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This article is the continuation of “Banach spaces and topology (I)” (referred
to as BT(I)). Whereas BT(I) mainly deals with properties of the norm topology
and the weak topologies in Banach spaces by themselves, the present article will
stress the interplay between properties of weak and norm topologies. To save
space, some references are given by the author(s)’s names and Math. Reviews
ID numbers. We shall also refer to articles cited in BT(I) as e.g. [5,BT(I)]. In
this article, Banach spaces are over the reals, unless otherwise indicated.

1. Properties related to weak, weak∗ and norm topologies. If a Banach
space X is WCG or more generally if (X, w) is K-analytic, then (X, w) is a Lin-
delöf space. An important class of weak-Lindelöf Banach spaces are the so called
weakly Lindelöf determined (WLD) Banach spaces, and they coincide
with Banach spaces with Corson compact weak∗ dual unit ball (Mercourakis-
Negrepontis survey [HvM]). They provide a framework where Amir-Lindens-
trauss constructions for WCG Banach spaces [1, BT(I)] can be formulated and
some of its consequences derived. More general than the notion of weak-Lindelöf
space is the following: a Banach space X is said to have the property (C) (of
Corson) if each family of closed convex subsets with the countable intersection
property has non-empty intersection. A Banach space X has property (C) if

and only if, whenever A ⊂ BX∗ , each element of A
w∗

is in the weak∗-closed
convex hull of a countable subset of A (Pol, MR82a:46022). Whereas property
(C) is stable under taking finite products, it is yet an open problem to decide if
the product of a weak-Lindelöf Banach space by itself is again weak-Lindelöf.

Given a subset A of a Banach space X , a point x ∈ A is said to be a
(weak to norm) continuity point of A if the identity map id : (A, w) →
(A, ‖ ‖) is continuous at x. Weak-compact subsets of Banach spaces have points
of continuity. A Banach space X is said to have the point of continuity
property (PCP) if each nonempty weakly closed and bounded subset A of X
has a point of continuity. Edgar and Wheeler [3] proved that a Banach space
X has the PCP if and only if (BX , w) is hereditarily Baire. If X is separable,
then (BX , w) is Polish if and only if X∗ is separable and X has the PCP. A
Banach space X is isomorphic to the direct sum of a reflexive subspace and a
separable subspace with Polish ball if and only if (BX , w) is Čech-complete. If
X is a (F ∪ G)δ subset of (X∗∗, w∗), then X has the PCP, and the converse
is true if the Banach space X is assumed to be separable, see [3]. Ghoussoub
and Maurey proved that if X is a separable Banach space, then X has the PCP
if and only if there is a separable subspace Y of X∗ such that (BX , σ(X, Y ))
is Polish, where σ(X, Y ) is the weakest topology for X that makes x 7→ f(x)
continuous for each f ∈ Y (Ghoussoub and Maurey MR88i:46022).

If C is a convex subset of a vector space, a point a ∈ C is said to be an
extreme point of C if it is not the midpoint of any proper segment in C;
the set of extreme points of C will be denoted by ext(C). The Krein-Milman
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theorem states that each compact convex subset K of a locally convex space
is the closed convex hull of ext(K), or equivalently, for each point x ∈ K,
there exists a regular Borel measure µ on K supported by the closure of ext(K)
such that f(x) =

∫
K

f dµ for each continuous real-valued affine function f on
K. When K is metrizable it is possible to choose µ supported by ext(K)
(Choquet’s theorem). Among its consequences, we have the Rainwater
theorem: a bounded sequence {xn} in a Banach X weak-converges to a ∈ X
if {f(xn)} converges to f(a) for each f ∈ ext(BX∗). More generally, it follows
from Simon’s inequality (Simons MR47#755) that Rainwater theorem remains
true when ext(BX∗) is replaced by any subset B ⊂ SX∗ with the property that
for every x ∈ X there is x∗ ∈ B such that ‖x‖ = x∗(x).

