Nuclear Potential Energy Functions

Adolfo Bastida

Química Computacional y Modelización Molecular

Máster en Química Fina y Molecular Universidad de Murcia (Spain)

Nuclear potentials

Index

Born-Oppenheimer approximation

Stretching vibrations

- Harmonic oscillator
- Morse oscillator
- Kratzer oscillator
- Other oscillators
- 3 Bending vibrations
 - Torsional motions

Non-bonded interactions

- Coulomb forces
- van der Waals forces

6 P

Potential energy models

- Power series expansions
- Many-body expansions
- Molecular Mechanics potentials
- Water

Numerical calculation of vibrational states

- Pertubative treatment
- Variational method
- DVR method

Nuclear potentials

QCyMM 2/39

3 🖒 🖌 3

Born-Oppenheimer approximation

- Molecular Hamiltonian $\Rightarrow \hat{H}(\mathbf{r}, \mathbf{R}) = \hat{T}_{\mathrm{e}}(\mathbf{r}) + \hat{T}_{\mathrm{N}}(\mathbf{R}) + \hat{V}(\mathbf{r}, \mathbf{R})$
- BO approximation:

•
$$\psi(\mathbf{r}, \mathbf{R}, t) = \underbrace{\phi_j^{\mathrm{BO}}(\mathbf{r}, \mathbf{R})}_{\text{electronic}} \underbrace{\Omega(\mathbf{R}, t)}_{\text{nuclear}}$$

•
$$\left[\hat{T}_{e}(\mathbf{r}) + \hat{V}(\mathbf{r}, \mathbf{R})\right] \phi_{j}^{BO}(\mathbf{r}, \mathbf{R}) = \epsilon_{j}^{BO}(\mathbf{R}) \phi_{j}^{BO}(\mathbf{r}, \mathbf{R})$$

•
$$i\hbar \frac{\partial \Omega(\mathbf{R},t)}{\partial t} = \left[\hat{T}_{\mathrm{N}}(\mathbf{R}) + \epsilon_{j}^{\mathrm{BO}}(\mathbf{R})\right] \Omega(\mathbf{R},t)$$

• Grid
$$\{R_i\}_{i=1}^N \Rightarrow \{\epsilon_j^{\mathrm{BO}}(R_i)\}_{i=1}^N$$

3 N.

- Unbound states.
- Bound states.
 - Dissociation energy $\Rightarrow D_e$
 - Internuclear equilibrium distance $\Rightarrow R_e$ (bond length)

Potential energy curve

$$\mathcal{V}(R) = \underbrace{\mathcal{V}(R_e)}_{\substack{en ergy\\ \text{origin}}} + \underbrace{\left(\frac{\partial V}{\partial R}\right)_{R_e}}_{\substack{R_e}}(R - R_e) + \frac{1}{2} \left(\frac{\partial^2 V}{\partial R^2}\right)_{R_e}(R - R_e)^2 + \frac{1}{6} \left(\frac{\partial^3 V}{\partial R^3}\right)_{R_e}(R - R_e)^3 + \frac{\text{higher order}}{\text{terms}}$$

QCyMM 4 / 39

- $\lim_{R \to \infty} V_{\rm h}(R) = \infty \neq D_e$ 0
- Minimun at $R = R_e$ 0

•
$$\lim_{R \to 0} V_{\rm h}(R) = \frac{1}{2}kR_e^2 < \infty$$

Harmonic potential

$$\mathcal{A}_{h}(R) = \frac{1}{2} \underbrace{\left(\frac{\partial^{2} V}{\partial R^{2}}\right)_{R_{e}}}_{k \to \text{ force constant}} (R - R_{e})^{2}$$

Hooke's law

$${\sf F} = -rac{dV_{
m h}}{dq} = -k \, q_{
m h}$$

(4) (5) (4) (5)

1

э **QC**_VMM 5 / 39

🕻 Harmonic oscillator (HO)

QCyMM

- 3

6 / 39

Adolfo Bastida (Universidad Murcia)

