lema 8.3 Sean X e Y espacios métricos sobre B:

1. La función c : Bc −→ B es contractiva.

2. Si f : Xc −→ B es contractiva, entonces c ◦ f : Xc −→ B también lo
es.

Prueba: Para 1, hay que probar la desigualdad c(x) + c(y) ≤ c(x+ y) para
todo x, y ∈ B. Ahora bien, tenemos que

c(x) ≤ c(xȳ ∨ y) = c(xȳ) ∨ c(y),

lo que implica que

c(x)c(y) ≤ c(xȳ) ≤ c(xȳ ∨ x̄y) = c(x+ y),

y análogamente se obtiene que c(y)c(x) ≤ c(x+ y). Finalmente, usamos que
c(x) + c(y) = c(x)c(y)⊕ c(y)c(x).

La propiedad 2 se sigue de 1:

d(cf(x), cf(y)) ≤ cd(f(x), f(y)) ≤ ccd(x, y) = cd(x, y).

�

Teorema 8.4 Una aplicación f : Bn −→ B es c-polinómica si y sólo si
f : Bn

c −→ B es contractiva.
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Prueba: Usando el Lema 8.3 y el Lema 6.7, encontramos que la familia de
las aplicaciones contractivas de Bn

c en B satisface las condiciones de la De-
finición 8.1. Por tanto, todas las aplicaciones c-polinómicas son contractivas
de Bn

c en B. Para la otra implicación, supongamos que f : Bn
c −→ B es

contractiva. Para cada a, x ∈ Bn, por el Lema 6.7, sabemos que

c(d(a, x))f(a) ≤ f(x) ≤ f(a) ∨ c(d(x, a)).

La función ha(x) = c(d(a, x))f(a) es c-polinómica para todo a ∈ Bn, aśı que
basta ver que f es el supremo de las ha. Pero de hecho f es el máximo punto
a punto de las ha pues hx(x) = f(x). (Análogamente también f es el ı́nfimo
de las ga(x) = f(a) ∨ c(d(x, a))). �

Nótese que, en general, una aplicación c-polinómica no tiene por qué
admitir una expresión finita en términos de la función c y de operaciones
conjuntistas finitas. Por ejemplo, sea B un anillo de Boole infinito de cardinal
β y c : B −→ B dada por c(x) = 1 si x 6= 0 y c(0) = 0. Entonces,
toda aplicación de Bc en B es contractiva y la cardinalidad del conjunto de
funciones c-polinómicaas es en consecuencia ββ. En cambio el cardinal de
las expresiones finitas que podemos formar con elementos de B y śımbolos
+, ·, c es β < 2β ≤ ββ.
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Caṕıtulo 9

Espacios acotados

En este caṕıtulo estudiaremos espacios métricos convexos que pueden sumer-
girse en un FGC-espacio. Veremos que, para un tipo de anillos de Boole, que
hemos llamado anillos de Boole pequeños, cada espacio acotado se descom-
pone de manera única como suma ortogonal de una cadena de ideales. Final-
mente, se determina si son pequeños algunos anillos de Boole, apuntándose
la posibilidad de que esta condición sea equivalente a ser hereditario.

Definición 9.1 Un espacio métrico convexo X sobre B diremos que es aco-
tado si puede sumergirse en un FGC-espacio.

Proposición 9.2 Todo espacio métrico acotado es suma ortogonal de ideales
de B.

Prueba: Sea (X, 0) un espacio métrico acotado, (X, 0) ⊆ (Y, 0) con Y un
FGC-espacio. Podemos considerar un sistema de referencia de (Y, 0) de ma-
nera que Y = Bx1 ⊥ · · · ⊥ Bxn. Sea Xi = Bxi∩X. Como Bxi es isométrico
a [0, |xi|] ⊆ B, es claro que cada uno de los espacios convexos Xi es isométrico
a un ideal de B. Afirmamos que X = X1 ⊥ · · · ⊥ Xn. Sólo hay que ver que
X = conv(

⋃
iXi). Para todo x ∈ X tenemos, por la Proposición 2.6, que

x =
n∑

i=1

|x ? xi|xi =
n∑

i=1

|x ? xi|(x ? xi)

y x ? xi ∈ Bxi ∩Bx ⊆ Bxi ∩X = Xi. �

Será necesario volver a hacer uso del k-ideal asociado a un espacio métrico
booleano X, denotado por Ik(X), que introdujimos en la Definición 5.2.

