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|.A. Discrete spectrum:
Defininition of probability _-

Discrete spectrum = Finite number of possible measurement
results

Ex. Coin toss: Espectrum = 1,2
Ex. Dice toss: Espectrum = 1,2,3,4,5,6

Probability Py = Frequency of every result

Number of measurements providing N as result
Number of possible measurements

Normalization = ) P, =1
I

Ex. Coin toss: P| =

Py =

— P,
Py=Py=Py=Ps=P

N =9 —

Ex. Dice toss: P| =



e l.A. Discrete spectrum:

Graphical representation _-

Ex. Dice toss: Py = P, = Py = Py = P5; = Pg :%

T T T T T T T 1
PN

0.2f i




e l.A. Discrete spectrum:

Graphical representation _-

Ex. Real dice toss:

P =0.14,P, =0.17,P3 = 0.13,P; = 0.19,Ps = 0.21,P; = 0.16

Py

0.2r .

0.1r .




5 |.A. Discrete spectrum: Mean

value of a measurement _-

s Mean value of a measurement <f>

N measurements = fs, f3, f1,/1,/3,---

Meanvaluezjlv(f5+f3+f1+f1+f3+...)
1
=y iNi+ N+

Ny Ny
= f1— —= 4. ..
f N+f2N+

(f)= ZfiPi



5 |.A. Discrete spectrum: Mean

value of a measurement _-

Ex. Dice toss:

<N>_1'1+2'1+3'1—|—4-1—|—5-1—|—6.1—g_35
T 6 76 76 6 76 6 6

1 1 1 1 1 1
<m>:\/{6+\/§6+\/§6+ﬂ6+\/§6+[6
= 1.8

N

V3.5# 1.8



% |.A. Discrete spectrum: Mean

squared deviation _ =

= Mean squared deviation Af = Measures the mean deviation of
the values from their mean value

Measurements: f1, f>, f3,...
Mean value of the deviations = (f — (f)) = (f) = (f) =0
(A= ((F = ()= (2 =20 () + (1))
= (%) =2 +{F)°
A=\ () - (s




.B. Continuous spectrum:

Probability density _ El

m Continuous spectrum = Infinite number of possible results of
the measurements T € (a,b). It makes no sense to ask about
the probability of a particular outcome.

= Probability density p; = It describes how the probability is dis-
tributed among the possible results of the measurement

_dp
pT_d’c
1%

P(t € (71,7))= i PrdT
1

= Normalization = [, prdt =1



.B. Continuous spectrum:

Probability density _ ©

Ex. Ring toss = pyx = fl—i

X2

P(x - [xl,xz]) :/ Pxdx

X1

L
Normalization = / Pxdx =1
0

3L/4— 14 L 1
px:Cte:>px/ dx:1:>px:_
0 L
L/2 1 rL/2
h P(x € [0,L/2]) :/O Pxdx = Z/() dx



EE |B. Continuous spectrum: [ WEiReeTe" v Gumrw O

Mean value of measurement _.

s Mean value of a measurement <f>

(1)= | fepedr
V1T
Ex. Ring toss

L 1 L L
<x>:/0xpxdx:2/0 xdx:i

L 1 rL 12
<x2>:/0 xszdx:Z/O xzdx:?



.B. Continuous spectrum:

Mean squared deviation _.

= Mean squared deviation Af

A=)~ (1)

Ex. Ring toss




v IILA. Vectorial space

| ol

INTRODUCTION TO QUANTUM CHE-
MISTRY

m Vector = Member of a vectorial space

ri—a iddb jite kila

. . .ol 0
rj=ai-fb ji+ckg=b
rk=a ik b K e kdisc

base (2,7, k) <

( Normalized

3> =14-1=1(idem 5, k)
Orthogonal/Perpendicular

t-3=1-k=...=0
Generator system

\

r=(r-1)t

/

r=at+bjy+ck

\

+(r-3)3+(r-k)k



INTRODUCTION TO QUANTUM CHE-
MISTRY

!,: ll.LA. Vectorial space _ .

= Vector = f(x) = Hilbert’s space
Dot product = (flg)=fy, [*(x)g(x)dx

[ Normalized

(0i]¢;) =1, i=1,....N
Orthogonal/Perpendicular

Y base ({001 ) 0 (0il0) =0, i j=1,..N

Generator system

v
David Hilbert fx) = -51 a; o;(x)

\

N 5 N
0iln= utoii=a; | £09= I (@) it

1



1B. Concept of state:

m Classical Mechanics = The state of the system is characterized

by the positions and moments of all the particles in the system
(7,P)
dr
— mE
If these magnitudes are known at a given time (#(0),p(0))

—

P

they can be known at any later (¥(z),p(¢)) or earlier time
(F(—t), p(—t)) using the second Newton’s law

d*7
= m——-
dr?



