The Gelfand integral for multi-valued functions.

B. Cascales

Universidad de Murcia, Spain
Visiting Kent State University, Ohio. USA
http://webs.um.es/beca

Special Session on Multivariate and Banach Space Polynomials.
March 27-28. 2010
2010 AMS Spring Southeastern Sectional Meeting Lexington, KY
Notation

- E Banach;
- 2^E subsets; $wk(E)$ weakly compact sets; $cwk(E)$ convex weakly compact sets;
Notation

- E Banach;
- 2^E subsets; $wk(E)$ weakly compact sets; $cwk(E)$ convex weakly compact sets;
- (Ω, Σ, μ) complete probability space;
- Σ^+ measurable sets of positive measure; for $A \in \Sigma$, Σ_A^+ measurable subsets of A of positive measure.
Stay focused: kind of problems studied

Block 1.- *The setting and the single-valued case.*

Block 2.- *Measurability for multi-functions. Selectors*

Block 3.- *Integrability for multi-functions.*

Block 4.- *An open problem.*
The co-authors

http://webs.um.es/beca/
Our interest: multi-functions, classical notions

There are several possibilities to define the integral of F:

1. to take a reasonable embedding j from $cwk(E)$ into the Banach space $Y(=\ell_\infty(B_E^*))$ and then study the integrability of $j \circ F$;
Our interest: multi-functions, classical notions

There are several possibilities to define the integral of F:

1. to take a reasonable embedding j from $cwk(E)$ into the Banach space $Y(=\ell_\infty(B_E^*))$ and then study the integrability of $j \circ F$;

2. to take all integrable selectors f of F and consider

$$\int F \, d\mu = \left\{ \int f \, d\mu : f \text{ integra. sel. } F \right\}.$$
There are several possibilities to define the integral of F:

1. to take a reasonable embedding j from $cwk(E)$ into the Banach space $Y(=\ell_\infty(B_E^*))$ and then study the integrability of $j \circ F$;

2. to take all *integrable* selectors f of F and consider

$$\int F \, d\mu = \left\{ \int f \, d\mu : f \text{ integra. sel.} F \right\}.$$

Debreu, [Deb67], used the embedding technique together with Bochner integration for multi-function with values in $ck(E)$;
There are several possibilities to define the integral of F:

1. to take a reasonable embedding j from $cwk(E)$ into the Banach space $Y(=\ell_{\infty}(B_{E^*}))$ and then study the integrability of $j \circ F$;

2. to take all \textit{integrable} selectors f of F and consider

$$\int F d\mu = \left\{ \int f d\mu : f \text{ integrable sel. of } F \right\}.$$

\textbf{1} Debreu, [Deb67], used the embedding technique together with Bochner integration for multi-function with values in $ck(E)$;

\textbf{2} Aumann, [Aum65], used the selectors technique;
There are several possibilities to define the integral of F:

1. to take a reasonable embedding j from $cwk(E)$ into the Banach space $Y(=\ell_\infty(B_{E^*}))$ and then study the integrability of $j \circ F$;

2. to take all integrable selectors f of F and consider

$$\int F \, d\mu = \left\{ \int f \, d\mu : f \text{ integra. sel.} \right\}.$$

1. Debreu, [Deb67], used the embedding technique together with Bochner integration for multi-function with values in $ck(E)$;

2. Aumann, [Aum65], used the selectors technique;

3. They used the above definitions in some models in economy: Debreu Nobel prize in 1983; Aumann Nobel prize in 2005.
There are several possibilities to define the integral of F:

1. to take a reasonable embedding j from $cwk(E)$ into the Banach space $Y(=\ell_\infty(B_E^*))$ and then study the integrability of $j \circ F$;

2. to take all integrable selectors f of F and consider

$$\int F \, d\mu = \left\{ \int f \, d\mu : f \text{ integra. sel. } F \right\}.$$

1. Debreu, [Deb67], used the embedding technique together with Bochner integration for multi-function with values in $ck(E)$;

2. Aumann, [Aum65], used the selectors technique;

3. They used the above definitions in some models in economy: Debreu Nobel prize in 1983; Aumann Nobel prize in 2005

4. Pettis integration for multi-functions was successfully studied in the separable case.
Our interest: multi-functions, classical notions

There are several possibilities to define the integral of F:

1. to take a reasonable embedding j from $cwk(E)$ into the Banach space $Y(=\ell_\infty(B_E^*))$ and then study the integrability of $j \circ F$;
2. to take all integrable selectors f of F and consider

$$\int F \, d\mu = \left\{ \int f \, d\mu : f \text{ integr. sel. } F \right\}.$$