Lema 9.3 Sean J1, . . . , Jn ideales de un anillo de Boole B.
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1. I1(J1 ⊥ J2) = J1 + J2

2. I2(J1 ⊥ J2) = J1 ∩ J2.

3. Si J1 ∩ J2 = 0, entonces J1 + J2 es isométrico a J1 ⊥ J2.

4. Si J1 ⊇ · · · ⊇ Jn entonces Ik(J1 ⊥ · · · ⊥ Jn) = Jk para k ≤ n.

Prueba: Para el apartado 1, si a ∈ J1 y b ∈ J2 entonces

a+ b = d((a, 0), (0, b)) ∈ I1(J1 ⊥ J2)

lo que prueba que J1 + J2 ⊆ I1(J1 ⊥ J2).
Rećıprocamente, si (a, b), (a′, b′) ∈ J1 ⊥ J2, entonces

d((a, b), (a′, b′)) = (a+ a′) ∨ (b+ b′) ∈ J1 + J2.

En cuanto a 2, si a ∈ J1 ∩ J2, entonces

a = |(a, 0)||(0, a)|d((a, 0), (0, a)| ∈ I2(J1 ⊥ J2).

A la inversa, hemos de ver que para cualesquiera x0 = (a0, b0), x1 = (a1, b1) y
x2 = (a2, b2) se tiene que d(x0, x1)d(x1, x2)d(x1, x2) ∈ J1 ∩ J2. Ese producto
de distancias da

[(a0 + a1) ∨ (b0 + b1)] [(a0 + a2) ∨ (b0 + b2)] [(a1 + a2) ∨ (b1 + b2)]

donde cada ai + aj ∈ J1 y cada bi + bj ∈ J2. Si se aplica a esa expresión
la distributividad del producto respecto a la operación ∨, todos los términos
que se obtienen están en J1 ∩ J2 salvo quizá (a0 + a1)(a0 + a2)(a1 + a2) y
(b0 + b1)(b0 + b2)(b1 + b2) que en todo caso son nulos.

Para 3, hay una isometŕıa obvia f : J1 ⊥ J2 −→ J1 + J2 dada por
f(x, y) = x+ y.

La propiedad 4 está probada para ideales principales en el Lema 5.5. El
caso general puede deducirse de éste. Llamemos X = J1 ⊥ · · · ⊥ Jn. Para
la inclusión hacia la izquierda, si a ∈ Jk entonces

a ∈ Ik(Ba ⊥ · · ·k ⊥ Ba) ⊆ Ik(X).

Rećıprocamente, si a ∈ Ik(X) entonces a está en el ideal generado por los
elementos

∏k
i,j=0 d(xi, xj) y está por tanto en el ideal generado por una can-

tidad finita de ellos. Por tanto a ∈ Ik(Y ) para un Y ⊆ X finito y si se quiere
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a ∈ Ik(Ba1 ⊥ · · · ⊥ Ban) para ciertos ai ∈ Ji. Incluso podemos suponer
a1 ≥ · · · ≥ an con lo que obtenemos que a ∈ Ik(Ba1 ⊥ · · · ⊥ Ban) = ak ∈ Jk.

�

Proposición 9.4 Sea B un anillo de Boole. Son equivalentes:

1. Cada espacio métrico centrado acotado X puede expresarse en la forma
X = J1 ⊥ · · · ⊥ Jn para J1 ⊇ · · · ⊇ Jn ideales de B.

2. Cada espacio métrico centrado acotado se expresa de manera única en
la forma X = J1 ⊥ · · · ⊥ Jn para J1 ⊇ · · · ⊇ Jn ideales de B. Esta
expresión es además independiente del centro.

3. Para cualesquiera ideales I, J de B, se tiene una isometŕıa de espacios
centrados I ⊥ J ∼= (I + J) ⊥ (I ∩ J).

4. Para cualesquiera ideales I, J de B, se tiene una inmersión de espacios
centrados (I + J, 0) ↪→ (I ⊥ J, 0).

5. Para cualesquiera ideales I, J de B, existen ideales I ′ ⊆ I y J ′ ⊆ J
tales que I ′ + J ′ = 0 y I ′ ⊕ J ′ = I + J .

6. Para cualesquiera ideales I, J de B, existe un isomorfismo de B-módulos
I ⊕ J ∼= (I + J)⊕ (I ∩ J).

En este caso diremos que B es pequeño.

