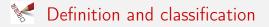
Biomolecules

Adolfo Bastida

Universidad de Murcia (Spain)

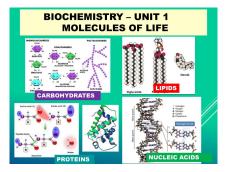
Máster Universitario en Bioinformática

Modelado Molecular

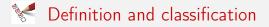

Biomolecules

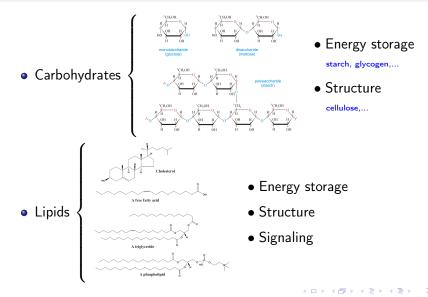
э

Image: A matrix

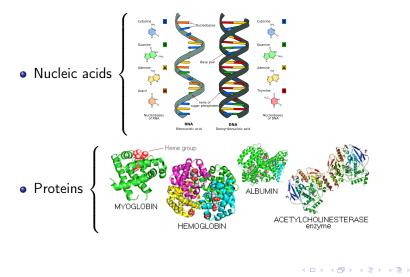

Index

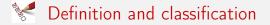
- Biomolecules
 - Definition and classification
- Molecular structure
 - Peptide bond
 - Protein backbone
 - Native structure
 - Ramanchandran plots
- Solding or not folding
 - Levinthal's Paradox
 - Folding funnel
 - Intrinsically disordered proteins (IDPs)
 - Computational Biochemistry
 - Complexity
 - in vitro vs in silico
 - Understanding computer simulations?
 - Bibliography



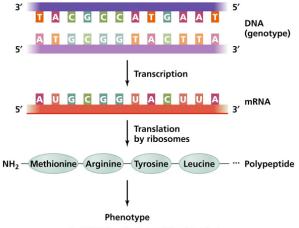

Biomolecule or biological molecule \Rightarrow molecules present in organisms that are essential to biological processes

- Inorganic (H₂O, CO₂, NH₃, ...)
- Organic (based on C)
 - Carbohydrates
 - Lipids
 - Nucleic acids
 - Proteins
 - others


(日) (四) (日) (日) (日)

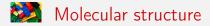


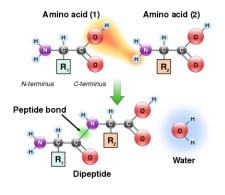
Adolfo Bastida (Universidad Murcia)


Function	Description	Example
Antibody	Antibodies bind to specific foreign particles, such as viruses and bacteria, to help protect the body.	Immunoglobulin G (IgG)
Enzyme	Enzymes carry out almost all of the thousands of chemical reactions that take place in cells.	Phenylalanine hydroxylase
Messenger	Messenger proteins, such as some types of hor- mones, transmit signals to coordinate biological processes between different cells, tissues, and or- gans.	Growth hormone
Structure	These proteins provide structure and support for cells. On a larger scale, they also allow the body to move.	Actin
Transport/storage	These proteins bind and carry atoms and small molecules within cells and throughout the body.	Ferritin

< ロト < 同ト < ヨト < ヨト

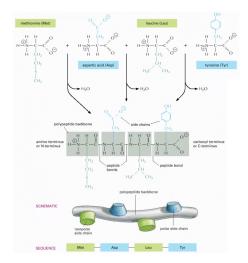
3





Copyright @ 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

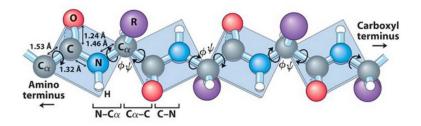
< 回 > < 三 > < 三


- Carbohydrates, lipids and Nucleic acids \Rightarrow well-defined structures
- Proteins ⇒ Flexibility

- aa \Rightarrow NH₂-C_{α}HR-COOH
- 22 aa \Rightarrow R=H, Glycine, R=CH₃, Alanine,....
- Why only 22? \Rightarrow Limit = 4³=64
- Peptide bond \Rightarrow Long chains
- Proteins \Rightarrow up to \sim 30.000 aa
- Residue ⇒ aa inside a peptide chain

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

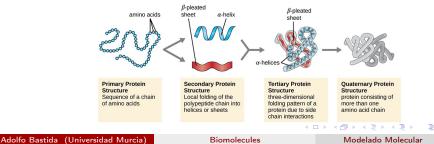
🛃 Protein backbone


Adolfo Bastida (Universidad Murcia)

э

(a)

- Every aa \Rightarrow 2 dihedral angles (ϕ_i, ψ_i)
- Low torsional energy barriers ($\sim k_{\rm B}T$)
- Flexibility



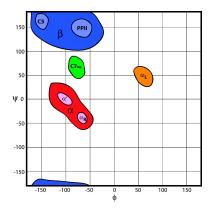
- Conformation ⇔ Functionality
 - Enzymes ⇒ Binding to a specific substrate before they can catalyze a chemical reaction ⇒ Selectivity

11/24

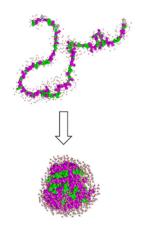
Native structure

Structural databases

- Protein Data Bank (www.rcsb.org)
- This resource is powered by the Protein Data Bank archive-information about the 3D shapes of proteins, nucleic acids, and complex assemblies that helps students and researchers
- X-ray structures
- Letter code \Rightarrow Hemoglobin (1RVW)
- Papers, experimental data, sequence, pdb files,

