The Bourgain property and Birkhoff integrability

B. Cascales and J. Rodríguez

Universidad de Murcia

Contemporary Ramifications of Banach Space Theory
Jerusalem, 22nd of June 2005

The Aim of the lecture

is to bring together a notion of measurability, Bourgain property, with a notion of integrability, Birkhoff integrability, and then give applications to Banach spaces.
The Aim of the lecture

is to bring together a notion of measurability, Bourgain property, with a notion of integrability, Birkhoff integrability, and then give applications to Banach spaces.

- **Birkhoff integrability:**
 - was introduced in [Bir35].
The Aim of the lecture

is to bring together a notion of measurability, Bourgain property, with a notion of integrability, Birkhoff integrability, and then give applications to Banach spaces.

- **Birkhoff integrability:**
 - was introduced in [Bir35].
 - *lies strictly* between Bochner and Pettis integrability, [Pet38, Phi40]
The Aim of the lecture

is to bring together a notion of measurability, Bourgain property, with a notion of integrability, Birkhoff integrability, and then give applications to Banach spaces.

- **Birkhoff integrability:**
 - was introduced in [Bir35].
 - *lies strictly* between Bochner and Pettis integrability, [Pet38, Phi40]
 - doesn’t involve a barycentric definition: it is somehow *computable*.
The Aim of the lecture

is to bring together a notion of measurability, Bourgain property, with a notion of integrability, Birkhoff integrability, and then give applications to Banach spaces.

- **Birkhoff integrability:**
 - was introduced in [Bir35].
 - *lies strictly* between Bochner and Pettis integrability, [Pet38, Phi40]
 - doesn’t involve a barycentric definition: it is somehow *computable*.

- **Bourgain property:**
 - traditionally *used* as a *sufficient condition* for Pettis integrability.
The Aim of the lecture

is to bring together a notion of measurability, Bourgain property, with a notion of integrability, Birkhoff integrability, and then give applications to Banach spaces.

- **Birkhoff integrability:**
 - was introduced in [Bir35].
 - *lies strictly* between Bochner and Pettis integrability, [Pet38, Phi40]
 - doesn’t involve a barycentric definition: it is somehow *computable*.

- **Bourgain property:**
 - traditionally *used* as a *sufficient condition* for Pettis integrability.
 - Birkhoff integrability has been historically ignored.
The Aim of the lecture

is to bring together a notion of measurability, Bourgain property, with a notion of integrability, Birkhoff integrability, and then give applications to Banach spaces.

- **Birkhoff integrability:**
 - was introduced in [Bir35].
 - *lies strictly* between Bochner and Pettis integrability, [Pet38, Phi40]
 - doesn’t involve a barycentric definition: it is somehow *computable*.

- **Bourgain property:**
 - traditionally *used* as a *sufficient condition* for Pettis integrability.
 - Birkhoff integrability has been historically ignored.

Our basic result

We characterize Birkhoff integrability via the property of Bourgain.
Some consequences

- Extremal tests can be proved.
Some consequences

- Extremal tests can be proved.

Boundary problem

If X is a Banach space not containing $\ell^1(\mathbb{R})$ and $B \subset B_{X^*}$ a boundary (i.e. for every $x \in X$ there exists $e^* \in B$ such that $e^*(x) = \|x\|$) then the norm bounded $\sigma(X, B)$- relatively compact subsets of X are relatively weakly compact.
Some consequences

- Extremal tests can be proved.
- New characterization of the WRNP.
Some consequences

- Extremal tests can be proved.
- New characterization of the WRNP.

Banach spaces without copies of ℓ^1

For dual Banach spaces WRNP is characterized via Birkhoff integrable Radon-Nikodým derivatives instead of Pettis integrable ones.
Some consequences

- Extremal tests can be proved.
- New characterization of the WRNP.
- Riemann-Lebesgue unconditional integrability.
Some consequences

- Extremal tests can be proved.
- New characterization of the WRNP.
- Riemann-Lebesgue unconditional integrability.

Birkhoff integrability is rediscovered

Kadets et al. in 2000-2002, [KSS+02, KT00] introduced and studied a notion of integrability that is equivalent to Birkhoff integrability introduced in 1935.
Some consequences

- Extremal tests can be proved.
- New characterization of the WRNP.
- Riemann-Lebesgue unconditional integrability.
- Integrals for multifunctions.
Some consequences

- Extremal tests can be proved.
- New characterization of the WRNP.
- Riemann-Lebesgue unconditional integrability.
- Integrals for multifunctions.