▲ ■ ▶ ■ つへの QCyMM 7 / 39

・ロト ・聞ト ・ヨト ・ヨト

🕻 Harmonic oscillator (HO)

$$p_{
m h}(t)=\mu\,\dot{q}_{
m h}(t)=\mu A\omega\cos(\omega t)=\mu\omega\sqrt{A^2-q_{
m h}^2(t)}$$

R.W. Roninette, Am. J. Phys. 63, 823 (1995)

$$egin{aligned} &
ho_{
m h}(m{q}) \propto rac{1}{p_{
m h}(t)} \ &\downarrow \ &
ho_{
m h}(m{q}) = rac{1}{\pi \sqrt{A^2 - q_{
m h}^2(t)}} \ &
ho_{
m h}(m{p}) = rac{1}{\pi \sqrt{p_{
m max}^2 - p_{
m h}^2(t)}} \end{aligned}$$

< 3

🕻 Harmonic oscillator (HO)

Quantum HO

$$\hat{H}_{\mathrm{h}}(q)=-rac{\hbar^2}{2\mu}\,rac{d^2}{dq^2}+rac{1}{2}kq^2
ightarrow\,\hat{H}_{\mathrm{h}}(q)\phi^{\mathrm{h}}_n(q)=E^{\mathrm{h}}_n\phi^{\mathrm{h}}_n(q)$$

 \Rightarrow HO eigenvalues

•
$$E_n^{\rm h} = (n + \frac{1}{2}) h\nu$$
 $n = 0, 1, 2, ...$

- \circ Minimun energy $\rightarrow E_0^{
 m h} = rac{1}{2} h
 u
 ightarrow Zero-point energy (ZPE)$
- $\circ \ \Delta E = E_{n+1} E_n = h\nu \rightarrow$ vibrational quantum

(日) (周) (日) (日)

QCyMM 9 / 39

Harmonic oscillator

 $\alpha = \frac{2\pi\nu\mu}{\hbar}$

🕻 Harmonic oscillator (HO)

\Rightarrow HO wavefunctions

$$\phi_0(q) = \left(\frac{\alpha}{\pi}\right)^{1/4} e^{-\alpha q^2/2}$$

$$\phi_1(q) = \left(\frac{4\alpha^3}{\pi}\right)^{1/4} q e^{-\alpha q^2/2}$$

$$\phi_2(q) = \left(\frac{\alpha}{4\pi}\right)^{1/4} (1 - 2\alpha q^2) e^{-\alpha q^2/2}$$

 $\circ \mathsf{Nodes} \Rightarrow n$

QCyMM 10 / 39

э

э

• Classicaly allowed and forbidden regions

$${\sf E}={\sf T}+{\sf V} \stackrel{{\sf T}\geqslant {\sf 0}}{\longrightarrow} {\sf E}\geqslant {\sf V}
ightarrow -{\sf A}\leq q_{
m cl}^{
m h}\leq +{\sf A}$$

< A

🕻 Harmonic oscillator (HO)

Fig. 1. The graph of the penetration probability P(n) vs quantum number n for values of n ranging from n=0 to n=250.

Problems

- No dissociation limit $(\uparrow n)$
- Anharmonicities $\Rightarrow k_3 q^3 + k_4 q^4 + \ldots \Rightarrow \Delta E \neq \text{constant}$

▷ J.J. Diamond, Am. J. Phys. **60**, 912 (1992)

QCyMM

12 / 39

- $\lim_{r\to\infty}V_{\rm M}(r)=D_e$ 0
- Minimun at $r = r_e$ 0

$$\circ \lim_{r
ightarrow 0} V_{\mathrm{M}}(r) = D_e (1 - e^{aR_e})^2 < \infty$$

Philip McCord Morse, (August • 6, 1903 - September 5, 1985)

 $V_{\mathrm{M}}(R) = D_e \left(1 - e^{-a(R-R_e)}\right)^2$

- $E_n = 4D_e \left| \frac{n+1/2}{S} \left(\frac{n+1/2}{S} \right)^2 \right|$
- ZPE $\Rightarrow D_0 = D_e E_0$
- $\Delta E = \frac{4D_e}{S} \left(1 \frac{2(n+1)}{S} \right)$