NEW THINGS: The non-separable case

1. Characterization of multi-functions admitting strong selectors;
2. scalarly measurable selectors for scalarly measurable multi-functions;
3. Pettis integration;
4. existence of w^*-scalarly measurable selectors;
5. Gelfand integration; relationship with the previous notions.
Measurability and integrability of single-valued functions
Measurability: \(f : (\Omega, \Sigma, \mu) \to E \)

Simple function.- \(s = \sum_{i=1}^{n} \alpha_i \chi_{A_i} \), where \(\alpha_i \in E, A_i \in \Sigma \), disjoints.

Measurable function.- \(\lim_n \| s_n(w) - f(w) \| = 0 \), \(\mu \) a.e. \(w \in \Omega \).

\(w^* \)-scalarly measurable function.- when \(f : \Omega \to E^* \) and \(xf \) is measurable for \(x \in E \).

Scalarly measurable function.- \(x^*f \) is measurable for \(x^* \in E^* \).
Bochner integral.

A μ-measurable $f : \Omega \to E$ is Bochner integrable, if there is a sequence of simple functions $(s_n)_n$ such that

$$\lim_{n} \int_{\Omega} \| s_n - f \| \, d\mu = 0.$$

The vector $\int_A f \, d\mu = \lim_n \int_A s_n \, d\mu$ is called Bochner integral of f.

Theorem

Let $f : \Omega \to E^*$ be a w^*-scalarly measurable function such that $xf \in L^1(\mu)$ such that $x \in E$. Then, the linear map

$$x_A^* : E \to \mathbb{R} \quad x \mapsto \int_A xf \, d\mu$$

lies in E^*, for each $A \in \Sigma$. x_A^* is called the Gelfand integral of f over A.

Gelfand integral.

$x_A^*(x) = \int_A xf \, d\mu$.
Pettis integral

$f : \Omega \rightarrow E$ is Pettis integrable if $x^* f \in L^1(\mu)$ for every $x^* \in X^*$ and for every $A \in \Sigma$ there is $x_A \in E$ such that

$$(P) - \int_A x^* f \, d\mu := x^*(x_A), \, x^* \in X^*$$
Pettis integral

\[f : \Omega \rightarrow E \text{ is Pettis integrable if } x^*f \in L^1(\mu) \text{ for every } x^* \in X^* \]

and for every \(A \in \Sigma \) there is \(x_A \in E \) such that

\[(P) - \int_A x^* f \, d\mu := x^*(x_A), \ x^* \in X^* \]

Remark

Bochner Integrable \(\Rightarrow \) Pettis integrable \(\Rightarrow \) Gelfand (in \(X^{**} \))
Multi-functions: selectors
How can one define measurability for multi-function?

Given $F : \Omega \rightarrow 2^E$ or $ckw(E)$
How can one define measurability for multi-function?

Given $F : \Omega \rightarrow 2^E$ or $ckw(E)$
- either consider the “pre-images” under F of open sets;
How can one define measurability for multi-function?

Given $F : \Omega \rightarrow 2^E$ or $ckw(E)$

- either consider the “pre-images” under F of open sets;
- or consider an embedding $j : ckw(E) \rightarrow Y$ into a Banach space and then use some kind of measurability for $j \circ F$.

Definition

$F : \Omega \rightarrow 2^E$ is said to be (Effros) measurable if

$$\{ t \in \Omega : F(t) \cap F \neq \emptyset \} \in \Sigma$$

for every open subset $F \subset E$.

Theorem (Kuratowski-Ryll Nardzewski, 1965)

Let $F : \Omega \rightarrow 2^E$ be a multi-function with closed non-empty values of E. If E is separable and F satisfies that

$$\{ t \in \Omega : F(t) \cap O \neq \emptyset \} \in \Sigma$$

for each open set $O \subset E$.

Then F admits a μ-measurable selector f.

How can one define measurability for multi-function?

Given $F : \Omega \rightarrow 2^E$ or $ckw(E)$

- either consider the “pre-images” under F of open sets;
- or consider an embedding $j : ckw(E) \rightarrow Y$ into a Banach space and then use some kind of measurability for $j \circ F$.

Definition

$F : \Omega \rightarrow 2^E$ is said to be (Effros) measurable

\[
\{ t \in \Omega : F(t) \cap F \neq \emptyset \} \in \Sigma \quad \text{for every open subset } F \subset E.
\]
How can one define measurability for multi-function?

