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INTRODUCTION

Let X be a Banach space. A functional x∗ ∈ X∗ is called norm-attaining if there exists

x0 ∈ SX so that |x∗(x0)| = 1. A bounded linear operator T ∈ L(X, Y ) is norm-attaining,

if there exists x0 ∈ SX so that ‖T (x0)‖ = 1. A fundamental theorem by R. C. James [32]

gives a characterization of reflexivity through norm-attaining functionals: every bounded

linear functional on X is norm-attaining if and only if the space X is reflexive. R. Phelps

studied the spaces whose set of norm-attaining functionals is dense, the so-called “sub-

reflexive spaces”. Together with E. Bishop, R. Phelps proved that every Banach space is

subreflexive.

The main interest of this thesis is in the following quantitative extension of the Bishop-

Phelps theorem, the Bishop-Phelps-Bollobás theorem.

Theorem 0.1 ( [15]). Suppose x0 ∈ SX , x∗ ∈ SX∗ and |x∗(x0) − 1| ≤ ε2/2, where

0 < ε < 1
2
. Then there exist u0 ∈ SX and y∗ ∈ SX∗ such that y∗(u0) = 1, ‖x∗ − y∗‖ ≤ ε

and ‖x0 − u0‖ < ε+ ε2.

We consider this theorem from three different aspects: norm-attaining functionals,

norm-attaining operators, and numerical-radius attaining operators.

Chapter 1 combines three preliminary discussions on the Bishop-Phelps-Bollobás the-

orem in the classical sense – for norm-attaining functionals on Banach spaces. First, we

consider two variational principles, the Ekeland’s variational principle and the Brønsted-

Rockafellar principle. We show how to prove the Bishop-Phelps-Bollobás theorem from

the Brønsted-Rockafellar principle (Theorem 1.2). This version will be used in Chapter

v



2. Then we discuss the density theorems in the case of complex Banach spaces, a prob-

lem originally stated during a conference in Kent State in 1985 [45]. We finish the chapter

with a survey on how “sharp” Theorem 0.1 is, which includes “the Bishop-Phelps-Bollobás

modulus” of a Banach space ΦX (Definition 1.2).

In Chapter 2, we study Theorem 0.1 in the setting of operators on Banach spaces.

We recall in section 2.1 the notions of Asplund space and Asplund operator, with a com-

ment on complex Banach spaces. In this section, we also prove a central technical result

(Lemma 2.3) that will be used to prove our main result Theorem 2.4.

Theorem 2.4 establishes that if T : X → C0(L) is an Asplund operator and ‖T (x0)‖ u

‖T‖ for some ‖x0‖ = 1, then there is a norm attaining Asplund operator S : X → C0(L)

and ‖u0‖ = 1 with ‖S(u0)‖ = ‖S‖ = ‖T‖ such that u0 u x0 and S u T .

Three consequences follow:

(A) If T is weakly compact, then S can also be taken being weakly compact (see Corol-

lary 2.5).

(B) If X is Asplund, then the pair (X,C0(L)) has the BPBP for all L (see Corol-

lary 2.6).

(C) If L is scattered, then the pair (X,C0(L)) has the BPBP for all X (see Corol-

lary 2.7).

We note that in Corollary 2.5 even the part of the density of norm attaining weakly com-

pact operators from X to C0(L) in the family of weakly compact operatorsW(X,C0(L))

seems to be new. Corollary 2.6 strengthens a result in [33] and Corollary 2.7 can be alter-

natively proved using a result in [5].

vi



In Chapter 3, we investigate an analogue of the Bishop-Phelps-Bollobás property for

operators 2.1 but in relation with numerical radius attaining operators. In Definition 3.1,

we call it the Bishop-Phelps-Bollobás property for numerical radius, BPBp-ν for short. In

section 3.1 we prove two constructive versions of Theorem 0.1 for `1(C)–Theorems 3.4 and

Theorem 3.6. Both versions are used later in the chapter to prove the main result in vein of

numerical radius attaining operators: `1(C) has BPBp-ν, Theorem 3.7. Then using adjoint

operators, a natural consequence of this result follows in Theorem 3.10: c0(C) has BPBp-ν.

In particular, these provide quantitative versions and strengthen the results in [20].

Finally, we finish the chapter by showing that the aforesaid results hold true for c0(Γ,K)

and `1(Γ,K), where Γ is a general non-empty set and K could be either R or C.
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CHAPTER 1

THE BISHOP-PHELPS-BOLLOBÁS THEOREM

AND VARIATIONAL PRINCIPLES

1.1 The Brønsted-Rockafellar Principle and Ekeland’s Variational Principle

The Bishop-Phelps theorem [14] states that the set of bounded linear functionals attain-

ing their maximum on a closed convex set of a real Banach space is dense in the topological

dual. The essence of the proof relies on introducing a convex hull, getting a point on the

boundary through a certain partial ordering and Zorn’s lemma, and then employing the

separation theorem to show that a hyperplane tangent at this point exists.

Similar arguments were used to prove both the Brønsted-Rockafellar principle [18] and

Ekeland’s variational principle [28]. On the other hand, either one of them implies the

Bishop-Phelps theorem. Though I. Ekeland proved his famous variational principle shortly

afterwards, the Brønsted-Rockafellar principle is often presented as a consequence of Eke-

land’s variational principle. We will follow this fashion. Our particular interest comes

from the fact that the Bishop-Phelps-Bollobás theorem follows easily from the Brønsted-

Rockafellar principle, with a better estimate than the original version.

Though the Ekeland’s variational principle holds in every complete metric space, we

will mostly work with Banach spaces. Let X be a Banach space, and let f be an extended

real-valued function on X . The effective domain of f is the set dom(f) = {x ∈ X :

f(x) < ∞}. The function is called proper if f is not identically +∞, i.e. dom(f) 6= ∅.

We say that f is lower semicontinuous provided {x ∈ X : f(x) ≤ r} is closed in X for

every r ∈ R.

1
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Theorem 1.1 (Ekeland’s Variational Principle, [47]). Let f : X → R ∪ {∞} be a proper

lower semicontinuous function that is bounded below. Let ε > 0 and suppose that at a

given point x0,

f(x0) ≤ inf
x∈X

f(x) + ε.

Then for any λ > 0, there exists z ∈ dom(f) so that:

(i) λ ‖z − x0‖ ≤ f(x0)− f(z),

(ii) ‖z − x0‖ ≤ ε/λ,

(iii) λ ‖x− z‖+ f(x) > f(z), whenever x 6= z.

Roughly, the theorem states that if a convex lower semicontinuous function f is close

to its lower bound at some x0, then a small Lipschitz continuous perturbation of f attains a

minimum at a point z close to x0.

Now, the Brønsted-Rockafellar principle studies the differentiability properties of con-

vex functions. We will follow the presentation of ( [47], pp.47–48) and [18].

Definition 1.1. Let f be a proper convex lower semicontinuous function onX , x ∈ dom(f),

and ε > 0. For each ε, define the ε-subdifferential ∂εf(x) by

∂εf(x) = {x∗ ∈ X∗ : x∗(y)− x∗(x) ≤ f(y)− f(x) + ε for all y ∈ X}.

For each ε > 0 and x ∈ dom(f), ∂εf(x) is non-empty, and ∂εf(x) is a w∗-closed set

in X∗. As ε decreases, so does ∂εf(x). The intersection over ε of the nest ∂εf(x) is the

subdifferential

∂f(x) = {x∗ ∈ X∗ : x∗(y)− x∗(x) ≤ f(y)− f(x) for all y ∈ X}.
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The subdifferential may be empty in arbitrary locally convex spaces. If at least one

subgradient x∗ ∈ ∂f(x) exists, then f is subdifferentiable at x. As was noted by the

authors themselves in [18], the theorem below estimates how well ∂εf approximates ∂f .

For the rest of this section assume that X is a real Banach space.

Theorem 1.2 (The Brønsted-Rockafellar Principle). Assume that f is a convex proper

lower semicontinuous function on X . Given x0 ∈ dom(f), ε > 0, λ > 0 and any

x∗0 ∈ ∂εf(x0), there exist vectors x ∈ dom(f) and x∗ ∈ ∂f(x) such that ‖x− x0‖ ≤ ε/λ

and ‖x∗ − x∗0‖ ≤ λ.

Proof. Since x∗0 ∈ ∂εf(x0), then

x∗0(x)− x∗0(x0) ≤ f(x)− f(x0) + ε for any x ∈ X.

Define a function g(x) = f(x) − x∗0(x), x ∈ X . Then g is proper, lower semicontinuous,

and dom(g) = dom(f). Moreover,

g(x0) ≤ inf
x∈X

g(x) + ε, x ∈ X.

From Ekeland’s variational principle 1.1, there exists z ∈ dom(f) such that

λ ‖z − x0‖ ≤ ε and λ ‖x− z‖+ g(x) ≥ g(z)

for all x ∈ X . Call h(x) = λ ‖x− z‖, x ∈ X . Then h(x) + g(x) ≥ g(z), or h(x) + g(x)−

h(z)− g(z) ≥ 0 for all x ∈ X . In particular,

(1.1) h(x+ z)− h(z) ≥ −[g(x+ z)− g(z)] for all x ∈ X.

Define two sets in X × R:

C1 = {(x, r) : r ≥ g(x+ z)− g(z)},(1.2)

C2 = {(x, r) : r < −[h(x+ z)− h(z)]}.(1.3)
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SinceC1 is an epigraph of a lower semicontinuous function g(x+z)−g(z),C1 is closed [47].

On the other hand, C2 is an open convex cone, and from 1.1, C1 ∩ C2 = ∅.

Hence, from the Hahn-Banach theorem, there is a hyperplane (x∗, r∗) ∈ X∗ × R, with

(x∗, r∗) 6= (0, 0), separating the sets 1.2 and 1.3:

−[h(x+ z)− h(z)] ≤ z∗(x) ≤ g(x+ z)− g(z),

−λ ‖x‖ ≤ z∗(x) ≤ f(x+ z)− f(z)− x∗0(x) for all x ∈ X.

Set x∗ = z∗ + x∗0 and x = z. From the right side of this inequality, it follows that for

all y ∈ X , z∗(y) + x∗0(y) ≤ f(y + x)− f(x), or, equivalently: x∗(y) ≤ f(y + x)− f(x).

Hence, x∗ ∈ ∂f(x).

Lastly, observe that from the left side of the inequality: z∗( x
‖x‖) ≥ −λ. Hence,

‖x∗ − x∗0‖ = sup
x∈X
|z∗( x

‖x‖
)| ≤ λ.

Now if C is a non-empty convex subset of X , then let f = δC be the indicator function

of C: f(x) = 0, if x ∈ C, and f(x) = ∞, if X \ C. Note that δC is a proper convex

function, which is lower semicontinuous if and only if C is closed. Application of the

variational principle 1.2 to f = δBX
with ε2 instead of ε and λ = ε gives the following

result.