(日) (周) (日) (日)

• $S = \sqrt{8\mu D_e}/a\hbar$

• Morse wavefunctions

< ≣ ► ≣ ৩৭ে QCyMM 14 / 39

<ロト < 聞 > < 臣 > < 臣 >

$$\circ \lim_{r o \infty} V_{\mathrm{K}}(r) = D_{e}$$

• Minimun at $r = r_e$

$$\circ \lim_{r o 0} V_{\mathrm{M}}(r) = \infty$$

• B. Adolf Kratzer (1893-1983)

 $V_{\rm K}(R) = D_e \left(1 - \frac{r_e}{r}\right)^2$

•
$$E_n = D_e \left(1 - \frac{D_e/B_e}{(n+m+1)^2} \right)$$

 $m = \left(\frac{D_e}{B_e} + \frac{1}{4} \right)^{1/2} - \frac{1}{2}$ and $B_e = \frac{\hbar^2}{2\mu r_e^2}$
• $\Delta E = \frac{D_e^2}{B_e} \left(\frac{1}{(n+m+1)^2} - \frac{1}{(n+m+2)^2} \right)$

(日) (周) (日) (日)

▲ E ▶ E かへで QCyMM 15 / 39

- Analytic: Rosen-Morse, Rydberg, Linnett, ...
- Power series expansions:

$$V(y) = V(0) + \left(\frac{\partial V}{\partial y}\right)_0 y + \frac{1}{2!} \left(\frac{\partial^2 V}{\partial y^2}\right)_0 y^2 + \frac{1}{3!} \left(\frac{\partial^3 V}{\partial y^3}\right)_0 y^3 + \dots$$
$$y = R - R_e, 1 - e^{-a(R - R_e)}, \frac{R - R_e}{R}, \dots$$

- Many adjustable parameters. Quality of the fit \Leftrightarrow Uncertainty
- Numerical solution of the vibrational Schrödinger equation.

Adolfo Bastida (Universidad Murcia)

QCyMM 16 / 39

(4) (5) (4) (5)

Image: Image:

- Harmonic bending vibrations
 - $V(\theta) = \frac{1}{2} k (\theta \theta_e)^2$

< □ > < □ > < □ > < □ > < □ > < □ >

- $F_{\theta} = -k(\theta \theta_e)$
- Anharmonic terms $\Rightarrow k_3 (\theta - \theta_e)^3 + \dots$

▲ E ► E つへで QCyMM 17 / 39

• Dihedral angles

Adolfo Bastida (Universidad Murcia)

QCyMM 20 / 39

Coulomb forces

• $V(r_{ij}) = \frac{1}{4\pi\epsilon_0} \frac{q_i q_j}{r_{ij}}$

• $-e < q_i, q_j < +e$

イロト イロト イヨト イヨト

▲ E ▶ E かへで QCyMM 21 / 39

- van der Waals forces
 - Electric dipole $\Rightarrow \mu = q \cdot I$

• Dipole-dipole interactions

• Dipole-induced dipole interactions

∃ >

Instantaneous dipole-induced dipole interactions.
 Ej. He₍₁₎, Ne₍₁₎, ...

 $V_{
m dd} = -rac{C}{r^6}
ightarrow C \propto rac{lpha_1 \, lpha_2}{T}
ightarrow lpha$ polarizability

- Intensity \Rightarrow dipole-dipole > dipole-ind. dipole > inst. dipole-ind. dipole
- Short range repulsive forces $\Rightarrow V_{rep} \propto \frac{1}{r^{12}}$

• Lennard-Jones potential

•
$$V_{\rm LJ}(r) = 4\epsilon \left(\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right) = \epsilon \left(\left(\frac{r_{\rm min}}{r}\right)^{12} - 2 \left(\frac{r_{\rm min}}{r}\right)^6 \right)$$

