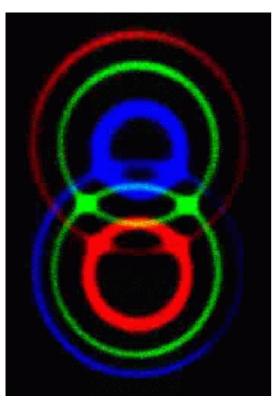


Introduction to Quantum Chemistry

Introduction



I. Probability
I.A. Discrete spectrum
I.B. Continuous spectrum
II. Quantum Mechanics 12
II.A. Vectorial space12
II.B. Concept of state 14
II.C. State function
II.D. Operators
II.E. Uncertainty principle 26

Adolfo Bastida PascualUniversidad de Murcia. España.

I.A. Discrete spectrum: Defininition of probability

I. Probability

- Discrete spectrum ⇒ Finite number of possible measurement results
 - Ex. Coin toss: Espectrum = 1,2
 - Ex. Dice toss: Espectrum = 1,2,3,4,5,6
- Probability $P_N \Rightarrow$ Frequency of every result

$$P_N = \frac{\text{Number of measurements providing } N \text{ as result}}{\text{Number of possible measurements}}$$

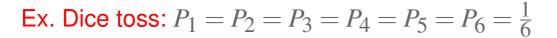
- Normalization $\Rightarrow \sum_{i} P_{i} = 1$
 - Ex. Coin toss: $P_1 = \frac{1}{2} = P_2$

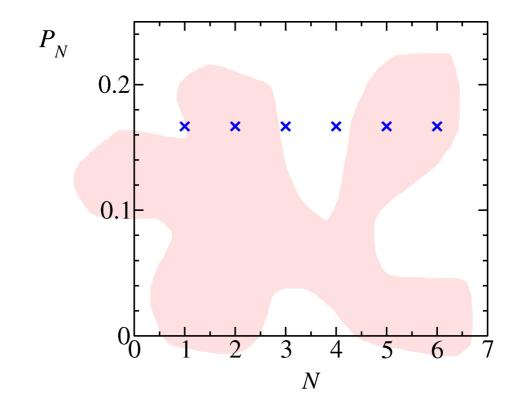
Ex. Dice toss:
$$P_1 = \frac{1}{6} = P_2 = P_3 = P_4 = P_5 = P_6$$

I.A. Discrete spectrum: Graphical representation

I. Probability

S



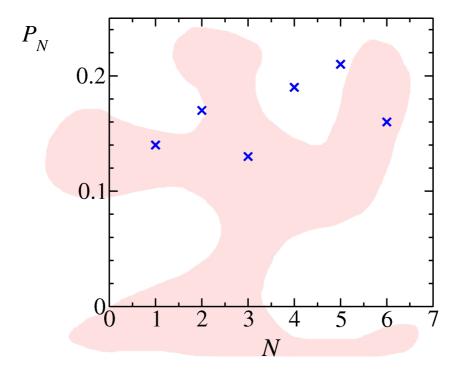


I.A. Discrete spectrum: Graphical representation

I. Probability

Ex. Real dice toss:

$$P_1 = 0.14, P_2 = 0.17, P_3 = 0.13, P_4 = 0.19, P_5 = 0.21, P_6 = 0.16$$



I.A. Discrete spectrum: Mean value of a measurement

I. Probability

• Mean value of a measurement $\langle f \rangle$

N measurements
$$\Rightarrow f_5, f_3, f_1, f_1, f_3, \dots$$

$$\text{Mean value} = \frac{1}{N} (f_5 + f_3 + f_1 + f_1 + f_3 + \dots)$$

$$= \frac{1}{N} (f_1 N_1 + f_2 N_2 + \dots)$$

$$= f 1 \frac{N_1}{N} + f_2 \frac{N_2}{N} + \dots$$

$$\langle f \rangle = \sum_i f_i P_i$$

I.A. Discrete spectrum: Mean value of a measurement

I. Probability

Ex. Dice toss:

$$\langle N \rangle = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = \frac{21}{6} = 3.5$$

$$\langle \sqrt{N} \rangle = \sqrt{1} \cdot \frac{1}{6} + \sqrt{2} \cdot \frac{1}{6} + \sqrt{3} \cdot \frac{1}{6} + \sqrt{4} \cdot \frac{1}{6} + \sqrt{5} \cdot \frac{1}{6} + \sqrt{6} \cdot \frac{1}{6}$$