Theorem 1.3. Let X be a Banach space and ε > 0. Suppose x0 ∈ X and x∗0 ∈ X∗,

‖x∗0‖ = 1 = ‖x0‖, and

x∗0(x0) ≥ 1− ε2.

Then there exist u0 ∈ BX and y∗ ∈ X∗ such that y∗ attains its norm at u0,

y∗(u0) = sup
x∈BX

|y∗(x)|,
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with ‖x0 − u0‖ < ε and ‖x∗0 − y∗‖ < ε.

Proof. Let x ∈ BX . Then

x∗0(x0) ≥ sup
c∈BX

|x∗0(c)| − ε2 ≥ x∗0(x)− ε2.

Hence, trivially:

(x∗0, x− x0) ≤ ε2 = δBX
(x)− δBX

(x0) + ε2, for all x ∈ BX .

Therefore, x∗0 is in the ε2-subdifferential of δBX
at x0. But then from the Brønsted-

Rockafellar principle 1.2, there exist u0 ∈ BX and y∗ ∈ X∗ with y∗ ∈ ∂δBX
(u0), satisfy-

ing:

‖x0 − u0‖ ≤ ε2/ε = ε and ‖x∗ − y∗0‖ ≤ ε.

In fact, y∗ ∈ ∂δBX
(u0) means that y∗ is a subgradient of δBX

at u0 and

y∗(y)− y∗(u0) ≤ δBX
(y)− δBX

(u0) for all y ∈ BX .

Or, using the supremum:

sup
y∈BX

y∗(y) ≤ y∗(u0).

Hence, y∗ attains its maximum on BX at u0.

Note that Theorem 1.3 differs from the Bishop-Phelps-Bollobás theorem 0.1, since the

approximating functional y∗ does not necessarily have norm 1. This is fixed in the follow-

ing corollary, but with a sacrifice to the estimate. B. Bollobás in his original paper [15]

constructed an example illustrating that the approximation below is the best possible.

Theorem 1.4. Let X be a Banach space and ε > 0. Suppose x0 ∈ X and x∗0 ∈ X∗,

‖x∗0‖ = 1 = ‖x0‖, and

x∗0(x0) > 1− ε2

2
.
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Then there exist u0 ∈ X and y∗ ∈ X∗, ‖y∗‖ = 1 = ‖u0‖, such that

y∗(u0) = sup
x∈BX

|y∗(x)|, ‖x0 − u0‖ ≤ ε, and ‖x∗ − y∗‖ ≤ ε.

Proof. Following the reasoning in the proof of Theorem 1.3,

x∗0 ∈ ∂ε2/2δBX
(x0).

Apply the Brønsted-Rockafellar principle 1.2 and set λ = ε/2, which produce u0 ∈

dom(f) and a functional z∗ ∈ ∂δBX
(u0), with the following approximation

‖x0 − u0‖ ≤
ε2/2

ε/2
= ε and ‖x∗0 − z∗‖ ≤

ε

2
.

Let y∗ =
z∗

‖z∗‖
. Then ‖y∗‖ = 1 and

y∗(u0) =
z∗(u0)

‖z∗‖
= sup

x∈BX

z∗(x)

‖z∗‖
= sup

x∈BX

y∗(x)

Moreover, y∗ is sufficiently close to x∗0:

‖x∗0 − y∗‖ =

∥∥∥∥x∗0 − z∗

‖z∗‖

∥∥∥∥ ≤ ‖x∗0 − z∗‖+

∥∥∥∥z∗ − z∗

‖z∗‖

∥∥∥∥ ≤ 2 · ε/2 = ε

This follows from the approximation above, and employing the following trick:

‖z∗‖
∥∥∥∥1− 1

‖z∗‖

∥∥∥∥ = ‖1− ‖z∗‖‖ = ‖‖x∗0‖ − ‖z∗‖‖ ≤ ‖x∗0 − z∗‖ < ε/2.

Remark 1.4.1. Even though the statements of Theorem 1.3 and Theorem 1.4 involve norm-

attaining functionals, the results are also true for support functionals on a closed bounded

convex set C.
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1.2 The Bishop-Phelps-Bollobás Theorem in the Complex Case

For a complex Banach space, it is important to establish first whether the Bishop-

Phelps-Bollobás theorem is stated for the unit ball or a closed convex set.

In the case of the unit ball BX , it was shown in [22] that the proof of the complex

version of Theorem 1.4 can be reduced to the real case by the means of a canonical map-

ping, associating the duals of a complex Banach space X and its subjacent real space XR.

Namely, define the mapR : X∗ → (XR)∗ by

(1.4) R(x∗)(x) = Re x∗(x) for x ∈ X.

It is norm-preserving and R-linear. To show thatR is onto, let y∗ ∈ (XR)∗. Define the map

G : (XR)∗ → X∗ by

(1.5) G(y∗)(x) = y∗(x)− iy∗(ix).

Then G is R-linear and, moreover, C-linear:

G(y∗)(ix) = y∗(ix)− iy∗(−x) = y∗(ix) + iy∗(x) = i(y∗(x)− iy∗(ix)) = iG(y∗)(x).

Thus, G ∈ X∗, and R(G) = y∗. Hence, R is an R-linear isomorphism and isometry.

It is a standard material, see [29]. Moreover, in Chapter 2 it will be shown that R is a

homeomorphism from (X∗, w∗) onto ((XR)∗, w∗).

Here, Theorem 1.4 is stated in a more general form, regardless of X being a real or a

complex Banach space.

Theorem 1.5 ( [22]). Let X be a Banach space, x∗0 ∈ SX∗ and x0 ∈ SX such that

|x∗0(x0)| ≥ 1 − ε2/2, where 0 < ε <
√

2. Then there exists x∗ ∈ SX∗ that attains the

norm at some x ∈ SX such that

‖x∗0 − x∗‖ ≤ ε and ‖x0 − x‖ ≤ ε.
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The idea of the proof is to apply the Theorem 1.4 to a real functional R(x∗0) and a

point λx0 ∈ X , where λ is a complex number such that λx∗0(x0) = |x∗0(x0)|. This gives

an approximating real-valued functional, attaining the norm at a point from XR. Thus,

the Bishop-Phelps-Bollobás theorem can be used to get the approximating norm-attaining

functional and a point at which this functional attains the norm. Then convert back to X ,

using the isometric properties ofR.

Now let C ⊆ X be a balanced closed convex bounded set. A set C is called balanced,

if αC ⊆ C for all α ∈ C, |α| ≤ 1. First, for a balanced set C, |x∗| attains its supremum on

C if and only if Re x∗ does. Moreover, supx∈C |x∗(x)| = supx∈C |Re x∗(x)|. The proof is

based on a standard argument using linearity. Indeed, for all z ∈ C:

|Re x∗(e−i arg x∗(z) · z)| = |Re (e−i arg x∗(z) · x∗(z))| = |Re |x∗(z)|| = |x∗(z)|,

Now suppose that Re x∗ attains its maximum at some z0 ∈ C. Then

sup
z∈C
|x∗(z)| = sup

z∈C
|Re x∗(e−i arg x∗(z) · z)|

≤ sup
z∈C
|Re x∗(z)| = |Re x∗(z0)|

= |x∗(ei arg x∗(z0) · z0)| ≤ sup
z∈C
|x∗(z)|.

Since C is balanced and |e−i arg x∗(z0)| = 1, then e−i arg x∗(z0) · z0 ∈ C. The other

direction follows similarly.

If C is non-balanced, in the same survey [3], as well as in [46], it was noted that two

different approaches are possible. The first approach is that x∗ attains the norm if and only

if Re x∗ attains the norm. The second approach is that x∗ attains the norm if and only if

|x∗| attains the norm.

In the first case, the structure of the underlying real Banach space determines whether
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the set of support functionals is dense in X∗, allowing to apply the real version of the

Bishop-Phelps-Bollobás theorem. This is the approach used in 1.5.

The second approach is more complicated, but intrinsic. J. Bourgain showed that if

X is a complex Banach space with the Radon-Nikodým property [16], then the unit ball

could be replaced by an arbitrary closed convex bounded set. From one of the equivalent

definitions, X is said to have the Radon-Nikodým property (RNP), if every bounded subset

of X is dentable, i.e. it has slices of an arbitrary small diameter. The question whether the

Bishop-Phelps theorem would be true in general remained open for almost twenty years. It

was answered negatively by V. Lomonosov in [39].

Let C be a subset of a Banach space. Then a point x is called a support point of C if

there is a norm-attaining functional x∗ which attains its supremum on C at x. Then x∗ is

called a support functional. V. Klee in [37] asked if each closed bounded convex subset of

a Banach space has a support point. The Bishop-Phelps theorem could be restated in terms

of support points and support functionals, and it implies that the set of support functionals

is norm dense.

V. Lomonosov [39] constructed a very “pathological” (but in a natural setting) coun-

terexample: a complex Banach space X and a closed convex bounded set C ⊂ X with no

support points whatsoever. Hence, there are no functionals in X∗ that attain their norms

on C at all. In contrast, in [46], R. R. Phelps proved that the set of “modulus support

functionals” of a closed convex bounded subset of a real Banach space is dense in the dual

space:

Theorem 1.6. [46] Suppose X is a real Banach space and that C ⊂ X is a nonempty

closed convex bounded set. Given x∗ ∈ X∗, ‖x∗‖ = 1, and ε > 0, there exists y∗ ∈ X∗,

‖y∗‖ = 1, such that sup
x∈X
|y∗(x)| = |y∗(u)| for some u ∈ C, and ‖x∗ − y∗‖ < ε.
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Consider the counterexample constructed by V. Lomonosov [39]. Let H∞ be the alge-

bra of bounded analytic functions on a unit disc D, with the norm ‖f‖ = supz∈D |f(z)|.

ThenH∞ ∼= X∗ for some Banach space X .

For every z ∈ D, consider the point evaluations ϕz, i.e. ϕz(f) = f(z). Let L be a line

generated by the point evaluation at 0. Define the quotient map π : X → X/L. By the

isomorphism theorem, (X/L)∗ ∼= L⊥, where

L⊥ = {g ∈ H∞ : g(c · ϕ0) = 0 for all c ∈ C}

= {g ∈ H∞ : g(0) = 0}.

Let S1 = π(conv{ϕz}) ⊂ X/L. Note that conv{ϕz} is a closed convex bounded set.

It was shown in [39, Theorem 2], that no functional from L⊥ attains its supremum on S1.

Note also that S1 is a closed convex bounded set, which is non-balanced.