Prueba: (1 ⇔ 2) Es consecuencia inmediata del apartado 4 del Lema 9.3.

(1 ⇒ 3) De 1 se deduce que I ⊥ J es isométrico a J1 ⊥ J2 para ciertos
J1 ⊇ J2. Usando el Lema 9.3, concluimos que

J1 = I1(J1 ⊥ J2) = I1(I ⊥ J) = I + J ;

J2 = I2(J1 ⊥ J2) = I2(I ⊥ J) = I ∩ J.

(3 ⇒ 1) Podemos expresar X como suma ortogonal de ideales

X = I1 ⊥ · · · ⊥ In.

Aplicando el apartado 3 a I1 ⊥ I2 obtenemos

X = (I1 + I2) ⊥ (I1 ∩ I2) ⊥ I3 ⊥ · · · ⊥ In.
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Repetimos el proceso ahora para el 3o y 1o ideal, 4o y 1o y aśı hasta el n-ésimo
y el primero obteniendo finalmente una expresión del tipo

X = (
n∑
1

Ii) ⊥ I ′2 ⊥ · · · ⊥ I ′n

con I ′j ⊆
∑n

1 Ii. Podemos repetir el mismo procedimiento para el espacio
X ′ = I ′2 ⊥ · · · ⊥ I ′n y sucesivamente hasta obtener la expresión deseada.

(3 ⇒ 4) Trivial.

(4 ⇒ 5) Sea f : (I + J, 0) −→ (I ⊥ J, 0) inmersión. Hacemos

I ′ = {a ∈ I : f(a) = (a, 0)} y J ′ = {(b ∈ J : f(b) = (0, b)}.

Se tiene que I ′ + J ′ = I + J porque dado x ∈ I + J , si f(x) = (a, b) entonces
a ∈ I ′ pues

f(a) = f(ax) = af(x) = a(a, b) = (a, 0)

y análogamente b ∈ J ′, con lo que x = |x| = |f(x)| = a ∨ b ∈ I ′ + J ′. Se tie-
ne también que I ′∩J ′ = 0 porque si x ∈ I ′∩J ′ entonces (x, 0) = f(x) = (0, x).

(5 ⇒ 3) Dados I, J ideales, los I ′, J ′ del apartado 4 verifican

I = I ′ ⊕ (I ∩ J ′);
J = J ′ ⊕ (J ∩ I ′);

I ∩ J = (J ∩ I ′)⊕ (I ∩ J ′).

Aplicando ahora el apartado 3 del Lema 9.3 concluimos que

I ⊥ J ∼= I ′ ⊥ (I ∩ J ′) ⊥ J ′ ⊥ (I ∩ J ′) ∼= (I + J) ⊥ (I ∩ J).

(5 ⇒ 6) Es análoga a (5 ⇒ 3).

(6 ⇒ 4) Se tendrá una inmersión f : I + J −→ I ⊕ J . Componiendo con
la aplicación contractiva g : I ⊕ J −→ I ⊥ J dada por g(a, b) = (a, bā) se
obtiene una inmersión gf : I + J −→ I ⊥ J . Efectivamente, tanto g como
f preservan la norma, y por tanto gf también. Aśı, para cada x, y ∈ J se
tiene d(x, y) = x+ y = |gf(x)|+ |gf(y)| ≤ d(gf(x), gf(y)). �

Nótese que si B es un anillo hereditario (es decir, si todo ideal de B es un
B-módulo proyectivo) entonces B es pequeño pues se verifica la condición 6
de la Proposición 9.4, al existir una sucesión exacta corta

0 −→ I ∩ J −→ I ⊕ J −→ I + J −→ 0
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dada por x 7→ (x, x) y (x, y) 7→ x+ y, que escinde si I + J es proyectivo. No
hemos encontrado argumento alguno que pruebe o descarte el rećıproco. En
lo que sigue discutiremos la pequeñez de algunos anillos de Boole.

Proposición 9.5 Todo ideal numerablemente generado de un anillo de Boole
es proyectivo. Por tanto, todo anillo de Boole numerable es hereditario.

