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Banach spaces were defined by S. Banach and others (notably N. Wiener) in-
dependently in the 1920’s. However it was Banach’s 1932 monograph [2] that
made the theory of Banach spaces (“espaces du type (B)” in the book) an in-
dispensable tool of modern analysis. The novel idea of Banach is to combine
point-set topological ideas with the linear theory in order to obtain such power-
ful theorems as Banach-Steinhaus theorem, open-mapping theorem and closed
graph theorem. Both general topology and theory of Banach spaces continue to
benefit from cross-fertilization of analysis and topology. Some of which can be
seen in the following pages.

1. Definitions and basic properties. The material of this section is quite
standard and details can be found in any textbook on functional analysis. Let
X be a linear space (=vector space) over the field K (the field of scalars) where
K is either the field R of real numbers or C of complex numbers. A norm ‖ ‖
on X is a function x 7→ ‖x‖ on X into [0,∞) satisfying the following conditions:
(i) ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X ; (ii) ‖λx‖ = |λ|‖x‖ for all λ ∈ K, x ∈ X ;
and (iii) ‖x‖ = 0 if and only if x = 0. A linear space X equipped with a fixed
norm ‖ ‖ is called a normed linear space or normed space and is denoted
by (X, ‖ ‖) or simply by X when no ambiguity is likely. When one wishes to
specify K = R (or C), the normed space is referred to as a real (or complex)
normed (linear) space. The unit ball of the normed space X is the set
BX ≡ {x ∈ X : ‖x‖ ≤ 1} and the unit sphere of X is SX ≡ {x ∈ X : ‖x‖ = 1}.
The norm ‖ ‖ on the normed space X defines the metric d (called the norm
metric) on X by d(x, y) = ‖x− y‖, x, y ∈ X . The topology of the norm metric
is called the norm topology, and the normed space is always assumed to have
the norm topology unless other topology is specified. Two norms ‖ ‖1, ‖ ‖2 on
the linear space X are said to be equivalent if the norm topologies of the two
norms coincide, and this is the case if and only if there are positive numbers a
and b such that for each x ∈ X, a‖x‖1 ≤ ‖x‖2 ≤ b‖x‖1. A Banach space is
a complete normed space. If Y is a linear subspace of X , where (X, ‖ ‖) is a
normed space, then we let Y itself be normed with the restriction of ‖ ‖ to Y .
If X is a Banach space and if Y is a closed linear subspace of X , then Y is a
Banach space.

A linear map between normed spaces is continuous if it is continuous at a
point, and in this case the map is a Lipschitz map. A scalar-valued liner map f
on a normed space is called a linear functional on X . The linear functional
f is continuous if and only if the null space f−1({0}) is closed, and this is the
case if and only if ‖f‖ ≡ sup{|f(x)| : x ∈ BX} < ∞. The linear space X∗

of all continuous linear functionals on X is a Banach space with the norm ‖ ‖
given above. The Banach space X∗ is called the dual (space) of X . One of the
fundamental facts on normed spaces is the following Hahn-Banach extension
theorem. Let X be a normed space and let Y be a linear subspace. If g ∈ Y ∗
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then there exists an f ∈ X such that g = f |Y and ‖f‖ = ‖g‖. The theorem
in particular implies that, for each x ∈ X , ‖x‖ = sup{|f(x)| : f ∈ BX∗}. This
formula can be interpreted as follows. Let X∗∗ be the bidual of X , namely
(X∗)∗. Then there is a canonical linear map x 7→ x̂ from X into X∗∗ given
by x̂(f) = f(x) for all x ∈ X, f ∈ X∗. The formula above says that the map
x 7→ x̂ is an isometry, i.e. ‖x‖ = ‖x̂‖ for each x ∈ X . It is often convenient to
identify x and x̂ and regard X a subspace of X∗∗ (the canonical embedding
of X into its bidual). If X = X∗∗, then X , which is necessarily a Banach space,
is said to be reflexive.

Two Banach spaces X and Y are said to be isometric if there is a one-to-
one linear map T of X onto Y such that ‖T (x)‖ = ‖x‖ for each x ∈ X . We give
some examples of standard Banach spaces.