Aumann and Debreu

Certain integrals for multifuctions used for models in Mathematics for Economy can be computed as limits in the Hausdorff distance of Riemann (Minkowski) sums of sets.
The property of Bourgain

The notion wasn’t published by Bourgain.
for each x in E. Since the set $\{\langle f, x \rangle : \|x\| \leq 1\}$ contains no copy of the l_1-basis in $L_\infty(\Sigma, \mu)$ and the conditional expectation operator ξ is a contraction from $L_\infty(\Sigma, \mu)$ into $L_\infty(\Gamma, \mu)$, we may conclude that $T(B_E)$ contains no copy of the l_1-basis in $L_\infty(\Gamma, \mu)$. Consequently $T(B_E)$ is weakly precompact in $L_\infty(\Gamma, \mu)$ and there is a Pettis integrable kernel $g : (\Omega, \Gamma, \mu) \to E^*$ for the operator

$$T^* : L_1(\Gamma, \mu) \to E^*.$$

Then $\langle g, x \rangle = Tx = \xi(\langle f, x \rangle | \Gamma)$ a.e. for every x in E. Therefore

$$\int_B \langle g, x \rangle \, d\mu = \int_B \xi(\langle f, x \rangle | \Gamma) \, d\mu = \int_B \langle f, x \rangle \, d\mu$$

for every set B in Γ and hence $\int_B g \, d\mu = \int_B f \, d\mu$ for every set B in Γ. This shows that g is a Pettis conditional expectation of f for the σ-algebra Γ.

In view of Theorems 5 and 9, one can ask the following.

Question. If, in Theorem 9, we suppose that the set

$$\{\langle f, x \rangle : \|x\| \leq 1\}$$

is almost weakly precompact in $L_\infty(\mu)$, does f have a Pettis conditional expectation with respect to all sub-σ-algebras of Σ?

If the above were true, then any function satisfying the conditions of Theorem 5 would have a Pettis conditional expectation with respect to all Radon measures on all sub-σ-algebras of the Borel σ-algebra of K.

IV. The Bourgain property

So far we have seen that the family $\{\langle f, x \rangle : \|x\| \leq 1\}$ plays a strong role in determining Pettis integrability for a bounded scalarly measurable function f from Ω into a dual space E^*. We continue this approach in this part, but, rather than viewing such families as subsets of $L_\infty(\mu)$, we now consider them simply as families of real-valued functions on Ω. A property of real-valued functions formulated by J. Bourgain [2] is the cornerstone of our discussion.

Definition 10. Let (Ω, Σ, μ) be a measure space. A family Ψ of real-valued functions on Ω is said to have the **Bourgain property** if the following condition is satisfied: For each set A of positive measure and for each $\alpha > 0$, there is a finite collection F of subsets of positive measure of A such that for each function f in Ψ, the inequality $\sup_{B} f(B) - \inf_{B} f(B) < \alpha$ holds for some member B of F.
A first glimpse to some consequences
The definitions and a bit of their history
The results and their applications
References

The property of Bourgain
Birkhoff integral: a vector approach to Fréchet scalar ideas

The property of Bourgain

- The notion wasn't published by Bourgain.
- It appears in a paper by [RS85] and refers to handwritten notes by Bourgain.

Definition

We say that a family $\mathcal{F} \subset R^\Omega$ has Bourgain property if for every $\varepsilon > 0$ and every $A \in \Sigma$ with $\mu(A) > 0$ there are $B_1, \ldots, B_n \subset A$, $B_i \in \Sigma$, with $\mu(B_i) > 0$ such that for every $f \in \mathcal{F}$

$$\inf_{1 \leq i \leq n} |g| - \text{diam} (f(B_i)) < \varepsilon.$$
Bourgain Property

We say that a family \(\mathcal{F} \subset R^\Omega \) has **Bourgain property** if for every \(\varepsilon > 0 \) and every \(A \in \Sigma \) with \(\mu(A) > 0 \) there are \(B_1, \ldots, B_n \subset A, B_i \in \Sigma, \) with \(\mu(B_i) > 0 \) such that for every \(f \in \mathcal{F} \)

\[
\inf_{1 \leq i \leq n} |\cdot| \text{-diam } (f(B_i)) < \varepsilon.
\]

Remarkable facts

- **If** \(\mathcal{F} = \{f\}, \) **TFAE:**
 - (i) (Bourgain property) For every \(\varepsilon > 0 \) and every \(A \in \Sigma \) with \(\mu(A) > 0 \) there is \(B \in \Sigma, B \subset A \) with \(\mu(B) > 0 \) and \(|\cdot| \text{-diam } f(B) < \varepsilon. \)
 - (ii) \(f \) is measurable.
Bourgain Property

We say that a family \(\mathcal{F} \subset \mathbb{R}^\Omega \) has Bourgain property if for every \(\varepsilon > 0 \) and every \(A \in \Sigma \) with \(\mu(A) > 0 \) there are \(B_1, \ldots, B_n \subset A \), \(B_i \in \Sigma \), with \(\mu(B_i) > 0 \) such that for every \(f \in \mathcal{F} \)

\[
\inf_{1 \leq i \leq n} \| \cdot \| - \text{diam } (f(B_i)) < \varepsilon.
\]

Remarkable facts

- If \(\mathcal{F} = \{ f \} \), TFAE:
 (i) (Bourgain property) For every \(\varepsilon > 0 \) and every \(A \in \Sigma \) with \(\mu(A) > 0 \) there is \(B \in \Sigma \), \(B \subset A \) with \(\mu(B) > 0 \) and \(\| \cdot \| - \text{diam } f(B) < \varepsilon \).
 (ii) \(f \) is measurable.