• $r_{\min} = 2^{1/6} \sigma \Rightarrow V_{LJ}(r_{\min}) = -\epsilon$

• $V_{\rm LJ}(\sigma) = 0 \Rightarrow$ effective atomic radius

Homoatomic interactions

Atom	Source	$\epsilon/k_{\rm B}({\rm K})$	$\sigma(nm)$	
н	[Murad and Gubbins 1978]	8.6	0.281	
He	[Maitland et al. 1981]	10.2	0.228	
С	[Tildesley and Madden 1981]	51.2	0.335	
N	[Cheung and Powles 1975]	37.3	0.331	
0	[English and Venables 1974]	61.6	0.295	
F	[Singer et al. 1977]	52.8	0.283	
Ne	[Maitland et al. 1981]	47.0	0.272	
S	[Tildesley and Madden, 1981]	183.0	0.352	
Cl	[Singer et al. 1977]	173.5	0.335	
Ar	[Maitland et al. 1981]	119. <mark>8</mark>	0.341	
Br	[Singer et al. 1977]	257.2	0.354	
Kr	[Maitland et al. 1981]	164.0	0.383	

Table 1.1. Atom-atom interaction parameters

• Heteroatomic interactions

$$\sigma_{AB} = \frac{1}{2} \left(\sigma_A + \sigma_b \right) \qquad \qquad \epsilon_{AB} = \sqrt{\epsilon_A \cdot \epsilon_B}$$

Image: A matrix

Adolfo Bastida (Universidad Murcia)

 ↓ ■
 ⊃ < ○</th>

 QCyMM
 25 / 39

Any fragment of the molecule

 $ABC \rightarrow A + BC$ $\rightarrow B + AC$ $\rightarrow C + AB$ $\rightarrow A + B + C$

- Symmetry properties
- Reproduce experimental/ab initio data
- Reasonable behaviour everywhere
- Smooth behaviour

- Simple algebraic form
- Easy to fit
- Good convergence with new data
- Focus on most meaningful regions
- ٩

$$V = V_{eq} + \sum_{i} \left(\frac{\partial V}{\partial q_i} \right)_{eq} q_i + \frac{1}{2!} \sum_{i,j} \left(\frac{\partial^2 V}{\partial q_i \partial q_j} \right)_{eq} q_i q_j$$
$$+ \frac{1}{3!} \sum_{i,j,k} \left(\frac{\partial^3 V}{\partial q_i \partial q_j \partial q_k} \right)_{eq} q_i q_j q_k + \dots$$

- \bullet Convergence properties \Rightarrow dissociation channels
- Many parameters \rightarrow accurate
- Difficult interpretation
- Spectroscopy

★ ∃ →

Journal of Molecular Structure (Theochem), 166 (1988) 357-362 Elsevier Science Publishers B.V., Amsterdam — Printed in The Netherlands 357

PERTURBED MORSE EXPANSION FOR TRIATOMIC MOLECULES

J. Zúñiga, A. Bastida, A. Hidalgo and A. Requena Departamento de Química-Física, Universidad de Murcia, Murcia 30001 (España)

lengths. The most commonly used expansion has been that in terms

of internal displacements coordinates

$$V_{\mathbf{R}} = \Sigma K_{ij}R_{i}R_{j} + \Sigma K_{ijk}R_{i}R_{j}R_{k} + \Sigma K_{ijk}R_{i}R_{j}R_{k}R_{l}$$
(1)

where $R_1=r_1-r_1$, $R_2=\theta-\theta_e$ and $R_3=r_2-r_3$, which is adequate around

POTENTIAL MODEL

The internuclear motion of a triatomic molecule can be described

$$v_{\mathbf{M}} = \Sigma M_{\mathbf{i}\mathbf{j}\mathbf{y}\mathbf{i}\mathbf{Y}\mathbf{j}} + \Sigma M_{\mathbf{i}\mathbf{j}\mathbf{k}\mathbf{Y}\mathbf{i}\mathbf{Y}\mathbf{j}\mathbf{Y}\mathbf{k}} + \Sigma M_{\mathbf{i}\mathbf{j}\mathbf{k}\mathbf{1}\mathbf{Y}\mathbf{i}\mathbf{Y}\mathbf{j}\mathbf{Y}\mathbf{k}\mathbf{Y}\mathbf{l}}$$
(2)

where

$$y = 1 - e^{-a_i(r_i - r_i,e)}$$
 $i = 1,3$ (3)

and

$$y_2 = \theta - \theta_{eq}$$
.

