The Lindelöf property and σ-fragmentability

B. Cascales and I. Namioka

Universidad de Murcia/University of Washington.

10th September 2004
1 The Proto-Idea
1 The Proto-Idea

2 The results
 - The basic result
 - Applications to Corson compact spaces
 - Applications to K-analytic spaces without perfect compact sets
 - Applications to Banach spaces
1 The Proto-Idea

2 The results
 • The basic result
 • Applications to Corson compact spaces
 • Applications to K-analytic spaces without perfect compact sets
 • Applications to Banach spaces

3 Counterexamples
 • The central results are sharp
1. The Proto-Idea

2. The results
 - The basic result
 - Applications to Corson compact spaces
 - Applications to K-analytic spaces without perfect compact sets
 - Applications to Banach spaces

3. Counterexamples
 - The central results are sharp

4. References
Let (X, τ) be a Tychonoff (completely regular and T_1) space, and let $C(X,I)$ be the space of all continuous functions $f : X \to I = [0,1]$. Then the map $\Phi : X \to I^{C(X,I)}$, given by $\Phi(x)(f) = f(x)$ for $x \in X, f \in C(X,I)$, embeds X topologically in $(I^{C(X,I)}, \tau_p)$ (see e.g. [Kel75]).
Let \((X, \tau)\) be a Tychonoff (completely regular and \(T_1\)) space, and let \(C(X, I)\) be the space of all continuous functions \(f : X \to I = [0, 1]\). Then the map \(\Phi : X \to I^{C(X, I)}\), given by \(\Phi(x)(f) = f(x)\) for \(x \in X, f \in C(X, I)\), embeds \(X\) topologically in \((I^{C(X, I)}, \tau_p)\) (see e.g. [Kel75]).

Let \((M, \rho)\) be a metric space with the metric \(\rho\) bounded, and let \(D\) be an index set. We consider various topologies, pseudometrics, metrics, etc. on the product space \(M^D\) and study their relationship between them in subspaces \(X \subset M^D\), namely,

- the product (= pointwise) topology \(\tau_p\)
- the topology \(\gamma(D)\) of uniform convergence on the family of all countable subsets \(\mathcal{C}\) of \(D\).
- the metric \(d\) of uniform convergence on \(D\).
Let X be a K-analytic subspace of M^D where (M, ρ) is a metric space with ρ bounded. Then the following statements are equivalent.

(a) The space (X, τ_ρ) is σ-fragmented by d.

(b) For each compact set $K \subset X$, (K, τ_ρ) is fragmented by d.

(c) For each $A \in \mathcal{C}$, the pseudo-metric space (X, d_A) is separable.

(d) $(X, \gamma(D))$ is Lindelöf.

(e) $(X, \gamma(D))^\mathbb{N}$ is Lindelöf.
Let X be a K-analytic subspace of M^D where (M, ρ) is a metric space with ρ bounded. Then the following statements are equivalent.

(a) The space (X, τ_p) is σ-fragmented by d.

(b) For each compact set $K \subset X$, (K, τ_p) is fragmented by d.

(c) For each $A \in \mathcal{C}$, the pseudo-metric space (X, d_A) is separable.

(d) $(X, \gamma(D))$ is Lindelöf.

(e) $(X, \gamma(D))^\mathbb{N}$ is Lindelöf.

Known and easy parts: (a) \iff (b) \iff (c) \iff (d) \iff (e) [JNR93] (a simpler proof [NP96]) and [CNO03].

(a) \implies (c) needs the following simple lemma.
Theorem

Let X be a K-analytic subspace of M^D where (M, ρ) is a metric space with ρ bounded. Then the following statements are equivalent.

(a) The space (X, τ_ρ) is σ-fragmented by d.
(b) For each compact set $K \subseteq X$, (K, τ_ρ) is fragmented by d.
(c) For each $A \in \mathcal{C}$, the pseudo-metric space (X, d_A) is separable.
(d) $(X, \gamma(D))$ is Lindelöf.
(e) $(X, \gamma(D))^\mathbb{N}$ is Lindelöf.