- If \(\mathcal{F} \) has Bourgain property, then \(\mathcal{F} \) is made up of measurable functions.
Bourgain Property

We say that a family $\mathcal{F} \subset \mathbb{R}^\Omega$ has **Bourgain property** if for every $\varepsilon > 0$ and every $A \in \Sigma$ with $\mu(A) > 0$ there are $B_1, \ldots, B_n \subset A$, $B_i \in \Sigma$, with $\mu(B_i) > 0$ such that for every $f \in \mathcal{F}$

$$\inf_{1 \leq i \leq n} |\cdot|-\operatorname{diam} (f(B_i)) < \varepsilon.$$

Remarkable facts

- If $\mathcal{F} = \{f\}$, TFAE:
 1. (Bourgain property) For every $\varepsilon > 0$ and every $A \in \Sigma$ with $\mu(A) > 0$ there is $B \in \Sigma$, $B \subset A$ with $\mu(B) > 0$ and $|\cdot|-\operatorname{diam} f(B) < \varepsilon$.
 2. f is measurable.

- If \mathcal{F} has Bourgain property, then \mathcal{F} is made up of measurable functions.

- \mathcal{F} has Bourgain property \Rightarrow $\overline{\mathcal{F}}$ has too.
Bourgain Property

We say that a family $\mathcal{F} \subset \mathbb{R}^\Omega$ has Bourgain property if for every $\varepsilon > 0$ and every $A \in \Sigma$ with $\mu(A) > 0$ there are $B_1, \ldots, B_n \subset A$, $B_i \in \Sigma$, with $\mu(B_i) > 0$ such that for every $f \in \mathcal{F}$

$$\inf_{1 \leq i \leq n} |\cdot|\text{-diam } (f(B_i)) < \varepsilon.$$

Remarkable facts

- If $\mathcal{F} = \{f\}$, TFAE:

 (i) (Bourgain property) For every $\varepsilon > 0$ and every $A \in \Sigma$ with $\mu(A) > 0$ there is $B \in \Sigma$, $B \subset A$ with $\mu(B) > 0$ and $|\cdot|\text{-diam } f(B) < \varepsilon$.

 (ii) f is measurable.

- If \mathcal{F} has Bourgain property, then \mathcal{F} is made up of measurable functions.

- \mathcal{F} has Bourgain property $\Rightarrow \overline{\mathcal{F}}$ has too.

- \mathcal{F} has Bourgain property and $f \in \overline{\mathcal{F}}$, then there is a sequence (f_n) in \mathcal{F} that converges to f, μ-almost everywhere.
Bourgain Property

We say that a family $\mathcal{F} \subset \mathbb{R}^\Omega$ has Bourgain property if for every $\varepsilon > 0$ and every $A \in \Sigma$ with $\mu(A) > 0$ there are $B_1, \ldots, B_n \subset A$, $B_i \in \Sigma$, with $\mu(B_i) > 0$ such that for every $f \in \mathcal{F}$

$$\inf_{1 \leq i \leq n} |\cdot| - \text{diam } (f(B_i)) < \varepsilon.$$

Remarkable facts

- If $\mathcal{F} = \{f\}$, TFAE:

 (i) (Bourgain property) For every $\varepsilon > 0$ and every $A \in \Sigma$ with $\mu(A) > 0$ there is $B \in \Sigma$, $B \subset A$ with $\mu(B) > 0$ and $|\cdot| - \text{diam } f(B) < \varepsilon$.

 (ii) f is measurable.

- If \mathcal{F} has Bourgain property, then \mathcal{F} is made up of measurable functions.

- \mathcal{F} has Bourgain property $\Rightarrow \overline{\mathcal{F}}$ has too.

- \mathcal{F} has Bourgain property and $f \in \overline{\mathcal{F}}$, then there is a sequence (f_n) in \mathcal{F} that converges to f, μ-almost everywhere.

- $\mathcal{F} \subset \mathbb{R}^\Omega$ has Bourgain property $\Rightarrow \mathcal{F}$ is stable, [Tal84, 9-5-4].
Fréchet interpretation of Lebesgue integral

Given \(f : \Omega \rightarrow \mathbb{R} \), for each partition \(\Gamma \) of \(\Omega \) into countably many sets \((A_n) \) of \(\Sigma \) consider the relative upper and lower sums:

\[
J^*(f, \Gamma) = \sum_n \sup_{A_n} f \mu(A_n) \quad \text{and} \quad J_*(f, \Gamma) = \sum_n \inf_{A_n} f \mu(A_n),
\]

(assuming both series are well defined and absolutely convergent).
Fréchet interpretation of Lebesgue integral

Given $f : \Omega \longrightarrow \mathbb{R}$, for each partition Γ of Ω into countably many sets (A_n) of Σ consider the relative *upper* and *lower* sums:

$$J^*(f, \Gamma) = \sum_n \sup_{A_n} f \mu(A_n) \quad \text{and} \quad J_*(f, \Gamma) = \sum_n \inf_{A_n} f \mu(A_n),$$

(assuming both series are well defined and absolutely convergent).