= 1.8

$$\sqrt{\langle N \rangle} \neq \langle \sqrt{N} \rangle$$

$$\sqrt{3.5} \neq 1.8$$

I.A. Discrete spectrum: Mean squared deviation

I. Probability

■ Mean squared deviation $\Delta f \Rightarrow$ Measures the mean deviation of the values from their mean value

Measurements: f_1, f_2, f_3, \dots

Mean value of the deviations = $\langle f - \langle f \rangle \rangle = \langle f \rangle - \langle f \rangle = 0$

$$(\Delta f)^{2} = \langle (f - \langle f \rangle)^{2} \rangle = \langle f^{2} - 2f \langle f \rangle + \langle f \rangle^{2} \rangle$$
$$= \langle f^{2} \rangle - 2\langle f \rangle \langle f \rangle + \langle f \rangle^{2}$$
$$\Delta f = \sqrt{\langle f^{2} \rangle - \langle f \rangle^{2}}$$

I.B. Continuous spectrum: Probability density

I. Probability

- ∞
- Continuous spectrum \Rightarrow Infinite number of possible results of the measurements $\tau \in (a,b)$. It makes no sense to ask about the probability of a particular outcome.

$$\rho_{\tau} = \frac{dP}{d\tau}$$

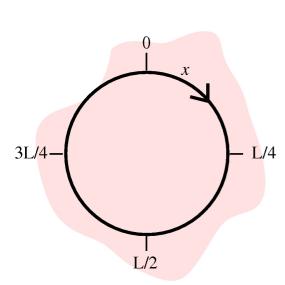
$$P(\tau \in (\tau_1, \tau_2)) = \int_{\tau_1}^{\tau_2} \rho_{\tau} d\tau$$

• Normalization $\Rightarrow \int_{\forall \tau} \rho_{\tau} d\tau = 1$

I.B. Continuous spectrum: Probability density

I. Probability

Ex. Ring toss $\Rightarrow \rho_x = \frac{dP}{dx}$



$$P(x \in [x_1, x_2]) = \int_{x_1}^{x_2} \rho_x dx$$

Normalization $\Rightarrow \int_0^L \rho_x dx = 1$ $\rho_x = \text{cte.} \Rightarrow \rho_x \int_0^L dx = 1 \Rightarrow \rho_x = \frac{1}{L}$

$$P(x \in [0, L/2]) = \int_0^{L/2} \rho_x dx = \frac{1}{L} \int_0^{L/2} dx$$

I.B. Continuous spectrum: Mean value of measurement

I. Probability

lacktriangle Mean value of a measurement $\langle f \rangle$

$$\langle f \rangle = \int_{\forall \tau} f_{\tau} \rho_{\tau} d\tau$$

Ex. Ring toss

$$\langle x \rangle = \int_0^L x \, \rho_x \, dx = \frac{1}{L} \int_0^L x \, dx = \frac{L}{2}$$
$$\langle x^2 \rangle = \int_0^L x^2 \, \rho_x \, dx = \frac{1}{L} \int_0^L x^2 \, dx = \frac{L^2}{3}$$