Prueba: Si I = (a1, a2, . . .) y llamamos bn = anan−1 · · · a1, entonces

an = b1 ∨ · · · ∨ bn;

bibj = 0 si i 6= j;

y se tiene I =
⊕∞

n=1Bbn, siendo cada Bbn un B-módulo proyectivo pues
B = Bbn ⊕Bbn. �

En realidad se ha visto que todo ideal numerablemente generado es suma
directa de ideales principales. Puesto que todo módulo proyectivo es suma
directa de módulos proyectivos numerablemente generados (véase el Lema
3.3.2 en [6]), podemos obtener como corolario que todo ideal proyectivo es
suma directa de ideales principales (o equivalentemente, está generado por
una familia ‘disjunta’ de elementos). Por tanto un anillo de Boole es heredi-
tario si y sólo si todo ideal posee una familia disjunta de generadores.

Comentar también que, de hecho, todo anillo regular de cardinalidad
menor que ℵn tiene dimensión global menor o igual que n (véase [11]).

Proposición 9.6 Sea Ω un conjunto y B el subanillo de P(Ω) formado por
los conjuntos finitos y los que tienen complementario finito. Entonces B es
hereditario.

Prueba: Sea I un ideal de B. Si existe a ∈ I con complementario finito
entonces B/Ba ∼= Ba es finito y por tanto I es finitamente generado. Eso
implica que I es principal y por ende proyectivo. En otro caso todo elemento
de I es finito y entonces es fácil ver que I está generado por los elementos
unipuntuales de I. Eso quiere decir que I tiene un sistema disjunto {aj} de
generadores, y entonces I =

⊕
Baj es proyectivo. �

Proposición 9.7 Sea Ω un conjunto infinito. Entonces el anillo de conjun-
tos B = P(Ω) no es pequeño.
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Prueba: Podemos suponer que el conjunto de los números racionales está
contenido en Ω, Q ⊆ Ω. Consideramos el ideal I de B formado por los
subconjuntos acotados de Q y J el ideal de los subconjuntos discretos de
Q. Vamos a comprobar que I y J no verifican la condición 5 de la Pro-
posición 9.4. Supongamos que existieran ideales I ′ ⊂ I y J ′ ⊂ J como
aquéllos. Consideramos a = sup(I ′) =

⋃
I ′. Puesto que I ′J ′ = 0 se tiene que

a ∈ Ann(J ′) (si x ∈ J ′ entonces x̄ es cota superior de I ′). Si ahora y es un
elemento cualquiera de J , entonces ay ∈ J ⊂ I + J y por tanto ay = u + v
con u ∈ I ′, v ∈ J ′ y de hecho ay = aay = au + av = au ∈ I ′. En definitiva,
a es un subconjunto de Q que tiene la propiedad de que al intersecarlo con
cualquier subconjunto discreto da un subconjunto acotado de Q. Eso obliga
a que a sea acotado, a ∈ I. Pongamos que a ⊂ [−n, n]. Entonces

b = [n+ 1, n+ 2] ∩Q ∈ I ⊂ I + J = I ′ + J ′,

aśı que b = u ⊕ v con u ∈ I ′ y v ∈ J ′. Pero como a es cota superior
de I ′, tenemos u ≤ a y también u ≤ b, aśı que u ≤ ab = 0. Por tanto
b = u+ v = v ∈ J ′ ⊂ J , lo que nos dice que b es un subconjunto discreto de
Q, llegando a una contradicción. �

Finalmente, vamos a comprobar que si Ω es un conjunto infinito no nu-
merable, tampoco es pequeño el anillo de Boole libre con variables en Ω

Z2[Xω : ω ∈ Ω]

(X2
ω +Xω : ω ∈ Ω)

Para ello, nos basamos en la teoŕıa de la dualidad de Stone, que nos
dice que todo anillo de Boole puede representarse como el anillo de cerrado-
abiertos de un único espacio topológico Hausdorff compacto con una base de
cerrado-abiertos (véase, por ejemplo, el Teorema 24.4 en [5]). En concreto,
el anillo de Boole libre con variables en Ω es isomorfo al anillo de cerrado-
abiertos del espacio de Cantor generalizado {0, 1}Ω (véase el Corolario 9.7
en [7]).

Conviene recordar aqúı que un espacio topológico se dice normal si para
cada par de cerrados disjuntos existen abiertos disjuntos que los contienen.

