
Received: 18 March 2016 Revised: 31 January 2018 Accepted: 21 February 2018
RE S EARCH ART I C L E

DOI: 10.1002/hec.3772
Reducing preference reversals: The role of preference
imprecision and nontransparent methods
José Luis Pinto‐Prades1,2 | Fernando Ignacio Sánchez‐Martínez3 |

José María Abellán‐Perpiñán3 | Jorge E. Martínez‐Pérez3
1Department of Economics, University of
Navarra, Pamplona, Spain
2Glasgow Caledonian University,
Glasgow, UK
3Department of Applied Economics,
University of Murcia, Murcia, Spain

Correspondence
Fernando Ignacio Sánchez‐Martínez,
Facultad de Economía y Empresa,
Campus de Espinardo, Universidad de
Murcia, 30100 Murcia, Spain.
Email: fernando@um.es

Funding information
Ministry of Economy, Industry and Com-
petitiveness, Grant/Award Numbers:
ECO2013‐43526‐R and ECO2013‐48631‐P
1In choice, the decision maker selects an optio
value of some variable in order to achieve equ

1230 Copyright © 2018 John Wiley & Sons, Ltd
Abstract

Preferences elicited with matching and choice usually diverge (as characterised

by preference reversals), violating a basic rationality requirement, namely,

procedure invariance. We report the results of an experiment that shows that

preference reversals between matching (Standard Gamble in our case) and

choice are reduced when the matching task is conducted using nontransparent

methods. Our results suggest that techniques based on nontransparent methods

are less influenced by biases (i.e., compatibility effects) than transparent

methods. We also observe that imprecision of preferences influences the degree

of preference reversals. The preference reversal phenomenon is less strong in

subjects with more precise preferences.
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1 | INTRODUCTION

Resource allocation decisions in health are often justified on the basis that they reflect societal preferences. In practice,
those preferences are reflected in the valuation of health states obtained from techniques such as the Standard Gamble
or the Time Trade‐Off. Values produced by these techniques ought to comply with some rationality assumptions. One of
them is procedure invariance: Normatively equivalent procedures for assessing preferences should give rise to the same
preference order. Unfortunately, there is evidence that this principle is violated in the elicitation of preferences for
health states. One example of violation of procedure invariance is the well‐known preference reversal phenomenon.
Preferences change depending on the method (matching or choice1) used to elicit them. The main objective of this paper
was to understand better the mechanisms that generate preference reversals and how to avoid/reduce that phenome-
non. More specifically, we study the role of different preference elicitation methods and the role of preference impreci-
sion in the explanation of the preference reversals.

Violations of procedure invariance have been observed in the health domain in the two main methods used in
health economics, namely, Time Trade‐Off (Sumner & Nease, 2001) and Standard Gamble (Oliver, 2013a, 2013b). There
is also evidence suggesting that utilities elicited with choice experiments and utilities elicited with matching methods
(Time Trade‐Off and Standard Gamble) are different (Bansback, Brazier, Tsuchiya, & Anis, 2012; Robinson, Spencer,
Pinto‐Prades, & Covey, 2016). Choice and matching seem to produce different results. According to Oliver (2013a,
abstract) “those violations pose a challenge to health economics, where choice and valuation methodologies often are
n from an offered set of two or more alternatives. In matching, the decision maker is required to set the
ivalence between options.
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used interchangeably.” The literature suggests (Bostic, Herrstein, & Luce, 1990; Fischer, Carmon, Ariely, & Zauberman,
1999; Loomes & Pogrebna, 2016) that matching methods based on nontransparent sequences of choices can produce
results more consistent with choices. However, there is very little evidence about the role that these methods can play
in avoiding preference reversals in the domain of health outcomes. Attema and Brouwer (2013) test the internal consis-
tency of choice and matching tasks, using Time Trade‐Off, and conclude that choice tasks—more precisely, choice‐
based matching (CBM) tasks, lead to more consistent results than direct matching tasks. One objective of this study
was to determine if there are elicitation methods that reduce or eliminate the discrepancy between matching and choice
in the domain of the evaluation of health outcomes. It has also been suggested (Butler & Loomes, 2007; Loomes &
Pogrebna, 2016; MacCrimmon & Smith, 1986) that imprecision in preferences may also explain the degree of preference
reversals. For this reason, another objective of this study was to test the role of preference imprecision in the preference
reversal phenomenon.

We present the results of an experiment that compares choices and several matching procedures. All these matching
methods are choice‐based because they match two options using sequences of choices. Our main finding is that CBM
methods that hide the final goal of the sequence from respondents (what we call “nontransparent” methods) reduce
the rate of preference reversals. That is, when subjects do not see that each choice is part of a sequence aimed at estab-
lishing indifference between options, the number of preference reversals is reduced. We suggest that methods such as
the Time Trade‐Off or the Standard Gamble can be improved using nontransparent sequences of choices. We also find
that preference reversals are related to preference imprecision. In the next section, we review the explanations provided
in the literature about the choice‐matching discrepancy. Sections 3 and 4 contain the methodology and the results,
respectively, of our study. The paper ends with the conclusions.
2 | THE CHOICE ‐MATCHING DISCREPANCY

2.1 | The phenomenon

The choice‐matching discrepancy was first observed using monetary gambles (Lichtenstein & Slovic, 1971). In stylised
form, the phenomenon can be explained as follows. Subjects are presented with two lotteries, L1 and L2. Assume, that
L1 = (Q,m;0) and L2 = (q,M;0), where m and M are the best outcomes of L1 and L2, respectively, whereas q and Q are
the corresponding probabilities. M is significantly larger than m, and q is significantly lower than Q. The expected value
of L1 is not too different from L2 (maybe a little bit larger for L2 because it is riskier than L1). L1 is called the P‐bet
because it offers a high chance of winning some positive outcome, and L2 is called the $‐bet because it offers the pos-
sibility of winning a larger prize. Subjects are asked to state their preference between the two lotteries with two different
tasks: monetary equivalence (a matching task) and direct choice. In the monetary equivalence task, subjects have to
state a certain monetary amount that has the same value as the lottery. In the choice task, subjects must choose between
the P‐bet and the $‐bet. A reversal may occur when an individual gives a higher monetary equivalent to the $‐bet but
prefers the P‐bet in direct choice or, conversely, when she assigns a higher monetary equivalent to the P‐bet but prefers
the $‐bet in direct choice. Lichtenstein & Slovic's finding confirmed many times since then (Seidl, 2002) was that the
first type of discrepancy greatly outnumbered the other one.

Slovic, Griffin, and Tversky (1990) studied the potential discrepancy between choice and matching using what they
called probability matching. They asked people to state the probability q* such that subjects were indifferent between
the lottery (Q,m;0) and the lottery (q*,M;0). Interestingly, they did not find preference reversals in this case. Butler
and Loomes (2007) found a discrepancy between choice and matching in another type of matching task that they called
Probability Equivalent. In their case, matching was conducted using a “Reference lottery” (p,R;0) (R‐bet). This lottery
was characterised by having a 0 outcome if unsuccessful and a payoff larger than the highest payoff in the $‐bet if suc-
cessful (R > M). Subjects had to state the probabilities in the R‐bet such that they were indifferent between the R‐bet
and the lottery under evaluation (P‐bet or $‐bet). We will call this method Reference Probability Equivalent (RPE). But-
ler and Loomes (2007) found the opposite asymmetry to Lichtenstein and Slovic (1971) for monetary equivalents, that is
to say, P‐bet more favoured in matching than in straight choice.
2.2 | Explanation of the phenomenon

Preference reversals have been explained in several ways. One explanation is psychological, because it is based on a
principle called compatibility between stimulus and response, originally observed by Fitts and Seeger (1953) in sensory
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tasks. Another explanation is that some people have truly intransitive preferences because, for example, their prefer-
ences can be characterised by Regret Theory (Loomes & Sugden, 1982). A different explanation is built on the idea of
preference imprecision (Butler & Loomes, 2007; MacCrimmon & Smith, 1986). We analyse in this paper the explana-
tions based on compatibility and imprecision.
2.2.1 | Compatibility

According to this principle, the respondent weights more heavily those characteristics of the stimulus that are more
compatible with the response. Several effects have been explained using this general principle. One is scale compatibil-
ity, according to which, it is the similarity between stimulus and response scales that leads subjects to overweight the
compatible attribute. In the study of Lichtenstein and Slovic (1971), the response scale was money in the matching
task, so the monetary outcomes of the lotteries were overweighted. This favours the $‐bet lottery in matching, because
it has the highest monetary price. The finding, in Butler and Loomes (2007), that the P‐bet was preferred to the $‐bet
using RPE could also be explained by scale compatibility,2 because probability is the attribute that is used to reach
indifference.

A second form of compatibility that may contribute to the choice‐matching discrepancy is strategy compatibility,
which assumes that the strategies that subjects follow in each task are different. In choices, subjects may follow quali-
tative strategies; for example, a choice may be decided using lexicographic principles or aspiration levels. The implica-
tion is that, in choice, subjects focus mainly on the most important (or prominent) attribute. This is called the
prominence hypothesis (Tversky, Sattath, & Slovic, 1988), which implies that the most important attribute receives a
higher weight in choices than in matching. In summary, scale compatibility leads to an overvaluation of the $‐bet when
matching is conducted using monetary equivalents whereas choice leads to an overvaluation of the P‐bet due to prom-
inence, assuming that probability is the most important attribute. This leads to the well‐known result that P‐bet ≻ $‐bet
in choice and $‐bet ≻ P‐bet in matching.

When matching is conducted using the prominent attribute, the psychological interpretation depends of the relative
strength of the two effects. Slovic et al. (1990) suggest that the lack of discrepancy between probability matching and
choice in their study can be explained by two effects (scale compatibility and prominence) going in the same direction
with the same strength. In matching, the P‐bet is favoured over the $‐bet because of scale compatibility, and in choice,
the P‐bet is favoured over the $‐bet because probability is the most prominent attribute. Fischer and Hawkins (1993),
using choices under certainty (e.g., apartments characterised by price and distance to university campus), also compared
choice against matching in the prominent attribute (price) and found that the cheaper apartment was more preferred in
choice (55%) than in price matching (31%). They interpret their result as evidence that the effect of prominence was
larger than the effect of scale compatibility.

Fischer et al. (1999) provide another explanation for the choice‐matching discrepancy: the Task‐goal hypothesis.
According to this, the prominent attribute is weighted more heavily in tasks whose perceived goal is to differentiate
between alternatives than in tasks whose goal is to equate alternatives. The reason is that to differentiate only requires
to rank‐order the alternatives, which is naturally compatible with choosing the alternative that is superior in the prom-
inent attribute. To equate requires making trade‐offs between attributes, which is naturally compatible with giving some
weight to all the attributes. The implication is that the prominent attribute will receive more weight in response tasks
whose perceived goal is to differentiate between alternatives (choice) than in tasks whose perceived goal is to equate
between alternatives (matching).
2.2.2 | Imprecision

The second explanation of preference reversals is based on the idea that preferences are imprecise for, at least, the type
of experimental tasks presented to subjects. This explanation was suggested originally by MacCrimmon and Smith
(1986), and it has been explored in Butler and Loomes (2007) and Loomes and Pogrebna (2016). Those papers explain
preference reversals using two main assumptions, namely, preferences are imprecise, and “the imprecision interval is
positively correlated with the ranges within which dominance is not transgressed” (Butler & Loomes, 2007, p. 290). This
implies that in the monetary equivalent task, the imprecision interval is wider for the $‐bet than for the P‐bet, but in the
2Butler and Loomes (2007) explain their results in a different way, namely, imprecision of preferences. See Section 2.2.2.
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RPE task, the imprecision interval is wider for the P‐bet than for the $‐bet. We will use a numerical example to illustrate
the link between preference reversals and imprecision in both cases.

We start with preference reversals between monetary equivalents and choice. Assume that a subject is truly indiffer-
ent in choice between the following two lotteries: (0.8, €20; 0)—the P‐bet and (0.2, €90; 0)—the $‐bet. We ask the subject
to state the monetary equivalent for each of those two lotteries. If preferences were deterministic and transitive, the
monetary equivalent would be exactly the same amount of money for both lotteries. The subject would always provide
the same response. However, subjects with imprecise preferences are not sure about the exact monetary equivalent.
Sometimes they may give an answer and sometimes a different one. Those answers will be bounded by transparent
dominance. The upper bound is higher in the $‐bet (€90 in our example) than in the P‐bet (€20) whereas the lower
bound is the same (€0). The range within which dominance is not transgressed will be [0, €20] for the P‐bet and [0,
€90] for the $‐bet. Given the assumption that the imprecision interval is positively correlated with those ranges, the
imprecision interval will be wider for the $‐bet than for the P‐bet. For example, the imprecision interval could be
[€10, €16] for the P‐bet and [€12, €30] for the $‐bet. The imprecision interval will contain larger values for the $‐bet than
for the P‐bet. If this is the case, it will be easier for the subject to state a larger monetary equivalent for the $‐bet than for
the P‐bet even though she is truly indifferent in choice. This will produce the pattern observed, namely, $‐bet more
favoured in matching than in straight choice.

Let us now see what this model predicts for the choice versus matching discrepancy using RPE. Using our example,
assume that the reference lottery is R:(p, €120; 0). The response (p) will be bound by the range within which dominance
is not transgressed. This range is larger for the P‐bet [0, 0.8] than for the $‐bet [0, 0.2]. Again, under the assumption that
the imprecision interval is correlated with those ranges, it will be wider for the P‐bet than for the $‐bet. For example, it
could be [0.10, 0.16] for the $‐bet and [0.12, 0.30] for the P‐bet. If this is the case, it will be easier for the subject to state a
larger probability value for the P‐bet than for the $‐bet in the RPE task even though she is truly indifferent in choice.
Applying the same argument as before, matching with RPE would produce the pattern observed by Butler and Loomes
(2007), namely, P‐bet more favoured in matching than in straight choice.
2.3 | Classifying choice‐based matching (CBM) methods

2.3.1 | Standard matching versus CBM

Assume we have two objects (A, B) with two attributes (X, Y), that is, Object A is characterised by (XA, YA) and Object B
by (XB, YB). To estimate a combination of attributes such that A and B are equally attractive, we may fix three of the
four attributes and ask the subject to specify the value of the omitted attribute that makes her indifferent between A
and B. For example, the subject has to state the missing value (?) in an open question so that (XA, YA) and (XB, ?)
are equally preferred. We call this standard (or direct) matching. CBM does not reach indifference with an open ques-
tion but with a sequence of choices. This process generates an interval where the indifference point is located. Assume
that (XA, YA) ≻ (XB, Y 1

B) but (XA, YA) ≺ (XB, Y 2
B). We then know that the value of YB that will make the two options

equally attractive will be in the interval [Y 1
B;Y

2
B]. Researchers may take the middle point of the interval as the indiffer-

ence (matching) point, or they may ask an open question with the matching point constrained by the interval where
indifference was located.
2.3.2 | Iterative versus non‐iterative CBM

In an iterative CBM method, the choice that the subject is presented depends on her response to a previous choice. For
example, assume that the subject says that (XA, YA) ≺ (XB,Y 1

B). In an iterative method, the subject would then be offered
a choice between (XB, Y 2

B) and (XA, YA) for Y 2
B<Y

1
B, but she would never be presented with a choice between (XB, Y 2

B)
and (XA, YA) forY 2

B>Y
1
B. In non‐iterative methods, a number of questions are set up in advance, each including different

values of YB, and subjects respond to all of them independently of their responses to previous choices.
In health economics, CBM methods (Time Trade‐Off and Standard Gamble) are usually iterative. Non‐iterative

methods are not very common in health economics, although the Multiple Price List method, widely used to elicit risk
preferences (Holt & Laury, 2002), is non‐iterative. One problem with non‐iterative methods is that subjects can give
inconsistent responses and an indifference point (or interval) cannot be estimated for those subjects. Finally, depending
on the rules to generate the stimuli from one choice to another, we can further split iterative methods into Titration,
Bisection, “Ping‐pong,” and so on. The differences between those methods will be explained later.
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2.3.3 | Transparent versus nontransparent CBM

When subjects can easily observe that there is a link between the choices of a converging sequence, we say that the
method is “transparent.” If it is difficult for people to observe this link, we talk about a “nontransparent” method.
Let us see an example. Assume we want to estimate the utility of N health states. This requires N converging sequences
of choices in CBM. The usual way of eliciting preferences would be to start with a certain health state (say health state
1), apply the corresponding converging sequence (say #1) until indifference is reached and then move to a different
health state and do the same. Because choices of converging sequence #1 keep all attributes constant except the attri-
bute used to match options (e.g., time in Time Trade‐Off and probability in the Standard Gamble), some subjects
may quickly realise the kind of “game” they are playing. However, an alternative way of eliciting preferences would
be to ask subjects to make one choice from the converging sequence #1, then one choice from sequence #2 (a choice
corresponding to health state 2), one choice from sequence #3 (a choice corresponding to health state 3), …, one choice
from sequence #N (a choice corresponding to health state N), before returning to a choice corresponding to sequence
#1. In this way, when the subject is presented with the second choice of converging sequence #1, we hope she cannot
see that this choice is related to a choice that she made N questions previously. This is the method used by Fischer et al.
(1999), which they coined as Hidden Choice‐Based Matching (HCBM). This is a nontransparent method.

Although the iterative or non‐iterative nature of a CBM method is objective, it is not the same in the case of trans-
parency. For example, in the HCBM method, we can expect the method to be less nontransparent the fewer converging
sequences we use. However, we would expect that the majority of people might find it more difficult to observe that the
choice belongs to a sequence with HCBM than with the ordinary CBM methods.
2.4 | Avoiding the discrepancy

In this paper, we address the issue of how to avoid preference reversals. If we accept the psychological interpretation
based on compatibility and prominence, we can predict that some preference elicitation methods will produce more
preference reversals than others. If scale compatibility or strategy compatibility were the reasons behind the choice‐
matching disparity, it would be enough to move from standard matching to CBM to avoid preference reversals. If each
of the tasks in CBM is perceived as an independent choice, preferences elicited with CBM and direct choices should con-
verge, because the matching task becomes qualitative and it does not involve the use of a scale to match two options.
However, if the Task Goal is the correct explanation of the discrepancy, it would not be enough to use CBM methods
to avoid preference reversals. If CBM are transparent, the subject will perceive that the objective of the CBM task
was to equate between alternatives whereas the objective of the choice task was to differentiate between alternatives.
To avoid preference reversals, subjects should not perceive the objective of the task (equate vs. differentiate). In this
paper, we will use different CBM methods that combine the iterative or non‐iterative nature of the procedure with
its transparency or opacity. If the combination of scale and strategy compatibility explains the choice‐matching discrep-
ancy, all methods should eliminate the discrepancy because they are all choice‐based. If the Task Goal is the correct
explanation, nontransparent methods will perform better in that regard.

If the explanation based on imprecision in preferences is correct, we have to introduce some mechanism to detect
the degree of imprecision in preferences. For this reason, we asked subjects to repeat their choices and valuations in
three occasions. According to the imprecision hypothesis, we should find more preference reversals in those subjects
with more imprecise preferences.
3 | METHODS

3.1 | Participants

We recruited 250 undergraduate students at the University of Murcia (Spain). Participants were randomly allocated3 to
one of five groups, which differed in the type of elicitation mode used in the CBM procedure. The sessions took place in
the Lab of the Faculty of Economics and Business of the University of Murcia under the supervision of members of the
3We included all subjects who volunteered for the experiment in a database, and they were allocated to one of the five CBM methods using a random
number generator. Because we wanted to have exactly the same number of subjects in each version, the number corresponding to each CBM method
was omitted once we had 50 subjects allocated to that procedure. When they introduced their National Identity Card number in the computer, they
were allocated to only one of the methods.



TABLE 1 Lotteries used in the study

Pair 1 EUa Pair 2 EUa

P‐bet A: (12231, 0.95; Death) 0.21 C: (22223, 0.8; Death) 0.12
$‐bet B: (11221, 0.3; Death) 0.24 D: (12221, 0.2; Death) 0.14

aExpected utility according to Spanish tariff: U(12231) = 0.219; U(11221) = 0.816; U(22223) = 0.141; and U(12221) = 0.682.
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research team. Fourteen sessions were held with less than 25 students in each session. Students were paid €15 for their
participation. Sessions took about 40 min to complete the study.
3.2 | Gambles and tasks

Two pairs of lotteries were used (see Table 1). In each lottery, one outcome was a chronic health condition described
in terms of an EQ‐5D‐3L4 health state, and the other outcome was immediate death. Lotteries A and C (P‐bet) offered
the individuals a large probability of being in a bad health state for the rest of their lives, whereas Lotteries B and D
($‐bet) gave them a low probability of living in a better health state but a higher risk of death. The two sets of paired
lotteries (A‐B, C‐D) had similar expected utilities according to the EQ‐5D‐3L Spanish tariff (Badia, Roset, Herdman, &
Kind, 2001).

The scenarios described a hypothetical situation where subjects had to choose between two treatments—otherwise,
they would die in a few days. Assuming that the reference point was certain death (and assuming utilities of the four
health states are positive), each treatment was in the gain domain. Therefore, a P‐bet is a treatment that offers a large
probability of a small health gain, whereas the $‐bet offers a smaller chance of a bigger health gain. Visual aids were
used to represent the probabilities of success and failure in each treatment. An example can be seen in Figure 1 that
represents a direct choice between Lotteries A and B.

The valuation task consisted of a sequence of choices between each of the lotteries and a reference gamble (R),
whose best outcome was full health (more precisely, the best state described by the EQ‐5D‐3L descriptive instrument)
and the worst was death, that is, R:(p, 11111; Death). We therefore used an RPE technique, as in Butler and Loomes
(2007), where the attribute used to reach the equivalence is the probability in the reference lottery (p). An example
of an RPE question can be seen in Figure 2.

The possible values for probability p were predetermined before the CBM procedure started. It was necessary to
define in advance the values of p given that, in non‐iterative methods, the subject was asked a predetermined number
of questions independently of her responses to previous questions. In order to make matching tasks between the five
methods as similar as possible, we decided to adopt the same predetermined values in iterative and non‐iterative
methods. In each of the four lotteries, nine different values of p were used (see Table 2). In iterative methods, subjects
were only asked a subset of those nine values, whereas in non‐iterative, they were asked all the nine values. Indifference
was not allowed in straight choices (A vs. B; C vs. D) or in RPE.
3.3 | CBM methods

Five different types of CBM were used: two were iterative and transparent; one was iterative but nontransparent; one
was non‐iterative and transparent, and the last one was non‐iterative and nontransparent. We describe each of them
in turn.5
4The EQ‐5D‐3L descriptive system includes five dimensions: mobility, self‐care, usual activities, pain/discomfort, and anxiety/depression. Each dimen-
sion has three levels: no problems, some problems, and severe problems. State 12231, for instance, describes the condition of an individual who has no
problems in walking nor is anxious or depressed, but who has some problems washing or dressing himself/herself and performing usual activities, and
who has extreme pain or discomfort too.
5There was another group where we tried to implement the so‐called “PEST” method (Bostic et al., 1990). However, the programming went wrong,
and the method turned out being almost identical to Ping‐pong. The results were very similar to Ping‐pong.



FIGURE 1 Example of a direct choice

task (Lottery A vs. Lottery B) [Colour

figure can be viewed at wileyonlinelibrary.

com]

FIGURE 2 Example of a RPE question

[Colour figure can be viewed at

wileyonlinelibrary.com]

TABLE 2 Reference gambles in Probability Equivalent questions

A: (12231, 0.95; D) B: (11221, 0.3; D) C: (22223, 0.8; D) D: (12221, 0.2; D)

R: (11111, 0.1; D) (11111, 0.03; D) (11111, 0.08; D) (11111, 0.02; D)
(11111, 0.2; D) (11111, 0.06; D) (11111, 0.16; D) (11111, 0.04; D)
(11111, 0.3; D) (11111, 0.09; D) (11111, 0.24; D) (11111, 0.06; D)
(11111, 0.4; D) (11111, 0.12; D) (11111, 0.32; D) (11111, 0.08; D)
(11111, 0.5; D) (11111, 0.15; D) (11111, 0.40; D) (11111, 0.10; D)
(11111, 0.6; D) (11111, 0.18; D) (11111, 0.48; D) (11111, 0.12; D)
(11111, 0.7; D) (11111, 0.21; D) (11111, 0.56; D) (11111, 0.14; D)
(11111, 0.8; D) (11111, 0.24; D) (11111, 0.64; D) (11111, 0.16; D)
(11111, 0.9; D) (11111, 0.27; D) (11111, 0.72; D) (11111, 0.18; D)
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3.3.1 | Transparent iterative methods (Bisection and Ping‐pong)

The transparent iterative methods we used were Bisection and a modified version of the Ping‐pong procedure. In both
methods, the first value of the matching parameter was randomly chosen amongst the nine potential values of p.
Assume it was p3. This generated two potential intervals where the indifference point had to be located, namely,
[0‐p3] and [p3‐pimax]. For example, in the comparison between lottery (12231, 0.95; Death) and (11111, p3; Death),
we had p3 = 0.3. If the respondent chose lottery (11111, 0.3; Death), we knew that the next value of p had to be 0.1 or

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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0.2. If the respondent chose lottery (12231, 0.95; Death), the second stimulus had to be one value from the set {0.4, 0.5, 0.6,
0.7, 0.8, 0.9}.

The difference between both methods (Bisection and Ping‐pong) was how they chose the value of p in the subse-
quent question. Assume the subject preferred lottery (12231, 0.95; Death) to lottery (11111, 0.3; Death). In the Bisection
method, the second value of p would be the value closest to the middle point of the interval [p3‐pimax], which, in this
case, would be p7. In the Ping‐pong method, the second value of p would be located at the other end of the interval
opposite p3. In this example, it would be p9. In both cases, the process went on until the indifference point was located
within one of the 10 intervals [ �piL−p

i
U � defined. At this point, the process stopped. The lower limit of the interval (piL)

was the highest value of p in lottery R (11111, p; Death) for which the individual preferred the lottery i to R; and the
upper end of the interval (piU ) was the lowest value of p in lottery R for which the subject preferred the lottery R to i.
For example, if (12231, 0.95; Death) ≻ (11111, 0.6; Death) but (12231, 0.95; Death) ≺ (11111, 0.7: Death), then

piL = 0.6 and piU = 0.7 so [ �piL−p
i
U � = [0.6 − 0.7].
3.3.2 | Hidden Choice‐Based Matching method

The nontransparent iterative procedure used was the HCBM proposed by Fischer et al. (1999). The HCBM was applied
using the Bisection method but separating the choices regarding each particular lottery by the iterations of other lotter-
ies. Thus, subjects made one choice from the iteration process belonging to Lottery A, then one choice for Lottery B, one
for Lottery C, and one for Lottery D before returning to the sequence of Lottery A.6 For example, a hypothetical
sequence could have been as follows: the first choice between (12231, 0.95; Death) and (11111, 0.3; Death); the second
choice between (11221, 0.3; Death) and (11111, 0.09; Death); the third choice between (22223, 0.8; Death) and (11111,
0.56; Death); and the fourth choice between (12221, 0.2; Death) and (11111, 0.16; Death).7 Assuming that, in all cases,
the reference lottery was preferred, the fifth to eighth choices were (12231, 0.95; Death) versus (11111, 0.2; Death);
(11221, 0.3; Death) versus (11111, 0.06; Death); (22223, 0.8; Death) versus (11111, 0.32; Death); and (12221, 0.2; Death)
versus (11111, 0.08; Death).
3.3.3 | List method

This method, like the following one, is non‐iterative, that is, subjects had to respond to all possible predetermined
choices (pi1 to pi9). The method consisted in a list/table containing all the possible choices for each of the matching
sequences, which were displayed in random order.8 Figure 3 shows a selection of the table that respondents saw.
3.3.4 | Random Binary Choice (RBC) method

This method resembled (to some extent) a Discrete Choice Experiment keeping the “essence” of matching, that is, we
obtained the indifference point for each subject and each health state. RBC can be seen as a mixture between List and
HCBM. The method is non‐iterative (as List), because it presented the nine potential choices to each subject for each of
the four lotteries. However, unlike List, the method is nontransparent and it used the same strategy as HCBM to avoid
being transparent, namely, choices corresponding to a particular lottery were presented randomly, one at a time and
with choices related to other lotteries interspersed between them—as in the HCBM procedure. The difference between
HCBM and RBC is that in RBC the subject was asked all nine choices for each lottery whereas HCBM only asked ques-
tions that could not contradict previous choices because it is iterative. As has been pointed out, in non‐iterative methods

(List and RBC), an indifference interval [ �piL−p
i
U � might not be determined instantly if responses are noisy. A method to

deal with this problem will be explained later.
6As Fischer et al. (1999) did in their study, when a sequence converged faster than others, filler choices were added at the end of that sequence to avoid
the possibility that there were only one or two sequences that had not converged at the final stages, thus, making the iterative process transparent to
the subjects.
7In the first sequence of choices, probabilities of the reference lottery (0.3, 0.09, 0.56, and 0.16, respectively) were randomly set amongst the nine poten-
tial predetermined values in each case.
8Presenting choices in a random order is not the usual way of administering multiple price/choice lists. Our intention was to design a framing that
looked almost identical to the following one, RBC, except for the fact that one (List) would be transparent and the other one (RBC) non‐transparent.



FIGURE 3 Detail of a set of choices in a matching sequence in Group 4 (List procedure) [Colour figure can be viewed at

wileyonlinelibrary.com]
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3.4 | Structure of the sessions

The sessions began with an introduction to the experiment. The EQ‐5D‐3L descriptive system was briefly explained to
the participants, and the four health states involved in the lotteries were shown. Subjects were then asked to rate the
four states plus the Death state on a visual analogue scale.

After that, subjects had to do two types of tasks: choices between paired lotteries (one P‐bet and one $‐bet) and valua-
tions of each lottery by means of the RPE technique. In all groups, the first task was to choose between Lotteries A and B.
Then, subjects in Groups 1 (Bisection), 2 (Ping‐pong), and 4 (List) were asked to do the RPE task of A and B, followed by the
choice between C and D and RPE of C and D. In Groups 3 (HCBM) and 5 (RBC), subjects started with the two straight
choices (A vs. B and C vs. D) and then continued with the valuations of the four lotteries in the manner that has been
explained. The same scheme was repeated three consecutive times during the session. For Groups 1, 2, and 4, the order
in which A and B were valued through the RPEmethod was randomly determined, as was the order between C and D val-
uations. For Groups 3 and 5, the order of appearance of the four lotteries in RPE valuations was set at random.
3.5 | Analysis

There are, at least, two ways, of analysing the data of this experiment. One is to analyse the responses of each
round separately. We count the number of preference reversals in each round and we see if they vary between

http://wileyonlinelibrary.com
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methods. It is as if we had three different subsamples, one for each round. However, the preference reversal asymmetry
is an individual phenomenon, so it would be good to find a way of characterising subjects as having or not “true”
preference reversal preferences. This is the objective of the second approach. It combines all responses that each subject
provided in the three rounds to characterise subjects' preferences. We proceed to explain the two approaches.
3.5.1 | Counting preference reversals

Within each pair of lotteries i and j, a choice‐matching discrepancy (a preference reversal) exists when i ≻ j in a straight
choice, but RPE valuations imply that i ≺ j. Because we did not derive an exact indifference value for the lotteries but

only an indifference interval [ �piL−p
i
U �, we need to define the procedure to estimate the choice implicit in a RPE task.

One option is to assume that the indifference value is the middle point of the indifference interval. Another option is
to compare the indifference intervals and assume that the RPE valuation task reveals a preference for i or j only when
the two intervals do not overlap. For instance, when an RPE task implies that i ≻ j if piL > pjU . If p

i
L and pjUoverlap, no

direction of preference can be established. We will present the results using the first method in the main text; the results
with the second approach are shown in an Appendix.
3.5.2 | Classifying subjects

When preferences are imprecise, some individuals may respond differently when the same question is asked several
times at different moments in the course of an experimental session. In our case, subjects may sometimes choose A
(C) and sometimes B (D), and the probabilities elicited in RPE very often overlap due to preference imprecision. Taking
that into account, we proceed as follows. We use the three straight choices between each pair of lotteries (i, j) of each
subject and we define as “truly preferring one lottery in choice” those who chose one lottery at least twice. We call
strongly consistent those who chose the same lottery in each of the three rounds and weakly consistent those who chose
the same lottery twice. This leads to a classification of subjects in four groups depending on whether they were strongly
or weakly consistent and whether they prefer lottery i or lottery j.

It is more complicated to decide when a subject truly prefers one lottery or the other with the valuation (RPE) task.
We use the notion of “stochastic indifference” (SI) developed by Loomes and Pogrebna (2016) to do that. SI may be
derived from a series of repeated valuation tasks counting the number of times that one option is chosen against the
other. For example, assume that the subject has to respond to a series of choices between Lottery A:(12231, 0.95; Death)
and the reference lottery R:(11111, p; Death), for p = 0.1, 0.2, …, 0.8, 0.9 (see Table 2) three times. Assume that the sub-
ject has well‐defined (deterministic) preferences and she always chooses Lottery A for any value of p ≤ 0.6 and always
chooses the R gamble when p ≥ 0.7. In that case, the indifference interval would be (0.6, 0.7), and the indifference point
could be set in the middle point of this interval, that is, 0.65. This subject would choose Lottery A in 18 of the 27 choices
between A and R. Assume now that the subject has imprecise (stochastic) preferences. She always chooses Lottery A for
p ≤ 0.4 and always lottery R for p = 0.9. For p = 0.5 and p = 0.6, she chooses Lottery A twice, and for p = 0.7 and
p = 0.8, she chooses Lottery A just once. Overall, she chooses A in 18 of the 27 potential choices. We then say that
her SI point is also 0.65, as in the deterministic case.

In general, the SI point can be estimated as

SI ið Þ ¼ 1
�
2p

i
1 þ 1

�
3 pin−p

i
n−1

� �
Li;

where pi1 is the lowest possible value of p in the R gamble (i.e., 0.1 for Lottery A, 0.03 for Lottery B, 0.08 for Lottery C,
and 0.02 for Lottery D); pin−p

i
n−1

� �
is the gap between the values of p in each R gamble (which coincides with its lowest

value, i.e., 0.1, 0.03, 0.08, and 0.02, respectively for lotteries A, B, C, and D); and Li is the number of times that the
subject chooses lottery i (0 < Li < 27). In the example just provided, because Li = 18, SI Að Þ ¼ 0:05þ 0:1

�
3×18 ¼ 0:65.

The above method can be immediately applied to non‐iterative methods, because all subjects had to respond to all
(i.e., 27) binary choices. In the case of iterative methods, subjects did not respond to all 27 binary choices because once
the subject responded to one choice, all potential questions involving dominance were excluded. To estimate SI for iter-
ative methods, we assume that when a participant chose the lottery i (j) against R:(11111, p; Death) for a certain value
of p = p′, she would also have chosen i (j) for any p < p′. And, conversely, if a participant chose the reference gamble
R, for a given value of p = p″, she would also have chosen R for any p > p″. In summary, using the concept of SI, we
split the subjects into those who truly preferred one lottery or the other in RPE.
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In summary, subjects could belong to one of eight potential groups generated by three two‐level factors: (a) if they
prefer one lottery or the other in choice; (b) if they prefer one lottery or the other in valuation (c) if they are strongly—
choose one lottery three times—or weakly—choose one lottery two times—consistent in choice. The prediction here is
that those who are weakly consistent will make more preference reversals than those with better defined preferences.
4 | RESULTS

4.1 | Round by round analysis

We present the results of each round separately in Tables 3–5. The total number of preference reversals was 129 in the
first round (Table 3), 74 in the second round (Table 4), and 76 in the third round (Table 5), so there seems to be an ele-
ment of learning in our subjects, at least between the first and the second round (the rate of preference reversals falls
from 29% in Round 1 to 16% in Rounds 2 and 3). However, in spite of the reduction in the number of preference rever-
sals, they are still highly asymmetric for Bisection, Ping‐pong, and List in the same direction, namely, the P‐bet being
more highly preferred in valuation than in choice. This coincides with the results in Butler and Loomes (2007). Even
in the third round (see Table 5), where the lower number of preference reversals could be interpreted as evidence of
better formed preferences, the ratios were 18:0 (Bisection), 17:1 (Ping‐pong), and 19:0 (List) in favour of the P‐bet. That
is, an impressive 54:1 in favour of the P‐bet in valuation versus choice. However, HCMB and RCB ratios were only 9:5
and 6:1, respectively (p = 0.42 and p = 0.13, McNemar exact binomial test, two‐sided) for a total of 15:6. This analysis
has been made assuming the middle point of the indifference interval in RPE as the indifference value. Tables A1‐A3 of
the Appendix show the results assuming that the RPE valuation task reveals a preference for a lottery only when the
two intervals do not overlap. The pattern although is very similar, as can be seen.

In summary, for Bisection, Ping‐pong, and List, the results are in agreement with the evidence in Butler and Loomes
(2007), that is, the P‐bet is more highly preferred in matching than in choice. The common element of the two methods
where preference reversals almost disappeared (HCBM and RBC) is that they are nontransparent: one is iterative and
the other is not. It seems that, when subjects are not aware that each choice is part of a sequence, they make each deci-
sion using the same principles that they use in straight choices. The method that leads to most discrepancies between
valuation and choice is List. It seems that this presentation makes the matching attribute even more salient in the val-
uation task, and probabilities are even more overweighted. These results seem to support the Task Goal Hypothesis of
Fischer et al. (1999) as an explanation of preference reversals between choice and matching.

We can see that the results are quantitatively (but not qualitatively) different for pairs A‐B and C‐D. There are more
preference reversals in the pair C‐D than in A‐B. However, the results are qualitatively similar. Transparent methods
produce a ratio 23:0 for pair A‐B and 31:0 for pair C‐D. Nontransparent methods produce a ratio 5:3 for pair A‐B and
TABLE 3 Direct choices vs. choices implied by the valuation task (Round 1)

Pair (A, B) n = 225a Pair (C, D) n = 225b

Choice

Valuation McNemar
(p value)c Choice

Valuation McNemar
(p value)cA ≻ B B ≻ A C ≻ D D ≻ C

Bisection A ≻ B 24 4 0.7518 C ≻ D 15 1 0.0019
B ≻ A 6 16 D ≻ C 14 20

Ping‐pong A ≻ B 27 3 0.2278 C ≻ D 18 1 0.0019
B ≻ A 8 12 D ≻ C 14 17

HCBM A ≻ B 25 4 0.7518 C ≻ D 11 2 0.0704
B ≻ A 6 15 D ≻ C 9 28

List A ≻ B 17 0 0.0002 C ≻ D 10 0 <0.0001
B ≻ A 16 11 D ≻ C 25 9

RBC A ≻ B 12 0 0.0412 C ≻ D 7 2 0.6831
B ≻ A 8 11 D ≻ C 6 16

Note. HCBM = Hidden Choice‐Based Matching; RBC = Random Binary Choice.
aDue to inconsistencies in valuation, it was not possible to obtain the indifference interval in six cases in the List group and in 19 subjects in the RBC group.
bThe indifference interval could not be identified in six occasions in the List group and in 19 cases in the RBC group.
cMcNemar's test two‐sided.



TABLE 4 Direct choices versus choices implied by the valuation task (Round 2)

Pair (A, B) n = 235a Pair (C, D) n = 239b

Choice

Valuation McNemar
(p value)c Choice

Valuation McNemar
(p value)cA ≻ B B ≻ A C ≻ D D ≻ C

Bisection A ≻ B 28 2 0.2888 C ≻ D 19 0 0.0009
B ≻ A 6 14 D ≻ C 13 18

Ping‐pong A ≻ B 35 1 1.0000 C ≻ D 22 0 0.0026
B ≻ A 0 14 D ≻ C 11 17

HCBM A ≻ B 28 2 1.0000 C ≻ D 14 2 0.6831
B ≻ A 3 17 D ≻ C 4 30

List A ≻ B 26 0 0.0233 C ≻ D 18 0 0.0003
B ≻ A 7 8 D ≻ C 15 13

RBC A ≻ B 23 0 0.2420 C ≻ D 15 1 0.3711
B ≻ A 3 18 D ≻ C 4 23

Note. HCBM = Hidden Choice‐Based Matching; RBC = Random Binary Choice.
aDue to inconsistencies in valuation, it was not possible to obtain the indifference interval in nine cases in the List group and in six subjects in the RBC group.
bThe indifference interval could not be identified in four occasions in the List group and in seven cases in the RBC group.
cMcNemar's test two‐sided.

TABLE 5 Direct choices versus choices implied by the valuation task (Round 3)

Pair (A, B) n = 236a Pair (C, D) n = 228b

Choice

Valuation McNemar
(p value)c Choice

Valuation McNemar
(p value)cA ≻ B B ≻ A C ≻ D D ≻ C

Bisection A ≻ B 30 0 0.0133 C ≻ D 20 0 0.0044
B ≻ A 8 12 D ≻ C 10 20

Ping‐pong A ≻ B 31 1 0.0771 C ≻ D 23 0 0.0044
B ≻ A 7 11 D ≻ C 10 17

HCBM A ≻ B 29 2 0.6171 C ≻ D 12 3 0.3428
B ≻ A 2 17 D ≻ C 7 28

List A ≻ B 25 0 0.0133 C ≻ D 15 0 0.0026
B ≻ A 8 9 D ≻ C 11 12

RBC A ≻ B 25 1 0.6171 C ≻ D 17 0 0.2482
B ≻ A 3 15 D ≻ C 3 20

Note. HCBM = Hidden Choice‐Based Matching; RBC = Random Binary Choice.
aDue to inconsistencies in valuation, it was not possible to obtain the indifference interval in eight cases in the List group and in six subjects in the RBC group.
bThe indifference interval could not be identified in 12 occasions in the List group and in 10 cases in the RBC group.
cMcNemar's test two‐sided.
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10:3 for pair C‐D. Pair C‐D clearly reproduces the pattern observed in Butler and Loomes (2007), namely, the P‐bet more
highly preferred in matching than in choice. This gives rise to a large number of preference reversals, and it is in this
context where the effect of nontransparent methods can be better observed. For pair A‐B, we can also observe the pat-
tern described in Butler and Loomes (2007) but to a lesser degree. For this reason, the “correcting” effect of
nontransparent methods is less important for pair A‐B.
4.2 | Aggregate analysis