Known and easy parts: (a) \iff (b) \iff (c) \iff (d) \iff (e) [JNR93] (a simpler proof [NP96]) and [CNO03].
(a) \implies (c) needs the following simple lemma.

Lemma

Let (T, τ) be metrizable and separable and let δ be a metric on T. Then (T, τ) is σ-fragmented by δ if and only if (T, δ) is separable.
Difficult part: \((c) \Rightarrow (d)\) (by contradiction)

Useful facts about Baire sets:
Difficult part: (c) \Rightarrow (d) (by contradiction)

Useful facts about Baire sets:

- A subset Z of T is called a zero-set (in T) if $Z = f^{-1}(0)$ for some continuous function $f : T \to \mathbb{R}$.
Difficult part: $(c) \Rightarrow (d)$ (by contradiction)

Useful facts about Baire sets:

- A subset Z of T is called a zero-set (in T) if $Z = f^{-1}(0)$ for some continuous function $f : T \to \mathbb{R}$.

- Let \mathcal{L} (or $\mathcal{L}(T)$) denote the family of all zero-sets in T. Then \mathcal{L} is closed under finite unions and countable intersections.
Difficult part: (c) \Rightarrow (d) (by contradiction)

Useful facts about Baire sets:

- A subset Z of T is called a zero-set (in T) if $Z = f^{-1}(0)$ for some continuous function $f : T \rightarrow \mathbb{R}$.
- Let \mathcal{Z} (or $\mathcal{Z}(T)$) denote the family of all zero-sets in T. Then \mathcal{Z} is closed under finite unions and countable intersections.
- The σ-algebra generated by \mathcal{Z} is denoted by Baire(T) (Baire sets in T).
Difficult part: (c) ⇒ (d) (by contradiction)

Useful facts about Baire sets:

- A subset Z of T is called a zero-set (in T) if $Z = f^{-1}(0)$ for some continuous function $f : T \to \mathbb{R}$.
- Let \mathcal{Z} (or $\mathcal{Z}(T)$) denote the family of all zero-sets in T. Then \mathcal{Z} is closed under finite unions and countable intersections.
- The σ-algebra generated by \mathcal{Z} is denoted by Baire(T) (Baire sets in T).
- Baire(T) ⊂ Souslin(\mathcal{Z}).
Useful facts about Baire sets:

- A subset Z of T is called a zero-set (in T) if $Z = f^{-1}(0)$ for some continuous function $f : T \to \mathbb{R}$.

- Let \mathcal{Z} (or $\mathcal{Z}(T)$) denote the family of all zero-sets in T. Then \mathcal{Z} is closed under finite unions and countable intersections.

- The σ-algebra generated by \mathcal{Z} is denoted by Baire(T) ($Baire \ sets \ in \ T$).

- Baire(T) \subset Souslin(\mathcal{Z}).

- If X is K-analytic subset of M^D, then each zero-set in X, being closed, is K-analytic and therefore each member of Souslin(\mathcal{Z}) is K-analytic. Since Baire(T) \subset Souslin(\mathcal{Z}), each Baire set in X is K-analytic hence Lindelöf relative to τ_p.
Preparatory things

Notation: $x \in X$, $S \subset D$ and $\varepsilon > 0$.
- $U(x,S,\varepsilon) := \{y \in X : d_S(y,x) < \varepsilon\}$.
Preparatory things

Notation: \(x \in X, \ S \subset D \) and \(\varepsilon > 0 \).

- \(U(x,S,\varepsilon) := \{ y \in X : d_S(y,x) < \varepsilon \} \).
- \(\mathcal{U} = \{ U_j : j \in J \} \) is a family of \(\gamma(D) \)-open sets in \(X \) that covers \(X \) without a countable subcover. We may assume that each \(U_j \) is of the form

\[
U_j = U(x_j,A_j,\varepsilon_j) = \{ y \in X : d_{A_j}(y,x_j) < \varepsilon_j \},
\]

where \(x_j \in X, \ A_j \in \mathcal{C}, \ \varepsilon_j > 0 \) for each \(j \in J \).
Preparatory things

Notation: $x \in X$, $S \subset D$ and $\varepsilon > 0$.