1.3 How Sharp is the Bishop-Phelps-Bollobás Theorem?

The Bishop-Phelps-Bollobás theorem has appeared in several different forms, with

varying approximation of functionals and points([15], [5], [22], [10]). Consider the fol-

lowing three versions. First, the original statement by B. Bollobás:

Theorem 1.7 ( [15]). Suppose x0 ∈ SX , x∗ ∈ SX∗ and |x∗(x0) − 1| ≤ ε2/2, where

0 < ε < 1
2
. Then there exist u0 ∈ SX and y∗ ∈ SX∗ such that y∗(u0) = 1, ‖x∗ − y∗‖ ≤ ε,

and ‖x0 − u0‖ < ε+ ε2.

In addition, B. Bollobás constructed an example using R2, showing that in order for two

specific functionals to satisfy ‖x∗ − y∗‖ < ε, the points would have to be at least ε apart.

Thus, he stated the “best possible version” of this result as the remark below.
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Remark 1.7.1. [15] For any 0 < ε < 1, there exist a Banach space X , point x ∈ SX and

functional x∗ ∈ SX∗ such that x∗(x) = 1− ε2/2 but if u ∈ SX , y∗ ∈ SX∗ and y∗(u) = 1,

then either ‖x∗ − y∗‖ ≥ ε or ‖x− u‖ ≥ ε.

The bottom line is that for a closer approximation of the functionals, the approximating

points will have to be further apart.

In the next version of Theorem 1.7, the point x0 lies inside the unit ball rather than on

the boundary. This comes at a price: in order to get the same ε approximation, x∗(x0) has

to be closer to 1.

Theorem 1.8. [5] Let ε > 0, x0 ∈ BX , x∗ ∈ SX∗ such that |x∗(x0) − 1| < ε2/4. Then

there are u0 ∈ SX , y∗ ∈ SX∗ such that y∗(u0) = 1 = ‖y∗‖,

‖x∗ − y∗‖ < ε, and ‖x0 − u0‖ < ε.

Finally, the Brønsted-Rockafellar principle 1.2 gives a sharper form of the Bishop-

Phelps-Bollobás theorem:

Theorem 1.9. [22] Let ε > 0, and x0 ∈ SX , x∗ ∈ SX∗ such that |x∗(x0)| > 1 − ε2/2.

Then there exists u0 ∈ SX and y∗ ∈ SX∗ such that y∗(u0) = 1,

‖y∗ − x∗‖ ≤ ε, and ‖u0 − x0‖ ≤ ε.

Hence, a natural question:

What is the best estimate in the Bishop-Phelps-Bollobás theorem?

The meaning of this question is the following: what is the largest ε(δ) > 0 such that

whenever x∗ ∈ S∗X and x0 ∈ SX are such that |x∗(x0)| > 1− ε(δ), then there is y∗ ∈ SX∗

and u0 ∈ SX such that |y∗(u0)| = 1,

‖y∗ − x∗‖ ≤ ε, and ‖u0 − x0‖ ≤ ε?



12

This question was first properly studied in [23]. The authors introduced the infimum of all

such ε(δ), called the modulus of a Banach space ΦX(δ). Let X be a real or a complex Ba-

nach space and δ > 0. To define ΦX(δ), first consider the set of pairs (x, x∗) ∈ BX ×BX∗

such that x∗(x) is almost 1:

AX(δ) = {(x, x∗) ∈ BX ×BX∗ : Re(x∗(x)) > 1− δ}.

Define a set of functionals that attain their norms:

Π(X) = {(x, x∗) ∈ X ×X∗ : x ∈ SX , x ∈ S∗, x∗(x) = 1}.

Definition 1.2. [23] The Bishop-Phelps-Bollobás modulus of a Banach space X is the

function ΦX : (0, 2) → R+ such that given δ ∈ (0, 2), ΦX(δ) is the infimum of all ε > 0

such that for every (x, x∗) ∈ BX × BX∗ with Re(x∗(x)) > 1 − δ, there is a pair (u, y) ∈

Π(X) with ‖x− y‖ < ε and ‖x∗ − y∗‖ < ε.

It is clear that a smaller ΦX(δ) gives a better approximation on X , and according to

[23, Theorem 2.1], the upper bound for ΦX(δ) is
√

2δ. Note when δ = ε2/2, ΦX(δ) ≤ ε.

Hence, Theorem 1.9, the version from the Brønsted-Rockafellar principle 1.2, gives the

sharpest form of the Bishop-Phelps-Bollobás theorem.

Theorem 1.10. [23] Let 0 < ε < 2. Suppose x ∈ BX and f ∈ B∗X are such that

Ref(x) > 1− ε2

2
.

Then there exists a pair (y, g) ∈ Π(X) with

‖x− y‖ < ε and ‖f − g‖ < ε.

A counterpart of ΦX(δ) for x0 ∈ SX is called the spherical modulus of the Banach

space.
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Definition 1.3. [23] The spherical Bishop-Phelps-Bollobás modulus of a Banach space

X is the function ΦS
X : (0, 2)→ R+ such that given δ ∈ (0, 2), ΦS

X(δ) is the infimum of all

ε > 0 satisfying that for every (x, x∗) ∈ SX × SX∗ with Rex∗(x) > 1− δ, there is a pair

(u, y) ∈ Π(X) satisfying ‖x− u‖ < ε and ‖x∗ − y∗‖ < ε.

The best possible upper bound is

ΦS
X(δ) ≤ ΦX(δ) ≤

√
2δ, where 0 < δ < 2.

(Recall Theorem 1.8.) And in the worst approximation, both moduli coincide:

ΦX(δ) =
√

2δ if and only if ΦS
X(δ) =

√
2δ.



CHAPTER 2

ASPLUND SPACES AND THE BISHOP-PHELPS-BOLLOBÁS PROPERTY

In this chapter we are concerned with the study of simultaneously approximating both

operators and the points at which they almost attain their norms by norm attaining operators

and the points at which they attain their norms. Namely, we study the Bishop-Phelps-

Bollobás property:

Definition 2.1 (M. Acosta, R. Aron, D. Garcı́a, and M. Maestre, [5]). A pair of Banach

spaces (X, Y ) is said to have the Bishop-Phelps-Bollobás property (BPBp for short) if for

any ε > 0 there are η(ε) > 0 and β(ε) > 0 with lim
t→0

β(t) = 0, such that for all T ∈ SL(X,Y ),

if x0 ∈ SX is such that ‖T (x0)‖ > 1 − η(ε), then there are u0 ∈ SX and S ∈ SL(X,Y )

satisfying

‖S(u0)‖ = 1, ‖x0 − u0‖ < β(ε), and ‖T − S‖ < ε.

Thus, a pair of Banach spaces (X, Y ) has the BPBp if a “Bishop-Phelps-Bollobás”

type theorem can be proved for the set of operators from X to Y . This property implies, in

particular, that the norm attaining operators from X to Y are dense in the whole space of

continuous linear operators L(X, Y ). However, as shown in [5], the converse is not true.

Consequently, the BPB property is more than a quantitative tool for studying the density of

norm attaining operators.

In general, the BPB property fails for a pair of Banach spacesX and Y . This is a simple

consequence of the fact that the set of norm-attaining operators on arbitrary Banach spaces

X and Y might not be dense in L(X, Y ), [38]. To add structure to the research of this very

14
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general question, J. Lindentrauss introduced properties A and B. The domain space X is

said to have property A, if for every Banach space Y , the set of norm-attaining operators

T : X → Y is dense in L(X, Y ). Similarly, the range space Y is said to have property

B, if the set of norm-attaining operators T : X → Y is norm dense in L(X, Y ) for every

Banach space X .

In [5], the authors described a number of cases of pairs (X, Y ) with BPBp. For instance,

if Y has property (β), see [51, Definition 1.2], then (X, Y ) has BPBp for every Banach

space X . Also, (`1, Y ) has BPBp for Y in a large class of Banach spaces that includes the

finite dimensional Banach spaces, uniformly convex Banach spaces, spaces L1(µ) for a σ-

finite measure µ and spaces C(K), whereK is a compact Hausdorff space. Although some

particular results can be found in [5, Section 5] for pairs of the form (`∞n , Y ) (for instance,

Y uniformly convex), the authors of [5] comment that their methods do not work for pairs

of the form (c0, Y ). Recently, S. K. Kim showed that (c0, Y ) has BPBp for Y uniformly

convex, [34]. In addition, if Y is a strictly convex (real) space, then (c0, Y ) and (l1, Y ) are

examples of pairs of spaces such that the set of norm-attaining operators is dense, but the

BPBp fails, [34, 5].

The results in this chapter are based on joint work with R. Aron and B. Cascales [10].

Here, we devise a method to study the Bishop-Phelps-Bollobás property that in particular

addresses this question when Y = C0(L), L a locally compact Hausdorff space.

2.1 Asplund Operators on Real and Complex Spaces

LetX be a complex Banach space. Recall the map 1.4, associating the dual ofX and its

subjacent real space XR,R : X∗ → (XR)∗ defined byR(x∗)(x) = Re x∗(x), for x ∈ X .

Note thatR is a homeomorphism from (X∗, w∗) onto ((XR)∗, w∗). Indeed, let us show

thatR is w∗-w∗ continuous. Suppose {x∗α}α∈I ⊆ X∗ and x∗α
w∗−→ x∗. Hence for all x ∈ X ,
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x∗α(x) → x∗(x) pointwise. Since it is a net of complex numbers, Re x∗α(x) → Re x∗(x)

and Im x∗α(x) → Im x∗(x). Hence, (Rx∗α)(x) = Re x∗α(x) → Re x∗(x) = (Rx∗)(x),

yieldingRx∗α
w∗−→ Rx∗.

Now we prove that the inverse map G is w∗-w∗ continuous. Let y∗ ∈ XR and define the

inverse map 1.5:

G : (XR)∗ → X∗,

G(y∗)(x) = y∗(x)− iy∗(ix).

Suppose {y∗α}α∈I ⊆ (XR)∗ and y∗α
w∗−→ y∗. Fix x ∈ X . Since y∗α(x) → y∗(x), then for

all ε > 0, there exists α1 ∈ I , such that whenever β1 > α1, then ‖y∗β1(x) − y∗(x)‖ < ε.

Similarly, there is some α2 ∈ I , such that for all β2 > α2, ‖y∗β2(ix) − y∗(ix)‖ < ε. Let

α > max{α1, α2}. Then

|G(y∗α)(x)− G(y∗)(x)| = ‖y∗α(x)− iy∗α(ix)− (y∗(x)− iy∗(ix))‖

< ‖y∗α(x)− y∗(x)‖+ ‖y∗α(ix)− y∗(ix)‖

< ε.

Therefore, G(y∗α)
w∗→ G(y∗). Hence,R is a homeomorphism.

