

UNIVERSIDAD DE MURCIA

Lesson: Introduction to Quantum Chemistry

Problem sheet: Questions

1. $(\diamond \diamond \diamond)$ Let Ψ_{1} and Ψ_{2} be two degenerate solutions of the Schrödinger's equation. Verify that any linear combination $\Psi=a \Psi_{1}+b \Psi_{2}$ (being a and b two scalars) is also solution of the Schrödinger's equation for the same system and with same value of the energy.
2. $(\diamond \diamond \diamond)$ Assuming that $\hat{D}=\frac{d}{d x}$ prove that $(\hat{D}+\hat{x})(\hat{D}-\hat{x})=\hat{D}^{2}-\hat{x}^{2}-1$
3. $(\diamond \diamond \diamond)$ Prove that $(\hat{A}+\hat{B})^{2}=(\hat{B}+\hat{A})^{2}$ for any two operators. Under what conditions the identity $(\hat{A}+\hat{B})^{2}=\hat{A}^{2}+2 \hat{A} \hat{B}+\hat{B}^{2}$ is valid?
4. $(\diamond \diamond)$ Which of the following functions are eigenfunctions of the $\frac{d^{2}}{d x^{2}}$ operator? (a) $e^{b x}$ (b) $e^{a x}+e^{b x}$ (c) $a \sin x+b \cos x$, being a and b scalars. Get the corresponding eigenvalues.
5. $(\diamond \diamond)$ Let us consider a particle moving in the (x, y, z) space. Evaluate the following commutators: (a) $\left[\hat{x}, \hat{p}_{x}\right]$ (b) $\left[\hat{x}, \hat{p}_{y}\right]$ (c) $\left[\hat{x}, \hat{p}_{x}^{2}\right]$ (d) $[\hat{x}, V(x, y, z)]$

Dificulty level: $(\diamond \diamond \diamond)$ Easy, $(\diamond \diamond \diamond)$ Normal, $(\diamond \diamond\rangle)$ To think a bit.

Question $3 \Rightarrow[\hat{A}, \hat{B}]=0$
Question $4 \Rightarrow$ (a) b^{2} (b) a^{2} si $a=b$ (c) -1
Question $5 \Rightarrow$ (a) $i \hbar$ (b) 0 (c) $2 \hbar^{2} \frac{\partial}{\partial x}$ (d) 0