- $U(x,S,\varepsilon) := \{y \in X : d_S(y,x) < \varepsilon\}$.

- $\mathcal{U} = \{U_j : j \in J\}$ is a family of $\gamma(D)$-open sets in X that covers X without a countable subcover. We may assume that each U_j is of the form

$$U_j = U(x_j,A_j,\varepsilon_j) = \{y \in X : d_{A_j}(y,x_j) < \varepsilon_j\},$$

where $x_j \in X$, $A_j \in \mathcal{C}$, $\varepsilon_j > 0$ for each $j \in J$.

- For each $A \in \mathcal{C}$, let $U(A) = \bigcup\{U_j : j \in J, A_j \subset A\}$.
Preparatory things

Notation: \(x \in X, \ S \subset D \) and \(\varepsilon > 0 \).

- \(U(x,S,\varepsilon) := \{ y \in X : d_S(y,x) < \varepsilon \} \).
- \(\mathcal{U} = \{ U_j : j \in J \} \) is a family of \(\gamma(D) \)-open sets in \(X \) that covers \(X \) without a countable subcover. We may assume that each \(U_j \) is of the form

\[
U_j = U(x_j,A_j,\varepsilon_j) = \{ y \in X : d_{A_j}(y,x_j) < \varepsilon_j \},
\]

where \(x_j \in X, \ A_j \in \mathscr{C}, \ \varepsilon_j > 0 \) for each \(j \in J \).

- For each \(A \in \mathscr{C} \), let \(U(A) = \bigcup \{ U_j : j \in J, A_j \subset A \} \).

Remark

If \(A \subset A' \), then \(U(A) \subset U(A') \) and \(X = \bigcup \{ U(A) : A \in \mathscr{C} \} \).
Assume (c) holds and (d) doesn’t

Lemma (a tool!!!)

(i) $U(x,A,\varepsilon) \in \text{Baire}(X)$ whenever $x \in X, A \in \mathcal{C}, \varepsilon > 0$.
(ii) $U(A) \in \text{Baire}(X)$: $U(A)$ is K-analytic and Lindelöf, $A \in \mathcal{C}$.
(iii) $S \subset X$ is covered by a count. subfamily of \mathcal{U} iff $S \subset U(A)$.
Assume (c) holds and (d) doesn’t

Lemma (a tool!!!)

(i) \(U(x,A,\epsilon) \in \text{Baire}(X) \) whenever \(x \in X, A \in \mathcal{C}, \epsilon > 0 \).

(ii) \(U(A) \in \text{Baire}(X): U(A) \) is K-analytic and Lindelöf, \(A \in \mathcal{C} \).

(iii) \(S \subset X \) is covered by a count. subfamily of \(\mathcal{U} \) iff \(S \subset U(A) \).

Let \(\mathcal{Y} \) be the family of all K-analytic subsets \(Y \) of \((X,\tau_p) \) such that there is no countable subfamily of \(\mathcal{U} \) that covers \(Y \).
Assume (c) holds and (d) doesn’t

Lemma (a tool!!!)

(i) \(U(x,A,\varepsilon) \in \text{Baire}(X) \) whenever \(x \in X, A \in \mathcal{C}, \varepsilon > 0 \).

(ii) \(U(A) \in \text{Baire}(X) \): \(U(A) \) is \(K \)-analytic and Lindelöf, \(A \in \mathcal{C} \).

(iii) \(S \subset X \) is covered by a count. subfamily of \(\mathcal{U} \) iff \(S \subset U(A) \).

Let \(\mathcal{Y} \) be the family of all \(K \)-analytic subsets \(Y \) of \((X,\tau_p) \) such that there is no countable subfamily of \(\mathcal{U} \) that covers \(Y \).

Two possibilities:
Assume (c) holds and (d) doesn’t

Lemma (a tool!!!)

(i) \(U(x,A,\varepsilon) \in \text{Baire}(X) \) whenever \(x \in X, A \in \mathcal{C}, \varepsilon > 0 \).

(ii) \(U(A) \in \text{Baire}(X) \): \(U(A) \) is \(K \)-analytic and Lindelöf, \(A \in \mathcal{C} \).

