PEQUEÑA MUESTRA DE EJERCICIOS TIPO TEST B. Cascales, J. M. Mira, L. Oncina y S. Sánchez-Pedreño 30 de Marzo de 2013.

- 18. La función f(x) = |x| verifica:
 - a) f es convexa en todo \mathbb{R} .
 - b) f es convexa en $\mathbb{R} \setminus \{0\}$
 - c) f no es convexa porque no es derivable en todo punto.
 - d) f no es convexa porque la derivada segunda, cuando existe, no es positiva.
 - e) Ninguna de las anteriores.
- 19. El polinomio de Taylor de grado 4 en 0 de la función $f(x) = \frac{1}{\cos x}$ es:
 - a) $1 \frac{x^2}{2!} + \frac{x^4}{4!}$
 - b) $1 2!x^2 + 4!x^4$
 - c) $1 + \frac{x^2}{2!} + \frac{5x^4}{4!}$
 - d) $1 + \frac{x^2}{2!} + \frac{x^4}{4!}$
 - e) Ninguna de las anteriores.
- 20. El polinomio de taylor de grado 3 para sen x en $x_0=0$ es $x-\frac{x^3}{3!}$. Se tiene que:
 - a) No existe ninguna fórmula para el resto sen $x \left(x \frac{x^3}{3!}\right)$.
 - b) sen $x \left(x \frac{x^3}{3!}\right) = \frac{\sin(\theta x)}{4!} x^4$ para un adecuado $0 < \theta < 1$.
 - c) sen $x \left(x \frac{x^3}{3!}\right) = \frac{\cos(\beta x)}{5!} x^5$ par un adecuado $0 < \beta < 1$.
 - d) sen $x \left(x \frac{x^3}{3!}\right) = o(x^5)$.
 - e) Ninguna de las anteriores.