Example 1. Let T be a completely regular topological space and let C(T ) (resp.
Cb(T )) be the space of all scalar-valued continuous (resp. bounded continuous)
functions on T . For each f ∈ Cb(T ) the supremum norm ‖f‖ of f is defined
by ‖f‖ = sup{|f(t)| : t ∈ T}. Then (Cb(T ), ‖ ‖) is a Banach space. If βT
denote the Stone-Čech compactification of T , then the Banach spaces Cb(T )
and C(βT ) are isometric. So, here we restrict our discussion to C(K) where K
is a compact Hausdorff space. Then for each ϕ ∈ C(K)∗ there is a unique scalar-
valued Radon measure µ on K such that ϕ(f) =

∫
K f dµ for all f ∈ C(K) (Riesz

representation theorem). In this case ‖ϕ‖ is equal to the total variation of µ
on K. Hence C(K)∗ is isometric to the space M(K) of all scalar-valued Radon
measures on K with the total variation as the norm.

Example 2. (Hilbert spaces) Let H be a linear space over C. An inner product
on H is a complex-valued function (x, y) 7→ 〈x, y〉 on H × H satisfying (i)
〈y, x〉 = 〈x, y〉 for each (x, y) ∈ H ×H ; (ii) For each y ∈ H , the map x 7→ 〈x, y〉
is linear on H ; and (iii) 〈x, x〉 > 0 for each x ∈ H not equal to 0. An inner
product space or pre-Hilbert space is a complex linear space H equipped
with a fixed inner product 〈 , 〉. The inner product space H is a normed space
with the norm defined by ‖x‖ = 〈x, x〉1/2. If H is complete with respect to this
norm, H is called a Hilbert space. If H is a Hilbert space and if f ∈ H∗, then
there is a unique y ∈ H such that f(x) = 〈x, y〉 for each x ∈ H . From this it
follows that a Hilbert space is automatically a reflexive Banach space.

Example 3. Let Γ be an arbitrary set. For a non-negative function w on Γ, we
define ∑

γ∈Γ

w(γ) = sup{
∑

γ∈F

w(γ) : F ⊂ Γ, F finite}.

If w is a scalar-valued function on Γ such that
∑

γ∈Γ
|w(γ)| < ∞, then w is

called summable. Since in this case the support of w is countable,
∑

γ∈Γ
w(γ)

is well-defined.
For each p ∈ [1,∞), let `p(Γ) be the space of all scalar-valued functions

f such that ‖f‖p ≡ (
∑

γ∈Γ
|f(γ)|p)1/p < ∞. Then (`p(Γ), ‖ ‖p) is a Banach

space. We also let `∞(Γ) = Cb(Γ) with Γ given the discrete topology. Then
by Example 1, `∞(Γ) is a Banach space with the supremum norm ‖ ‖∞. Now
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suppose p ∈ [1,∞) and ϕ ∈ (`p(Γ))∗. Then there is a unique g ∈ `q(Γ), where
1/p + 1/q = 1 (q = ∞ if p = 1), such that fg is summable and ϕ(f) =∑

γ∈Γ
f(γ)g(γ). Furthermore in this case ‖ϕ‖ = ‖g‖q. So (`p(Γ))∗ and `q(Γ)

are isometric. It follows that the space `p(Γ) is reflexive if p ∈ (1,∞). The
spaces `1(Γ) and `∞(Γ) are not reflexive unless Γ is finite. In case p = 2 and
C is the scalar field, `2(Γ) is a Hilbert space with the inner product given by
〈f, g〉 =

∑
γ∈Γ

f(γ)g(γ). It can be shown that each Hilbert space H is isometric

to `2(Γ) for a suitable Γ: if H is infinite dimensional the cardinality of Γ is the
density of H . Hence the isometric classification of Hilbert spaces is simply a
matter of the cardinality of Γ.