Lema 9.8 Sea T un espacio topológico compacto con una base de abiertos
formada por conjuntos cerrado-abiertos. Entonces, existe un isomorfismo de
ret́ıculos entre el ret́ıculo de los abiertos de T y el ret́ıculo de los ideales del
anillo de conjuntos B formado por los cerrado-abiertos de T .
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Prueba: Definimos α : Ideales −→ Abiertos como

α(I) =
⋃
{a ∈ B : a ∈ I}

y β : Abiertos −→ Ideales como

β(u) = {a ∈ B : a ⊆ u}.

Ambas aplicaciones conservan inclusiones, aśı que basta que veamos que son
inversas.

Decir que βα es la identidad es decir que para cada ideal I de B se tenga
que {b ∈ B : b ⊆

⋃
a∈I a} = I. La inclusión hacia la izquierda es trivial. Para

el rećıproco, si b ∈ B entonces es cerrado en un espacio compacto, aśı que es
compacto, y si b ⊆

⋃
a∈I a existen a1, . . . , an ∈ I tales que b ⊆

⋃n
1 ai ∈ I.

Decir que αβ es la identidad es decir que para cada abierto u de T se
tenga u =

⋃
{a ∈ B : a ⊆ u}, y esto es consecuencia inmediata de que exista

una base de cerrado-abiertos. �

La demostración de la siguiente proposición sigue una idea de Mat́ıas
Raja Baño.

Proposición 9.9 Sea Ω un conjunto infinito no numerable y B el anillo de
los cerrado-abiertos del espacio topológico T = {0, 1}Ω. Entonces B no es
pequeño.

Prueba: Supongamos por reducción al absurdo que B cumpliera esas pro-
piedades. El espacio T verifica las hipótesis del Lema 9.8, porque es compacto
por el teorema de Tychonoff, y los abiertos básicos de la topoloǵıa producto
nos proporcionan una base de cerrado-abiertos para T . En virtud de ese
lema, la propiedad 3 de la Proposición 9.4 se traduciŕıa en que dados cuales-
quiera abiertos U, V de T existen U ′ ⊆ U y V ′ ⊆ V tales que U ′ ∩ V ′ = ∅ y
U ′ ∪ V ′ = U ∪ V . Esa propiedad implica inmediatamente que todo subcon-
junto abierto de T es normal, en particular el abierto G = T \ {0}. Podemos
suponer que N ⊂ Ω y definir an ∈ T como la tupla que tiene un 1 en lugar
n ∈ N y ceros en el resto. La sucesión (an) converge a 0 6∈ G, aśı que, como
T es un espacio de Hausdorff, el conjunto D = {an : n ∈ N} ⊂ G es discreto
y cerrado en G, con lo que es continua la función f : D −→ R dada por
f(an) = n. El teorema de Tiezte (Teorema 3.2 del caṕıtulo 4 de [10]) nos
asegura que f se extiende a una función continua F : G −→ R. Vamos a ver
que F está acotada, llegando aśı a una contradicción. Para cada intervalo
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(q, r) de números racionales con F−1((q, r)) 6= ∅ elegimos xq,r ∈ F−1((q, r)).
En esa circunstancia F−1((q, r)) contiene un entorno básico de xq,r y existe
por tanto un conjunto finito Ωq,r ⊂ Ω de tal modo que si y ∈ T y yω = xq,r

ω

para todo ω ∈ Ωq,r, entonces y ∈ F−1((q, r)). Sea

Ω′ =
⋃{

Ωq,r : q, r ∈ Q, q < r, F−1((q, r)) 6= ∅
}
,

que es numerable y por tanto estrictamente contenido en Ω. Sea también

K = {x ∈ T : xω = 1 para todo ω 6∈ Ω′} ⊂ G,

que es cerrado en T y por tanto compacto, aśı que F (K) es acotado. Vea-
mos que Im(F ) está contenida en (la adherencia de) F (K), o lo que es lo
mismo que para cada F (x) ∈ Im(F ) y cada intervalo de racionales (q, r)
que contenga a F (x), se tenga que (q, r) ∩ F (K) 6= ∅. Se toma y ∈ T \ {0}
tal que yω = xq,r

ω si ω ∈ Ωq,r e yω = 1 si ω 6∈ Ωq,r, y se tiene que y ∈ K y
F (y) ∈ (q, r), aśı que F (y) ∈ F (K) ∩ (q, r) 6= ∅. �

Comentar finalmente que los anillos de Boole libres no numerables, al no
ser pequeños, tampoco son hereditarios. Pierce [11] probó, de hecho, que el
anillo de Boole libre con ℵn generadores tiene dimensión global n.
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