Given $F : \Omega \rightarrow 2^E$ or $ckw(E)$
- either consider the “pre-images” under F of open sets;
- or consider an embedding $j : ckw(E) \rightarrow Y$ into a Banach space and then use some kind of measurability for $j \circ F$.

Definition

$F : \Omega \rightarrow 2^E$ is said to be (Effros) measurable

$$\{ t \in \Omega : F(t) \cap F \neq \emptyset \} \in \Sigma \text{ for every open subset } F \subset E.$$

Theorem (Kuratowski-Ryll Nardzewski, 1965)

Let $F : \Omega \rightarrow 2^E$ be a multi-function with closed non empty values of E. If E is separable and F satisfies that

$$\{ t \in \Omega : F(t) \cap O \neq \emptyset \} \in \Sigma \text{ for each open set } O \subset E.$$

Then F admits a μ-measurable selector f.

\[(E)\]
Scalar measurability

Definition

- \(F : \Omega \rightarrow \text{cwk}(E) \) is said to be **scalarly measurable** if the real-valued map
 \[
 t \mapsto \delta^*(x^*, F(t)) := \sup \{ \langle x^*, x \rangle : x \in F(t) \}
 \]
 is measurable for every \(x^* \in E^* \).
Scalar measurability

Definition

- $F : \Omega \to cwk(E)$ is said to be **scalarly measurable** if the real-valued map

 \[t \mapsto \delta^*(x^*, F(t)) := \sup \{ \langle x^*, x \rangle : x \in F(t) \} \]

 is measurable for every $x^* \in E^*$.

- $F : \Omega \to cw^*(E^*)$ is said to be **w^*-scalarly measurable** if the function

 \[t \mapsto \delta^*(x, F)(t) := \sup \{ \langle x^*, x \rangle : x^* \in F(t) \} \]

 is measurable for every $x \in E$.
Good news & Bad news

Good news

E separable, $F : \Omega \rightarrow cwk(E)$ multi-function. Then:

1. F is scalarly measurable if, and only if, F is Effros measurable.
2. Every scalarly measurable multi-function has a measurable selector, (Kuratowski and Ryll-Nardzewski [KRN65]).

Bad news

The above techniques do not work in the non-separable case.
Good news

E separable, $F : \Omega \rightarrow \text{cwk}(E)$ multi-function. Then:

1. F is scalarly measurable if, and only if, F is Effros measurable.
2. Every scalarly measurable multi-function has a measurable selector, (Kuratowski and Ryll-Nardzewski [KRN65])

Bad news

The above techniques do not work in the non-separable case.
Good news & Bad news

Good news

E separable, $F : \Omega \rightarrow \text{cwk}(E)$ multi-function. Then:

1. F is scalarly measurable if, and only if, F is Effros measurable.
2. Every scalarly measurable multi-function has a measurable selector, (Kuratowski and Ryll-Nardzewski [KRN65])

Bad news

The above techniques do not work in the non-separable case.

Then...
Good news & Bad news

Good news

E separable, $F : \Omega \rightarrow cwk(E)$ multi-function. Then:

1. F is scalarly measurable if, and only if, F is Effros measurable.
2. Every scalarly measurable multi-function has a measurable selector, (Kuratowski and Ryll-Nardzewski [KRN65])

Bad news

The above techniques do not work in the non-separable case.

Then...

we have a job... some other techniques are needed in the non separable case.
A new approach to find selectors

Definition

\(F : \Omega \to 2^E \) satisfies property (P) if for each \(\varepsilon > 0 \) and each \(A \in \Sigma^+ \) there exist \(B \in \Sigma^+_A \) and \(D \subset E \) with \(\text{diam}(D) < \varepsilon \) such that

\[F(t) \cap D \neq \emptyset \]
for every \(t \in B \).
A new approach to find selectors

Definition

\(F : \Omega \rightarrow 2^E \) satisfies property (P) if for each \(\varepsilon > 0 \) and each \(A \in \Sigma^+ \) there exist \(B \in \Sigma^+_A \) and \(D \subset E \) with \(\text{diam}(D) < \varepsilon \) such that

\[F(t) \cap D \neq \emptyset \] for every \(t \in B \).

Theorem (Kadets, Rodríguez and B. C. -2009)

For a multi-function \(F : \Omega \rightarrow \text{wk}(E) \) TFAE:

(i) \(F \) admits a strongly measurable selector.