We have:

- $J_*(f, \Gamma) \leq J^*(f, \Gamma')$ whenever $J_*(f, \Gamma)$ and $J^*(f, \Gamma')$ are defined.
Fréchet interpretation of Lebesgue integral

Given \(f : \Omega \to \mathbb{R} \), for each partition \(\Gamma \) of \(\Omega \) into countably many sets \((A_n) \) of \(\Sigma \) consider the relative upper and lower sums:

\[
J^*(f, \Gamma) = \sum_n \sup_{A_n} f \mu(A_n) \quad \text{and} \quad J_*(f, \Gamma) = \sum_n \inf_{A_n} f \mu(A_n),
\]

(assuming both series are well defined and absolutely convergent).

We have:

- \(J_*(f, \Gamma) \leq J^*(f, \Gamma') \) whenever \(J_*(f, \Gamma) \) and \(J^*(f, \Gamma') \) are defined.
- The intersection of the “relative integral ranges” \(J_*(f, \Gamma) \leq x \leq J^*(f, \Gamma) \), for variable \(\Gamma \) is not empty.
Fréchet interpretation of Lebesgue integral

Given \(f : \Omega \rightarrow \mathbb{R} \), for each partition \(\Gamma \) of \(\Omega \) into countably many sets \((A_n) \) of \(\Sigma \) consider the relative upper and lower sums:

\[
J^*(f, \Gamma) = \sum_n \sup_{A_n} f \mu(A_n) \quad \text{and} \quad J_*(f, \Gamma) = \sum_n \inf_{A_n} f \mu(A_n),
\]

(assuming both series are well defined and absolutely convergent).

We have:

- \(J_*(f, \Gamma) \leq J^*(f, \Gamma') \) whenever \(J_*(f, \Gamma) \) and \(J^*(f, \Gamma') \) are defined.
- The intersection of the “relative integral ranges” \(J_*(f, \Gamma) \leq x \leq J^*(f, \Gamma) \), for variable \(\Gamma \) is not empty.
- This intersection is a single point \(x \) if, and only if, \(f \) is Lebesgue integrable and \(x = \int_{\Omega} f \, d\mu \).
Fréchet interpretation of Lebesgue integral

This way of presenting the theory of integration due to M. Lebesgue has the advantage, over the way M. Lebesgue presented his theory himself, that is very much close to the views of Riemann-Darboux to which many students are familiar with.
Let $f : \Omega \rightarrow X$ be a function. If Γ is a partition of Ω into countably many sets (A_n) of Σ, the function f is called **summable** with respect to Γ if the restriction $f|_{A_n}$ is bounded whenever $\mu(A_n) > 0$ and the set of sums

$$J(f, \Gamma) = \left\{ \sum_n f(t_n)\mu(A_n) : t_n \in A_n \right\}$$

is made up of unconditionally convergent series.
Birkhoff views

Let \(f : \Omega \rightarrow X \) be a function. If \(\Gamma \) is a partition of \(\Omega \) into countably many sets \((A_n) \) of \(\Sigma \), the function \(f \) is called \textit{summable} with respect to \(\Gamma \) if the restriction \(f|_{A_n} \) is bounded whenever \(\mu(A_n) > 0 \) and the set of sums

\[
J(f, \Gamma) = \left\{ \sum_n f(t_n)\mu(A_n) : t_n \in A_n \right\}
\]

is made up of unconditionally convergent series.

The function \(f \) is said to be \textbf{Birkhoff integrable} if for every \(\varepsilon > 0 \) there is a countable partition \(\Gamma = (A_n) \) of \(\Omega \) in \(\Sigma \) for which \(f \) is summable and

\[
\| \| - \text{diam} (J(f, \Gamma)) < \varepsilon.
\]
Let $f : \Omega \longrightarrow X$ be a function. If Γ is a partition of Ω into countably many sets (A_n) of Σ, the function f is called **summable** with respect to Γ if the restriction $f|_{A_n}$ is bounded whenever $\mu(A_n) > 0$ and the set of sums

$$J(f, \Gamma) = \left\{ \sum_n f(t_n)\mu(A_n) : t_n \in A_n \right\}$$

is made up of unconditionally convergent series.