1B. Concept of state:

m Quantum Mechanics = Postulate 1. The state of the system
is characterized by a function depending on the coordinates of
the particles in the system and time y(7,t) referred to as state
function.

The squared modulus of the state function [y(#,¢)|* is the pro-
bability density of the system

dP(7 € [,7+d7]) = [y(7,1)|* dF
Modulus of a complex number

a=ar+ia; = ]a]zza-a* = (ar+ia;)(ar —ia;) :a%+al-2



INTRODUCTION TO QUANTUM CHE-

MISTRY

10 St urcion [+

= Probabilistic interpretation

W)l

m State function must be well behaved:

a) Normalizable = [, |w(7.1)|>d7 = 1

b) Single valued = Probability density has only one value in
any space point

c) Continuous = No jumps



INTRODUCTION TO QUANTUM CHE-
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Y o

m Postulate 2. Every measurable physical quantity is described by

a lineal and hermitian operator obtained from the clasic expres-
sion of the magnitude using the correspondence principle

e X =X

A hd
* Px 7 Px = Ty
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A

\ Linas d AU +e(x)) =Af(x) +Ag(x)
Hneal { Al f(x) = cAf(x)

Hermitian = (f|Ag) = (Af|g)

(fIAg) =f. f*Agdx
(Af|g) = fux(AS)* gdx=[fux(Af) g dx] =] fur g*(Af)dx]"=(g|Af)"
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MISTRY

- CFERE [ReeT—

Ex. Kinetic energy operator

P> . P 1 (hd\* - d?
2m 2m  2m \ idx 2m dx?
Ex. Potential energy operator
V(ix)—=V=V(x)
Ex. Hamiltonian operator
2 O —h2d*
E=L v A=T+V(x)=—5+V({

2m



& |1.D. Operators: Result of a

m Postulado 3. The only possible result of the measurement of a
physical quantity A is one of the eigenvalues of the correspon-
ding eigenvalue equation

AA(pi:al-(pl— i=1,2,...

The numbers ay,a», ... are known as eigenvalues of the A ope-
rator and the functions @; are their corresponding eigenfun-
ctions. The eigenfunctions define a basis set in the Hilbert’s spa-
ce.

V=2 (9ilv) o
l



& |1.D. Operators: Result of a

m When the system is described by the state function y, the mea-

surement of the A magnitude will provide the result a; with a
probability equal to Py, = | (@;|w) |?.

V=Y (@) 0 = Po, = | {(@ilw) |
l



3 |1.D. Operators: Result of a

= Consequence 1 = AQ; =a;Q; y ¥ = @,

Py = | (@ilw) > =1

m Consecuence 2 = the mean value of a measurement of the A
magnitude is

(A) =Y Paai =Y leilw) Pa; = (wlAl)

= Mean squared deviationAA = \/<A2> - <A>2
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= Consequence 3= f=g Af=af

(FIAf) = [(FIAD)]
(flaf) =[{flaf)]’
alflfy=a* [(fIf)]* =a=da" = areal

= Consequence 4 =Af=af, Ag=bg, a#b

(flAg) = [(slAN)]"
b(flg) =alglf)"
b (elf) =y & fdx]"= [y, [ 8dx=(f|g)
(b—a){f|g) = 0= f,g orthogonals
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Ex. A = yB

Q‘|Q‘

comie_ane i d (2N odf
[A,B]f—ABf—BAf—EC(x 1) -2

d
= 2xf+M— 2xf
dx

[A,B] = 2x



c&lll.D. Operators: Simultaneous

= Consequence. If the hermitian operatorsA and B commute, then
there is a common set of eigenfunctions.

[A,B] =0 = ABf =BAf
Af; = aif;
!
BAf; = B(a;f;)
A(Bf;) = ai(Bf;)
| Bf;is eigenfunction of A with eigenvalue g;

Bf; = kf;
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m Heisenberg’s uncertainty principle

Microscope
V) Lo
h _
Fhor 4 AAAB > - (A, B])
=© Microscope A
Electron / [.X s P ] =ih
P // h
Photon « Ax Ap 2 5
Yo

Electron



