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POINTWISE LIMITS OF ANALYTIC FUNCI7IONS 

KENNETH R. DAVIDSON 
Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada 

What are the possible pointwise limits of analytic functions? Since analytic functions are well 
behaved, you might expect such limits to be "nice" also. Yet it turns out that some bizarre things 
can occur. The results in this paper are accessible to a student of complex analysis, but they do 
not appear to have been collected together before. 

Classical Background. It is easy to construct a sequence of continuous functions which 
converges pointwise to a function with discontinuities. However, not every function is the 
pointwise limit of continuous functions. The limit of a sequence of continuous functions which 
converges uniformly is necessarily continuous. We will be considering continuous functions on an 
open subset Q of the complex plane. In this context, it is more natural to consider a topology of 
convergence in between uniform and pointwise convergence-uniform convergence on compact 
subsets (u.c.c.). A sequence of functions fn on Q converges u.c.c. if for every compact subset K of 
Q, the restrictions fn, 1K converge uniformly. If every fn is continuous, then the limit function is 
continuous on each K and thus is continuous on U. If everyfn is analytic, the u.c.c. limit is analytic 
also. 

In both real and complex analysis, mathematicians have looked for and found conditions on a 
family of functions 6 on Q which guarantee that sequences taken from F have convergent 
subsequences. These results are closely related to our problem. To explain the classical theorems, 
we need some additional terminology. 

Recall that a function is continuous at zo if for each E > 0, there is a 8 > 0 so that Iz - zoI < 8 
implies If(z) - f(zo)l < E. A family of functions C on Q is equicontinuous if for each zo in Q and 
each E > 0 the 8 > 0 given above can be chosen independent of f in 6C. That is, Iz - zol < 8 
implies lf(z) -f(zo)l < E for all f in ' 6. 

A family of functions 6f is pointwise bounded if for each zo in Q, the set {f(zo):f E C} is 
bounded. The family 6JYis locally bounded if each zo in Q is contained in an open ball U so that the 
set {f(z): z E U, f E C-6} is bounded. Since a convergent sequence is bounded, a sequence of 
continuous functions converging pointwise is pointwise bounded. However, it need not satisfy the 
stronger condition of local boundedness. A sequence converging u.c.c., though, must be locally 
bounded because every zo is contained in a ball U on which the sequence converges uniformly. 

The following classical theorem from real analysis is proved in many introductory texts. 

THEOREM A (Arzela-Ascoli). Let 6 be a family of continuous functions on U. Every sequence in 6 
has a subsequence converging u. c. c. if and only if 6 is equicontinuous and pointwise bounded. 

The analogous theorem for analytic functions is: 

THEOREM M (Montel). Let 65 be a family of analytic functions on U. Every sequence in 6 has a 
subsequence converging u. c. c. if and only if 6 is locally bounded. 

Notice that the equicontinuity condition is eliminated at the price of a stronger boundedness 
condition. A natural proof of Montel's Theorem is obtained by deducing equicontinuity and 
applying Theorem A. 

391 



392 KENNETH R. DAVIDSON [June-July 

Sketch. Fix wo in Q and let U be a ball of radius r about wo so that If(w)I < M for all w in U 
andf in f'J. Let C be the circle of radius r/2 centered at wo. For every w within r/4 of wo, Cauchy's 
Theorem gives 

1 f f(z) f f(z) 1r f (z) dz 
f ( w) - f (wo ) = 7i1 - -Odz siJ(zw)-w ) (w ? w) 2'rriiz -w z dzwo 2,g iJ(z -w)(z -wo)(Wo 

A simple estimate gives If(w) - f(wo)l < 4Mr w - wol for all fin CY. From this, equicontinuity 
is immediate. O 

What happens when a family of analytic functions is only pointwise bounded? As we noted 
earlier, this question applies in particular to a sequence of analytic functions which converges 
pointwise on &U. The answers are dramatically different than for Montel's Theorem. There are 
some positive results, but first we will examine some of the pathology. Another classical result, 
Runge's Theorem, is needed to provide a way of obtaining analytic functions with prescribed 
behavior. 

THEoREM R (Runge). Let K be a compact subset of the complex plane with connected comple- 
ment. Let f be a function analytic in a neighborhood of K. Then there is a sequence of polynomials 
which converges to f uniformly on K. 