The function f is said to be **Birkhoff integrable** if for every $\varepsilon > 0$ there is a countable partition $\Gamma = (A_n)$ of Ω in Σ for which f is summable and

$$\| -\text{diam } (J(f, \Gamma)) < \varepsilon.$$

In this case, the **Birkhoff integral** $(B) \int_\Omega f \, d\mu$ of f is the only point in the intersection

$$\bigcap \{ \text{co}(J(f, \Gamma)) : f \text{ is summable with respect to } \Gamma \}.$$
Theorem

Let \(f : \Omega \rightarrow X \) be a bounded function. The following statements are equivalent:

(i) \(f \) is Birkhoff integrable;

(ii) for every \(\varepsilon > 0 \) there is a countable partition \(\Gamma = (A_n) \) of \(\Omega \) in \(\Sigma \) such that for each \(t_k, t'_k \in A_k, k \in \mathbb{N} \), we have

\[
\left| \sum_{k=1}^{m} \langle x^*, f \rangle(t_k)\mu(A_k) - \sum_{k=1}^{m} \langle x^*, f \rangle(t'_k)\mu(A_k) \right| < \varepsilon
\]

for every \(m \in \mathbb{N} \) and every \(x^* \in B_{X^*} \);

(iii) \(Z_f = \{ \langle x^*, f \rangle : x^* \in B_{X^*} \} \) has Bourgain property.
Let \(f : \Omega \to X \) be a bounded function. The following statements are equivalent:

(i) \(f \) is Birkhoff integrable;

(ii) for every \(\varepsilon > 0 \) there is a countable partition \(\Gamma = (A_n) \) of \(\Omega \) in \(\Sigma \) such that for each \(t_k, t'_k \in A_k, \ k \in \mathbb{N}, \) we have

\[
\left| \sum_{k=1}^{m} \langle x^*, f(t_k) \rangle \mu(A_k) - \sum_{k=1}^{m} \langle x^*, f(t'_k) \rangle \mu(A_k) \right| < \varepsilon
\]

for every \(m \in \mathbb{N} \) and every \(x^* \in B_{X^*} \);

(iii) \(Z_f = \{ \langle x^*, f \rangle : x^* \in B_{X^*} \} \) has Bourgain property.

Proof. -

• (i) \(\Leftrightarrow \) (ii) pretty easy since (ii) is a reformulation of (i).
Theorem

Let \(f : \Omega \rightarrow X \) be a bounded function. The following statements are equivalent:

(i) \(f \) is Birkhoff integrable;

(ii) for every \(\varepsilon > 0 \) there is a countable partition \(\Gamma = (A_n) \) of \(\Omega \) in \(\Sigma \) such that for each \(t_k, t'_k \in A_k, k \in \mathbb{N} \), we have

\[
\left| \sum_{k=1}^{m} \langle x^*, f \rangle(t_k) \mu(A_k) - \sum_{k=1}^{m} \langle x^*, f \rangle(t'_k) \mu(A_k) \right| < \varepsilon
\]

for every \(m \in \mathbb{N} \) and every \(x^* \in B_{X^*} \);

(iii) \(Z_f = \{ \langle x^*, f \rangle : x^* \in B_{X^*} \} \) has Bourgain property.

Proof.

- (i) \(\Leftrightarrow \) (ii) pretty easy since (ii) is a reformulation of (i).
- (ii) \(\Rightarrow \) (iii) straightforward.
Theorem

Let $f: \Omega \to X$ be a bounded function. The following statements are equivalent:

(i) f is Birkhoff integrable;

(ii) for every $\varepsilon > 0$ there is a countable partition $\Gamma = (A_n)$ of Ω in Σ such that for each $t_k, t_k' \in A_k$, $k \in \mathbb{N}$, we have

$$\left| \sum_{k=1}^{m} \langle x^*, f \rangle(t_k) \mu(A_k) - \sum_{k=1}^{m} \langle x^*, f \rangle(t_k') \mu(A_k) \right| < \varepsilon$$

for every $m \in \mathbb{N}$ and every $x^* \in B_{X^*}$;

(iii) $Z_f = \{ \langle x^*, f \rangle : x^* \in B_{X^*} \}$ has Bourgain property.

Proof. -

- (i) \Leftrightarrow (ii) pretty easy since (ii) is a reformulation of (i).
- (ii) \Rightarrow (iii) straightforward.
- (iii) \Rightarrow (ii) mimic a result by Talagrand.
Let $f : \Omega \to X$ be a function. TFAE:

(i) f is Birkhoff integrable;
(ii) Z_f is uniformly integrable, Z_f has Bourgain property.

Proof.

(i) \Rightarrow (ii) Z_f has Bourgain property is easy; Z_f is uniformly integrable because f is Pettis integrable.

(ii) \Rightarrow (i) by proving (ii) \Rightarrow (iii)

(iii) \Rightarrow (i) requires some extra work.
Theorem

Let \(f : \Omega \rightarrow X \) be a function. TFAE:

(i) \(f \) is Birkhoff integrable;
(ii) \(Z_f \) is uniformly integrable, \(Z_f \) has Bourgain property.