The Banach space X is called an Asplund space if, whenever f is a convex continuous

function defined on an open convex subset U of X , the set of all points of U where f is

Fréchet differentiable is a dense Gδ-subset of U . This definition is due to Asplund [11] un-

der the name strong differentiability space. Asplund spaces have been used profusely since

they were introduced. The versatility of this concept is in part explained by its multiple

characterizations via topology or measure theory, as presented for instance in the theorem

below.
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Recall that a subset C of (X∗, w∗) is said to be fragmented by the norm if for each

non-empty subset A of C and for each ε > 0 there exists a non-empty w∗-open subset U

of X∗ such that U ∩ A 6= ∅ and ‖·‖-diam(U ∩ A) ≤ ε, [40].

Theorem 2.1. [41] Let X be a Banach space. Then the following conditions are equiva-

lent:

(i) X is an Asplund space;

(ii) every w∗-compact subset of (X∗, w∗) is fragmented by the norm;

(iii) each separable subspace of X has a separable dual;

(iv) X∗ has the Radon-Nikodým property.

The proof in [41] is given for a real Banach space. However, it could be adjusted for a

complex Banach space using the homeomorphism R. Note that a complex Banach space

X is Asplund if the subjacent real space XR is Asplund.

Proof. Let X be a real Banach space. The Radon-Nikodým property was defined in Chap-

ter 1. For the equivalent notions of this property we refer to [17, 26]. The equivalence (iii)

⇔ (iv) is due to Stegall [54], (i)⇔ (ii)⇒ (iii) can be found in the paper by Namioka and

Phelps [42] and (iii)⇒ (ii) is due again to Stegall [55]. We note that if C is w∗-compact

convex, then C is fragmented by the norm if, and only if, C has the Radon-Nikodým prop-

erty, see [17, Theorem 4.2.13].

Now let X be a complex Asplund space, C ⊂ X∗ be a w∗-compact set, A ⊂ C a

non-empty subset, and ε > 0. SinceR is w∗-continuous, thenR(C) ⊂ X∗R is w∗-compact,

R(A) ⊂ R(C), R(A) 6= ∅. The underlying real space XR is Asplund, hence from (ii)

there exists a w∗-open U ⊂ X∗R such that U ∩ R(A) 6= ∅, and ‖·‖-diam(U ∩ R(A)) ≤ ε.
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Note thatR is a w∗-w∗ homeomorphism, thusR−1(U) is w∗-open. SinceR is an isometry,

‖·‖-diam(R−1(U)∩A) ≤ ε, andR−1(U)∩A 6= ∅. Therefore, C is w∗-fragmented by the

norm, and (i)⇒ (ii). The other side of the equivalence, (ii)⇒ (i), follows similarly.

An operator T ∈ L(X, Y ) is said to be an Asplund operator if it factors through an

Asplund space, i.e., there are an Asplund space Z and operators T1 ∈ L(X,Z), T2 ∈

L(Z, Y ) such that T = T2 ◦T1, see [27, 56]. Note that every weakly compact operator T ∈

W(X, Y ) factors through a reflexive Banach space, see [24], and hence T is an Asplund

operator (it is easy to see that the equivalence (i)-(iii) in Theorem 2.1 implies that every

reflexive space is Asplund).

An operator T ∈ L(X, Y ) is called a Radon-Nikodým operator if for every probability

space (Ω,Σ, µ) and every µ-continuous vector measure µ : Σ → X with finite variation,

there exists a Bochner integrable function g : Ω→ Y such that (T ◦ν)(E) =
∫
E
gdµ for all

E ∈ Σ, i.e. the measure T ◦ ν has a Radon-Nikodým derivative in L1(Ω,Σ, µ), [27, 49].

However, we are interested more in the definition of the Radon-Nikodým operator that

comes from the duality aspect (i)⇔(iv) of Theorem 2.1. An operator T ∈ L(X, Y ) is

Asplund if and only if T ∗ : Y ∗ → X∗ is a Radon-Nikodým operator. This equivalence is

due to C. Stegall:

Theorem 2.2 ( [56], Theorem 2.11). Let T : X → Y be a bounded linear operator. Then

the following are equivalent:

(i) T ∗ factors through a space W with W having RNP;

(ii) T factors through a space Z with Z being Asplund.
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2.2 The Bishop-Phelps-Bollobás Theorem and Asplund Operators on C(K)

In this section we present our main result related to the operators on spaces of contin-

uous functions, Theorem 2.4. We begin with Lemma 2.3, which isolates the technicalities

that we need to prove our main theorem. Originally, it was proved in [10]. But Lemma 2.3

was improved quantitatively in [22], and that shall be the version we present. In the proof

of the lemma, we use the Bishop-Phelps-Bollobás Theorem 1.5.

Recall that a subset B ⊂ BY ∗ is said to be 1-norming if

‖y‖ = sup
b∗∈B
|b∗(y)|,

for every y ∈ Y . Recall that if T ∈ L(X, Y ), then its adjoint T ∗ ∈ L(Y ∗, X∗) is also

w∗-w∗ continuous.

Lemma 2.3. [22, Lemma 3.5] Let T : X → Y be an Asplund operator with ‖T‖ = 1,

0 < ε <
√

2, and x0 ∈ SX such that ‖Tx0‖ > 1 − ε2/2. For any given 1-norming set

B ⊂ BY ∗ if we write M = T ∗(B) then, for every r > 0 there exist:

(i) a weak∗-open set Ur ⊂ X∗ with Ur ∩M 6= ∅, and

(ii) points y∗r ∈ SX∗ and ur ∈ SX with |y∗r(ur)| = 1 such that

(2.1) ‖x0 − ur‖ ≤ ε and ‖z∗ − y∗r‖ ≤ r +
ε2

2
+ ε for every z∗ ∈ Ur ∩M.

Proof. Observe first that if T is an Asplund operator, then its adjoint T ∗ sends the unit ball

of Y ∗ into a w∗-compact subset of (X∗, w∗) that is norm fragmented. Indeed, if T = T2◦T1

is a factorization of T through the Asplund space Z, then its adjoint T ∗ factors through Z∗

Y ∗
T ∗ //

T ∗2 !!

X∗

Z∗
T ∗1

==
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Since T ∗2 is w∗-w∗ continuous, T ∗2 (BY ∗) is a w∗-compact subset of Z∗, and we can

now appeal to Theorem 2.1 to conclude that T ∗2 (BY ∗) ⊂ (Z∗, w∗) is fragmented by the

norm of Z∗. On the other hand, T ∗1 : Z∗ → X∗ is norm-to-norm and w∗-w∗ continuous

and, therefore it sends the fragmented w∗-compact set T ∗2 (BY ∗) ⊂ (Z∗, w∗) onto the w∗-

compact set T ∗(BY ∗) ⊂ (X∗, w∗) that is fragmented by the norm of X∗, see [40, Lemma

2.1], and our observation is proved. (Alternatively, the observation can be proved using [56,

Theorem 2.11] and [17, Theorem 4.2.13].)

Now we really start the proof of the lemma. Use that B ⊂ BY ∗ is 1-norming and pick

b∗0 ∈ B such that

|T ∗(b∗0)(x0)| = |b∗0(T (x0))| > 1− ε2

2
.

Defining U1 = {x∗ ∈ X∗ : |x∗(x0)| > 1− ε2/2}, we have that

T ∗(b∗0) ∈ U1 ∩M ⊂ T ∗(BY ∗) ⊂ BX∗ .

Fix r > 0. Since T ∗(BY ∗) is fragmented and U1 ∩M is non-empty, there exists a w∗-open

set U2 ⊂ X∗ such that (U1 ∩M) ∩ U2 6= ∅ and

(2.2) ‖·‖- diam
(
(U1 ∩M) ∩ U2

)
≤ r.

Let U := U1 ∩ U2 and fix x∗0 ∈ U ∩M . We have

(2.3) 1 ≥ ‖x∗0‖ ≥ |x∗0(x0)| > 1− ε2

2
.

If we normalize we still have

(2.4) 1 ≥ |x
∗
0(x0)|
‖x∗0‖

≥ |x∗0(x0)| ≥ 1− ε2

2
.

Then by applying the Bishop-Phelps-Bollobás Theorem 1.5 to
x∗0
‖x∗0‖

and x0, we obtain

y∗r ∈ SX∗ and ur ∈ SX with |y∗r(ur)| = 1 such that

(2.5) ‖x0 − ur‖ < ε and
∥∥∥∥ x∗0
‖x∗0‖

− y∗r
∥∥∥∥ < ε.
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Let z∗ ∈ U ∩M be an arbitrary element. Then,

‖z∗ − y∗r‖ ≤ ‖z∗ − x∗0‖+

∥∥∥∥x∗0 − x∗0
‖x∗0‖

∥∥∥∥+

∥∥∥∥ x∗0
‖x∗0‖

− y∗r
∥∥∥∥

(2.2),(2.5)
≤ r + ‖x∗0‖

∣∣∣∣1− 1

‖x∗0‖

∣∣∣∣+ ε

(2.3)
≤ r +

ε2

2
+ ε,

and the proof is over.

Theorem 2.4. Let T : X → C0(L) be an Asplund operator with ‖T‖ = 1. Suppose that

0 < ε <
√

2 and x0 ∈ SX are such that

‖T (x0)‖ > 1− ε2

2
.

Then there are u0 ∈ SX and an Asplund operator S ∈ SL(X,C0(L)) satisfying

‖S(u0)‖ = 1, ‖x0 − u0‖ ≤ ε and ‖T − S‖ < 2ε.

Proof. The natural embedding ξ : L → C0(L)∗ given by ξ(s) := δs, for s ∈ L, is con-

tinuous for the topology of L and the w∗-topology in C0(L)∗. Hence the composition

φ := T ∗ ◦ ξ : L→ X∗ is continuous for the w∗ topology in X∗.

Apply now Lemma 2.3 for Y := C0(L), B := {δs : s ∈ L} ⊂ BC0(L)∗ , our given

operator T, ε, and 0 < r < ε− ε2/2. Note that the set B is 1-norming, since

‖f‖ = sup
s∈L
|f(s)| = sup

{δs: δs∈B}
|δs(f)|.

Thus, we produce the w∗-open set U and the functional y∗ ∈ SX∗ satisfying properties

(a) and (b) in the aforesaid lemma. Note that with our new notation we have φ(L) = M .

Since U ∩M 6= ∅ we can pick s0 ∈ L such that φ(s0) ∈ U . The w∗-continuity of φ ensures

that the set W = {s ∈ L : φ(s) ∈ U} is an open neighborhood of s0. By Urysohn’s
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lemma, [50, Lemma 2.12], we can find a continuous function f : L→ [0, 1] with compact

support, satisfying:

(2.6) f(s0) = 1 and supp(f) ⊂ W.

Define now the linear operator S : X → C0(L) by the formula

(2.7) S(x)(s) = f(s) · y∗(x) + (1− f(s)) · T (x)(s).