(iii) \(S \subset X \) is covered by a count. subfamily of \(\mathcal{U} \) iff \(S \subset U(A) \).

Let \(\mathcal{Y} \) be the family of all \(K \)-analytic subsets \(Y \) of \((X,\tau_p) \) such that there is no countable subfamily of \(\mathcal{U} \) that covers \(Y \).

Two possibilities:

- For each \(Y \in \mathcal{Y} \) and each \(\varepsilon > 0 \), there is a \(Z \in \mathcal{Y} \) such that \(Z \subset Y \) and \(d\text{-diam} (Z) \leq \varepsilon \).
Assume (c) holds and (d) doesn’t

Lemma (a tool!!!)

(i) \(U(x, A, \varepsilon) \in \text{Baire}(X) \) whenever \(x \in X, A \in \mathcal{C}, \varepsilon > 0 \).
(ii) \(U(A) \in \text{Baire}(X) \): \(U(A) \) is \(K \)-analytic and Lindelöf, \(A \in \mathcal{C} \).
(iii) \(S \subset X \) is covered by a count. subfamily of \(\mathcal{U} \) iff \(S \subset U(A) \).

Let \(\mathcal{Y} \) be the family of all \(K \)-analytic subsets \(Y \) of \((X, \tau_p) \) such that there is no countable subfamily of \(\mathcal{U} \) that covers \(Y \).

Two possibilities:

- For each \(Y \in \mathcal{Y} \) and each \(\varepsilon > 0 \), there is a \(Z \in \mathcal{Y} \) such that \(Z \subset Y \) and \(d\text{-diam}(Z) \leq \varepsilon \).
- The negation of the previous case.
Assume (c) holds and (d) doesn’t

Lemma (a tool!!!)

(i) \(U(x,A,\varepsilon) \in \text{Baire}(X) \) whenever \(x \in X, A \in \mathcal{C}, \varepsilon > 0 \).

(ii) \(U(A) \in \text{Baire}(X): U(A) \text{ is } K\text{-analytic and Lindelöf, } A \in \mathcal{C} \).

(iii) \(S \subset X \) is covered by a count. subfamily of \(\mathcal{U} \) iff \(S \subset U(A) \).

Let \(\mathcal{Y} \) be the family of all \(K\text{-analytic subsets } Y \text{ of } (X,\tau_p) \) such that there is no countable subfamily of \(\mathcal{U} \) that covers \(Y \).

Two possibilities:

- For each \(Y \in \mathcal{Y} \) and each \(\varepsilon > 0 \), there is a \(Z \in \mathcal{Y} \) such that \(Z \subset Y \) and \(d\text{-diam } (Z) \leq \varepsilon \).
- The negation of the previous case.

The proof

We show that each case leads to a contradiction.
Corollary

Let X be a K-analytic subspace of M^D where (M, ρ) is a metric space with ρ bounded. If $(X, \gamma(D))$ is Lindelöf, then $(X, \gamma(D))^\mathbb{N}$ is Lindelöf.
Corollary

Let X be a K-analytic subspace of M^D where (M, ρ) is a metric space with ρ bounded. If $(X, \gamma(D))$ is Lindelöf, then $(X, \gamma(D))^\mathbb{N}$ is Lindelöf.

- $\phi : (M^D)^\mathbb{N} \to (M^\mathbb{N})^D$ is τ_ρ and γ-homeomorphism.
 $$\phi(\xi)(p)(j) = \xi(j)(p) \text{ for all } \xi \in (M^D)^\mathbb{N}, p \in D, j \in \mathbb{N}$$
- $M^\mathbb{N}$ is metrizable ($\rho_\infty(m, m')$). Consider
 $$d_\infty(x, x') = \sup\{\rho_\infty(x(p), x'(p)) : p \in D\} \text{ for } x, x' \in (M^\mathbb{N})^D.$$
Corollary

Let X be a K-analytic subspace of M^D where (M, ρ) is a metric space with ρ bounded. If $(X, \gamma(D))$ is Lindelöf, then $(X, \gamma(D))^N$ is Lindelöf.

- $\phi : (M^D)^N \rightarrow (M^N)^D$ is τ_ρ and γ-homeomorphism.