Proof.-

(\(i \) \(\Rightarrow \) \(ii \)) \(Z_f \) has Bourgain property is easy; \(Z_f \) is uniformly integrable because \(f \) is Pettis integrable.
Theorem

Let $f : \Omega \rightarrow X$ be a function. TFAE:

(i) f is Birkhoff integrable;
(ii) Z_f is uniformly integrable, Z_f has Bourgain property.

Proof.-

- (i) \Rightarrow (ii) Z_f has Bourgain property is easy; Z_f is uniformly integrable because f is Pettis integrable.
- (ii) \Rightarrow (i) by proving (ii) \Rightarrow (iii)
Theorem

Let \(f : \Omega \rightarrow X \) be a function. TFAE:

(i) \(f \) is Birkhoff integrable;

(ii) \(Z_f \) is uniformly integrable, \(Z_f \) has Bourgain property.

(iii) \(Z_f \) is uniformly integrable, \(Z_f \) has Bourgain property and there is a countable partition \(\Gamma = (A_n) \) of \(\Omega \) in \(\Sigma \) such that \(f(A_n) \) is bounded whenever \(\mu(A_n) > 0 \).

Proof.-

(i) \(\Rightarrow \) (ii) \(Z_f \) has Bourgain property is easy; \(Z_f \) is uniformly integrable because \(f \) is Pettis integrable.

(ii) \(\Rightarrow \) (i) by proving (ii) \(\Rightarrow \) (iii)
Theorem

Let \(f : \Omega \to X \) be a function. TFAE:

(i) \(f \) is Birkhoff integrable;

(ii) \(Z_f \) is uniformly integrable, \(Z_f \) has Bourgain property.

(iii) \(Z_f \) is uniformly integrable, \(Z_f \) has Bourgain property and there is a countable partition \(\Gamma = (A_n) \) of \(\Omega \) in \(\Sigma \) such that \(f(A_n) \) is bounded whenever \(\mu(A_n) > 0 \).

Proof.-

- (i) \(\Rightarrow \) (ii) \(Z_f \) has Bourgain property is easy; \(Z_f \) is uniformly integrable because \(f \) is Pettis integrable.

- (ii) \(\Rightarrow \) (i) by proving (ii) \(\Rightarrow \) (iii)

- (iii) \(\Rightarrow \) (i) requires some extra work.
Theorem

Let $f : \Omega \to X$ be a function. TFAE:

(i) f is Birkhoff integrable;
(ii) Z_f is uniformly integrable, Z_f has Bourgain property.
(iii) Z_f is uniformly integrable, Z_f has Bourgain property and there is a countable partition $\Gamma = (A_n)$ of Ω in Σ such that $f(A_n)$ is bounded whenever $\mu(A_n) > 0$.

(iii) \Rightarrow (i)
Our basic result

Birkhoff integral as a limit of a net. WRNP and the Birkhoff integral

Birkhoff integral for multifunctions

The boundary problem

A first glimpse to some consequences

The definitions and a bit of their history

The results and their applications

B. Cascales and J. Rodríguez

The Bourgain property and Birkhoff integrability

• \(f \) is Pettis integrable in \(\Omega \).

(iii) \(\Rightarrow \) (i)

Theorem

Let \(f : \Omega \to X \) be a function. TFAE:

(i) \(f \) is Birkhoff integrable;

(ii) \(Z_f \) is uniformly integrable, \(Z_f \) has Bourgain property.

(iii) \(Z_f \) is uniformly integrable, \(Z_f \) has Bourgain property and there is a countable partition \(\Gamma = (A_n) \) of \(\Omega \) in \(\Sigma \) such that \(f(A_n) \) is bounded whenever \(\mu(A_n) > 0 \).
• f is Pettis integrable in Ω.
• Each $f|_{A_n}$ is Birkhoff integrable in A_n.

(iii) \Rightarrow (i)
Theorem

Let \(f : \Omega \to X \) be a function. TFAE:

(i) \(f \) is Birkhoff integrable;

(ii) \(Z_f \) is uniformly integrable, \(Z_f \) has Bourgain property.

(iii) \(Z_f \) is uniformly integrable, \(Z_f \) has Bourgain property and there is a countable partition \(\Gamma = (A_n)_n \) of \(\Omega \) in \(\Sigma \) such that \(f(A_n) \) is bounded whenever \(\mu(A_n) > 0 \).

\[
(iii) \Rightarrow (i)
\]

\[
\left\| \sum_k f(t_{n,k}) \mu(A_{n,k}) - \sum_k f'(t'_{n,k}) \mu(A_{n,k}) \right\| < \frac{\varepsilon}{2^n}
\]

for arbitrary choices \((t_{n,k}) \) and \((t'_{n,k}) \) in \(\Gamma_n \).
(iii) \Rightarrow (i)

Theorem

Let \(f : \Omega \longrightarrow X \) be a function. TFAE:

(i) \(f \) is Birkhoff integrable;

(ii) \(Z_f \) is uniformly integrable, \(Z_f \) has Bourgain property.