Sketch. Inside the neighborhood U of K on which f is analytic, it is possible to draw a finite 
collection C, of piecewise smooth curves which surround K in such a way that Cauchy's Theorem is 
valid for f. That is, 

f(z) = 2 i |Jf(w) dw for all z in K. 

This integral can be approximated by Riemann sums f= If(wj)(w+ I - wj)/(wj - z). Since C is 
bounded away from K, simple estimates show that these sums converge uniformly on K. This 
approximates f by rational functions. In order to get polynomials, it suffices to approximate each 
g(z) = (w -z)- 1 by polynomials uniformly on K. 

When Iw I is strictly larger than I z for all z in K, the geometric series 0 'Znl/w nf+ + converges 
uniformly to (w - z) on K. A similar argument can be used to express (w' - z) in terms of 
powers of (w - z) - 1 for w' near w. Thus if (w - z) ` can be approximated by polynomials in K, 
so can (w' - z) - 1. Because C \ K is a connected open set, a finite number of repetitions will get 
us from the "big" values of w to any point in C \K. Thus a polynomial approximation is 
obtained. O 

Some Examples. 
EXAMPLE 1. Let Kn be the union of the point (O}, the line segment [(1/n), n] and the compact 

set Sn = (z E C: IzI < n and dist(z, R+) ? l/n}. (See Diagram 1 on p. 393.) Let gn be an analytic 
function which vanishes in a neighborhood of Sn and [(1/n), n] and is constantly one in a ball 
about (0). Let pn be a polynomial obtained by using Runge's Theorem such that IPn (Z) - gn (Z)I < 
I/n for all z in Kn. 

Every point z in the complex plane belongs to Kn for large enough n. Thus limnO pn(z) exists 
pointwise and equals zero everywhere except at (O} where the limit is one! This limit is uniform on 
each set Sn by construction. Hence the convergence is u.c.c. on C \ [0, oo]. The sequence (Pn) 
cannot converge uniformly on any neighborhood of (O} because the limit function is not 
continuous at (O}. In fact, it cannot converge uniformly near any point on the positive real axis. 

To see this, notice that if (pn) converges uniformly on a ball U of radius r centered at some 
x > 0, then for some n 2 2, r > 1/n and Ipn(z)l < 1/2 on U. In addition, Ipn(z)l < 1/n < 1/2 
on Sn. But the union of Sn and U contains the circle of radius x about zero. So the maximum 
modulus principle implies that Ipn (0)1 < 1/2 which is a contradiction. O 
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DIAGRAM I 

EXAMPLE 2. Let Ln be the union of Kn and the point (1/2 n}. Let h n be an analytic function on 
a neighborhood of Ln which is zero near Kn and one at {1/2n}. Again, Runge's Theorem provides 
polynomials qn such that Iqn (Z) - hn (z)I < 1/n on Ln. Clearly, the sequence (qn} converges 
pointwise to zero everywhere. However, convergence is not uniform near (0) because qn (1/2n) is 
approximately equal to one. As in Example 1, convergence is uniform on each Sn but cannot 
converge uniformly near any point on the positive real axis. El 

Some Positive Results. 
PROPOSITION 1. Let 5 be a pointwise bounded family of analytic functions on U. There is a 

(maximal) dense open set QO c Q such that 6Y restricted to QO is locally bounded. 

Proof. For each z in Q, let +p(z) denote the least upper bound for {jf (z)j: f E TY). Because each 
f in gJis continuous, it is easy to see that Kn = (z: .k(z) < n} is (relatively) closed in U. Since O (z) 
is finite for each z, Q is the union of the Kn. The Baire Category Theorem shows that for every 
ball U in Q, Kn n U has interior for large n. Thus, the union go of the interiors int Kn is a dense 
open subset of U. Obviously, 'JYis bounded on each int Kn, and hence 'F is locally bounded on Q 0. 
Conversely, if (Yis bounded by n on an open set U, then U is contained in int Kn and thus is in QO. 

COROLLARY 2. Let fn be a sequence of analytic functions converging pointwise on U. Then the 
limit function f is analytic on a dense open subset of U2. 

Proof. A sequence of functions converging pointwise is pointwise bounded. By Proposition 1, 
(f,} is locally bounded on go. By Montel's Theorem, a subsequence converges u.c.c. to f on go 
and hence f is analytic on Q0. O 

PROPOSITION 3. If fn is a sequence of bounded analytic functions on a converging pointwise to f, 
then f is analytic and the convergence is u. c. c.. 