It is easily checked that S is well-defined and that ‖S‖ ≤ 1. On the other hand, 1 =

|y∗(u0)| = |S(u0)(s0)| ≤ ‖S(u0)‖ ≤ 1 and therefore S attains the norm at the point

u0 ∈ SX for which we had ‖u0 − x0‖ ≤ ε.

Now, bearing in mind (2.6), (2.7), Lemma 2.3 and the definition of W we conclude that

‖T − S‖ = sup
x∈BX

‖Tx− Sx‖ = sup
x∈BX

sup
s∈L

f(s)|T (x)(s)− y∗(x)|

= sup
x∈BX

sup
s∈W

f(s)|φ(s)(x)− y∗(x)| ≤ sup
s∈W

sup
x∈BX

|φ(s)(x)− y∗(x)|

= sup
s∈W
‖φ(s)− y∗‖ ≤ r + ε2/2 + ε < 2ε.(2.8)

To finish we prove that S is also an Asplund operator. This is based on the fact that the

family of Asplund operators between Banach spaces is an operator ideal, see [56, Theorem

2.12]. Observe that S appears as the sum of a rank one operator and the operator x 7→

(1 − f)T (x); the latter is the composition of a bounded operator from C0(L) into itself

with T . Therefore S is an Asplund operator and the proof is over.

Remark 2.4.1. It is possible to get an estimate better than 2ε in Theorem 2.4. From 2.8, it

follows that ‖T − S‖ < δ + ε, where ε2/2 < δ < ε.
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2.3 Operator Ideals and Other Corollaries

Recall that an operator ideal I is a way of assigning to each pair of Banach spaces

(X, Y ) a linear subspace I(X, Y ) ⊂ L(X, Y ) that contains all finite rank operators from

X to Y and satisfies the following property: T2◦T ◦T1 ∈ I(Z, V ) whenever T ∈ I(X, Y ),

T1 ∈ L(Z,X), and T2 ∈ L(Y, V ), see [25, 48].

If we denote by A the ideal of Asplund operators between Banach spaces, the above

theorem applies as well to any sub-ideal I ⊂ A.

Corollary 2.5. Let I ⊂ A be an operator ideal. Let T ∈ I(X,C0(L)) with ‖T‖ = 1,

0 < ε <
√

2, and x0 ∈ SX be such that

‖T (x0)‖ > 1− ε2

2
.

Then there are u0 ∈ SX and S ∈ I(X,C0(L)) with ‖S‖ = 1 satisfying

‖S(u0)‖ = 1, ‖x0 − u0‖ ≤ ε and ‖T − S‖ < 2ε.

We should stress that becauseW ⊂ A, see [24], the above corollary applies in particular

to the ideals of finite rank operators F , compact operators K, p-summing operators Πp and

of course to the weakly compact operatorsW themselves. Results in this vein can be found

in the literature for weakly compact operators but, with spaces of continuous functions as

domain spaces and only for the so-called Bishop-Phelps property: Schachermayer proved,

see [52, Theorem B], that any T ∈ W(C(K), X) can be approximated by norm attaining

operators. This result was generalized later for operators T ∈ W(C0(L), X), see [9]).

With spaces of continuous functions in the range, Johnson and Wolfe, see [33, Theorem

3], proved that any T ∈ K(X,C(K)) can be approximated by finite rank norm attaining

operators. Note then that Corollary 2.5 adds several new versions of the vector-valued
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Bishop-Phelps theorem. Moreover, these cases provide the Bollobás part of approximation

of points at which the norm is attained.

Standard ε − δ tricks suffice to prove that for a pair of Banach spaces (X, Y ) the

following are equivalent:

(i) (X, Y ) has the BPB property according to Definition 2.1;

(ii) there are functions η : (0,+∞)→ (0, 1) and β, γ : (0,+∞)→ (0,+∞) with

lim
t→0

β(t) = lim
t→0

γ(t) = 0,

such that given ε > 0, for all T ∈ SL(X,Y ), if x0 ∈ SX and ‖T (x0)‖ > 1− η(ε), then

there exist a point u0 ∈ SX and S ∈ SL(X,Y ) satisfying

‖S(u0)‖ = 1, ‖x0 − u0‖ < β(ε), and ‖T − S‖ < γ(ε).

Once again, in (ii) above we can take β(t) = γ(t) = t, but of course changing η if

needed!. Consequently we arrive to the following straightforward consequence of Theo-

rem 2.4:

Corollary 2.6. For any Asplund space X and any locally compact Hausdorff topological

space L the pair (X,C0(L)) has the BPBp.

This corollary extends and strengthens Theorem 2 in [33]. Also, we can take as X any

c0(Γ) (Γ arbitrary set), or more generally any C0(S) where S is a scattered locally compact

Hausdorff space (see, for instance, [44] for scattered or dispersed spaces). Indeed for a

locally compact space S, the space C0(S) is Asplund if, and only if, S is scattered. This

can be proved in the following way:

(1) It is known that for K compact, C(K) is Asplund if, and only if, K is scattered,
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combine [44, Main Theorem] with Theorem 2.1 or alternatively see [42, Theorem 18].

(2) It is easy to check that if S is locally compact, then S is scattered if, and only if, its

Alexandroff compactification S ∪ {∞} is scattered,

(3) Now use that Asplundness is a three space property, see [42, Theorems 11,12 and

14], and conclude that C0(S) is Asplund if, and only, if C(S ∪ {∞}) is Asplund.

(4) Summarizing, C0(S) is Asplund if, and only if, S is scattered.

Note that whereas the hypothesis of X being Asplund in the above corollary is an

isomorphic property, for the range space we have to use the sup norm in C0(L). Indeed,

Lindenstrauss [38, Proposition 4] established that if (c0, ‖·‖) is a strictly convex renorming

of c0 then id : c0 → (c0, ‖·‖) cannot be approximated by norm attaining operators. Notice

also, that Corollary 2.6 may fail when X is not Asplund: Schachermayer [52] gave an

example of an operator T ∈ L(L1[0, 1], C[0, 1]) that cannot be approximated by norm

attaining operators.

With our comments above together with Theorem 2.4 we have:

Corollary 2.7. For any Banach space X and any scattered locally compact Hausdorff

topological space L the pair (X,C0(L)) has the BPBp.

An alternative proof for this corollary can be obtained using the fact that for such an

L the space Y = C0(L) has property (β), see [51, Definition 1.2], and for spaces Y with

property (β), every pair (X, Y ) has BPBp, see [5, Theorem 2.2].

In a different line of ideas, we point out that Lindenstrauss proved in [38, Theorem 1]

that every operator T ∈ L(X, Y ) can be approximated by operators S ∈ L(X, Y ) such

that S∗∗ ∈ L(X∗∗, Y ∗∗) attains the norm on BX∗∗ . In [5, Example 6.3] it is established that

the counterpart of the above Lindenstrauss’ result is no longer valid for the corresponding
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natural Bishop-Phelps-Bollobás theorem with bi-adjoints operators. The example again

uses c0 as a domain space. Replacing Y ∗∗ by C(BY ∗ , w
∗), we state the last result in this

Chapter.

Corollary 2.8. Let T : X → Y be an Asplund operator with ‖T‖ = 1, 0 < ε <
√

2, and

x0 ∈ SX be such that

‖T (x0)‖ > 1− ε2

2
.

Then there are u0 ∈ SX and an Asplund operator S ∈ SL(X,C(BY ∗ )) satisfying

‖S(u0)‖ = 1, ‖x0 − u0‖ ≤ ε and ‖i ◦ T − S‖ < 2ε,

where i : Y ↪→ C(BY ∗) is the natural embedding.

Finally, we would like to comment on some extensions of this work. There is a string of

results related to uniformly convex spaces and the spaces of continuous functions. In [6], it

was shown that if Y is uniformly convex, then the Bishop-Phelps-Bollobás theorem holds

for compact bounded linear operators T ∈ L(C0(L), Y ). If the condition T being compact

is removed, then (C(K), C(S)) has the BPBp, where C(K) and C(S) are real-valued con-

tinuous functions on compact Hausdorff spaces K and S, [6]. Further it was extended to

(C0(S), C0(L)), where S is a locally compact metrizable space and L is a locally compact

Hausdorff space, [35].



CHAPTER 3

THE BISHOP-PHELPS-BOLLOBÁS PROPERTY FOR NUMERICAL RADIUS

The infinite we do immediately, the

finite takes a little longer.

S. Ulam and P. Erdös.

B. Bollobás extended the Bishop-Phelps theorem in a quantitative way in order to work

on problems related to the numerical range of an operator [15]. The known proofs of this

fact have an existence nature: they are based on the Hahn-Banach extension theorem, Eke-

land’s variational principle or the Brøndsted-Rockafellar principle. We begin this chapter

by constructing explicit expressions of the approximating pair (x0, x
∗
0) when X = `1(C)

and X = c0(C), a necessary tool for our main results related to numerical radius. The

results in this Chapter are based on joint work with A. J. Guirao [31].

Paralleling the research of norm attaining operators initiated by Lindenstrauss in [38],

B. Sims raised the question of the norm denseness of the set of numerical radius attaining

operators [53]. Partial positive results are known. M. Acosta in her Ph.D. thesis [1] initiated

a systematic study of the problem. Other important works in this direction are the renorm-

ing result by M. Acosta in [2] and the joint findings of this author with R. Payá [7, 8]. Prior

to them, I. Berg and B. Sims in [13] gave a positive answer for uniformly convex spaces and

C. S. Cardassi obtained positive answers for `1, c0, C(K), L1(µ), and uniformly smooth

spaces [19, 20, 21].

Using a renorming of c0, R. Payá provided an example of a Banach space X such that

the set of numerical radius attaining operators on X is not norm dense, answering in the

27
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negative Sims’ question, [43]. In the same year, M. Acosta, F. Aguirre, and R. Payá in [4]

gave another counterexample: X = `2 ⊕∞ G, where G is the Gowers space.

We investigate here an analogue of the Bishop-Phelps-Bollobás property for operators

2.1 but in relation with numerical radius attaining operators, called the Bishop-Phelps-

Bollobás property for numerical radius, or BPBp-ν for short. The relation between norm

attaining and numerical radius attaining operators is far from clear, although the existence

of an interconnection is evident. Amongst the first examples, we show that `1(C) and c0(C)

satisfy BPBp-ν (Theorems 3.7 and 3.10). This brings an extension as well as a quantitative

version of C. S. Cardassi’s results in [20]. Other recent results include BPBp-ν for C(K),

when K is metrizable, [12]; a construction of BPBp-ν for L1 by J. Falcó, [30]; and a

series of results in [36].

Observe that the counterexamples provided in [4] and [43] imply, in particular, that

there exist Banach spaces failing the Bishop-Phelps-Bollobás property for numerical ra-

dius.