Without compactness of C, ext(C) may be empty. A closed convex subset
C of a Banach space is said to have the Krein-Milman property (KMP)
if each nonempty bounded closed convex subset of C has an extreme point.
If this is the case, C is the closed convex hull of ext(C). Given a non-empty
bounded subset A of a Banach space X , a slice of A is a set of the form
{a ∈ A : f(a) > sup{f(x) : x ∈ A} − r} with f ∈ X∗, r > 0. A point x
of a closed bounded convex subset C is called a denting point of C if there
are slices of C containing x of arbitrarily small ‖ ‖-diameter. Note that each
denting point of C is both a continuity and extreme point of C. The converse is
true and non-trivial (Lin-Lin-Troyanski, MR91g:46016). A non-empty bounded
subset A of a Banach space is said to be dentable if A has non-empty slices of
arbitrarily small diameter. It is known that a Banach space X has the Radon-
Nikodým property (RNP) if and only if each nonempty bounded closed convex
subset of X is dentable (cf. [1]). The RNP implies both the KMP and the
PCP (Lindenstrauss, cf. [1]). Conversely the PCP and KMP implies the RNP
(Schachermayer, MR89c:46030). It is an open problem if the KMP implies
the RNP. This is known to be true for some special cases. For instance this is
true for dual Banach spaces (Huff and Morris, MR50#14220) and for a Banach
space which is isomorphic to its square (Schachermayer, MR87e:46032).

Let c be a point of a bounded closed convex set C in a Banach space X and
let f ∈ X∗. If f(x) ≤ f(c) for all x ∈ C, then we say that c is a support point
of C and f a support functional of C. If, for some g ∈ X∗, g(x) < g(c) for
all x ∈ C, x 6= c, then we say that c is an exposed point of C. The point
c is a strongly exposed point of C if, for some g ∈ X∗, the ‖ ‖-diameter
of the sets {x ∈ C : g(c) − r < g(x)} tends to 0 as r ↓ 0, and, if this is the
case, the functional g is said to expose c strongly. A strongly exposed point
is both a denting point and an exposed point, and an exposed point is both a
support point and an extreme point. Bishop-Phelps theorem states that for any
nonempty closed convex bounded subset C of a Banach space X , the support
functionals of C is norm dense in X∗ (cf. [2]). Let C be a bounded closed
convex subset of a Banach space X with the RNP. Then C is the closed convex
hull of its strongly exposed points, and the set of all continuous functionals that
strongly expose points of C is a dense Gδ subset of (X∗, ‖ ‖). The last conclusion
has a strong converse: Let X be a Banach space. If, for each bounded closed
convex subset C, the set of all support functionals of C is of the second category
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in (X∗, ‖ ‖), then X has the RNP (Bourgain-Stegall (ca. 1975), see [1]).
If in a dual Banach space X∗ we replace the weak by the weak∗ topology

in the definition of the PCP, we arrive at the notion of weak∗ point of conti-
nuity property (w∗-PCP for short). The w∗-PCP, the RNP, and the KMP are
equivalent for a dual Banach space X∗ (see [1]). If this is the case, X∗ satisfies
a stronger dentability condition: every nonempty convex bounded subset of X∗

has nonempty relatively w∗-open slices of arbitrarily small diameter. There are
examples of dual Banach spaces having the PCP but not the RNP: therefore
PCP and w∗-PCP are not equivalent in dual Banach spaces (see [3]).

2. Smoothness and renorming. In a Banach space, one can change the norm
to an equivalent one without affecting the norm, weak and weak∗ topologies.
Therefore, in many instances, topological questions reduce to that of replacing
the given norm with one with better geometric properties.

(A) Classical renorming results. The norm in any Hilbert space X
satisfies the Parallelogram Law: ‖x + y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2) for all
x, y ∈ X , and this law characterizes Hilbert spaces amongst complex Banach
spaces (Von Neumann 1935). Notice that, when x, y ∈ SX , the distance ‖x−y‖
depends only on how close ‖2−1(x + y)‖ is to 1. In particular, the midpoint
of two distinct points of SX is never on SX . The norm ‖ ‖ of a Banach space
is said to be rotund or strictly convex if the unit sphere does not contain a
non-trivial segment. The norm of a Hilbert space also enjoys the smoothness
property of being Fréchet differentiable away from 0. Properties of rotundity
and smoothness are in “duality” through Šmulyan criterion type results, see [2,
Theorem I.1.4]. For instance, the norm of X is Gâteaux differentiable away
from 0 if the dual norm on X∗ is rotund.