(iii) \(Z_f \) is uniformly integrable, \(Z_f \) has Bourgain property and there is a countable partition \(\Gamma = (A_n)_n \) of \(\Omega \) in \(\Sigma \) such that \(f(A_n) \) is bounded whenever \(\mu(A_n) > 0 \).

- \(f \) is Pettis integrable in \(\Omega \).
- Each \(f|_{A_n} \) is Birkhoff integrable in \(A_n \).
- Fix \(\varepsilon > 0 \). For each \(n \in \mathbb{N} \) take a partition \(\Gamma_n = (A_{n,k})_k \) of \(A_n \) in \(\Sigma \) such that
 \[
 \left\| \sum_k f(t_{n,k})\mu(A_{n,k}) - \sum_k f(t'_{n,k})\mu(A_{n,k}) \right\| < \frac{\varepsilon}{2^n}
 \]
 for arbitrary choices \((t_{n,k}) \) and \((t'_{n,k}) \) in \(\Gamma_n \).
- For \(\Gamma := (A_{n,k})_{n,k} \), the series \(\sum_{n,k} f(t_{n,k})\mu(A_{n,k}) \) c. u. for every choice \(T = (t_{n,k}) \) in \(\Gamma \) because:
(iii) ⇒ (i)

Theorem

Let \(f : \Omega \rightarrow X \) be a function. TFAE:

(i) \(f \) is Birkhoff integrable;
(ii) \(Z_f \) is uniformly integrable, \(Z_f \) has Bourgain property.
(iii) \(Z_f \) is uniformly integrable, \(Z_f \) has Bourgain property and there is a countable partition \(\Gamma = (A_n) \) of \(\Omega \) in \(\Sigma \) such that \(f(A_n) \) is bounded whenever \(\mu(A_n) > 0 \).

- \(f \) is Pettis integrable in \(\Omega \).
- Each \(f|_{A_n} \) is Birkhoff integrable in \(A_n \).
- Fix \(\varepsilon > 0 \). For each \(n \in \mathbb{N} \) take a partition \(\Gamma_n = (A_{n,k})_k \) of \(A_n \) in \(\Sigma \) such that

\[
\left\| \sum_k f(t_{n,k})\mu(A_{n,k}) - \sum_k f(t'_{n,k})\mu(A_{n,k}) \right\| < \frac{\varepsilon}{2^n}
\]

for arbitrary choices \((t_{n,k}) \) and \((t'_{n,k}) \) in \(\Gamma_n \).
- For \(\Gamma := (A_{n,k})_n \), the series \(\sum_{n,k} f(t_{n,k})\mu(A_{n,k}) \) c. u. for every choice \(T = (t_{n,k}) \) in \(\Gamma \) because:

- \(\sum_{n,k} \int_{A_{n,k}} f \ d\mu \) c. u. (\(f \) is Pettis integrable)
Theorem

Let \(f : \Omega \rightarrow X \) be a function. TFAE:

(i) \(f \) is Birkhoff integrable;
(ii) \(Z_f \) is uniformly integrable, \(Z_f \) has Bourgain property.
(iii) \(Z_f \) is uniformly integrable, \(Z_f \) has Bourgain property and there is a countable partition \(\Gamma = (A_n, k) \) of \(\Omega \) in \(\Sigma \) such that\(f(A_n) \) is bounded whenever \(\mu(A_n) > 0 \).

\[(iii) \Rightarrow (i) \]

- \(f \) is Pettis integrable in \(\Omega \).
- Each \(f|_{A_n} \) is Birkhoff integrable in \(A_n \).
- Fix \(\varepsilon > 0 \). For each \(n \in \mathbb{N} \) take a partition \(\Gamma_n = (A_n, k) \) of \(A_n \) in \(\Sigma \) such that
 \[\left\| \sum_k f(t_{n,k})\mu(A_n, k) - \sum_k f(t'_{n,k})\mu(A_n, k) \right\| < \frac{\varepsilon}{2^n} \]
 for arbitrary choices \((t_{n,k}) \) and \((t'_{n,k}) \) in \(\Gamma_n \).
- For \(\Gamma := (A_n, k) \), the series \(\sum_{n,k} f(t_{n,k})\mu(A_n, k) \) c. u. for every choice \(T = (t_{n,k}) \) in \(\Gamma \) because:
 - \(\sum_{n,k} \int_{A_n, k} f \ d\mu \) c. u. (\(f \) is Pettis integrable)
 - for each finite set \(Q \subset \mathbb{N} \)
 \[\left\| \sum_{k \in Q} (f(t_{n,k})\mu(A_n, k) - \int_{A_n, k} f d\mu) \right\| \leq \frac{\varepsilon}{2^n}. \]
Let $f : \Omega \to X$ be a function. TFAE:

(i) f is Birkhoff integrable;
(ii) Z_f is uniformly integrable, Z_f has Bourgain property.
(iii) Z_f is uniformly integrable, Z_f has Bourgain property and there is a countable partition $\Gamma = (A_n, k)_k$ of Ω in Σ such that $f(A_n)$ is bounded whenever $\mu(A_n) > 0$.