Example 4. Let Γ be as in the previous example, and let c0(Γ) be the space of
all scalar-valued functions f that vanish at infinity, i.e. for each ε > 0 the set
{γ ∈ Γ : |f(γ)| ≥ ε} is finite. Then c0(Γ) is a closed linear subspace of `∞(Γ),
and so it is a Banach space with the supremum norm. If ϕ ∈ (c0(Γ))∗, then there
is a unique g ∈ `1(Γ) such that, for each f ∈ c0(Γ), ϕ(f) =

∑
γ∈Γ

f(γ)g(γ),

and in this case ‖ϕ‖ = ‖f‖1. This shows that (c0(Γ))∗ is isometric to `1(Γ) and
that the bidual (c0(Γ))∗∗ is isometric to `∞(Γ).

2. The norm topology. In this section, we describe several topics related to
the norm topology of the Banach spaces.

(A) Category theorems. Since a Banach space is a complete metric space,
it is a Baire space. This fact has the following important and extremely useful
consequences.

(a) Banach-Steinhaus theorem (or uniform boundedness principle). Let
{Tα : α ∈ A} be a family of continuous linear maps of a Banach space X
into normed spaces. If, for each x ∈ X, sup{‖Tα(x)‖ : α ∈ A} < ∞, then
sup{‖Tα(x)‖ : α ∈ A, x ∈ BX} < ∞. In particular, if A is a subset of the dual
X∗ of a Banach space X such that sup{|f(x)| : f ∈ A} < ∞ for each x ∈ X ,
then A is bounded in the sense that sup{‖f‖ : f ∈ A} < ∞. Similarly if A
is a subset of a normed space X such that sup{|f(x)| : x ∈ A} < ∞ for each
f ∈ X∗, then A is bounded.

(b) Open mapping theorem. Let T be a continuous linear map of a Banach
space X onto a Banach space Y . Then T is an open map. Banach spaces X
and Y are said to be isomorphic if there is a one-to-one continuous linear map
T of X onto Y . In this case the inverse map T−1 : Y → X is also continuous
by the open mapping theorem, and hence T is a linear homeomorphism.

(c) Closed-graph theorem. Let T be a linear map on a Banach space X into
a Banach space Y such that the graph of T , namely {(x, T (x)) : x ∈ X}, is
closed in X × Y . Then T is continuous.

(B) Maps into Banach spaces Here we mention two theorems. For the
proof and the original sources, we refer the reader to [4] and the bibliography
therein.

(a) Michael’s selection theorem. Let E be a paracompact space and let ϕ be
a multivalued map on E taking values among non-empty closed convex subsets
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of a Banach space X , which is lower semicontinuous, i.e. for each open subset
U of X , the set {t ∈ E : ϕ(t) ∩ U 6= ∅} is open in E. Then (i) the map ϕ has a
continuous selector, i.e. a continuous function f : E → X such that f(t) ∈ ϕ(t)
for each t ∈ E, and (ii) if A ⊂ E is closed, then each continuous selector for
ϕ|A extends to a continuous selector for ϕ. It follows from this theorem that
if X, Y are Banach spaces and if T is a continuous linear map of X onto Y ,
then there is a continuous map f : Y → X such that T (f(y)) = y for all y ∈ Y
(Bartle-Graves’s theorem).

(b) Borsuk-Dugundji extension theorem. Let A be a closed subset of
a metrizable space M and let X be a normed space. Also let C(A, X) (resp.
C(M, X)) be the space of all continuous functions on A (resp. M) into X . Then
there is a linear map L : C(A, X) → C(M, X) such that, for each f ∈ C(A, X),
L(f) is an extension of f and the range of L(f) is contained in the convex hull
of f(A).

(C) The topological classification. Kadec proved in 1966 that all infinite-
dimensional separable Banach spaces are homeomorphic to `2(N), see [4, Corol-
lary 9.1, p. 231]; moreover Anderson, 1966, proved that `2(N) is homeomorphic
to the countable infinite product of real lines, i.e. RN. Finally if X is a sep-
arable infinite-dimensional Banach space, then the spaces X , BX and SX are
all homeomorphic to RN, see [4, Corollary 5.1, p. 188]. The ultimate answer
to the topological classification problem was given by Toruńczyk [12] in 1981:
two infinite dimensional Banach spaces are homeomorphic if their densities are
equal. We also mention that each infinite-dimentional compact convex subset
of a Banach space is homeomorphic to the Hilbert cube [0, 1]N (Keller, 1931; see
[4, p. 100]).

(D) Spaces of type C(K). According to the Banach-Stone theorem, a
compact Hausdorff space is characterized by the Banach space of all real-valued
continuous functions with the supremum norm: if K, L are compact Hausdorff
spaces and if C(K, R) is isometric to C(L, R), then K and L are homeomorphic
(see [10, Theorem 7.8.4]). On the other hand, the isomorphic type of C(K) is
not sufficient to characterize K, for by Milutin’s theorem, if K and L are
uncountable metrizable compact spaces, then C(K) and C(L) are isomorphic
(see [10, 21.5.10]).

(E) Uniform and Lipschitz classification. As said in Section 2(E) the
topological structure of a Banach space contains no information on its linear
structure. Nonetheless, it was stated by Mazur-Ulam, 1932, that any map pre-
serving the norm metric from a Banach space onto another one and sending 0
to 0 is a linear isometry in the sense of Section 1, [3, Theorem 14.1]. The idea
of classifying Banach spaces using Lipschitz or more generally uniformly contin-
uous non-linear maps is a relatively new and very active area of research. The
Benyamini-Lindenstrauss monograph [3] is the place to start if one is interested
in this subject. We cite only a few results here. Let us say that two metric
spaces are Lipschitz equivalent (resp. uniformly equivalent) if there is a
map of one onto the other such that the map and its inverse are both Lipschitz
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(resp. uniformly continuous). Such a map is called a Lipschitz equivalence
(resp. uniform equivalence).

Let X and Y be Banach spaces and let f be a function defined on an open
subset U of X into Y . Then f is said to be Gâteaux differentiable at a ∈ U
if there is a continuous linear map T : X → Y such that for each h ∈ X ,
limt→0 t−1(f(a + th) − f(a)) = T (h). If this limit converges uniformly for all
h ∈ SX , then f is Fréchet differentiable at a. The map T is called the
differential of f at a and is denoted by Daf .

Now suppose that f is a Lipschitz equivalence of X onto a subset of Y .
If f is Gâteaux differentiable at a ∈ X , then Daf is an isomorphism (i.e.
linear homeomorphism) of X to a subspace of Y . If X is separable and Y has
the Radon-Nikodým property (RNP), then any Lipschitz map of X into Y is
Gâteaux differentiable at some point (see [3, Theorem 6.42]). Hence in this case
X is Lipschitz equivalent to a subset of Y if and only if X is isomorphic to
a subspace of Y . Heinrich and Mankiewicz have shown (1980) that the above
holds true without the RNP of Y if Y = Z∗ for some Banach space Z (see [3,
Theorem 7.10]). Thus if a separable Banach space X is Lipschitz equivalent
to a subset of a Banach space Y , then X is isomorphic to a subspace of Y ∗∗.
All reflexive Banach spaces and separable dual Banach spaces have the RNP.
Among our examples, C(K) does not have the RNP if K is infinite compact
and Hausdorff. For an infinite Γ, `p(Γ) has the RNP if 1 ≤ p < ∞, and
`∞(Γ), c0(Γ) do not have the RNP. Without the RNP and outside dual Banach
spaces the situation is quite different: any separable metric space is Lipschitz
homeomorphic to a subset of c0, Aharoni 1974 [3, Theorem 7.11]. The Lipschitz
or uniform classification of Banach spaces is known only for a limited classes of
Banach spaces. For instance Deville, Godefroy and Zizler have proved (1990)
that, for K compact, C(K) is Lipschitz equivalent to some c0(Γ) if and only if
Kω0 = ∅ (see [3, Theorem 7.13]).