Adolfo Bastida (Universidad Murcia)

(4)

QCyMM 28 / 39

Many-body expansions

$$V = \sum_{i < j} V_2(r_{ij}) + \sum_{i < j < k} V_3(r_{ij}, r_{ik}, r_{jk}) + \dots$$

 $r_{ij} \rightarrow \text{distance between atoms } i \text{ and } j$

 $V_2 \rightarrow$ Two body interactions

```
V_3 \rightarrow \text{Three body interactions}
```


17 February 1995

Chemical Physics Letters 233 (1995) 405-410

- Good asymptotic behaviour
- Low flexibility in bond regions

(日) (周) (日) (日)

QCvMM

29 / 39

• Useful in reactivity

CHEMICAL PHYSICS LETTERS

Adjusted double many-body expansion potential energy surface for HO₂ based on rigorous vibrational calculations

A.J.C. Varandas ^a, J.M. Bowman ^{a,1}, B. Gazdy ^b

^b Departamento de Quimica, Universidade de Coimbra, 3049 Coimbra Codez, Portugal
^b Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, GA, USA

Received 10 November 1994; in final form 29 November 1994

Adolfo Bastida (Universidad Murcia)

Nuclear potentials

Molecular Mechanics potentials

$$V = \sum_{\text{bonds}} \frac{1}{2} k_b (l - l_0)^2 + \sum_{\text{angles}} \frac{1}{2} k_a (\theta - \theta_0)^2 + \sum_{\text{torsions}} \frac{1}{2} V_n [1 + \cos(n\omega - \gamma)]$$

+
$$\sum_{j=1}^{N-1} \sum_{i=j+1}^{N} \left\{ \epsilon_{i,j} \left[\left(\frac{r_{0ij}}{r_{ij}} \right)^{12} - 2 \left(\frac{r_{0ij}}{r_{ij}} \right)^6 \right] + \frac{q_i q_j}{4\pi\epsilon_0 r_{ij}} \right\}$$

- Biomolecules (proteins, ADN,...)
- Very general
- Accuracy

Adolfo Bastida (Universidad Murcia)

 ↓ ■
 ⊃ < ○</th>

 QCyMM
 30 / 39

< ∃ > <

Molecular Mechanics potentials

- AMBER ⇒ Assisted Model Building with Energy Refinement W.D. Cornell et al. A second generation force field for the simulation of proteins, nucleic acids and organic molecules. J. Am. Chem. Soc. 117, 5179-5197 (1995).
- CHARMM ⇒ CHemistry At HaRvard Molecular Mechanics small M. Karplus et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. 102, 3586-3616 (1998).
- GROMOS ⇒ GROningen MOlecular Simulation van Gunsteren et al. A biomolecular force field based on the free enthalpy of hydratation and solvation: The GROMOS force field parameter sets 53A5 and 53A6. J. Comput. Chem. 25, 1656-1676 (2004).
- OPLS ⇒ Optimized Potential for Liquid Simulations
 W.L. Jorgensen et al. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225-11236 (1996).

< □ > < □ > < □ > < □ > < □ > < □ >

Molecular Mechanics potentials

The Nobel Prize in Chemistry 2013 Martin Karplus, Michael Levitt, Arieh Warshel

Share this: 🚹 🔡 🗾 🗄 889 🖾

The Nobel Prize in Chemistry 2013

Photo: A. Mahmoud Martin Karplus Prize share: 1/3

Photo: A. Mahmoud Michael Levitt Prize share: 1/3

Photo: A. Mahmoud Arieh Warshel Prize share: 1/3

The Nobel Prize in Chemistry 2013 was awarded jointly to Martin Karplus, Michael Levitt and Arieh Warshel "for the development of multiscale models for complex chemical systems".