Given ε > 0, a dyadic ε-tree with root x ∈ X of length N ∈ N ∪ {∞}
is a family {x(s)} of elements of X indexed by s ∈ {−1, 1}<N+1 such that
x = x(∅), x(s) = 2−1(x(s,−1) + x(s, 1)) and ‖x(s,−1) − x(s, 1)‖ ≥ ε for each
s ∈ {−1, 1}<N . An infinite dyadic ε-tree is not dentable. Thus a Banach
space with the RNP does not contain an infinite bounded dyadic ε-tree for
any ε > 0 but the converse is not true in general (Bourgain and Rosenthal,
MR82g:46044). A Banach space X is said to be superreflexive if for each
ε > 0 there is N(ε) ∈ N such that each dyadic ε-tree contained in the unit ball
BX has length N ≤ N(ε). Superreflexive Banach spaces are reflexive. If X is
superreflexive, then X∗ is also superreflexive.

The modulus of convexity of a norm ‖ ‖ is defined for ε ∈ [0, 2] as
follows: δ(ε) = inf{1 − 2−1‖x + y‖ : x, y ∈ SX , ‖x − y‖ ≥ ε}. The norm is
said to be uniformly rotund if δ(ε) > 0 for ε ∈ (0, 2]. The norm of X is
uniformly rotund if and only if the dual norm on X∗ is uniformly smooth,
i.e. limt→0 t−1(‖x+ th‖−‖x‖) exists uniformly in (x, h) ∈ SX ×SX . A Banach
space with a uniformly rotund norm is necessarily reflexive. The spaces Lp with
1 < p < ∞ are both uniformly rotund and uniformly smooth. A celebrated
theorem of Enflo (MR49#1073) states that X is superreflexive if and only if X
admits an equivalent uniformly rotund norm (equivalently, a uniformly smooth
norm). By a probabilistic method, Pisier (MR 52#14940) has improved Enflo’s
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result by showing that the modulus of convexity of an equivalent uniformly
rotund norm can be made to satisfy δ(ε) ≥ Cεp with C > 0, p ≥ 2.

Given a Banach space X , C ⊂ X a non-empty bounded set and ε > 0 define

Dε(C) = {x ∈ C : ‖ · ‖-diam(S) > ε for each slice S of C containing x}.

By induction we can define a transfinite sequence of sets by letting: Bε,0 =
BX , Bε,α+1 = Dε(Bε,α) and, for a limit ordinal α, Bε,α =

⋂
{Bε,β : β < α}.

Then X is superreflexive if and only if for every ε > 0 there is n(ε) < ω such that
Bε,n(ε) = ∅ (Lancien used this fact in (MR96e:46009) to give a non-probabilistic
proof of Pisier’s result.) The Banach space X has the RNP if and only if for
each ε > 0 there is an ordinal α(ε) such that Bε,α(ε) = ∅. If α(ε) is a countable
ordinal for each ε > 0, then X has an equivalent locally uniformly rotund norm
(Lancien, MR94h:46026). The norm ‖ ‖ of a Banach space X is said to be
locally uniformly rotund (LUR) if for each x ∈ SX and each ε > 0 there is
a δ > 0 such that ‖x−y‖ < ε whenever y ∈ SX and ‖2−1(x+y)‖ > 1−δ. Certain
topological properties of X ensure the existence of equivalent LUR norms, for
instance X being WLD. The norm of X is Fréchet differentiable away from 0
if the dual norm on X∗ is LUR. This fact provides a standard technique for
finding an equivalent Fréchet differentiable norm as, for instance, for Banach
spaces X such that X∗ is weakly countably determined. See subsection (C) for
further discussion on LUR-renorming.

(B) Asplund spaces. A Banach space X is said to be an Asplund space
(resp. weak Asplund space) if each continuous convex real-valued function
defined on a convex open subset of X is Fréchet (resp. Gâteaux) differentiable
at all points of a dense Gδ subset of its domain (cf. Sec. 3(A), BT(I)). Each
separable Banach space is weak Asplund (Mazur 1933), and if X∗ is separable,
then X is indeed an Asplund space (Asplund, MR 37#6754).