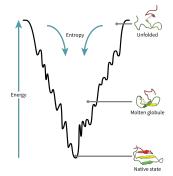


(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <


🔛 Ramanchandran plot

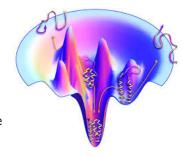
- Native structure ⇒ minimun of the free energy
- Water solution at room temperature ⇒ thermal fluctuations
- Each residue may explore different conformations
- There are preferential conformations corresponding to local minima of the free energy
- Ramachandran plots for every residue

👪 Levinthal's Paradox


- Proteins fold spontaneously and on short timescales (ns-µs)
- 100 aa protein \Rightarrow 200 dihedrals \Rightarrow 3 conformations for angle \Rightarrow 3²⁰⁰ conformations \Rightarrow 1 native structure
- Random sampling conformational space ⇒ time longer than the age of the universe
- Folding pathways!
- Target \Rightarrow Sequence-Native structure

14 / 24

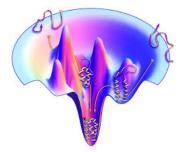
🗣 🗣 Folding funnel


- During the folding process, the conformational entropy of the protein decreases since the formation of native contacts reduces the accessible conformational space.
- This entropic reduction must be compensated by the remaining contributions to the free energy, which are the energy resulting from the intra- and intermolecular interactions and the entropy of the solvent, for the total free energy to decrease during the folding process.

Folding funnel

🗣 🗣 Folding funnel

- Folding funnel \Rightarrow Energy \Leftrightarrow Entropy
- $NVT \rightarrow \Delta F_{\rm f} = \Delta E_{\rm f} T\Delta S_{\rm f}$
- Different energetic and entropic contributions find a delicate balance that minimizes the total free energy along the folding process. Indeed, as folding progresses, both the potential energy and the entropy of the protein decreases, although resulting in opposite effects on the free energy, whereas the entropy of the solvent plays a much more uncertain role.



• Biological design \Rightarrow avoid too stable proteins

- 4 同 ト 4 ヨ ト 4 ヨ ト

🗣 🗣 Folding funnel

 The free energy landscapes are intrinsically rugged, and typically include different local minima which act as traps during folding, with the free energy barriers being of the same order of magnitude as the thermal energy, so the molecule may overpass them during the folding process ⇒ Roughness

17 / 24

Alphafold

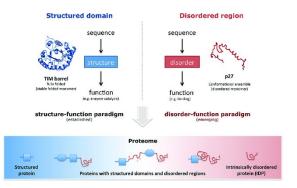
AlphaFold DB provides open access to over 200 million protein structure predictions to accelerate scientific research.

- In CASP14, AlphaFold was the top-ranked protein structure prediction method by a large margin, producing predictions with high accuracy.
- AlphaFold DB provides open access to over 200 million protein structure predictions.

Demis Hassabis

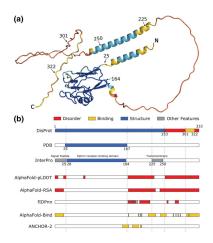
"for protein structure prediction"

Demis Hassabis. III. Niklas Elmehed © Nobel Pri Outreach John Jumper


John Jumper. III. Niklas Elmehed © Nobel Priz Ostroach Nobel Prize in Chemistry 2024

< ロ > < 同 > < 回 > < 回 >

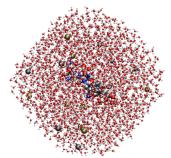
Biomolecules


Intrinsically disordered proteins (IDPs)

- >40 % of eukaryotic proteins are disordered
- Database of intrinsically disordered proteins (https://disprot.org/)
- Critical Assessment of Protein Intrinsic Disorder (CAID) experiment

19/24

Intrinsically disordered proteins (IDPs)



The human Ephrin-B2 protein (UniProt accession: P52799) is shown as a representative example to illustrate the overlap between AlphaFold predictions and various sequence features. Panel a, the structure of the protein predicted by AlphaFold and colored by pLDDT score (<50 orange, <70 yellow, <90 light blue, >90 dark blue). (Protein Sci. 2022 Nov; 31(11): e4466.)

- Biophysical problem ⇒ no formation/break of chemical bonds
- Complexity
 - high flexibility of the peptide chains
 - weak noncovalent interactions
 - water solvent
- Economical interest \Rightarrow Pharmacy
 - Biology ⇔ Biochemistry ⇔ Physics ⇔ Maths/Computing (⇔ Economy?)

21/24

in vitro vs in silico

 in vitro studies ⇒ difficult, slow and expensive.

in silico

- Computer simulations at atomistic level
- High computational cost \Rightarrow but cheaper than lab experiments
- Agreement with experimental data?
 - $\Rightarrow \mathsf{filter}\ \mathsf{candidates}$

Understanding computer simulations?

• Lack of first principles governing the folding process

To milliseconds and beyond: challenges in the simulation of protein folding

Thomas J Lane¹, Diwakar Shukla^{1,2}, Kyle A Beauchamp³ and Vijay S Pande^{1,3,4}

Current Opinion in Structural Biology 2012, 23:1-8

While challenging, generating enough sampling in an accurate forcefield does not constitute the end of the road for a folding simulation. Another major challenge is gaining scientific insight from the simulation — turning data into knowledge.

• Paradox: Being able to simulate a process does not mean that we understand it.

23/24

< □ > < 同 > < 回 > < 回 > < 回 >

Bibliography

Computer simulation of liquids by M.P. Allen and D.J. Tildesley. Oxford University Press. 1987.

Molecular dynamics simulations. Elementary methods. by J.M. Haile. John Wiley and sons. 1997.

Understanding molecular simulations. by D. Frenkel and B. Smit. Academic press. 2002.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <