NON-COMPLETE MACKEY TOPOLOGIES ON BANACH SPACES

JOSÉ BONET and BERNARDO CASCALES

Abstract

Answering in the negative a question of W. Arendt and M. Kunze, we construct Banach spaces X and norm closed weak*-dense subspaces Y of the dual X' of X such that X endowed with the Mackey topology $\mu(X, Y)$ of the dual pair (X, Y) is not complete.

2000 Mathematics subject classification. primary 46B10; secondary 46B50, 46A03.

Keywords and phrases: Banach spaces, Mackey topologies, norming subspaces, Krein-Smulyan’s theorem.

The following problem appeared in a natural way in connection with the study of Pettis integrability with respect to norming subspaces developed by Markus Kunze in his Ph.D. thesis [5]. This question was asked to the authors by Kunze himself and his thesis advisor W. Arendt.

Problem. Suppose that $(X, ||\cdot||)$ is a Banach space and Y is a subspace of its topological dual X' which is norm closed and weak*-dense. Is there a complete topology of the dual pair (X, Y) in X?

We use freely the notation for locally convex spaces (shortly, lcs) as in [4, 6, 7]. In particular, we denote, respectively, by $\sigma(X, Y)$ and $\mu(X, Y)$ the weak and the Mackey topology in X associated to the dual pair (X, Y). For a Banach space X with topological dual X', the weak*-topology is $\sigma(X', X)$. By the Bourbaki Robertson lemma [4, §18.4.4], there is a complete topology in X of the dual pair (X, Y) if and only if the space $(X, \mu(X, Y))$ is complete. Therefore, the original question is equivalent to the following

Problem A: Let $(X, ||\cdot||)$ be a Banach space. Is $(X, \mu(X, Y))$ complete for every norm closed weak*-dense subspace Y of the dual space X'?

Let $(X, ||\cdot||)$ be a normed space. A subspace Y of X' is said to be *norming* if the function p of X given by $p(x) = \sup\{|x'(x)| : x' \in Y \cap B_{X'}\}$ is a norm equivalent to $||\cdot||$. We

The research of Bonet was partially supported by FEDER and MEC Project MTM2007-62643 and by GV Prometeo/2008/101. The research of Cascales was supported by FEDER and MEC Project MTM2008-05396 and by Fundación Séneca de la CARM, project 08848/PI/08.
notice that Problem A is not affected by changing the given norm of \(X \) by any equivalent one. Thus, to study Problem A for some norming subspace \(Y \subset X' \) we can and will always assume that \(Y \) is indeed 1-norming, i.e., \(\|x\| = \sup_{x' \in Y \cap B_{X'}} |x'(x)| \).

Let us observe that under the conditions of Problem A, if \((X, \mu(X, Y))\) is quasi-complete (in particular complete), then Krein-Smulyan’s theorem, see [4, §24.5.(4)], implies that for every \(\sigma(X, Y) \)-compact subset \(H \) of \(X \) its \(\sigma(X, Y) \)-closed absolutely convex hull \(M := \overline{\text{aco}H}^{\sigma(X, Y)} \) is also \(\sigma(X, Y) \)-compact. There are several papers dealing with the validity of Krein-Smulyan theorem for topologies weaker than the weak topology; see for instance [1, 2] where it is proved that for every Banach space \(X \) not containing \(\ell^1([0, 1]) \) and every 1-norming subspace \(Y \subset X' \), if \(H \) is a norm bounded \(\sigma(X, Y) \)-compact subset of \(X \) then \(\overline{\text{aco}H}^{\sigma(X, Y)} \) is \(\sigma(X, Y) \)-compact. It was proved in [3] that the hypothesis \(\ell^1([0, 1]) \) is also necessary for the latter.

The following useful observation will be used a couple of times later.

Proposition 1. Let \((X, \|\cdot\|)\) be a Banach space and let \(Y \) be a 1-norming subspace of \(X' \). If \((X, \mu(X, Y))\) is quasi-complete, then every \(\sigma(X, Y) \)-compact subset of \(X \) is norm bounded.

Proof. Let \(H \subset X \) be \(\sigma(X, Y) \)-compact. As noted before, Krein-Smulyan’s theorem, [4, §24.5.(4)], implies that the \(\sigma(X, Y) \)-closed absolutely convex hull \(M := \overline{\text{aco}H}^{\sigma(X, Y)} \) is also \(\sigma(X, Y) \)-compact. Therefore, \(M \) is an absolutely convex, bounded and complete subset of the locally convex space \((X, \sigma(X, Y))\). Now we can apply [4, §20.11.(2)] to obtain that \(M \) is a Banach disc, i.e., \(X_M := \bigcup_{n \in \mathbb{N}} nM \) is a Banach space with the norm \(\|x\|_M := \inf \{ \lambda \geq 0 : x \in \lambda M \}, x \in X_M \).

Since \(M \) is bounded in \((X, \sigma(X, Y))\), the inclusion \(J : X_M \to (X, \sigma(X, Y)) \) is continuous, therefore \(J : X_M \to (X, \|\cdot\|) \) has closed graph, hence it is continuous by the closed graph theorem. In particular, the image of the closed unit ball \(M \) of \(X_M \) is bounded in \((X, \|\cdot\|)\), and the proof is complete. \(\square \)

As an immediate consequence of the above we have the following:

Example 2. Let \(X = C([0, 1]) \) be endowed with its sup norm and take

\[
Y := \text{span} \{ \delta_x : x \in [0, 1] \} \subset X'.
\]

Then \((X, \mu(X, Y))\) is not quasi-complete.

Proof. Notice that \(\sigma(X, Y) \) coincides with the topology \(\tau_p \) of pointwise convergence on \(C([0, 1]) \). Since there are sequences \(\tau_p \)-convergent to zero which are not norm bounded, \((X, \mu(X, Y))\) cannot be quasi-complete by Proposition 1. \(\square \)
The subspace Y of X' in Example 2 is weak*-dense in X' but not norm closed. Another example of the same nature is the following: take $X = c_0$, $Y = \varphi$, the space of sequences with finitely many non-zero coordinates, which is norm dense in $X' = \ell_1$. In this case $\mu(X, Y) = \sigma(X, Y)$, since every absolutely convex $\sigma(X, Y)$-compact subset of Y is finite dimensional by Baire category theorem. In this case $(X, \sigma(X, Y))$ is even not sequentially complete.

The following example, taken from Lemma 11 in [3], provides the negative solution to Problem A.

Example 3. Take $X = (\ell^1([0, 1]), \|\cdot\|_1)$ and consider the space $Y = C([0, 1])$ of continuous functions on $[0, 1]$ as a norming subspace of the dual $X' = \ell^\infty([0, 1])$. Then $(X, \mu(X, Y))$ is not quasi-complete.

Proof. Let $H := \{e_x : x \in [0, 1]\}$ be the canonical basis of $\ell^1([0, 1])$. The set H is clearly $\sigma(X, Y)$-compact but we will prove that $\overline{\text{aco}H}^{\sigma(X, Y)}$ is not $\sigma(X, Y)$-compact, and therefore $(X, \mu(X, Y))$ cannot be quasi-complete. Indeed, proceeding by contradiction let us assume that $W := \overline{\text{aco}H}^{\sigma(X, Y)}$ is $\sigma(X, Y)$-compact. We write $M([0, 1]) = (C([0, 1]), \|\cdot\|_\infty)'$ to denote the space of Radon measures in $[0, 1]$ endowed with its variation norm. The map

$$\phi : X \to M([0, 1])$$

given by $\phi((\xi_x)_{x \in [0, 1]}) = \sum_{x \in [0, 1]} \xi_x \delta_x$ is $\sigma(X, Y)$-w*-continuous. We notice that:

1. $\phi(W) \subset \phi(\ell^1([0, 1]))$;
2. $\phi(W)$ is an absolutely convex w*-compact subset of $M([0, 1])$;
3. $\{\delta_x : x \in [0, 1]\} \subset \phi(W)$.

From the above we obtain that

$$B_{M([0, 1])} = \overline{\text{aco}\{\delta_x : x \in [0, 1]\}}^{w^*} \subset \phi(W) \subset \phi(\ell^1([0, 1])),$$

which is a contradiction because there are Radon measures on $[0, 1]$ which are not of the form $\sum_{x \in [0, 1]} \xi_x \delta_x$. The proof is complete. □

Proposition 4. If X is a Banach space containing an isomorphic copy of $\ell^1([0, 1])$, then there is a subspace $Y \subset X'$ norm closed and norming such that $(X, \mu(X, Y))$ is not quasi-complete.

Proof. In the proof of [3, Proposition 3] the authors construct a norming subspace $E \subset X'$ and $H \subset X$ norm bounded $\sigma(X, E)$-compact such that $\overline{\text{aco}H}^{\sigma(X, E)}$ is not $\sigma(X, E)$-compact. If we take $Y = \overline{E} \subset X'$, norm closure, then norm bounded $\sigma(X, E)$-convergent nets in X are $\sigma(X, Y)$-convergent; from here we obtain that:

(i) $H \subset X$ is $\sigma(X, Y)$-compact, and

(ii) $\overline{\text{aco}H}^{\sigma(X, E)} = \overline{\text{aco}H}^{\sigma(X, Y)}$.

Consequently H is $\sigma(X,Y)$-compact and $\overline{\operatorname{aco}H}^{\sigma(X,Y)}$ is not. Thus $(X,\mu(X,Y))$ cannot be quasi-complete and the proof is over. □

We conclude this note with a few comments about the relation of the questions considered here with Mazur property. We say that a lcs (E,Σ) is Mazur if every sequentially Σ-continuous form defined on E is Σ-continuous. We quote the following result:

Theorem 5. [7, Theorem 9.9.14] Let (X,Y) be a dual pair. If $(X,\sigma(X,Y))$ is Mazur and $(X,\mu(X,Y))$ is complete, then $(Y,\mu(Y,X))$ is complete.

Proposition 6. Let X be a Banach space. Let Y be a proper subspace of X' which is w^*-dense. Assume that:
1. the norm bounded $\sigma(X,Y)$-compact subsets of X are weakly compact.
2. $(X,\sigma(X,Y))$ is Mazur.

Then $(X,\mu(X,Y))$ is not complete.

Proof. Assume that $(X,\mu(X,Y))$ is complete. Then Proposition 1 implies that every $\sigma(X,Y)$-compact subset of X is norm bounded. Therefore the family of $\sigma(X,Y)$-compact subset coincide with the family of weakly compact sets. So the Mackey topology $\mu(Y,X)$ in Y associated to the pair (X,Y) is the topology induced in Y by the Mackey topology $\mu(X',X)$ in X' associated to the dual pair (X,X'). If we use now Theorem 5 we obtain that Y is $\mu(Y,X)$ complete, that implies that $Y \subset X'$ is $\mu(X',X)$ closed. Thus

$$Y = \overline{Y}^{\mu(Y,X)} = \overline{Y}^{\mu_{w^*}} = X',$$

which is a contradiction with the fact that Y is a proper subspace of X'. □

We observe that hypothesis (1) in the above Proposition is satisfied for Banach spaces without copies of $\ell^1([0,1])$ whenever Y contains a boundary for the norm, see [1, 2].

References

José Bonet, Instituto Universitario de Matemática Pura y Aplicada IUMPA, Universidad Politécnica de Valencia, E-46071 Valencia, Spain
e-mail: jbonet@mat.upv.es

Bernardo Cascales, Departamento de Matemáticas, Universidad de Murcia, E-30100 Espinardo (Murcia), Spain
e-mail: beca@um.es