

Problem sheet: Questions

1. $(\diamond \diamond \diamond)$ The radial $1 s$ function is $R_{1,0}=N e^{-Z r / a_{o}}$. Find the value of r that maximizes the radial distribution function and calculate the normalization constant N.
2. $(\diamond \diamond \diamond)$ Calculate $\langle r\rangle_{1 s}$. Compare the result with that provided by the general expression $\langle r\rangle_{n, l}=\frac{a_{o}}{2 Z}\left(3 n^{2}-l(l+1)\right)$.
3. $(\diamond \diamond)$ Consider the following function to describe the angular part for an electron in a hydrogen atom:

$$
\psi(\theta, \phi)=N e^{i A \phi} \cos \theta
$$

where N and A are constants.
a) Is $\psi(\theta, \phi)$, in general, eigenfunction of \hat{L}_{z} ?
b) Calculate the value of A so that $\psi(\theta, \phi)$ is eigenfunction of \hat{L}^{2} and find the corresponding values of the quantum numbers l and m_{l}.
4. $(\diamond \diamond)$ Let us consider two spherical harmonics which \hat{L}^{2} and \hat{L}_{z} eigenvalues are $6 \hbar^{2}$ and $\pm 2 \hbar$ respectively.
a) Prove that they are orthogonal.
b) Obtain a real spherical harmonic expressed as a linear combination of them.
5. $(\diamond \diamond)$ Calculate the extremes of the $2 s$ radial distribution function for a hidrogenic atom. Identify them as maximun or minimun taking into account that the function is always positive.
6. $(\diamond \diamond)$ Calculate the probability of finding an $1 s$ electron at distances smaller than a_{0} for a hidrogenic atom with atomic number Z. Prove that the probability always increases with Z.
7. $(\diamond \diamond)$ Calculate the probability of finding the $1 s$ or $2 s$ electrons in the classically forbidden region.

Dificulty level: $(\diamond \diamond \diamond)$ Easy, $(\diamond\rangle \diamond)$ Normal, $(\diamond\rangle\rangle)$ To think a bit.

Question $1 \Rightarrow r_{\max }=\frac{a_{0}}{Z}, N=2\left(\frac{Z}{a_{0}}\right)^{3 / 2}$
Question $2 \Rightarrow\langle\hat{r}\rangle=\frac{3}{2} \frac{a_{o}}{Z}$
Question $3 \Rightarrow$ (a) It is eigenfunction because $\hat{l}_{z} \psi=\hbar A \psi$
(b) $A=0, l=1$ and $m_{l}=0$.

Question $4 \Rightarrow \psi_{\text {real }}(\theta, \phi)=\frac{\sqrt{15}}{4 \sqrt{\pi}} \sin ^{2} \theta \cos 2 \phi$
Question $5 \Rightarrow r_{\text {min }}=\frac{2 a_{0}}{Z}, r_{\text {max }}=0.76 \frac{a_{0}}{Z}, r_{\text {max }}=5.23 \frac{a_{0}}{Z}$
Question $6 \Rightarrow P\left(r \leq a_{0}\right)=1-e^{-2 Z}\left(1+2 Z+2 Z^{2}\right)$
Question $7 \Rightarrow P_{1 s}=0.238, P_{2 s}=0.186$