Recall the set Π(X) ( 1.3) from Chapter 1:

Π(X) = {(x, x∗) ∈ SX × SX∗ : x∗(x) = 1}.

Given x ∈ SX and x∗ ∈ SX∗ , we set

π1(x∗) := {x ∈ SX : x∗(x) = 1}.

For a given T ∈ L(X), its numerical radius ν(T ) is defined by

ν(T ) = sup{|x∗(Tx)| : (x, x∗) ∈ Π(X)}.

It is well known that the numerical radius of a Banach space X is a continuous semi-

norm on X which is, in fact, an equivalent norm when X is complex. In general, there
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exists a constant n(X), called the numerical index of X , such that

n(X) ‖T‖ ≤ ν(T ) ≤ ‖T‖ , for all T ∈ L(X).

In this work we consider the spaces of numerical index 1, n(X) = 1, where the norm

and the numerical radius coincide.

We say that T ∈ L(X) attains its numerical radius if there exists (x, x∗) ∈ Π(X) such

that |x∗(Tx)| = ν(T ). The set of numerical radius attaining operators will be denoted by

NRA(X) ⊂ L(X).

Definition 3.1 (BPBp-ν). A Banach space X is said to have the Bishop-Phelps-Bollobás

property for numerical radius if for every 0 < ε < 1, there exists δ > 0 such that for a

given T ∈ L(X) with ν(T ) = 1 and a pair (x, x∗) ∈ Π(X) satisfying |x∗(Tx)| ≥ 1 − δ,

there exist S ∈ L(X) with ν(S) = 1, and a pair (y, y∗) ∈ Π(X) such that

(3.1) ν(T − S) ≤ ε, ‖x− y‖ ≤ ε, ‖x∗ − y∗‖ ≤ ε and |y∗(Sy)| = 1.

Observe that if X is a Banach space with n(X) = 1, then the seminorm ν(·) can be

replaced by ‖·‖ in the definition above, which is precisely the case for all the spaces studied

below.

Let arg(·) stand for the function which sends a non zero complex number z to the

unique arg(z) ∈ [0, 2π) such that z = |z|earg(z)i. For convenience we extend the function

to C by writing arg(0) = 0.

Throughout 3.1 to 3.3, the spaces `1, `∞, and c0 stand respectively for `1(C), `∞(C),

and c0(C). The standard basis of `1 is denoted by {en}n∈N, and its biorthogonal functionals

by {e∗n}n∈N. Given a sequence ξ = (ξj)j∈N∈ CN and a complex function f : C → C we

write f(ξ) to mean the sequence (f(ξj))j∈N.
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Before stating the results, we need to introduce the following sets.

Given x = (xj)j∈N ∈ `1, ϕ = (ϕj)j∈N ∈ `∞ we define

N(x, ϕ) = {j ∈ N : ϕj xj = |xj|},(3.2)

supp(x) = {j ∈ N : |xj| 6= 0}.

For r > 0 we consider

Aϕ(r) = {j ∈ N : |ϕj| ≥ 1− r},(3.3)

P(x,ϕ)(r) = {j ∈ supp(x) : Re(ϕj xj) ≥ (1− r)|xj|}.(3.4)

Observe that P(x,ϕ)(r) ⊂ Aϕ(r). If x is positive, i.e. xj ≥ 0 for all j ∈ N, then

P(x,ϕ)(r) = {j ∈ supp(x) : Re(ϕj) ≥ (1− r)}.

For a given set Γ, a subset A ⊂ Γ and K ∈ {R,C}, we denote by 1A the characteristic

function of A, that is, the element in KΓ such that (1A)γ = 1 if γ ∈ A and (1A)γ = 0

otherwise.

3.1 The Bishop-Phelps-Bollobás Theorem in `1(C)

In this section we present two constructive versions of Theorem 0.1, which are the main

tool in the proof of Theorems 3.7 and 3.13.

Lemma 3.1. Let (x, ϕ) ∈ S`1 × S`∞ . Then x ∈ π1(ϕ) if and only if N(x,ϕ) = N.

Proof. Given a pair (x, ϕ) ∈ S`1 × S`∞ satisfying N(x,ϕ) = N, one can compute ϕ(x) =∑
j∈N ϕj xj

(3.2)
=
∑

j∈N |xj| = ‖x‖ = 1, which implies that (x, ϕ) ∈ Π(`1).

Conversely, let us assume that (x, ϕ) ∈ Π(`1) then,

1 = Re(ϕ(x)) =
∑
j∈N

Re(ϕj xj) ≤
∑
j∈N

|ϕj xj| ≤
∑
j∈N

|xj| = 1,
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which implies that Re(ϕj xj) = |ϕj xj| = |xj| for j ∈ N. Therefore, ϕj xj = |xj| for every

j ∈ N, which finishes the proof.

Lemma 3.1 provides the essential insight into the properties of Π(`1) needed for the

proof of Theorems 3.4 and 3.6. In particular, Lemma 3.1 gives an intuitive characterization

of the norm attaining functionals on `1, NA(`1).

Corollary 3.2. NA(`1) = {ϕ ∈ `∞ : ∃n ∈ N with |ϕn| = ‖ϕ‖}.

The following lemma is an adaptation of [5, Lemma 3.3].

Lemma 3.3. Let (x, ϕ) ∈ B`1 × B`∞ and 0 < δ < 1 such that ϕ(x) ≥ 1 − δ. Then, for

every δ < r < 1 we have
∥∥Re

(
earg(ϕ)i x

)
· 1P(x,ϕ)(r)

∥∥ ≥ 1− (δ/r).

Proof. By assumption, we have that

1− δ ≤ Re(ϕ(x)) =
∑
j∈N

Re(ϕj xj) =
∑
j∈N

|ϕj|Re
(
earg(ϕj)i xj

)
≤

∑
P(x,ϕ)(r)

Re
(
earg(ϕj)i xj

)
+ (1− r)

∑
N\P(x,ϕ)(r)

|xj|

≤ r
∑
P(x,ϕ)(r)

∣∣Re
(
earg(ϕj)i xj

)∣∣+ (1− r),

which implies that∥∥∥Re
(
earg(ϕ)i x

)
1P(x,ϕ)(r)

∥∥∥ =
∑

j∈P(x,ϕ)(r)

∣∣∣Re
(
earg(ϕj)i xj

)∣∣∣ ≥ 1− (δ/r),

as we wanted to show.

Observe that the previous lemma implies, in particular, that

∥∥x · 1P(x,ϕ)(r)

∥∥ ≥ 1− (δ/r).

We present next the two constructive versions of the Bishop-Phelps-Bollobás theorem.
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Theorem 3.4 (First constructive version.). Given (x, ϕ) ∈ B`1 × B`∞ and 0 < ε < 1

such that ϕ(x) ≥ 1 − ε3

4
. Then, there exists (x0, ϕ0) ∈ Π(`1) such that ‖x− x0‖ ≤ ε,

‖ϕ− ϕ0‖ ≤ ε. Moreover, we can take

(3.5) x0 :=
∥∥x · 1P(x,ϕ)(ε

2/2)

∥∥−1 · x · 1P(x,ϕ)(ε
2/2).

Proof. Set P := P(x,ϕ)(ε
2/2), as defined in (3.4). Applying Lemma 3.3 with δ = ε2/2 and

r = ε gives that

(3.6) M := ‖x · 1P‖ ≥ 1− (ε/2).

Then set

(3.7) ϕ0 := ϕ · 1N\P + e−arg(x)i · 1P ∈ S`∞

and

(3.8) x0 := M−1x · 1P ∈ S`1 .

On one hand, we can compute

‖x− x0‖
(3.8)
=
∥∥x−M−1x · 1P

∥∥ = (M−1 − 1) ‖x · 1P‖+
∥∥x · 1N\P

∥∥
(3.6)
= (1−M) +

∥∥x · 1N\P
∥∥ ‖x‖≤1

≤ 2− 2M
(3.6)
≤ ε,

and use the fact that the support of x0 is contained in P (from (3.8)), to deduce that

ϕ0(x0) =
∑
j∈P

(ϕ0)j (x0)j
(3.7)
=
∑
j∈P

e−arg(xj)i (x0)j
(3.8)
=
∑
j∈P

|(x0)j|= ‖x0‖ = 1,

which is equivalently expressed as (x0, ϕ0) ∈ Π(`1).

On the other hand, using that

(3.9) |z − 1| ≤
√

2(1− Re(z)) for every z ∈ C such that |z| ≤ 1,
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we conclude

‖ϕ− ϕ0‖
(3.7)
= sup

j∈P
{|ϕj − (ϕ0)j|}

(3.7)
= sup

j∈P

{∣∣ϕj − e−arg(xj)i
∣∣}

= sup
j∈P

{∣∣earg(xj)i ϕj − 1
∣∣} (3.9)
≤ sup

j∈P

{√
2− 2 Re

(
earg(xj)i ϕj

)}
≤
√

2− 2(1− ε2/2) = ε,

which finishes the proof.

An immediate consequence of Theorem 3.4 is the following version of the Bishop-

Phelps-Bollobás theorem for `1(C).

Corollary 3.5. Let 0 < ε < 1 and (x, ϕ) ∈ B`1 × B`∞ such that |ϕ(x)| ≥ 1 − ε3

4
. Then,

there exists (x0, ϕ0) ∈ S`1×S`∞ such that ‖x− x0‖ ≤ ε, ‖ϕ− ϕ0‖ ≤ ε, and |ϕ0(x0)| = 1.

Proof. Apply Theorem 3.4 to the pair
(
e−arg(ϕ(x))i x, ϕ

)
obtaining (z0, ϕ0) belonging to

Π(`1) such that
∥∥e−arg(ϕ(x))i x− z0

∥∥ ≤ ε and ‖ϕ− ϕ0‖ ≤ ε. Therefore, if we set

x0:=earg(ϕ(x))i z0,

the pair (x0, ϕ0) satisfies the conclusions of the corollary.

Given a pair (x, ϕ) and 0 < ε < 1, Theorem 3.4 ensures the existence of a pair (x0, ϕ0),

defined by (3.8)-(3.7), and satisfying the conclusions of the Bishop-Phelps-Bollobás the-

orem. However, ϕ0 depends on x, in fact, on arg(x). In order to prove Theorem 3.7 we

will need a functional ϕ0 depending only on the given ε and ϕ. So, we present another

constructive version of the Bishop-Phelps-Bollobás theorem for `1.

Theorem 3.6 (Second constructive version.). Let (x, ϕ) ∈ B`1 × B`∞ and 0 < ε < 1

be such that ϕ(x) ≥ 1 − ε3

60
. Then there exists (x0, ϕ0) ∈ Π(`1) such that ‖x− x0‖ ≤ ε,
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‖ϕ− ϕ0‖ ≤ ε. Moreover, the functional ϕ0 can be defined as

(3.10) ϕ0 = ϕ · 1N\Aϕ(ε2/20) + earg(ϕ)i · 1Aϕ(ε2/20).