I.B. Continuous spectrum: Mean squared deviation

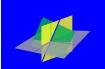
I. Probability

• Mean squared deviation Δf

$$\Delta f = \sqrt{\langle f^2 \rangle - \langle f \rangle^2}$$

Ex. Ring toss

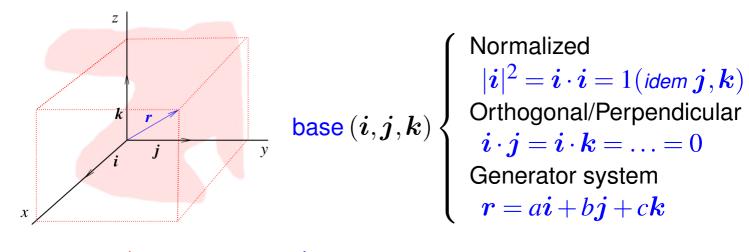
$$\Delta x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = \frac{L}{\sqrt{12}}$$



II.A. Vectorial space

II. Quantum Mechanics

■ Vector ⇒ Member of a vectorial space



 $\left. \begin{array}{l} \boldsymbol{r} \cdot \boldsymbol{i} = a \, \boldsymbol{i} \cdot \boldsymbol{i} + b \, \boldsymbol{j} \cdot \boldsymbol{i} + c \, \boldsymbol{k} \cdot \boldsymbol{i} = a \\ \boldsymbol{r} \cdot \boldsymbol{j} = a \, \boldsymbol{i} \cdot \boldsymbol{j} + b \, \boldsymbol{j} \cdot \boldsymbol{j} + c \, \boldsymbol{k} \cdot \boldsymbol{j} = b \\ \boldsymbol{r} \cdot \boldsymbol{k} = a \, \boldsymbol{i} \cdot \boldsymbol{k} + b \, \boldsymbol{j} \cdot \boldsymbol{k} + c \, \boldsymbol{k} \cdot \boldsymbol{k} = c \end{array} \right\} \boldsymbol{r} = (\boldsymbol{r} \cdot \boldsymbol{i}) \boldsymbol{i} + (\boldsymbol{r} \cdot \boldsymbol{j}) \boldsymbol{j} + (\boldsymbol{r} \cdot \boldsymbol{k}) \boldsymbol{k}$

II.A. Vectorial space

II. Quantum Mechanics

Vector $\Rightarrow f(x) \Rightarrow$ Hilbert's space

Dot product $\Rightarrow \langle f|g\rangle = \int_{\forall x} f^*(x)g(x)dx$

base
$$(\{\phi_i(x)\}_{i=1}^N)$$

David Hilbert

$$\text{base}\left(\{\phi_i(x)\}_{i=1}^N\right) \left\{ \begin{array}{l} \langle \phi_i | \phi_i \rangle = 1, \ i=1,\ldots,N \\ \text{Orthogonal/Perpendicular} \\ \langle \phi_i | \phi_j \rangle = 0, \ i \neq j = 1,\ldots,N \\ \text{Generator system} \\ f(x) = \sum\limits_{i=1}^N a_i \phi_i(x) \end{array} \right.$$

Normalized

$$\langle \phi_j | f \rangle = \sum_{i=1}^{N} a_i \langle \phi_j | \phi_i \rangle = a_j$$

$$\begin{cases} f(x) = \sum_{i=1}^{N} \langle \phi_i | f \rangle \phi_i(x) \end{cases}$$

II.B. Concept of state: Classic state

II. Quantum Mechanics

■ Classical Mechanics \Rightarrow The state of the system is characterized by the positions and moments of all the particles in the system (\vec{r}, \vec{p})

$$\vec{p} = m \frac{d\vec{r}}{dt}$$

If these magnitudes are known at a given time $(\vec{r}(0), \vec{p}(0))$ they can be known at any later $(\vec{r}(t), \vec{p}(t))$ or earlier time $(\vec{r}(-t), \vec{p}(-t))$ using the second Newton's law

$$\overrightarrow{F} = m \frac{d^2 \overrightarrow{r}}{dt^2}$$

II.B. Concept of state: Quantum state

II. Quantum Mechanics

■ Quantum Mechanics \Rightarrow Postulate 1. The state of the system is characterized by a function depending on the coordinates of the particles in the system and time $\psi(\vec{r},t)$ referred to as state function.

