

Funciones de una variable real I. 17/11/2011. TEST 4.

TIPO 01

ATENCIÓN: Rellene los datos de la cabecera: a la izquierda el D.N.I. (en dos formas), a la derecha facultad, asignatura, apellidos, nombre y fecha.

- 1. ¿Cuáles de las siguientes afirmaciones sobre números reales son verdaderas?
 - a) Para todo $n \in \mathbb{N}$, la raíz n-ésima de un irracional positivo es un irracional.
 - b) El producto de un número racional no nulo por un número irracional es un número irracional.
 - c) Todo número irracional tiene un inverso que es también un número irracional.
 - d) Todo número irracional es límite de una sucesión de números racionales.
 - e) Todo número racional es límite de una sucesión de números irracionales.
 - f) Ninguna de las anteriores.
- 2. Sea $(x_n)_n$ una sucesión de números reales que tiene una subsucesión $(x_{n_k})_k$ convergente a $\alpha \in \mathbb{R}$. Entonces:
 - a) La sucesión $(x_{n_k})_k$ está acotada.
 - b) La sucesión $(x_n)_n$ está acotada.
 - c) Si $(x_n)_n$ está acotada y cualquier subsucesión de $(x_n)_n$ que converge lo hace a α , entonces $(x_n)_n$ es convergente.
 - d) Si $(x_n)_n$ es de Cauchy, entonces $(x_n)_n$ es convergente.
 - e) Cualquier subsucesión de $(x_{n_k})_k$ es convergente hacia α .
 - f) Ninguna de las anteriores.
- 3. Sea $(x_n)_n$ una sucesión en \mathbb{R} tal que $\lim_n x_{3n} = 0$, $\lim_n x_{3n+1} = 1$ y $\lim_n x_{3n+2} = 2$. Entonces:
 - a) Para cada $n \in \mathbb{N}$ existe m > n tal que $x_m > 1.5$
 - b) Para cada $n \in \mathbb{N}$ existe m > n tal que $x_m < 1.5$
 - c) Existe $n \in \mathbb{N}$ tal que para cada m > n se tiene $x_m > -0.1$
 - d) $(x_n)_n$ está acotada superiormente pero no inferiormente.
 - e) Todas las subsucesiones de $(x_n)_n$ son convergentes.
 - f) Ninguna de las anteriores.

- 4. Sean 0 < a < b dos números reales. Entonces:
 - $a) \mathbb{R} = \bigcup_{n=1}^{\infty} (na, nb)$
 - b) Como lím $n \frac{n+1}{n} = 1$ y a < b existe $N \in \mathbb{N}$ tal que(n+1)a < nb para $n \ge N$.
 - c) $\bigcup_{n=1}^{\infty} (na, nb) = \emptyset$.
 - $d) \bigcap_{n=1}^{\infty} (na, nb) = \emptyset.$
 - e) Del apartado 4b) se deduce que $\bigcup_{n=1}^{\infty} (na, nb)$ contiene un intervalo de la forma $(\alpha, +\infty)$ para un adecuado α .
 - f) Ninguna de las anteriores.
- 5. Sean $(x_n)_n$ e $(y_n)_n$ dos sucesiones de números reales. ¿Es cierto lo que sigue?
 - a) Si $(x_n + y_n)_n$ y $(x_n y_n)_n$ son convergences, entonces $(x_n)_n$ e $(y_n)_n$ son convergences.
 - b) Si $(x_n \cdot y_n)_n$ es convergente, entonces $(x_n)_n$ e $(y_n)_n$ son convergentes.
 - c) Si $\lim_{n}(x_n)_n \neq 0$ y $(x_n \cdot y_n)_n$ es convergente, entonces $(y_n)_n$ es convergente.
 - d) Si $(x_n)_n$ converge a 0 e $(y_n)_n$ está acotada e $y_n \neq 0$, entonces $(\frac{x_n}{y_n})_n$ es convergente.
 - e) Si $(x_n)_n$ converge a 0 e $(y_n)_n$ está acotada, entonces $(x_n \cdot y_n)_n$ es convergente.
 - f) Ninguna de las anteriores.
- 6. Sea $(a_n)_n$ una sucesión de números reales que no está acotada superiormente. Entonces:
 - a) $(a_n)_n$ no es convergente a un número real.
 - b) $\inf_{n\in\mathbb{N}} \sup_{m\geq n} a_m = +\infty.$
 - c) $\sup_{n\in\mathbb{N}}\inf_{m\geq n}a_m=+\infty$.
 - d) Para cada M > 0 el conjunto $\{n \in \mathbb{N} : M < a_n\}$ es infinito.
 - e) $(a_n)_n$ tiene una subsucesión estrictamente creciente que no es acotada superiormente.
 - f) Ninguna de las anteriores.
- 7. Sean $(a_n)_n$ una sucesión de números reales tal que $|a_{n+1}-a_n|\leq \frac{1}{n}$ para cada $n\in\mathbb{N}$. Entonces:
 - a) $(a_n)_n$ es de Cauchy.
 - b) Como $0 \le |a_{n+1} a_n| \le \frac{1}{n}$ y lím $n \cdot \frac{1}{n} = 0$, la regla del sandwich nos dice que lím $n \cdot a_n = 0$.
 - c) $(a_n)_n$ es convergente a un número real.
 - d) $(a_n)_n$ no es necesariamente de Cauchy aunque $\lim_n (a_n a_{n+1}) = 0$.
 - e) $\lim_{n} (a_{n+1} a_n) = 0$.
 - f) Ninguna de las anteriores.

