

Lesson: HIDROGENIC ATOMS

PROBLEM SHEET: QUESTIONS

- 1. ($\diamond \diamond \diamond$) The radial 1*s* function is $R_{1,0} = N e^{-Zr/a_o}$. Find the value of *r* that maximizes the radial distribution function and calculate the normalization constant *N*.
- 2. ($\diamond \diamond \diamond$) Calculate $\langle r \rangle_{1s}$. Compare the result with that provided by the general expression $\langle r \rangle_{n,l} = \frac{a_o}{2Z} (3n^2 l(l+1)).$
- 3. (♦♦◊) Consider the following function to describe the angular part for an electron in a hydrogen atom:

$$\psi(\theta,\phi) = N e^{iA\phi} \cos\theta$$

where N and A are constants.

- a) Is $\psi(\theta, \phi)$, in general, eigenfunction of \hat{L}_z ?
- b) Calculate the value of A so that $\psi(\theta, \phi)$ is eigenfunction of \hat{L}^2 and find the corresponding values of the quantum numbers l and m_l .
- 4. ($\diamond \diamond \diamond$) Let us consider two spherical harmonics which \hat{L}^2 and \hat{L}_z eigenvalues are $6\hbar^2$ and $\pm 2\hbar$ respectively.
 - a) Prove that they are orthogonal.
 - b) Obtain a real spherical harmonic expressed as a linear combination of them.
- 5. ($\diamond \diamond \diamond$) Calculate the extremes of the 2s radial distribution function for a hidrogenic atom. Identify them as maximum or minimum taking into account that the function is always positive.
- 6. ($\diamond \diamond \diamond$) Calculate the probability of finding an 1s electron at distances smaller than a_0 for a hidrogenic atom with atomic number Z. Prove that the probability always increases with Z.
- 7. ($\diamond \diamond \diamond$) Calculate the probability of finding the 1s or 2s electrons in the classically forbidden region.

Dificulty level: $(\diamond \diamond \diamond)$ Easy, $(\diamond \diamond \diamond)$ Normal, $(\diamond \diamond \diamond)$ To think a bit.

PROBLEM SHEET: SOLUTIONS

Question 1 $\Rightarrow r_{\text{max}} = \frac{a_0}{Z}, N = 2\left(\frac{Z}{a_0}\right)^{3/2}$ Question 2 $\Rightarrow \langle \hat{r} \rangle = \frac{3}{2} \frac{a_0}{Z}$ Question 3 \Rightarrow (a) It is eigenfunction because $\hat{l}_z \psi = \hbar A \psi$ (b) A = 0, l=1 and $m_l = 0$. Question 4 $\Rightarrow \psi_{\text{real}}(\theta, \phi) = \frac{\sqrt{15}}{4\sqrt{\pi}} \sin^2 \theta \cos 2\phi$ Question 5 $\Rightarrow r_{\text{min}} = \frac{2a_0}{Z}, r_{\text{max}} = 0.76 \frac{a_0}{Z}, r_{\text{max}} = 5.23 \frac{a_0}{Z}$ Question 6 $\Rightarrow P(r \le a_0) = 1 - e^{-2Z}(1 + 2Z + 2Z^2)$ Question 7 $\Rightarrow P_{1s} = 0.238, P_{2s} = 0.186$