 $\phi(\xi)(p)(j) = \xi(j)(p)$ for all $\xi \in (M^D)^N, p \in D, j \in \mathbb{N}$

- M^N is metrizable $(\rho_\infty(m, m'))$. Consider

 $d_\infty(x, x') = \sup\{\rho_\infty(x(p), x'(p)) : p \in D\}$ for $x, x' \in (M^N)^D$.

- X^N is K-analytic, hence so is $\phi(X^N)$ and each compact subset of $\phi(X^N)$ is fragmented by d_∞.
Corollary

Let X be a K-analytic subspace of M^D where (M,ρ) is a metric space with ρ bounded. If $(X,\gamma(D))$ is Lindelöf, then $(X,\gamma(D))^N$ is Lindelöf.

- $\phi : (M^D)^N \to (M^N)^D$ is τ_ρ and γ-homeomorphism.

 $\phi(\xi)(p)(j) = \xi(j)(p)$ for all $\xi \in (M^D)^N, p \in D, j \in \mathbb{N}$

- M^N is metrizable ($\rho_\infty(m,m')$). Consider

 $d_\infty(x,x') = \sup\{\rho_\infty(x(p),x'(p)) : p \in D\}$ for $x,x' \in (M^N)^D$.

- X^N is K-analytic, hence so is $\phi(X^N)$ and each compact subset of $\phi(X^N)$ is fragmented by d_∞.

- Hence by (a)\Leftrightarrow(b), $(\phi(X^N),\gamma(D)) = (X,\gamma(D))^N$ is Lindelöf.
Let $I = [-1,1]$ and let Γ be an arbitrary index set. For $x \in I^\Gamma$ we write $\text{supp}(x) = \{ \gamma \in \Gamma : x(\gamma) \neq 0 \}$. Consider

$$F(\Gamma) = \{ x \in [-1,1]^\Gamma : \text{supp}(x) \text{ is finite} \}$$

and

$$\Sigma(\Gamma) = \{ x \in [-1,1]^\Gamma : \text{supp}(x) \text{ is countable} \}.$$
Let $I = [-1,1]$ and let Γ be an arbitrary index set. For $x \in I^\Gamma$ we write $\text{supp}(x) = \{\gamma \in \Gamma : x(\gamma) \neq 0\}$. Consider

$$\mathcal{F}(\Gamma) = \{x \in [-1,1]^\Gamma : \text{supp}(x) \text{ is finite}\}$$

and

$$\Sigma(\Gamma) = \{x \in [-1,1]^\Gamma : \text{supp}(x) \text{ is countable}\}.$$

Definition

A compact Hausdorff space K is said to be *Corson compact* if K is homeomorphic to a τ_p-compact subset of $\Sigma(\Gamma)$.
Let $I = [-1,1]$ and let Γ be an arbitrary index set. For $x \in I^\Gamma$ we write $\text{supp}(x) = \{\gamma \in \Gamma : x(\gamma) \neq 0\}$. Consider

$$\mathcal{F}(\Gamma) = \{x \in [-1,1]^\Gamma : \text{supp}(x) \text{ is finite}\}$$

and

$$\Sigma(\Gamma) = \{x \in [-1,1]^\Gamma : \text{supp}(x) \text{ is countable}\}.$$

Definition

A compact Hausdorff space K is said to be *Corson compact* if K is homeomorphic to a τ_p-compact subset of $\Sigma(\Gamma)$.

Properties:

- if A is a countable subset of a Corson compact space K, then the closure of A is compact and metrizable.
Let $I = [-1,1]$ and let Γ be an arbitrary index set. For $x \in I^\Gamma$ we write $\text{supp}(x) = \{ \gamma \in \Gamma : x(\gamma) \neq 0 \}$. Consider

$$\mathcal{F}(\Gamma) = \{ x \in [-1,1]^\Gamma : \text{supp}(x) \text{ is finite} \}$$

and

$$\Sigma(\Gamma) = \{ x \in [-1,1]^\Gamma : \text{supp}(x) \text{ is countable} \}.$$

Definition

A compact Hausdorff space K is said to be **Corson compact** if K is homeomorphic to a τ_p-compact subset of $\Sigma(\Gamma)$.