Proof. To simplify the proof, we will first apply the isometry S : `1 → `1 defined by

(3.11) 〈e∗j , Sy〉 = earg(ϕj)i yj, for y ∈ `1 and j ∈ N.

Set x̃ = Sx and ϕ̃ = ϕ ◦ S−1. Then, it is clear that the pair (x̃, ϕ̃) is in B`1 ×B`∞ , that

ϕ̃(x̃) ≥ 1 − ε3

60
and that ϕ̃ = (|ϕj|)j∈N is positive. Fix r:= ε2

20
. Then denote by A and P

respectively the sets Aϕ̃(r) and P(x̃,ϕ̃)(r), as defined in (3.3) and (3.4). Let

(3.12) ϕ̂:=ϕ̃ · 1N\A + 1A ∈ S`∞

and

(3.13) x̂:=M−1Re(x̃) · 1P ∈ S`1 ,

where M := ‖Re(x̃) · 1P‖. Applying Lemma 3.3 with δ = ε3/60 and r, gives that M ≥

1− ε
3
. In particular, this means that P , and thus A, are non-empty.

We can compute that

‖ϕ̃− ϕ̂‖ (3.12)
= sup

j∈A
{|ϕ̃j − ϕ̂j|}

(3.12)
= sup

j∈A
{|ϕ̃j − 1|}

= sup
j∈A
{(1− ϕ̃j)}

(3.3)
≤ r ≤ ε,(3.14)

and, since by (3.4) and (3.13) the support of x̂ is P ⊂ A –which, in particular, implies that

x̂j > 0 for j ∈ P , we deduce that

(3.15) ϕ̂(x̂) =
∑
j∈P

ϕ̂jx̂j
(3.12)
=
∑
j∈P

x̂j =
∑
j∈P

|x̂j| = 1.

Or, equivalently: (x̂, ϕ̂) ∈ Π(`1).
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In order to show that ‖x̃− x̂‖ ≤ ε, let us observe first that

(3.16) ‖x̃ · 1P‖ =
∑
j∈P

|x̃j| ≥
∑
j∈P

|Re(x̃j)| =M ≥ 1− ε

3
,

from which

‖x̃− x̂‖ (3.13)
=
∥∥x̃−M−1Re(x̃) · 1P

∥∥ =
∥∥x̃ · 1N\P

∥∥+
∥∥(x̃−M−1Re(x̃)) · 1P

∥∥
(3.16)
≤ ε

3
+
∥∥(x̃−M−1Re(x̃)) · 1P

∥∥ .(3.17)

We need a bit more care to estimate the last term in (3.17). From the very definition of P ,

we know that for every j ∈ P it holds

(3.18) |x̃j| ≤ (1− r)−1ϕ̃j Re(x̃j).

Therefore,

‖(x̃− Re(x̃)) · 1P‖ =
∑
j∈P

|x̃j − Re(x̃j)| =
∑
j∈P

|Im(x̃j)|

=
∑
j∈P

√
|x̃j|2 − Re(x̃j)2

(3.18)
≤
∑
j∈P

|Re(x̃j)|
√

(1− r)−2 − 1

≤ ‖x̃‖
√

(1− r)−2 − 1
r= ε2

20

≤ ε

3
,(3.19)

which implies that

∥∥(x̃−M−1Re(x̃)) · 1P
∥∥ ≤ ‖(x̃− Re(x̃)) · 1P‖+

∥∥(1−M−1)Re(x̃) · 1P
∥∥

(3.19)
≤ ε

3
+ (M−1 − 1) ‖Re(x̃) · 1P‖

=
ε

3
+ (1−M) ≤ 2ε

3
.(3.20)

Putting together (3.17) and (3.20), we finish the core part of the proof:

(3.21) ‖x̃− x̂‖ ≤ ε

3
+
∥∥(x̃−M−1Re(x̃)) · 1P

∥∥ ≤ ε.
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Now, we define

(3.22) x0:=S−1x̂ and ϕ0 = S∗(ϕ̂) = ϕ̂ ◦ S,

which by (3.15) gives that ϕ0(x0) = ϕ̂(x̂) = 1. Since S and S∗ are isometries, we deduce

from (3.14), (3.21), (3.22) and the definition of x̃ and ϕ̃ that

‖x− x0‖ ≤ ε, ‖ϕ− ϕ0‖ ≤ ε.

Therefore, (x0, ϕ0) is the pair in Π(`1) we were looking for.

Bearing in mind (3.22), one computes

(ϕ0)j = ϕ0(ej)
(3.22)
= ϕ̂(Sej)

(3.11)
= ϕ̂

(
earg(ϕj)i ej

)
= earg(ϕj)i ϕ̂j,

which together with (3.12) implies that ϕ0 = ϕ · 1N\A + earg(ϕ)i · 1A. Finally, noting that

A = Aϕ̃(r) = Aϕ(r), the validity of (3.10) has been shown.

Remark 3.6.1. Observe that the function ϕ0 provided by Theorem 3.6 and defined by (3.10)

only depends on ε and ϕ itself and also satisfies π1(ϕ) ⊂ π1(ϕ0).

3.2 BPB Property for Numerical Radius in `1(C)

As a consequence of Theorems 3.4 and 3.6 we show that `1 has the Bishop-Phelps-

Bollobás property for numerical radius.

Theorem 3.7. Let T ∈ SL(`1), 0 < ε < 1 and (x, ϕ) ∈ Π(`1) such that ϕ(Tx) ≥ 1 −

(ε/9)9/2. Then there exist T0 ∈ SL(`1) and (x0, ϕ0) ∈ Π(`1) such that

(3.23) ‖T − T0‖ ≤ ε, ‖x− x0‖ ≤ ε, ‖ϕ− ϕ0‖ ≤ ε and ϕ0(T0x0) = 1.
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Proof. First of all, fix µ :=
√
ε3/240. Using a suitable isometry, we can assume that x is

positive. In particular, by Lemma 3.1 and the definition ofNx,ϕ in (3.2), we can assume that

ϕj = 1 for j ∈ supp(x). Since µ3/4 ≥ (ε/9)9/2, Theorem 3.4 can be applied to the pair

(x, T ∗ϕ) ∈ B`1 × B`∞ and µ instead of ε giving x0 ∈ π1(ϕ) such that ‖x− x0‖ ≤ µ ≤ ε.

Moreover, by (3.5) we know that

(3.24) x0 = ‖x · 1P‖−1 · x · 1P ,

where the non-empty set P is defined by

(3.25) P := P(x, T ∗ϕ)(µ
2/2) = {j ∈ supp(x) : Re(T ∗ϕ(ej)) ≥ 1− µ2/2}.

In particular, x0 is positive.

Since µ2/2 = (ε/2)3

60
, for each j ∈ P we can apply Theorem 3.6 to the pair (e−arg(ϕ(Tej))i Tej, ϕ)

and ε/2 to find (zj, ϕ0) ∈ Π(`1) such that

‖Tej − ajzj‖ ≤ ε/2, ‖ϕ− ϕ0‖ ≤ ε/2

and Π1(ϕ) ⊂ Π1(ϕ0) –see Remark 3.6.1, where aj = earg(ϕ(Tej))i. Observe that ϕ0 can be

chosen independently on j ∈ P and by (3.10) explicitly written as

(3.26) ϕ0 = ϕ · 1N\Aϕ(ε2/80) + earg(ϕ)i · 1Aϕ(ε2/80).

Let us define T0 as the unique operator in L(`1) such that T0ei = Tei for i /∈ P and

T0ej = zj for j ∈ P . Equivalently,

(3.27) T0x = 1N\P · Tx+
∑
j∈P

e∗j(x)zj, for x ∈ `1.

It is clear from (3.27) that

‖T0‖ = sup
n∈N
{‖T0en‖} = max

{
sup
j /∈P
{‖Tej‖}, sup

j∈P
{‖zj‖}

}
= 1.
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Given j ∈ P , the identity (3.25) ensures that Re(ϕ(Tej)) ≥ 1 − µ2/2. Using again the

general fact (3.9), we deduce that |aj − 1| ≤ µ ≤ ε/2.

Therefore,

‖T − T0‖ = sup
n∈N
{‖Ten − T0en‖} = sup

j∈P
{‖Tej − zj‖}

≤ sup
j∈P
{‖Tej − ajzj‖}+ sup

j∈P
{‖ajzj − zj‖}

≤ ε

2
+ sup

j∈P
{|aj − 1|} ≤ ε.

Since x0 ∈ π1(ϕ) and π1(ϕ) ⊂ π1(ϕ0), we deduce that (x0, ϕ0) belongs to Π(`1). It

remains to show that ϕ0(T0x0) = 1 to prove the validity of (3.23). But, since x0 is positive,

we obtain that

ϕ0(T0x0)
(3.27)
=
∑
j∈P

(x0)jϕ0(zj) +
∑
j /∈P

(x0)jϕ0(Tej)

(3.24)
=
∑
j∈P

(x0)j =
∑
j∈P

|(x0)j| = ‖x0‖ = 1,

and the proof is over.

Remark 3.7.1. We cannot replace the condition (x, ϕ) ∈ Π(`1) in Theorem 3.7 by the

more general (x, ϕ) ∈ B`1 ×B`∞ . Indeed, let us consider the operator T : `1 → `1 defined

by Tej = ej for j ≥ 2 and Te1 = e2. Take (e1, e
∗
2) ∈ B`1 × B`∞ , T0 ∈ L(`1), and

(x, ϕ) ∈ B`1 ×B`∞ such that ‖T − T0‖ ≤ ε, ‖e1 − x‖ ≤ ε, and ‖e∗2 − ϕ‖ ≤ ε. Then

|ϕ(x)| ≤ |ϕ(x)− e∗2(x)|+ |e∗2(x)− e∗2(e1)|+ |e∗2(e1)| ≤ 2ε,

which implies that (x, ϕ) cannot be in Π(`1).

Corollary 3.8. The Banach space `1 has the Bishop-Phelps-Bollobás property for numer-

ical radius.
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Proof. Let us consider T ∈ L(`1) with ν(T ) = 1 and 0 < ε < 1. Let us take a pair (x, ϕ) ∈

Π(`1) such that |ϕ(Tx)| ≥ 1 − (ε/9)
9
2 . In fact, we can assume that ϕ(Tx) ≥ 1 − (ε/9)

9
2 ;

otherwise, we proceed with T̃ = e−arg(ϕ(Tx))i T . Then Theorem 3.7 gives the existence of

an operator T0∈ SL(`1) and a pair (x0, ϕ0)∈ Π(`1) that satisfy conditions in (3.23), which

are precisely the requirements (3.1) in Definition 3.1.