The Banach space X is Asplund if and only if X∗ has the RNP, and this is the
case if and only if each separable subspace of X has the separable dual (Namioka-
Phelps and Stegall, see [1]). In particular, for a compact Hausdorff space K the
space C(K) is Asplund if and only if K is scattered. Preiss (MR91g:46051)
established that real-valued Lipschitz functions on Asplund spaces are Fréchet
differentiable on a dense subset. In the case of a separable space X , there is
a very tight connection between renormability of the space and the Asplund
property. Indeed, for separable X the following are all equivalent: separability
of the dual space X∗; the existence on X of an equivalent norm with LUR dual
norm; the existence on X of an equivalent norm which is Fréchet differentiable
in X \ {0}. Day asked if the Fréchet renormability is necessary or sufficient
condition for a non-separable Banach space to be Asplund. In one direction
we have that X is an Asplund space (resp. weak Asplund) whenever it has an
equivalent Fréchet (resp. Gâteaux) differentiable norm, Ekeland and Lebourg
(MR55#4254) (resp. Preiss-Phelps-Namioka, MR92h:46021). The converse is
not true (Haydon, MR91h:46045). The result by Ekeland and Lebourg cited
above needs only the existence of a non-trivial Fréchet differentiable function
of bounded support. This type of functions are called bump functions. The
question whether the Asplund property is characterized by the existence of a
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bump function remains open.
A Banach space X admits Ck-smooth partitions of unity (k ∈ N or

k = +∞) when each norm-open cover of X has a partition of unity subordinate
to it consisting of Fréchet Ck-smooth functions. Toruńczyk (MR49#4016)
showed that a Banach space admits Ck-smooth partitions of unity if and only
if there is a set Γ and a homeomorphic embedding φ from X into c0(Γ) such
that the γ-th coordinate function x 7→ φ(x)(γ) is Ck-smooth on X , for each
γ ∈ Γ. As a consequence he obtained that any Hilbert space admits C∞-
smooth partitions of unity, proved the existence of high order smooth partitions
of unity on Lp-spaces and showed that any reflexive space admits C1 -smooth
partitions of unity. When X is WCG and X admits a Ck-bump function then
X admits a Ck-smooth partition of unity (Godefroy-Troyanski-Whitfield-Zizler,
MR85d:46020). All spaces C0(Υ) for Υ a tree considered in [8] also admits
C∞-smooth partitions of unity. It is an open problem if the existence of a
Ck-bump function in X implies that the space admits Ck-smooth partitions of
unity. Hajek and Haydon have shown recently that this is the case when X is
a space C(K), to be published.

(C) Fragmentability conditions. The notion of fragmentability provides
a tool to measure how far apart the weak and the norm topologies of a Banach
space are. This term was introduced by Jayne and Rogers (MR87a:28011)
in their work on Borel selectors for functions taking values among subsets of
Banach spaces. Let (T, τ) be a topological space, d a metric on T and ε > 0;
the space T is said to be ε-fragmented by d if for each nonempty subset C of
T there exists a τ -open subset V of T with C ∩ V 6= ∅ and d-diam (C ∩ V ) < ε.
When T is ε-fragmented by d for each ε > 0, we say that T is fragmented
by d. Each bounded subset of a Banach space with the RNP is fragmented
by the norm, but the converse is not true. However this is the case in dual
Banach spaces: the dual ball (BX∗ , w∗) is fragmented by the norm if and only
if X is an Asplund space (Namioka-Phelps, cf. [1]), i.e. X∗ has the RNP.
For Asplund spaces X , Jayne-Rogers’ selection theorem provides a first Baire
class map f : X → SX∗ with 〈f(x), x〉 = ‖x‖ for every x ∈ X ; this selector
for the duality map is a main tool to deal with the Amir-Lindenstrauss type
construction in X∗. For further discussion, see [2] and [5].