3. Weak and weak∗ topologies. Let X be a normed space. The weak
topology for X (resp. weak∗) is the weakest topology for X (resp. X∗) that
makes x 7→ f(x) (resp. f 7→ f(x)) continuous for each f ∈ X∗ (resp. x ∈ X).
Note that the dual space X∗ also has the weak topology since it is a Banach
space. The space X with the weak topology is denoted by (X, w), and similarly
(X∗, w∗) is the dual X∗ with the weak∗ topology. If Y is a linear subspace
of a normed space X , then, by the Hahn-Banach extension theorem, the weak
topology for Y is the restriction of the weak topology for X . Both (X, w)
and (X∗, w∗) are Hausdorff locally convex spaces, i.e., 0 has a basis of convex
neighborhoods and the vector sum and the multiplication by members of K are
continuous. Clearly on X the weak topology is weaker than the norm topology,
and on X∗ the weak∗ topology is weaker than the weak topology. However the
Hahn-Banach extension theorem implies that if C is a (norm) closed convex
subset of X , then C is weak-closed. A linear functional f on X is weakly
continuous if and only if it is norm-continuous, i.e. f ∈ X∗. More generally,
a linear map from a normed space into another is (norm-norm) continuous if
and only if it is weak-weak continuous. A linear functional ϕ on X∗ is weak∗-
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continuous if and only if there exists an x ∈ X such that ϕ(x) = f(x) for each
f ∈ X∗. When X is embedded in its bidual (cf. Section 1), X is weak∗-dense
in X∗∗ and BX is weak∗-dense in BX∗∗ .

One of the pleasant features of the weak and weak∗ topologies is that com-
pact sets are relatively easy to come by. Whereas BX is never norm-compact,
unless X is finite dimensional, it is weak-compact if and only if X is reflex-
ive. Thus the unit balls of Hilbert spaces and of `p(Γ), with 1 < p < ∞ and
Γ arbitrary, are all weak-compact. Moreover, by Tychonoff’s theorem, BX∗ is
always weak∗-compact (Banach-Alaoglu’s theorem). Let X be a normed
space and let K be (BX∗ , w∗). Then K is a compact Hausdorff space, and
there is a natural linear map ϕ : X → C(K) given by ϕ(x)(f) = f(x) for each
x ∈ X, f ∈ K = B∗

X . Clearly ϕ is an isometry. If τp denotes the topology of

pointwise convergence for C(K), then ϕ maps (X, w) homeomorphically onto
(ϕ(X), τp) and ϕ(X) separates points of K. If X is a Banach space, then ϕ(X)
is τp-closed in C(K). This shows that the study of the weak topology is very
closely related to that of the pointwise topology for the spaces of the type C(K)
with K compact. Below we discuss a few topics related to weak and weak∗

topologies in more detail.

(A) Weak and weak∗-compact sets. It had been observed by Šmulian,
Eberlein and others that weak-compact subsets of Banach spaces possess prop-
erties similar to those of metrizable spaces. This can be summarized by saying
that, for each Banach space X , (X, w) is angelic, where a regular Hausdorff
space is said to be angelic if the closue of each relatively countably compact
set A is compact and the closure consists of the limits of sequences in A. This,
in turn, is a consequence of the fact that, for each compact Hausdorff space
K, (C(K), τp) is angelic, [7]. Corson and Lindenstrauss (1966) conjectured
that a weak-compact subset of a Banach space is homeomorphic to a weak-
compact subset of c0(Γ) for a suitable set Γ. This conjecture was confirmed in
the ground-breaking paper Amir-Lindenstrauss [1], in which the authors have
suggested that a space homeomorphic to a weak-compact subset of a Banach
space be called an Eberlein compact (EC). The confirmation is based on the
main theorem of [1]. A Banach space X is said to be weakly compactly gen-
erated (WCG) if X is generated by a weak-compact subset K ⊂ X , i.e. the
linear span of K is dense in X . The Amir- Lindenstrauss theorem states
that if a Banach space X is WCG, then there exist a set Γ and a one-to-one
continuous linear map on X into c0(Γ). For properties of Eberlein compacta,
see the article on “Eberlein and Corson compacta”. Here we mention two prop-
erties of weak-compact sets related to the linear structure of Banach spaces. If
K is a weak-compact subset of a Banach space, then the closed convex hull of
K is weak-compact (Krein-Šmulian, 1940). This can be seen as a consequence
of the remarkable, but much harder to prove, James’s theorem (1972), [8]: if
A is a subset of a real-Banach space X such that for each f ∈ X∗ there exists
an a ∈ A satisfying f(a) = sup{f(x) : x ∈ A}, then the weak-closure of A is
weak-compact.