Nuclear potentials

A B F A B F

- Most studied molecule \Rightarrow H-bond
- 69 anomalous properties of water

http://www1.lsbu.ac.uk/water/water_anomalies.html

< AP

Water

Water

Models

Parameters for some water molecular models												
Model	Туре	σA ⁶	εkJ mol ⁻¹⁶	I1 A	12 A	q1 (e)	q2 (e)	6,	φ			
SSD [511]	.8	3.016	15.319					109.47	109.47			
SPC [94]	a	3.166	0.650	1.0000	-	+0.410	-0.8200	109.47	•			
SPC/E [3]	a	3.166	0.650	1.0000	•	+0.4238	-0.8476	109.47	•			
SPC/HW (D20) [220]	a	3.166	0.650	1.0000	-	+0.4350	-0.8700	109.47	•			
SPC/Fw 2 [994]	a	3.166	0.650	1.0120	-	+0.410	-0.8200	113.24	•			
TIP3P [180]	a	3.15061	0.6364	0.9572	•	+0.4170	-0.8340	104.52	•			
TIP3P/Fw ² [994]	a	3.1506	0.6368	0.9600	•	+0.4170	-0.8340	104.5	•			
PPC 1. 2 [3]	b	3.23400	0.6000	0.9430	0.06	+0.5170	-1.0340	106.00	127.00			
TIP4P [180]	c	3.15365	0.6480	0.9572	0.15	+0.5200	-1.0400	104.52	52.26			
TIP4P-Ew [649]	c	3.16435	0.680946	0.9572	0.125	+0.52422	-1.04844	104.52	52.26			
TIP4P-FQ [197]	c	3.15365	0.6480	0.9572	0.15	+0.631	-126 ¹	104.52	52.26			
TIP4P/Ice [838]	c	3.1668	0.8822	0.9572	0.1577	+0.5897	-1.1794	104.52	52.26			
TIP4P/2005 [984]	c	3.1589	0.7749	0.9572	0.1546	+0.5564	-1.1128	104.52	52.26			
TIP4P/20051 [1765]	c	3.1644	0.7749	0.9664	0.15555	+0.5564	-1.1128	104.75	52.375			
SWFLEX-AI 2 [201]	SWFLEX-AI ² [201] c		erms used	0.9681	0.141,3	+0.6213	-1.2459	102.71	51.35 ¹			
COSIG3 [704] 9	c	3.17459	0.9445	1.0000	0.15	+0.450672	-0.901344	109.47				
COSID [1617] 9 16	c	3.4365	0.5119	0.9572	0.257	+0.5863	-1.1726	104.52				
GCPM ² [859] 10	c	3.69 4,11	0.9146 4	0.9572	0.27	+0.6113	-1.2226	104.52	52.26			
SWM4-NDP ² 13 [933]	c	3.18395	0.88257	0.9572	0.24034	0.55733	-1.11466	104.52	52.26			
ST2 [872] 12	d	3.10000	0.31694	1.0000	0.80	+0.24357	-0.24357	109.47	109.47			
TIP5P [180]	d	3.12000	0.6694	0.9572	0.70	+0.2410	-0.2410	104.52	109.47			
TPSP-Ew [619]	d	3.097	0.7448	0.9572	0.70	+0.2410	-0.2410	104.52	109.47			
TTM2-F [1027] 14	c	five para	meters used	0.9572	0.70	+0.574	-1.148	104.52	52.26			
POL5/TZ 2 [256]	d	2.9837 4	4	0.9572	0.5	varies 5	-0.42188	104.52	109.47			
Six-site ^[491]	c/d ⁷	3.115 ₀₀ 0.673 _{HH}	0.715 ₀₀ 0.115 _{HH}	0.980	0.8892L 0.230 _M	+0.477	-0.044L -0.866M	108.00	111.00			
QCT [1251]	a ¹⁵	3.140	0.753	0.9614		+0.6064	-1.2128	104.067				