(iii) \Rightarrow (i)

- f is Pettis integrable in Ω.
- Each $f|_{A_n}$ is Birkhoff integrable in A_n.
- Fix $\varepsilon > 0$. For each $n \in \mathbb{N}$ take a partition $\Gamma_n = (A_{n,k})_k$ of A_n in Σ such that
 \[\left\| \sum_k f(t_{n,k})\mu(A_{n,k}) - \sum_k f(t'_{n,k})\mu(A_{n,k}) \right\| < \frac{\varepsilon}{2^n} \]
 for arbitrary choices $(t_{n,k})$ and $(t'_{n,k})$ in Γ_n.
- For $\Gamma := (A_{n,k})_{n,k}$, the series $\sum_{n,k} f(t_{n,k})\mu(A_{n,k})$ c. u. for every choice $T = (t_{n,k})$ in Γ because:
 - $\sum_{n,k} \int_{A_{n,k}} f \ d\mu$ c. u. (f is Pettis integrable)
 - for each finite set $Q \subset \mathbb{N}$
 \[\left\| \sum_{k \in Q} (f(t_{n,k})\mu(A_{n,k}) - \int_{A_{n,k}} f \ d\mu) \right\| \leq \frac{\varepsilon}{2^n} . \]

- $\|\|-\text{diam} (\left\{ \sum_{n,k} f(t_{n,k})\mu(A_{n,k}) : t_{n,k} \in A_{n,k} \right\}) \leq \varepsilon$.

B. Cascales and J. Rodríguez
Theorem

Let \(f : \Omega \rightarrow X \) be a function. TFAE:

(i) \(f \) is Birkhoff integrable;

(ii) there is \(x \in X \) satisfying: for every \(\varepsilon > 0 \) there is a countable partition \(\Gamma \) of \(\Omega \) in \(\Sigma \) for which \(f \) is summable and

\[
\| S(f, \Gamma, T) - x \| < \varepsilon \quad \text{for every choice } T \text{ in } \Gamma;
\]

(iii) there is \(y \in X \) satisfying: for every \(\varepsilon > 0 \) there is a countable partition \(\Gamma \) of \(\Omega \) in \(\Sigma \) such that \(f \) is summable with respect to each countable partition \(\Gamma' \) finer than \(\Gamma \) and

\[
\| S(f, \Gamma', T') - y \| < \varepsilon \quad \text{for every choice } T' \text{ in } \Gamma'.
\]

In this case, \(x = y = \int_{\Omega} f \ d\mu \).
Theorem

Let X be a Banach space. The following statements are equivalent:

1. X^* has the weak Radon-Nikodým property;
2. X does not contain a copy of ℓ^1;
3. for every complete probability space (Ω, Σ, μ) and for every μ-continuous countably additive vector measure $\nu : \Sigma \longrightarrow X^*$ of σ-finite variation there is a Birkhoff integrable function $f : \Omega \longrightarrow X^*$ such that

$$\nu(E) = \int_E f \, d\mu$$

for every $E \in \Sigma$.
The integral as limits of Riemann-Lebesgue sums

Let $F : \Omega \rightarrow cwk(\mathbb{R}^n)$ be a multi-valued function. The following conditions are equivalent:

1. F is Debreu integrable;

2. there is $B \in cwk(X)$ with the following property: for every $\varepsilon > 0$ there is a countable partition Γ_0 of Ω in Σ such that for every countable partition $\Gamma = (A_n)$ of Ω in Σ finer than Γ_0 and any choice $T = (t_n)$ in Γ, the series $\sum_n \mu(A_n)F(t_n)$ is unconditionally convergent and

$$h\left(\sum_n \mu(A_n)F(t_n), B\right) \leq \varepsilon.$$

In this case, $B = (B) \int_\Omega F \, d\mu$.
Boundary problem

If X is a Banach space not containing $\ell^1(\mathbb{R})$ and $B \subseteq B_{X^*}$ a boundary (i.e. for every $x \in X$ there exists $e^* \in B$ such that $e^*(x) = \|x\|$) then the norm bounded $\sigma(X, B)$-relatively compact subsets H of X are relatively weakly compact.

Proof.

- It is enough to prove that $\overline{\text{co}(H)}^{\sigma(X, B)}$ is $\sigma(X, B)$-compact.
- We prove that for each Radon probability measure μ on H the identity $\text{id} : H \to X$ is μ-Pettis (Birkhoff) integrable.
References