Properties:

- if A is a countable subset of a Corson compact space K, then the closure of A is compact and metrizable.
- $(\Sigma(\Gamma), \tau_p)$ is countably tight. Hence the Corson compact spaces are countable tight.
Application 1

If K is Corson compact then $(C(K), \gamma(K))^\mathbb{N}$ is Lindelöf.
Application 1

If K is Corson compact then $(C(K), \gamma(K))^\mathbb{N}$ is Lindelöf.

In general for K Corson the space $(C(K), \tau_p)$ IS NOT K-analytic.
Application 1

If K is Corson compact then $(C(K),\gamma(K))^\mathbb{N}$ is Lindelöf.

In general for K Corson the space $(C(K),\tau_p)$ IS NOT K-analytic.

Lemma

Let Γ be an index set and let H be a norm bounded subset of $\ell^\infty(\Gamma) \subset \mathbb{R}^\Gamma$. If

$$\overline{\text{aco}(H)}^{\tau_p} = \overline{\text{aco}(H)}^\parallel \parallel,$$

then $X := \overline{\text{span}H}^\parallel \parallel$ is K-analytic with respect to the pointwise topology τ_p of \mathbb{R}^Γ. In particular, if H is a norm bounded τ_p-compact subset of $\ell^\infty(\Gamma)$ that is norm-fragmented, then $\overline{\text{span}H}^\parallel \parallel$ is K-analytic relative to τ_p.
Theorem

Let \((X, \tau)\) be a \(K\)-analytic Tychonoff space. TFAE:

(a) The space \(X\) is \(\sigma\)-scattered.

(b) The space \(X\) does not contain a compact perfect subset.

(c) The space \((X, \tau_\delta)\) is Lindelöf.

(d) The space \((X, \tau_\delta)^\mathbb{N}\) is Lindelöf.
Theorem

Let \((X, \tau)\) be a \(K\)-analytic Tychonoff space. TFAE:

(a) The space \(X\) is \(\sigma\)-scattered.

(b) The space \(X\) does not contain a compact perfect subset.

(c) The space \((X, \tau_\delta)\) is Lindelöf.

(d) The space \((X, \tau_\delta)^N\) is Lindelöf.

(i) For any countable set \(A \subset C(X), \overline{A^R}^X\) is \(\tau_p\)-metrizable.

(ii) \((B_1(X), \tau_p)\) is Fréchet-Urysohn.

(iii) \((C(X), \tau_p)\) is Fréchet-Urysohn.

(iv) \((C(X), \tau_p)\) is sequential.

(v) \((C(X), \tau_p)\) is a \(k\)-space.

(vi) \((C(X), \tau_p)\) is a \(k_R\)-space.
Theorem

A dual Banach space X^* has the Radon-Nikodym property (RNP) iff X^* is Lindelöf with the topology $\gamma(X)$ of uniform convergence on bounded sequences of X, [Ori92]
Theorem

A dual Banach space X^* has the Radon-Nikodym property (RNP) iff X^* is Lindelöf with the topology $\gamma(X)$ of uniform convergence on bounded sequences of X, [Ori92].

Theorem

If a dual Banach space X^* is weakly Lindelöf then, $(X^*,w)^\mathbb{N}$ is Lindelöf, [Ori92].
Theorem

A dual Banach space X^* has the Radon-Nikodym property (RNP) iff X^* is Lindelöf with the topology $\gamma(X)$ of uniform convergence on bounded sequences of X, [Ori92].

Theorem

If a dual Banach space X^* is weakly Lindelöf then, $(X^*,w)^\mathbb{N}$ is Lindelöf, [Ori92].

Theorem

If X is a Banach space and H is a weak*-compact subset of X^* which is weak-Lindelöf, then $\overline{\text{co}(H)}^{w^*} = \overline{\text{co}(H)}^\|\|$ and this closed convex hull is weakly Lindelöf again; furthermore $Y = \overline{\text{span}(H)}^\|$ is weakly Lindelöf (in fact B_{Y^*} is Corson compact), [CNO03].
Theorem

Let \((X,\|\|)\) be a Banach space such that, for some norming subset \(B\) of \(B_{X^*}\), \((X,\sigma(X,B))\) is \(K\)-analytic. TFAE:

(i) \(X\) has property \((C)\) and \((X,\sigma(X,B))\) is \(\sigma\)-fragmented by \(\|\|\).