- 8. Sean $\sum_{n=1}^{\infty} a_n$ y $\sum_{n=1}^{\infty} b_n$ dos series de términos no negativos. ¿Cuáles de las siguientes afirmaciones son ciertas?
 - a) Si $\sum_{n=1}^{\infty} a_n$ y $\sum_{n=1}^{\infty} b_n$ son convergences, entonces $\sum_{n=1}^{\infty} a_n b_n$ es convergence.
 - b) Si $\sum_{n=1}^{\infty} a_n$ es convergente, entonces $\sum_{n=1}^{\infty} \sqrt{a_n}$ es convergente.
 - c) Si $\sum_{n=1}^{\infty} a_n$ es divergente, entonces $\sum_{n=1}^{\infty} a_n^2$ es divergente.
 - d) Si $\sum_{n=1}^{\infty} a_n$ y $\sum_{n=1}^{\infty} b_n$ son convergentes, entonces $\sum_{n=1}^{\infty} \sqrt{a_n b_n}$ es convergente.
 - e) Si $\sum_{n=1}^{\infty} a_n$ es convergente, entonces $\sum_{n=1}^{\infty} \frac{a_n}{n}$ es convergente.
 - f) Ninguna de las anteriores.
- 9. Sea $a_n = \frac{3^n}{2^n + n!}$. Entonces la serie $\sum_{n=1}^{+\infty} a_n$ es:
 - a) Convergente porque $\lim_n a_n = 0$.
 - b) Divergente porque $\lim_n a_n \neq 0$.
 - c) Convergente porque $a_n \leq (\frac{3}{2})^n$ y $\sum_{n=1}^{+\infty} (\frac{3}{2})^n$ es convergente.
 - d) Convergente ya que $a_n \leq \frac{3^n}{n!}$ y la serie $\sum_{n=1}^{+\infty} \frac{3^n}{n!}$ es convergente.
 - e) Convergente ya que se puede comparar con la serie geométrica de razón $\frac{2}{3}$ que es convergente.
 - f) Ninguna de las anteriores
- 10. Sea la serie $\sum_{n=1}^{\infty} a^n \frac{n!}{n^n}$ para $a \neq e$. Entonces, la serie es:
 - a) Divergente pues el lím $_n\,a^n\frac{n!}{n^n}=\infty$ para todo $a\neq e.$
 - b) Convergente pues el lím $_n\,a^n\frac{n!}{n^n}=0$ para todo $a\neq e.$
 - c) Convergente para todo a < e.
 - d) Divergente para todo a > e.
 - e) Convergente para todo a < e pues el lím $_n a^n \frac{n!}{n^n} = 0$ para todo a < e.
 - f) Ninguna de las anteriores.