(ii) There exist a set of measure zero \(\Omega_0 \in \Sigma \), a separable subspace \(Y \subset E \) and a multi-function \(G : \Omega \setminus \Omega_0 \rightarrow \text{wk}(Y) \) that is Effros measurable and such that \(G(t) \subset F(t) \) for every \(t \in \Omega \setminus \Omega_0 \);

(iii) \(F \) satisfies property (P).
Scalar measurability

Theorem (Kadets, Rodriguez and B. C. - 2010)

Let $F : \Omega \to \text{cwk}(E)$ be a scalarly measurable multi-function. Then F admits a scalarly measurable selector.

Proof.- Martingales and the RNP of weakly compact sets.
Scalar measurability

Theorem (Kadets, Rodriguez and B. C. - 2010)

Let $F : \Omega \to cwk(E)$ be a scalarly measurable multi-function. Then F admits a scalarly measurable selector.

Proof. Martingales and the RNP of weakly compact sets.

Theorem (Kadets, Rodriguez and B. C. - 2010)

$F : \Omega \to cwk(E)$ scalarly measurable. Then there is a collection $\{f_\alpha\}_{\alpha < \text{dens}(E^*, w^*)}$ of scalarly meas. selectors of F such that

$$F(t) = \{f_\alpha(t) : \alpha < \text{dens}(E^*, w^*)\} \quad \text{for every } t \in \Omega.$$
w^*- scalar measurability

Definition (w^*- almost selector)

A single valued function $f : \Omega \rightarrow E^*$ is a w^*-almost selector of a multi-function $F : \Omega \rightarrow 2^{E^*}$ if for every $x \in E$ we have

$$\langle f, x \rangle \leq \delta^*(x, F) \mu - a.e.$$

(the exceptional μ-null set depending on x).
Definition (w^*- almost selector)

A single valued function $f : \Omega \rightarrow E^*$ is a w^*-almost selector of a multi-function $F : \Omega \rightarrow 2^{E^*}$ if for every $x \in E$ we have

$$\langle f, x \rangle \leq \delta^*(x, F) \mu - a.e.$$

(the exceptional μ-null set depending on x).

Proposition

If E be a separable Banach space, $F : \Omega \rightarrow cw^* k(E^*)$ is a multi-function and $f : \Omega \rightarrow E^*$ is a w^*-almost selector of F, then $f(t) \in F(t)$ for μ-a.e. $t \in \Omega$.
w^*-almost selectors

Theorem (Kadets, Rodriguez and B. C. - 2010)

Every w^*-scalarly measurable multi-function $F : \Omega \to cw^*k(E^*)$ admits a w^*-scalarly measurable w^*-almost selector.
w^*-almost selectors

Theorem (Kadets, Rodriguez and B. C. - 2010)

Every w^*-scalarly measurable multi-function $F : \Omega \to cw^*k(E^*)$ admits a w^*-scalarly measurable w^*-almost selector.

Remarks:

1. The proof uses the injectivity of L^∞ and lifting techniques;
Theorem (Kadets, Rodriguez and B. C. - 2010)

Every w^*-scalarly measurable multi-function $F : \Omega \to cw^* k(E^*)$ admits a w^*-scalarly measurable w^*-almost selector.

Remarks:

1. The proof uses the injectivity of L^∞ and lifting techniques;
2. If E is separable, then F admits a w^*-scalarly measurable selector.
w^*-almost selectors

Theorem (Kadets, Rodriguez and B. C. - 2010)

Every w^*-scalarly measurable multi-function $F : \Omega \to cw^*k(E^*)$ admits a w^*-scalarly measurable w^*-almost selector.

Remarks:

1. The proof uses the injectivity of L^∞ and lifting techniques;
2. If E is separable, then F admits a w^*-scalarly measurable selector.
3. If E^* has the RNP, then F admits a w^*-scalarly measurable selector.
Multi-functions: integrability
Debreu integrability

Let \(j : (ck(E), h) \to (\ell_\infty(B_E^*), \| \cdot \|_\infty) \) the Rådström embedding.

Definición

A multi-function \(F : \Omega \to ck(E) \) is said to be Debreu if the composition \(j \circ F : \Omega \to \ell_\infty(B_E^*) \) Bochner integrable.
Debreu integrability

Let \(j : (ck(E), h) \rightarrow (\ell_{\infty}(B_{E^*}), \|\|_{\infty}) \) the Rådström embedding.