(ii) \((X,w)\) is Lindelöf.

(iii) \((B_{X^*},w^*)\) countably tight, \(w^*\)-separable subsets are metrizable.
Theorem

Let \((X, \| \|)\) be a Banach space such that, for some norming subset \(B \subset B_{X^*}\), \((X, \sigma(X,B))\) is \(K\)-analytic. TFAE:

(i) \(X\) has property \((C)\) and \((X, \sigma(X,B))\) is \(\sigma\)-fragmented by \(\| \|\).
(ii) \((X,w)\) is Lindelöf.
(iii) \((B_{X^*},w^*)\) countably tight, \(w^*\)-separable subsets are metrizable.

Lemma

Let \(X\) be a Banach space and \(B \subset X^*\) a norming subset. If \(X\) has property \((C)\), then \(\gamma(B)\) is stronger than the weak topology of \(X\).
How wide is the class of Banach spaces X for which there is $B \subset B_{X^*}$ norming and $(X, \sigma(X,B))$ is K-analytic?
How wide is the class of Banach spaces X for which there is $B \subset B_{X^*}$ norming and $(X, \sigma(X,B))$ is K-analytic?

Includes

- Weakly K-analytic Banach spaces.
How wide is the class of Banach spaces X for which there is $B \subset B_{X^*}$ norming and $(X, \sigma(X,B))$ is K-analytic?

Includes

- Weakly K-analytic Banach spaces.
- Dual Banach spaces.
How wide is the class of Banach spaces X for which there is $B \subset B_{X^*}$ norming and $(X,\sigma(X,B))$ is K-analytic?

Includes

- Weakly K-analytic Banach spaces.
- Dual Banach spaces.
- Representable Banach spaces, [GT82].
How wide is the class of Banach spaces X for which there is $B \subset B_{X^*}$ norming and $(X, \sigma(X,B))$ is K-analytic?

Includes

- Weakly K-analytic Banach spaces.
- Dual Banach spaces.
- Representable Banach spaces, [GT82].
- Banach spaces generated by a RN-compact, [CNO03].
The central results are sharp

Under CH, there is a Čech-analytic Lindelöf Tychonoff space Y that is σ-scattered and such that (Y, τ_δ) is not Lindelöf.

There is a countably K-determined uncountable subspace $Y \subset \mathbb{R}$ such that the compact subsets of Y are countable. Y does not contain perfect compact subsets, Y isn't σ-scattered and (Y, τ_δ) is not Lindelöf.

There is a compact space K such that $(C(K), \gamma(K))$ is Lindelöf and K is not Corson.
Under CH, there is a Čech-analytic Lindelöf Tychonoff space Y that is σ-scattered and such that (Y,τ_δ) is not Lindelöf.
The central results are sharp

- Under CH, there is a Čech-analytic Lindelöf Tychonoff space Y that is σ-scattered and such that (Y, τ_δ) is not Lindelöf.
- There is a countably K-determined uncountable subspace $Y \subset \mathbb{R}$ such that the compact subsets of Y are countable. Y does not contain perfect compact subsets, Y isn’t σ-scattered and (Y, τ_δ) is not Lindelöf.
The central results are sharp

- Under CH, there is a Čech-analytic Lindelöf Tychonoff space Y that is σ-scattered and such that (Y, τ_δ) is not Lindelöf.

- There is a countably K-determined uncountable subspace $Y \subset \mathbb{R}$ such that the compact subsets of Y are countable. Y does not contain perfect compact subsets, Y isn’t σ-scattered and (Y, τ_δ) is not Lindelöf.

- There is a compact space K such that $(C(K), \gamma(K))^\mathbb{N}$ is Lindelöf and K is not Corson.
References

I. Namioka and R. Pol, σ-fragmentability and analyticity,