

Problem sheet: Questions

1. $(\diamond \diamond \diamond)$ Calculate the probability of finding a particle in an one-dimensional box in the right half and show that it is independent of the quantum number.
2. $(\diamond \diamond \diamond)$ Calculate the probability of finding a particle in an one-dimensional box in the $(L / 3,2 L / 3)$ interval for the first 40 quantum states and plot it. Discuss the evolution of the probabilities with the quantum number.
3. $(\diamond>)$ Calculate the average values of the \hat{x} and \hat{p} operators for the eigenfunctions of the particle in an one-dimensional box. Discuss the results.
4. $(\diamond \gg)$ The following function

$$
\Psi(x)=A e^{i c x}+B e^{-i c x}
$$

where A, B and c are constants is proposed to describe a particle in an onedimensional box.
a) Find the values of the constants so that $\Psi(x)$ is an eigenfunction of the system.
b) Evaluate the constants so that $\Psi(x)$ is well-behaved.
5. $(\diamond \diamond \diamond)$ The following function

$$
\Psi(x)=a(1-\cos (b x))^{1 / 2}
$$

where a and b are constants is proposed to describe a particle in an onedimensional box. Evaluate the constants so that $\Psi(x)$ is well-behaved.
6. $(\diamond \diamond\rangle)$ The following function

$$
\psi(x)=A x^{2}+B x+C
$$

where A, B and C are constants is proposed to describe the ground state of a particle in an one-dimensional box.

- Evaluate the constants so that $\psi(x)$ is well-behaved.
- Calcualte the mean value of the nergy and the error with respecto to the accurate energy.
- Plot the probability densities of $\psi(x)$ and the accurate eigenfunction assuming $L=1$.

7. $(\diamond \diamond \diamond)$ Calculate the probability of finding the particle in a ring in the first quadrant.
8. $(\rangle\rangle)$ Let us consider the following physical model: A particle with mass m moving freely in a semicircumference with radius R so that the potential energy is null for $0 \leq \phi \leq \pi$ and infinite otherwise ($\pi<\phi<2 \pi$). Find the eigenfunctions and eigenvalues for the energy.
9. $(\diamond \diamond \diamond)$ Show that the spherical polar and cartesians coordiantes are related through the following expressions:

$$
\begin{aligned}
& x=r \operatorname{sen} \theta \cos \phi \\
& y=r \operatorname{sen} \theta \operatorname{sen} \phi \\
& z=r \cos \theta
\end{aligned}
$$

10. $(\diamond \diamond)$ Plot using polar coordinates the $Y_{1}^{0}(\theta, \phi)$ spherical harmonic in the $x z$ plane.
11. $(\diamond\rangle)$ Let us consider the following state function

$$
\psi(\theta, \phi)=A \sin ^{2} \theta \sin (m \phi)
$$

where A is a normalization constant. Prove whether this function is, in any case, an eigenfunction of the operators $\hat{L}^{2}(\theta, \phi)$ and $\hat{L}_{z}(\phi)$.
12. $(\diamond \diamond)$ The following functions are spherical harmonics

$$
\begin{aligned}
F_{A}(\theta, \phi) & =\sqrt{\frac{3}{4 \pi}} \cos \theta \\
F_{B}(\theta, \phi) & =\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right)
\end{aligned}
$$

Find their corresponding quantum numbers and prove that they are orthogonal.
13. $(\leqslant\rangle)$ A particle in a one-dimensional box is described by the following state function

$$
\psi(x)=\sqrt{\frac{30}{l^{5}}} x(x-l)
$$

Calculate the probability of meassuring the values of energy $E_{n}(n=1,2, \ldots \ldots)$.
14. $(\diamond \diamond)$ Let us consider that the six p electrons of benzene move in a ring with radius equatl to the C-C bond distance $(0.139 \mathrm{~nm})$. Calculate the energy required to excite one electron in the higher occupied level into the next one. Compare the result with the experimental meassurement which wavenumber is $49019 \mathrm{~cm}^{-1}$.

Dificulty level: $(\diamond \diamond \diamond)$ Easy, $(\diamond \diamond \diamond)$ Normal, $(\diamond \diamond\rangle)$ To think a bit.

Question $1 \Rightarrow 0.5$
Question $2 \Rightarrow \frac{1}{3}-\frac{1}{2 n \pi}\left(\sin \frac{4 n \pi}{3}-\sin \frac{2 n \pi}{3}\right)$
Question $3 \Rightarrow\langle\hat{x}\rangle=\frac{l}{2},\langle\hat{p}\rangle=0$
Question $4 \Rightarrow A=-B=\frac{1}{2 i} \sqrt{\frac{2}{l}}, c=\frac{n \pi}{l}, n=1,2, \ldots$
Question $5 \Rightarrow B=\frac{n \pi}{l}, n=2,4,6, \ldots, A=\frac{1}{\sqrt{l}}$
Question $6 \Rightarrow A=\sqrt{\frac{30}{l^{5}}}, B=-\sqrt{\frac{30}{l^{3}}}, C=0,\langle\hat{H}\rangle=\frac{5 h^{2}}{4 \pi^{2} m l^{2}}$
Question $7 \Rightarrow \frac{1}{4}$
Question $12 \Rightarrow l_{A}=1, l_{B}=2, m_{A}=m_{B}=0$
Question $13 \Rightarrow 0$ if n is even and $\frac{960}{(n \pi)^{6}}$ if n is odd.
Question $14 \Rightarrow \lambda=47672 \mathrm{~cm}^{-1}$. Error $=2.7 \%$