There is not much known about the permanence of the weak Asplund prop-
erty under the standard operations of Banach spaces. It is not even known
if X × R is weak Asplund when X is. However there is a much better sub-
class of weak Asplund spaces due to Stegall defined below (cf. [5] and refer-
ences therein). Let T and S be topological spaces. A map F : S → 2T is
said to be usco if F is upper semicontinuous (i.e. whenever U ⊂ T is open
{s ∈ S : F (s) ⊂ U} is open in S) and for each s ∈ S, F (s) is compact and
non-empty. A Tychonoff space T is said to belong to class S if, whenever B is
a Baire space and F : B → 2T is usco, there is a selector f of F (i.e. a map
f : B → T such that f(b) ∈ F (b) for each b ∈ B) which is continuous at each
point of a dense Gδ subset of B. It is shown that, if T is fragmented by a metric,
then T ∈ S. A Banach space X is said to belong to class S̃ (Stegall’s class)
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if (BX∗ , w∗) ∈ S. Each Banach space in S̃ is weak Asplund and this class has
very good permanence properties. When a compact space K is fragmented, the
Banach space C(K) belongs to S̃ (Ribarska, MR89e:54063). Compact spaces
K such that C(K) is weak Asplund are sequentially compact and contain dense
Gδ completely metrizable subset (Čoban-Kenderov, MR91c:90119). A Banach
space with a Gâteaux differentiable norm belongs to S̃ (Preiss-Phelps-Namioka,
op. cit.).

A topological space (X, τ) is said to be σ-fragmentable by a metric d
if for each ε > 0, X =

⋃∞

n=1 Xn,ε where each Xn,ε is ε-fragmented by d. The
class of Banach spaces such that (X, w) is σ-fragmentable by the norm metric
has been extensively studied following the work of Jayne, Namioka and Rogers
(MR93i:46027, 94c:46028 and 94c:4601). Such a Banach space is said to be
σ-fragmentable. They have established the connection of this notion with
descriptive topology, renormings and property N ∗. A norm in a Banach space
X is called a Kadec norm if the norm and the weak topologies coincide on
the unit sphere SX . Each LUR norm is a Kadec norm because each point of
the unit sphere of a LUR norm is a strongly exposed point of the unit ball.
If a Banach space admits an equivalent Kadec norm, X is a Borel subset of
(X∗∗, w∗) and the Borel sets for the weak and the norm topology of X coincide
(Edgar, MR81d:28016). A Banach space X which is obtained through the
Souslin operation applied to Borel subsets of (X∗∗, weak∗) is called weak-Čech-
analytic. Each weak-Čech-analytic Banach space is σ-fragmentable (Jayne-
Namioka-Rogers, op. cit.). Therefore for a Banach space we have

LUR renormable ⇒ Kadec renormable ⇒ weak-Čech-analytic ⇒ σ-fragmentable

No example of σ-fragmentable Banach space without an equivalent Kadec norm
is known. The first example of a Banach space with Kadec norm and without
equivalent LUR norm is given by Haydon [8]. Kenderov and Moors have proved
in (MR2001f:46026) that a Banach space X is σ-fragmentable if and only if
(X, w) is fragmented by a metric whose topology is stronger than the weak
topology. Their argument is game theoretic.

A modification of σ-fragmentability characterizes LUR renormability of Ba-
nach spaces: X is LUR renormable if and only if for each ε > 0, X =

⋃∞

n=1 Xn,ε

where each Xn,ε is the union of its slices of diameter less than ε (Molto-Orihuela-
Troyanski, MR98e:46011 and Raja [Mathematika 46 (1999),343–358]). In par-
ticular, if every point of the unit sphere is a denting point then the space is
LUR renormable (Troyanski, MR86g:46030). When the previous sets Xn,ε are
simply the union of relatively weak open sets of diameter less than ε then X
is said to have the JNR property. If a Banach space admits an equivalent
Kadec norm , then it also has the JNR property. Conversely, the JNR property
in X implies the existence of a symmetric homogeneous and weakly lower semi-
continuous real-valued function F defined on X with ‖ ‖≤ F (·) ≤ 3 ‖ ‖ and
such that the norm and the weak topologies coincide on {x ∈ X : F (x) = 1},
(Raja MR2000i:46003). A Banach space X has the JNR property if and only
if there is a sequence {An} of subsets of X such that the family {An ∩ W :
Wweak-open, n ∈ N} is a network for the norm topology. A Banach space
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admits an equivalent Kadec norm if and only if the sequence {An} above can
be chosen to be convex (Raja MR2000i:46003). The JNR property is equiv-
alent to the fact that the weak topology has a σ-relatively discrete network
(cf. Hansell [Serdica Math. J. 27 (2001), 1–66] and Molto-Orihuela-Troyanski-
Valdivia, MR2000b:46031).