Corollary 3.9 ([20]). The set NRA(`1) is dense in L(`1).

3.3 BPB Property for Numerical Radius in c0(C)

Theorem 3.7 allows us to show that c0 has the Bishop-Phelps-Bollobás property for

numerical radius as well. Indeed, we rely on the fact that our constructions in `1 can be

dualized.

Theorem 3.10. Let T ∈ SL(c0), 0 < ε < 1 and (x, ϕ) ∈ Π(c0) such that |ϕ(Tx)| ≥

1− (ε/9)9/2. Then there exist S ∈ SL(c0) and (x0, ϕ0) ∈ Π(c0), such that

‖T − S‖ ≤ ε, ‖x− x0‖ ≤ ε, ‖ϕ− ϕ0‖ ≤ ε, and ϕ0(Sx0) = 1.

Proof. Throughout this proof we identify the elements in c0 with their image in `∞ through

the natural embedding of c0 into `∞. The adjoint operator of T , T ∗ : `1 → `1 satisfies

|x(T ∗ϕ)| = |T ∗(ϕ)(x)| = |ϕ(Tx)|≥1− (ε/9)9/2.

Without loss of generality, we can assume that x(T ∗ϕ) ≥ 1− (ε/9)9/2. Otherwise, em-

ploying techniques from the proof of Corollary 3.8, define the operator T̃ = e−arg(x(T ∗ϕ))i T ∗

and proceed with the proof for x(T̃ϕ) = |x(T ∗ϕ)|.

By Theorem 3.7, there exists T0 ∈ L(`1), ‖T0‖ = 1, and (ϕ0, x0) ∈ Π(`1) such that

‖T ∗ − T0‖ ≤ ε, ‖ϕ− ϕ0‖ ≤ ε, ‖x− x0‖ ≤ ε



40

and x0(T0ϕ0) = 1.

We assume that (x0, ϕ0) is the needed pair. To show this, we will reexamine the proof

of Theorem 3.7 to establish how x0, ϕ0 and T0 are defined. Indeed, from (3.25), (3.24),

(3.26) and (3.27) we have respectively

P = P(ϕ,T ∗∗x)(ε
3/480),

ϕ0 = ‖ϕ · 1P‖−1 · ϕ · 1P ,

x0 = x · 1N\Ax(ε2/80) + earg(x)i · 1Ax(ε2/80),(3.28)

T0x = 1N\P · Tx+
∑
j∈P

e∗j(x)zj, for x ∈ `1,

where {zj}j∈P ⊂ π1(ϕ0).

Note that Ax(ε2/80) = {j ∈ N : |xj| ≥ 1− ε2/80} and that x ∈ c0. Thus, Ax(ε2/80)

is finite which, by (3.28), implies that x0 ∈ c0.

We shall show that T0 is an adjoint operator and thus that there exists S ∈ L(c0) such

that S∗ = T0. It will be enough to show that T ∗0 |c0 ⊂ c0. Set tij = 〈ei, T (ej)〉 for i, j ∈ N.

Fix i ∈ N, then for j ∈ N

〈ej, T ∗0 (ei)〉 =

 tji if j /∈ P,

(zj)i if j ∈ P.

Since x ∈ c0, T ∗∗x belongs to c0, which implies that P is finite. Accordingly, only

finitely many terms of the form 〈ej, T ∗0 (ei)〉 differ from the corresponding tji. On the other

hand, since T belongs to L(c0), it holds that limj |tji| = 0. Therefore, we deduce that

|〈ej, T ∗0 (ei)〉| → 0 when j →∞. This implies that T ∗0 ei ∈ c0 and, since i ∈ N is arbitrarily

chosen, we deduce that T ∗0 |c0 ⊂ c0.



41

Hence we obtain the operator S = T ∗0 |c0 ∈ L(c0) and the pair (x0, ϕ0) ∈ Π(c0) satisfy-

ing:

ϕ0(Sx0) = S∗ϕ0(x0) = x0(S∗ϕ0) = x0(T0ϕ0) = 1,

and

‖S − T‖ = ‖(S − T )∗‖ = ‖S∗ − T ∗‖ = ‖T0 − T ∗‖ ≤ ε,

which finishes the proof.

Theorem 3.10 implies the following two corollaries.

Corollary 3.11. The Banach space c0 has the Bishop-Phelps-Bollobás property for numer-

ical radius.

Corollary 3.12 ([20]). The set NRA(c0) is dense in L(c0).

3.4 Generalizations and Remarks

All the results that have been presented in sections 3.1, 3.2 and 3.3 were stated and

proved for the Banach spaces `1(C) or c0(C). However, the arguments could be easily

adjusted for `1(R) and c0(R), yielding shorter proofs and better estimates. More generally,

given a non-empty set Γ and K ∈ {R,C}, these results are still valid for `1(Γ,K) and

c0(Γ,K). The spaces `1(Γ,K) and c0(Γ,K) are, respectively, the `1-sum and the c0-sum of

Γ copies of the field K. Note that in particular `1(N,K) = `1(K).

The Banach space c0(Γ,K) is a predual of `1(Γ,K). Observe that both c0(Γ,K) and

`1(Γ,K) have numerical index 1. Previous considerations imply that both of them also

have the BPB property for numerical radius. The ω∗ topology of `1(Γ,K) stands here for

the topology induced on `1(Γ,K) by pointwise convergence on elements of c0(Γ,K).
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On the other hand, the proof of Theorem 3.10 shows that in Theorem 3.7 we proved

more than was stated. Indeed, by putting together Theorem 3.7, the ideas on duality in the

proof of Theorem 3.10 and considerations above, one easily proves the following theorem.

Theorem 3.13. Let T ∈ SL(`1(Γ,K)), 0 < ε < 1 and (x, ϕ) ∈ Π(`1(Γ,K)) such that

ϕ(Tx) ≥ 1 − (ε/9)9/2. Then there exist T0 ∈ SL(`1(Γ,K)) and (x0, ϕ0) ∈ Π(`1(Γ,K)) such

that

‖T − T0‖ ≤ ε, ‖x− x0‖ ≤ ε, ‖ϕ− ϕ0‖ ≤ ε and ϕ0(T0x0) = 1.

Moreover, if T is ω∗-ω∗-continuous and ϕ is ω∗-continuous, then T0 and ϕ0 will be

ω∗-ω∗-continuous and ω∗-continuous, respectively.

Below are two consequences of Theorem 3.13.

Theorem 3.14. The Banach space `1(Γ,K) has the BPB property for numerical radius.

Theorem 3.15. The Banach space c0(Γ,K) has the BPB property for numerical radius.

Proof. Fix 0 < ε < 1, δ ≤ (ε/9)9/2, T ∈ SL(c0(Γ,K)) and (x, x∗) ∈ Π(c0(Γ,K)) such that

x∗(Tx)≥1− δ. Applying Theorem 3.13 to the ω∗-ω∗-continuous operator T ∗ ∈ SL(`1(Γ,K)),

the pair (x∗, x) and ε, gives a new T0 ∈ SL(c0(Γ,K)) and a new pair (x∗0, x
∗∗
0 ) ∈ Π(`1(Γ,K))

satisfying

(3.29)
∥∥T ∗ − T ∗0 ∥∥ ≤ ε, ‖x− x∗∗0 ‖ ≤ ε, ‖x∗ − x∗0‖ ≤ ε and x∗∗0

(
T ∗0 x

∗
0

)
= 1.

Moreover, x∗∗0 is ω∗-continuous, so we can identify it with some x0 ∈ Sc0(Γ,K). Therefore,

the conditions in (3.29) become∥∥T − T0

∥∥ ≤ ε, ‖x− x0‖ ≤ ε, ‖x∗ − x∗0‖ ≤ ε and x∗0
(
T0x0

)
= 1.

which are the requirements (3.1) in Definition 3.1. Consequently, c0(Γ,K) has the Bishop-

Phelps-Bollobás property for numerical radius.
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[44] A. Pełczyński and Z. Semadeni. Spaces of continuous functions. III. Spaces C(Ω) for
Ω without perfect subsets. Studia Math., 18:211–222, 1959.

[45] R. R. Phelps. The Bishop-Phelps theorem. Survey.

[46] R. R. Phelps. The Bishop-Phelps theorem in complex spaces: an open problem.
136:337–340, 1992.

[47] R. R. Phelps. Convex functions, monotone operators and differentiability, volume
1364 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, second edition, 1993.



46

[48] A. Pietsch. Operator ideals, volume 20 of North-Holland Mathematical Library.
North-Holland Publishing Co., Amsterdam, 1980. Translated from German by the
author.

[49] O. I. Reı̆nov. RN type operators in Banach spaces. Dokl. Akad. Nauk SSSR, 220:528–
531, 1975.

[50] W. Rudin. Real and complex analysis. McGraw-Hill Book Co., New York, third
edition, 1987.

[51] W. Schachermayer. Norm attaining operators and renormings of Banach spaces. Is-
rael J. Math., 44(3):201–212, 1983.

[52] W. Schachermayer. Norm attaining operators on some classical Banach spaces. Pa-
cific J. Math., 105(2):427–438, 1983.

[53] B. Sims. On numerical range and its applications to Banach algebras. PhD thesis,
University of Newcastle, Australia, 1972.

[54] C. Stegall. The Radon-Nikodym property in conjugate Banach spaces. Trans. Amer.
Math. Soc., 206:213–223, 1975.

[55] C. Stegall. The duality between Asplund spaces and spaces with the Radon-Nikodým
property. Israel J. Math., 29(4):408–412, 1978.

[56] C. Stegall. The Radon-Nikodým property in conjugate Banach spaces. II. Trans.
Amer. Math. Soc., 264(2):507–519, 1981.


	ACKNOWLEDGEMENTS
	INTRODUCTION
	THE BISHOP-PHELPS-BOLLOBÁS THEOREM AND VARIATIONAL PRINCIPLES
	The Brønsted-Rockafellar Principle and Ekeland's Variational Principle
	The Bishop-Phelps-Bollobás Theorem in the Complex Case
	How Sharp is the Bishop-Phelps-Bollobás Theorem?

	ASPLUND SPACES AND THE BISHOP-PHELPS-BOLLOBÁS PROPERTY
	Asplund Operators on Real and Complex Spaces
	The Bishop-Phelps-Bollobás Theorem and Asplund Operators on C(K)
	Operator Ideals and Other Corollaries

	THE BISHOP-PHELPS-BOLLOBÁS PROPERTY FOR NUMERICAL RADIUS
	The Bishop-Phelps-Bollobás Theorem in 1(C)
	BPB Property for Numerical Radius in 1(C)
	BPB Property for Numerical Radius in c0(C)
	Generalizations and Remarks

	BIBLIOGRAPHY