The squared modulus of the state function $|\psi(\vec{r},t)|^2$ is the probability density of the system

$$dP(\vec{r} \in [\vec{r}, \vec{r} + d\vec{r}]) = |\psi(\vec{r}, t)|^2 d\vec{r}$$

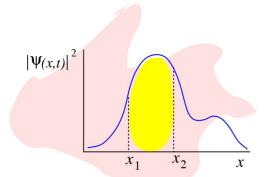
Modulus of a complex number

$$a = a_r + ia_i \Rightarrow |a|^2 = a \cdot a^* = (a_r + ia_i)(a_r - ia_i) = a_r^2 + a_i^2$$

II.C. State function

II. Quantum Mechanics

Probabilistic interpretation



$$P(x \in [x_1, x_2]) = \int_{x_1}^{x_2} |\psi(x, t)|^2 dx$$

- State function must be well behaved:
 - a) Normalizable $\Rightarrow \int_{\forall \vec{r}} |\psi(\vec{r},t)|^2 d\vec{r} = 1$
 - b) Single valued ⇒ Probability density has only one value in any space point
 - c) Continuous \Rightarrow No jumps

II. Quantum Mechanics

- Postulate 2. Every measurable physical quantity is described by a lineal and hermitian operator obtained from the clasic expression of the magnitude using the correspondence principle
 - $x \rightarrow \hat{x}$
 - $p_X \to \hat{p}_X = \frac{\hbar}{i} \frac{d}{dx}$

II. Quantum Mechanics

Operator

$$\hat{A} = \frac{d}{dx} \qquad f(x) = e^{-2x} \qquad \hat{B} = x^2$$

$$\downarrow \qquad \qquad \downarrow$$

$$\hat{A}f = \frac{d}{dx}e^{-2x} = -2e^{-2x} \qquad \hat{B}f = x^2e^{-2x}$$

- Lineal $\begin{cases} \hat{A}(f(x) + g(x)) = \hat{A}f(x) + \hat{A}g(x) \\ \hat{A}(cf(x)) = c\hat{A}f(x) \end{cases}$
- Hermitian $\Rightarrow \langle f | \hat{A}g \rangle = \langle \hat{A}f | g \rangle$

$$\langle f|\hat{A}g\rangle = \int_{\forall x} f^* \hat{A}g dx$$

$$\langle \hat{A}f|g\rangle = \int_{\forall x} (\hat{A}f)^* g dx = \left[\int_{\forall x} (\hat{A}f)g^* dx\right]^* = \left[\int_{\forall x} g^* (\hat{A}f) dx\right]^* = \langle g|\hat{A}f\rangle^*$$

II. Quantum Mechanics

Ex. Kinetic energy operator

$$T = \frac{p^2}{2m} \rightarrow \hat{T} = \frac{\hat{p}^2}{2m} = \frac{1}{2m} \left(\frac{\hbar}{i} \frac{d}{dx}\right)^2 = \frac{-\hbar^2}{2m} \frac{d^2}{dx^2}$$

Ex. Potential energy operator

$$V(x) \to \hat{V} = V(x)$$

Ex. Hamiltonian operator

$$E = \frac{p^2}{2m} + V(x) \to \hat{H} = \hat{T} + \hat{V}(x) = \frac{-\hbar^2}{2m} \frac{d^2}{dx^2} + \hat{V}(x)$$

II.D. Operators: Result of a measurement

II. Quantum Mechanics

Postulado 3. The only possible result of the measurement of a physical quantity A is one of the eigenvalues of the corresponding eigenvalue equation

$$\hat{A} \varphi_i = a_i \varphi_i$$
 $i = 1, 2, \dots$

The numbers a_1, a_2, \ldots are known as eigenvalues of the \hat{A} operator and the functions ϕ_i are their corresponding eigenfunctions. The eigenfunctions define a basis set in the Hilbert's space.

$$\psi = \sum_{i} \langle \varphi_i | \psi \rangle \varphi_i$$

II. Quantum Mechanics

■ When the system is described by the state function ψ , the measurement of the A magnitude will provide the result a_i with a probability equal to $P_{a_i} = |\langle \varphi_i | \psi \rangle|^2$.

