

Lesson: MOLECULAR SPECTROSCOPY

_ PROBLEM SHEET: QUESTIONS

1. (♦♦◊) The following transitions are detected in the microwave spectrum of the vibrational ground state of the CO molecule

It is also observed the $J = 0 \rightarrow 1$ transition of the v = 1 vibrational state at 114221.2 MHz. Calculate B_e , r_e y $D_{e,r}$.

2. ($\diamond \diamond \diamond$) Calculate the ω_e and $\omega_e \chi_e$ constants of the HCl molecule using the following IR transitions

 $v \rightarrow v'$ $0 \rightarrow 1$ $0 \rightarrow 2$ $0 \rightarrow 3$ $0 \rightarrow 4$ $0 \rightarrow 5$ $\tilde{\nu}$ (cm⁻¹)2885.95668.08347.010923.113396.5

- 3. ($\diamond \diamond \diamond$) The fundamental band origin of the CO molecule is observed at 2143 cm⁻¹ and the first overtone at 4260 cm⁻¹. Calculate the ω_e and $\omega_e \chi_e$ constants, D_e and D_0 .
- 4. (♦◊◊) Deduce expressions of the wavenumbers of the R and P branches spectral lines for a diatomic molecule.

Dificulty level: $(\diamond \diamond \diamond)$ Easy, $(\diamond \diamond \diamond)$ Normal, $(\diamond \diamond \diamond)$ To think a bit.

PROBLEM SHEET: SOLUTIONS

Question 1 \Rightarrow $B_e = 57898$ MHz, $r_e = 1.128$ Å, $D_{e,r} = 0.18$ MHz

Question 2 $\Rightarrow \omega_e = 2988.7 \text{ cm}^{-1}, \omega_e \chi_e = 51.6 \text{ cm}^{-1}$

Question $3 \Rightarrow \omega_e = 2169 \text{ cm}^{-1}$, $\omega_e \chi_e = 13 \text{ cm}^{-1}$, $D_e = 11.22 \text{ eV}$, $D_0 = 11.1 \text{ eV}$