Proof. The family C = {fn} is bounded and thus locally bounded. By Montel's Theorem, every 
subsequence of fn has a sub-subsequence which converges u.c.c. This limit is f perforce, so f is 
analytic. If the whole sequence does not converge to f u.c.c., there would be a compact set K in 9, 
an - > 0, a subsequence fnk, and points Zk in K such that Ifnk(Zk) -f (Zk)I ? e for k ? 1. Thus no 
subsequence of fnk could converge uniformly to f on K, which is a contradiction. O 

What Limits Are Possible? How can the set of pointwise limits of analytic functions be 
described? If f is such a limit, then by Proposition 1 there is a dense open set f0 on which the 
convergence is u.c.c. and f is analytic. On the relatively closed, nowhere dense set C = a \ QO, f is 
merely the pointwise limit of continuous functions. That is all that can be said, for a modification 
of Example 1 can be arranged to converge to any function with these properties. 
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The idea is to choose increasing sequences Kn and Cn of subsets of Q0 and C respectively so 
that the complement of Kn U Cn is connected and the union of all Ku's and C 's is a. 

Use Runge's theorem to approximate f within I/n on Kn by polynomials. On C, there is a 
sequence g, of continuous functions converging pointwise to f. A theorem of Lavrentiev can be 
used to approximate g, within 1/n on Cn by a polynomial. Finally, use Runge's Theorem again to 
approximate both these polynomials simultaneously by a polynomial fn. It is clear that (fn} 
converges to f. 

A careful choice of the sequence g, as in Example 2, allows one to ensure that the convergence 
is not uniform near any point of C. Thus one may achieve an analytic limit f with failure to 
converge u.c.c. on any given closed nowhere dense subset. 

Sequences of univalent functions (one to one and analytic) are much more nicely behaved. A 
sequence of univalent functions converging pointwise to a nonconstant function must in fact 
converge u.c.c.. In particular, the limit is always analytic. These facts will not be proved here. We 
just mention that the proof relies on a deep theorem of Montel which states that a family of 
analytic functions which omits two values is locally bounded. 
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A NET OF EXPONENTIALS CONVERGING TO A NONMEASURABLE FUNCTION 

LEE A. RUBEL AND ARISTOMENIS SISKAKIS 

Department of Mathematics, University of Illinois, Urbana IL 61801 

It is a basic fact that the pointwise limit of a sequence of (Lebesgue) measurable functions must 
be measurable. It is not hard to see that when "sequence" is replaced by "net," the result fails. 
Nevertheless, it is surprising that from the family T = (f (x - t): t Ei R} of translates of f (x) = 
exp(ix2), a pointwise convergent net may be drawn whose limit is nonmeasurable. This is just 
another way of saying that in the space of all complex-valued functions on R, in the topology of 
pointwise convergence, the closure of T contains a nonmeasurable function. (For an extended 
discussion of nets and filters in topology, see [BAR]. Essentially, the same fact that we prove here 
is proved in [LUS, Example 8.4.45, p. 218] by other means.) 

To prove that there exists such a net of translates of exp( ix2), let nk be a sequence of positive 
integers approaching oo. There are several ways to see that there exists a subnet ( n k ) of (n k) such 
that for any bounded continuous function g on R, +(g) = lim,g(nk ) exists. In one kind of 
language, 4 is a point of the Stone-Cech compactification of R -see [GIJ, Chapter 6] for more 
details. From another viewpoint, 4 arises as a weak-star limit point of the functionals of 
evaluation (on the Banach space of continuous bounded functions on R) at the points nk. In any 
case, it is clear that 4 is a complex homomorphism-that is, 4 takes complex values and 
( (g + h) = +)(g) + +)(h) and (A(gh) = (A(g) - ((h). To stress the dependence on x as the running 
variable, we shall write 4)x(f(x)) sometimes. We will see that if the sequence (nk) satisfies 
property P below, then ox (f(x + t)) = limyf(t + nk ) is not a measurable function of t. 

With f(x) = exp(ix2) we have 

Ox (f (x + t)) = ox (ei(x+t)2 Ox x(eiX2) )X(eit2) )O(e2ixt. 
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