Definición

A multi-function \(F : \Omega \rightarrow ck(E) \) is said to be Debreu if the composition \(j \circ F : \Omega \rightarrow \ell_{\infty}(B_{E^*}) \) Bochner integrable.

1. \(F \) satisfies property (P), hence \(F \) has measurable selectors;
2. For every \(A \in \Sigma \),
 \[
 \int_A Fd\mu = \{ \int_A fd\mu : f \text{ measurable selector of } F \}.
 \]
Gelfand and Dundford Integrability: multi-functions

Definition (Kadets, Rodríguez and B. C. -2010)

A multi-function $F : \Omega \rightarrow cw^*k(E^*)$ is said to be Gelfand integrable if for every $x \in E$ the function $\delta^*(x, F)$ is integrable. In this case, the Gelfand integral of F over $A \in \Sigma$ is defined as

$$\int_A F \, d\mu := \bigcap_{x \in E} \left\{ x^* \in E^* : \int_A \delta^*_*(x, F) \, d\mu \leq \langle x^*, x \rangle \leq \int_A \delta^*(x, F) \, d\mu \right\}.$$

Theorem (Kadets, Rodríguez and B. C. -2010)

Let $F : \Omega \rightarrow cw^*k(E^*)$ be a w^*-scalarly measurable multi-function.

- F is Gelfand integrable iff every w^*-scalarly measurable w^*-almost selector of F is Gelfand integrable.

In this case, for each $A \in \Sigma$, the set $\int_A F \, d\mu$ is non-empty and:

- $\int_A F \, d\mu = \left\{ \int_A f \, d\mu : f \text{ is a Gelfand integrable } w^*-\text{almost selector of } F \right\}$.
- $\delta^*(x, \int_A F \, d\mu) = \int_A \delta^*(x, F) \, d\mu$ for every $x \in E$.

Properties of Gelfand integral

Theorem (Kadets, Rodríguez and B. C. -2010)

If \(F : \Omega \to cw^* k(E^*) \) is Gelfand integrable, then: for each \(A \in \Sigma \), the set \(\int_A F d\mu \) is non-empty and:

- \(\int_A F d\mu = \left\{ \int_A f d\mu : f \text{ is a Gelfand integrable } w^*\text{-almost selector of } F \right\} \).
- \(\delta^*(x, \int_A F d\mu) = \int_A \delta^*(x, F) d\mu \) for every \(x \in E \).

Taste of the proof.

1. \(S := \left\{ \int_\Omega f d\mu : f \text{ is a Gelfand int. } w^*\text{-almost sel. of } F \right\} \) is \(w^*\)-compact;
2. \(\int_\Omega F d\mu \supset S \) follows from the definitions;
3. \(\int_\Omega F d\mu \subset S \) follows from HB & \(\delta^*(x, \int_\Omega F d\mu) \leq \delta^*(x, S), \forall x \in E \);
4. Fix \(x \in E \); \(F|_x(t) := \{ x^* \in F(t) : \langle x^*, x \rangle = \delta^*(x, F)(t) \} \) is \(w^*\)-meas.;
5. let \(f : \Omega \to E^* \) be a \(w^*\)-scalarly measurable \(w^*\)-almost selector of \(F|_x \);
6. \(f \) is Gelfand integrable and \(\langle f, x \rangle = \delta^*(x, F) \mu\text{-a.e} \)
7. \(\delta^*(x, \int_\Omega F d\mu) \geq \langle \int_\Omega f d\mu, x \rangle = \int_\Omega \langle f, x \rangle d\mu = \int_\Omega \delta^*(x, F) d\mu \geq \delta^*(x, \int_\Omega F d\mu) \).
Theorem (Kadets, Rodríguez and B. C. -2009)

If $F : \Omega \rightarrow \text{cwk}(E)$ a Pettis integrable multi-function, then:

- every scalarly measurable selector is Pettis integrable;
- F admits a scalarly measurable selector.

Furthermore, F admits a collection $\{f_\alpha\}_{\alpha < \text{dens}(E^*, w^*)}$ of Pettis integrable selectors such that

$$F(t) = \overline{\{f_\alpha(t) : \alpha < \text{dens}(E^*, w^*)\}} \quad \text{for every } t \in \Omega.$$

Moreover, $\int_A F \, d\mu = \overline{\text{IS}_F(A)}$ for every $A \in \Sigma$.
An open problem
An open question

Does any \(w^* \)-scalarly measurable multi-function \(F : \Omega \to cw^* k(E^*) \) admits a \(w^* \)-scalarly measurable selector?
Selected classical references

THANK YOU!