There is nothing remarkable about weak∗-compact subsets of dual Banach
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spaces. In fact any compact Hausdorff space is homeomorphic to a weak∗-
compact subset of a dual Banach space. However, weak∗-compact subsets of
the dual of particular Banach spaces can be more special. A Banach space X is
called an Asplund space if each real-valued convex continuous function defined
on an open convex subset U ⊂ X is Fréchet differentiable (cf. Section 2(E)) at
each point of a dense Gδ subset of U . It is known that X is an Asplund space
if and only if X∗ has the Radon-Nikodým property (RNP). A compact space
is said to be Radon-Nikodým compact (RN compact) if it is homeomorphic
to a weak∗-compact subset of the dual of an Asplund space. The properties
of RN compact spaces are very similar to those of EC, and the class of EC
is properly contained in the class of RN compact spaces. See the article on
“Radon-Nikodým” compacta. Section 3(B) below describes another classes of
Banach spaces for which their dual spaces have special w∗-compact subsets.

(B) Topological properties of (X, w). The topological study of Banach
spaces with the weak topology is a far more subtle matter than that for the
norm topology (see Section 2(C)). Here the main problems arise in the non-
separable case. In [6] Corson proved that if X is a Banach space, then (X, w)
is paracompact if and only if (X, w) is Lindelöf, and conjectured that (X, w) is
Lindelöf if and only if X is WCG. More recently Rezničenko proved that (X, w)
is normal if and only if it is Lindelöf. Talagrand proved that if a Banach space
X is WCG, then (X, w) is K-analytic hence Lindelöf confirming a one-half of
the Corson conjecture, see [11] for a detailed account about weakly K-analytic
Banach spaces. The converse, however, is false since Rosenthal has constructed
a WCG Banach space which has a non-WCG closed linear subspace.

It is proved in [1] that a compact Hausdorff space K is EC if and only
if (C(K), w) is WCG. Analogously, it is possible to classify K according to
topological properties of (C(K), w). Thus a compact Hausdorff space K is
said to be Talagrand compact (resp. Gul’ko compact if (C(K), w) is K-

analytic (resp. K-countably determined). Here a Tychonoff space T is said
to be K-countably determined if there are a compactification Z of T and
a sequence {Kn : n ∈ N} of compact sets in Z such that, for each t ∈ T ,
t ∈

⋂
{Kn : t ∈ Kn, n ∈ N} ⊂ T . For X Banach space, (X, w) is K-analytic

(resp. K-countably determined) if and only if (BX∗ , w∗) is Talagrand (resp.
Gul’ko) compact space. We have the implications EC ⇒ Talagrand compact
⇒ Gul’ko compact ⇒ Corson compact, and none of the arrows can be reversed.
(See the article by S. Negrepontis in [KV].)

Finally, we mention a striking result of Rosenthal [9]. By investigating thor-
oughly what it means for a uniformly bounded sequence of real-valued functions
on a set not to have a convergent subsequence, he has proved the following: Let
X be a separable real Banach space. Then X does not have any isomorphic
copy of `1(N) if and only if each member of BX∗∗ is the weak∗-limit of a se-
quence in BX . This means that BX∗∗ is a pointwise compact set of first Baire

class functions on the Polish space (BX∗ , w∗). A compact Hausdorff space is
called Rosenthal compact if it is homeomorphic to a pointwise compact sub-
set of the space B1(Ω) of first Baire class functions on a Polish space Ω. A
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real breakthrough in this area was made by Bourgain, Fremlin and Talagrand
[5] who proved that, for each Polish space Ω, B1(Ω) is angelic with respect to
the pointwise topology. Compare the last result with the fact that (C(K), τp)
is angelic for each compact Hausdorff space K. See the article on “Rosenthal
Compacta”.
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