イロン 不聞と 不同と 不同と

Adolfo Bastida (Universidad Murcia)

Nuclear potentials

Ξ. QCyMM 34 / 39

• Best model? \Rightarrow B. Guillot. A reappraisal of what we have learnt during three decades of computer simulations of water. J.Mol. Liquids **101**, 219(2002)

Figure 1. Density of simulated water at 298K and 1bar for different model potentials (see Table):top panel (rigid models), middle panel (flexible models) and bottom panel (polarizable models). The dotted line indicates the experimental value for H_2O (0.997g/cm3).

Adolfo Bastida (Universidad Murcia) Nuclear potentials

QC_VMM 35 / 39

ъ

• Perturbation theory

$$\hat{H} = \hat{H}^{(0)} + \lambda \hat{H}' \Rightarrow \begin{cases} E = E^{(0)} + \lambda E^{(1)} + \lambda^2 E^{(2)} + \dots \\ \psi = \psi^{(0)} + \lambda \psi^{(1)} + \lambda^2 \psi^{(2)} + \dots \end{cases}$$

$$E^{(i)}, \psi^{(i)} \Rightarrow \langle \psi_i^{(0)} | H' | \psi_j^{(0)} \rangle$$

$$\downarrow$$
analytical/numerical

- Analytical expresions \Rightarrow cumbersome
- Convergence properties
- Useful for interpretation

Linear variational method

$$\hat{H} = \hat{H}^{(0)} + \hat{H}' \Rightarrow \begin{cases} \hat{H}^{(0)}\psi^{(0)} = E^{(0)}\psi^{(0)} \rightarrow \text{ basis set} \\ \\ \psi = \sum_{k} c_{k} \psi_{k}^{(0)} \end{cases}$$

$$C^{\dagger}HC = \Lambda \Rightarrow \langle \psi_i^{(0)} | H' | \psi_j^{(0)} \rangle$$

 \downarrow
analytical/numerica

- Diagonalization \Rightarrow computationally demanding
- Convergence properties
- Choice of the basis set

Adolfo Bastida (Universidad Murcia)

• Discrete Variable Representation method

$$\begin{array}{l} \varphi_i^{(0)} \to \ \mathsf{HO}, \ \mathsf{particle} \ \mathsf{in} \ \mathsf{a} \ \mathsf{box}, \dots \\ \downarrow \\ \langle \varphi_i^{(0)} | \hat{x} | \varphi_j^{(0)} \rangle \to \mathbf{B}^{\dagger} \mathbf{X} \mathbf{B} = \lambda_x \\ \downarrow \\ \langle \phi_i^{\mathrm{DVR}} | \hat{x} | \phi_j^{\mathrm{DVR}} \rangle = \lambda_{x_i} \delta_{ij} \leftarrow \phi_i^{\mathrm{DVR}} = \sum_k b_{ki} \varphi_k^{(0)} \\ \downarrow \\ \langle \phi_i^{\mathrm{DVR}} | \hat{V}(x) | \phi_j^{\mathrm{DVR}} \rangle \approx V(\lambda_{x_i}) \delta_{ij} \end{array}$$

Adolfo Bastida (Universidad Murcia)

・ロト ・ 日 ト ・ ヨ ト ・

DVR method

Figure 1A. Particle in a box DVR. The system is defined for a box ranging from - 10 to 10 bohr.

Figure 1B. A set of 5 particle in a box DVR's. The quadrature points are equaly spaced in this case.

Figure 2A. A Numerically Generated DVR (NG-DVR) for the harmonic oscillator.

Figure 2B. A set of 5 NG-DVR for the harmonic oscillator.

< □ > < □ > < □ > < □ > < □ > < □ >

J.J. Soares Neto and L.S. Costa, Braz. J. Phys. 28, 1 (1998)

Adolfo Bastida (Universidad Murcia)

Nuclear potentials

▲ E ▶ E かへで QCyMM 39 / 39