$$\Psi = \sum_{i} \langle \varphi_{i} | \Psi \rangle \varphi_{i} \Rightarrow P_{a_{i}} = |\langle \varphi_{i} | \Psi \rangle|^{2}$$

II.D. Operators: Result of a measurement

II. Quantum Mechanics

• Consequence $1 \Rightarrow \hat{A} \varphi_i = a_i \varphi_i$ y $\psi = \varphi_i$

$$P_{a_i} = |\langle \varphi_i | \psi \rangle|^2 = 1$$

■ Consecuence 2 \Rightarrow the mean value of a measurement of the A magnitude is

$$\langle \hat{A} \rangle = \sum_{i} P_{a_i} a_i = \sum_{i} |\langle \varphi_i | \psi \rangle|^2 a_i = \langle \psi | \hat{A} | \psi \rangle$$

II. Quantum Mechanics

• Consequence $3 \Rightarrow f \equiv g, \hat{A}f = af$

$$\begin{split} \langle f|\hat{A}f\rangle &= \left[\langle f|\hat{A}f\rangle\right]^* \\ \langle f|af\rangle &= \left[\langle f|af\rangle\right]^* \\ a\langle f|f\rangle &= a^* \left[\langle f|f\rangle\right]^* \Rightarrow a = a^* \Rightarrow a \text{ real} \end{split}$$

■ Consequence $4 \Rightarrow \hat{A}f = af$, $\hat{A}g = bg$, $a \neq b$

$$\langle f|\hat{A}g\rangle = \left[\langle g|\hat{A}f\rangle\right]^*$$

$$b\langle f|g\rangle = a\langle g|f\rangle^*$$

$$\downarrow \langle g|f\rangle^* = \left[\int_{\forall x} g^*fdx\right]^* = \int_{\forall x} f^*gdx = \langle f|g\rangle$$

$$(b-a)\langle f|g\rangle = 0 \Rightarrow f,g \text{ orthogonals}$$

The commutator between two operators is defined by

$$[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$$

Ex.
$$\hat{A} = \frac{d}{dx}$$
 y $\hat{B} = x^2$

$$[\hat{A}, \hat{B}]f = \hat{A}\hat{B}f - \hat{B}\hat{A}f = \frac{d}{dx}(x^2f) - x^2\frac{df}{dx}$$
$$= 2xf + x^2\frac{df}{dx} - x^2\frac{df}{dx} = 2xf$$
$$[\hat{A}, \hat{B}] = 2x$$

I.D. Operators: Simultaneous measurement

II. Quantum Mechanics

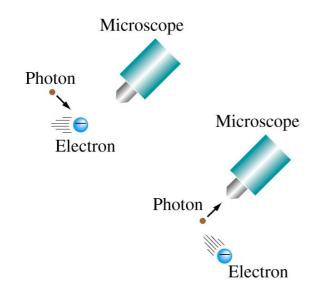
• Consequence. If the hermitian operators \hat{A} and \hat{B} commute, then there is a common set of eigenfunctions.

$$egin{aligned} [\hat{A},\hat{B}] &= 0 \ \Rightarrow \ \hat{A}\hat{B}f = \hat{B}\hat{A}f \ \hat{A}f_i &= a_if_i \ \downarrow \ \hat{B}\hat{A}f_i &= \hat{B}(a_if_i) \ \hat{A}(\hat{B}f_i) &= a_i(\hat{B}f_i) \ \downarrow \ \hat{B}f_i \ \text{is eigenfunction of } \hat{A} \ \text{with eigenvalue } a_i \ \hat{B}f_i &= kf_i \end{aligned}$$

II.E. Uncertainty principle

II. Quantum Mechanics

Heisenberg's uncertainty principle



$$\Delta A \Delta B \geq rac{1}{2} \langle [\hat{A}, \hat{B}]
angle$$
 $[\hat{x}, \hat{p}] = i\hbar$ $\Delta x \Delta p \geqslant rac{\hbar}{2}$