3. Heritage of S. Banach and the structural theory of Banach spaces.
A sequence of vectors {en : n ∈ N} is called a basis of a Banach space X if
every x ∈ X has a unique representation as x =

∑
aixi with scalars ai. If the

convergence of the series is unconditional the basis is called an unconditional
basis. In that case every infinite subset M of integers gives a continuous linear
projection PM (

∑
aixi) =

∑
i∈M aixi. Each infinite dimensional Banach space

contains an infinite dimensional subspace with a basis and Banach asked if each
separable Banach space has a basis. A famous counterexample of Enflo [4]
solved even a stronger version of the problem dealing with the approximation
property of Grothendieck. After Enflo’s counterexample, and for a long time,
it was conjectured that each infinite dimensional Banach space contains copies
of c0 or `p or, at least, an infinite dimensional subspace with an unconditional
basis. This is the case for Banach spaces with a C∞-smooth bump function,
(Deville, MR90m:46023) and for the class of Orlicz spaces, Lindenstrauss and
Tzafriri [9]. Nevertheless Tsirelson constructed a reflexive Banach space not
containing `p for 1 < p < +∞. A Banach space X is called stable if for any two
bounded sequences {xn} and {yn} in X and for any two free ultrafilters U and
V on N

lim
n,U

lim
m,V

‖xn + ym‖ = lim
m,V

lim
n,U

‖xn + ym‖.

Krivine and Maurey (MR83a:46030) have proved that stable Banach spaces
contain, for every ε > 0, a subspace which is (1 + ε)-isometric to `p for some
p. Tsirelson’s construction has been modified by Schlumprecht (MR93h:46023)
opening the door for the construction by Gowers and Maurey [7] of a separable
reflexive Banach space X that does not have any infinite-dimensional subspace
with an unconditional basis (see also Gowers, MR94j:46024). Gowers-Maurey’s
example X has the property that, for each subspace Z, any continuous linear
projection P of X onto Z is trivial, i.e., either dimPZ < ∞ or dimZ/PZ < ∞.
A Banach space with this property is said to be hereditarily indecompos-
able. A hereditarily indecomposable Banach space is not isomorphic to any of
its proper subspaces and it provides an answer to Banach’s “hyperplane prob-
lem” asking whether each infinite-dimensional Banach space is isomorphic to
its hyperplanes, [6]. Recently Argyros has been able to construct non separable
hereditarily indecomposable Banach spaces.

A dichotomy result by Gowers (MR97m:46017) makes clear that hereditarily
indecomposable spaces are not just pathological counterexamples but they are
essential in the structural theory of general Banach spaces: Each infinite dimen-
sional Banach space has a hereditarily indecomposable subspace or a subspace
with an unconditional basis. The proof is combinatorial and it uses infinite Ram-
sey theory which turns out to be an important tool in the infinite-dimensional
setting. As a consequence Gowers solved the classical “homogeneous space prob-
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lem” by showing that `2 is the only Banach space which is isomorphic to each
infinite dimensional subspace. Another well-known open problem was the fol-
lowing: Assume that X and Y are Banach spaces each of them isomorphic to a
complemented subspace (i.e. the image of a continuous linear projection) of the
other. Must X be isomorphic to Y ? Again Gowers gave a counterexample: a
Banach space X isomorphic to X ⊕X ⊕X and not to X ⊕X (MR 97d:46009).

4. Final comment. We refer the interested reader to the references here and
in BT(I) with special mention to the book by Benyamini and Lindenstrauss
[3,BT(I)] where many of the topics we have commented are expanded and the
non-linear functional analysis theory is presented. We also refer to the Hand-
book of the Geometry of Banach spaces (Two volumes) W. B. Johnson and J.
Lindenstrauss eds. Elsevier, Amsterdam (2001)– to appear.
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