The preference reversal asymmetry is a phenomenon that applies to individuals. Therefore, we allocate individuals to
one of eight groups according to the relationship between valuation and choice following the principles presented in
the methods section (see Section 3.5.2.). Table 6 shows the results for each valuation method, and Table 7 presents
these results according to the degree of consistency of the subjects in their choices (strong vs. weak) and adding



TABLE 6 Analysis of preference reversals at the individual level (n = 250)

Choice

Valuation McNemar
(p value)a Choice

Valuation McNemar
(p value)bA ≻ B B ≻ A C ≻ D D ≻ C

Bisection 3A 23 1 0.4497 3C 12 0 0.0015
2A 5 1 2C 7 0
2B 3 1 2D 5 0
3B 2 14 3D 7 19

Ping‐pong 3A 27 0 0.1336 3C 15 0 0.0009
2A 6 0 2C 6 0
2B 3 2 2D 6 1
3B 1 11 3D 7 15

HCBM 3A 26 0 0.3711 3C 9 0 0.1306
2A 1 1 2C 4 1
2B 3 5 2D 3 4
3B 1 13 3D 3 26

List 3A 18 0 0.0044 3C 13 0 <0.0001
2A 13 0 2C 6 0
2B 1 0 2D 6 0
3B 9 9 3D 13 12

RBC 3A 20 0 0.2207 3C 16 0 0.0736
2A 7 1 2C 4 0
2B 2 1 2D 1 5
3B 3 16 3D 4 20

Note. Shaded cells show individuals who are “strongly consistent”, in the sense that they always prefer the same lottery in all the three straight choices.

HCBM = Hidden Choice‐Based Matching; RBC = Random Binary Choice.
aMcNemar's test two‐sided. Figures in rows 3A and 2A have been merged, as well as rows 2B and 3B, to obtain the p values.
bMcNemar's test two‐sided. Figures in rows 3C and 2C have been merged, as well as rows 2D and 3D, to obtain the p values.
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together the figures of transparent (Bisection, Ping‐pong, and List) and nontransparent (HCBM and RBC) methods.
The main results are

1. The relative number of preference reversals is different depending on the degree of consistency of subjects, which we
take as a proxy for imprecision. Amongst subjects classified as “strongly consistent,” in the case of pair A‐B, there are
17 participants out of 194 (8.8%), with “true” preference reversal preferences. They prefer one lottery in each of the
three choices but give a higher value to the other lottery in valuation. The ratio is 16:1 in the direction expected,
namely, the P‐bet more favoured in valuation than in choice. If we focus on those with less precise preferences (i.
e., “weakly consistent”), in the case of pair A‐B, there are 15 participants out of 56 (26.8%), with “true” preference
reversal preferences (three times more than those “strongly consistent”) and the asymmetry persists (12:3). In the
case of pair C‐D, those percentages are 17.8% (ratio 34:0) for those “strongly consistent” and 37.3% for the “weakly
consistent” (ratio 21:1). In summary, imprecision seems to have a very strong effect on preference reversals.

2. The List method stands out as the method that clearly produces most preference reversals. For all the 50 subjects
who followed this procedure, the percentage of preference reversals is 20% in pair A‐B (ratio 10:0) and 38% in pair
C‐D (ratio 19:0). Even for the consistent subjects, the percentages are very high, namely, 25% (ratio 9:0) and 34%
(ratio 13:0), respectively, for pairs A‐B and C‐D.

3. When we compare transparent (Bisection, Ping‐pong, and List) and nontransparent (HCBM and RBC) methods, the
frequency of preference reversals is larger for nontransparent methods. For the pair A‐B, we have that 14.0% of sub-
jects reverse their preferences in transparent methods and 11.0% in the case of nontransparent methods. For the
pair C‐D, those percentages are 29.3% for transparent methods and 12.0% for nontransparent. It is true that the
transparent methods are penalised for the inclusion of the List method. If we only compare Bisection + Ping‐Pong
versus HCBM + RBC, for the pair A‐B the total number of subjects with preference reversal preferences is the same
(i.e., 11) with the asymmetric ratio of 9:2 in both cases. No difference here. However, for the pair C‐D, there is a
clear difference. The total number of subjects with preference reversal preferences is 25 (ratio 25:0) for the transpar-
ent methods and 12 for nontransparent (ratio 11:1). This confirms that using nontransparent methods, the number
of preference reversals is reduced.



TABLE 7 Preference reversals in strongly and weakly consistent subjectsa

Choice

Valuation Rate of
PR (%) Choice

Valuation Rate of
PR (%)A ≻ B B ≻ A C ≻ D D ≻ C

Transparentb Strong A ≻ B 68 1 11.3 Strong C ≻ D 40 0 23.9
B ≻ A 12 34 D ≻ C 27 46

Weak A ≻ B 24 1 22.9 Weak C ≻ D 19 0 45.9
B ≻ A 7 3 D ≻ C 17 1

Total A ≻ B 92 2 14.0 Total C ≻ D 59 0 29.3
B ≻ A 19 37 D ≻ C 44 47

Nontransparentc Strong A ≻ B 46 0 5.1 Strong C ≻ D 25 0 9.0
B ≻ A 4 29 D ≻ C 7 46

Weak A ≻ B 8 2 33.3 Weak C ≻ D 8 1 22.7
B ≻ A 5 6 D ≻ C 4 9

Total A ≻ B 54 2 11.0 Total C ≻ D 33 1 12.0
B ≻ A 9 35 D ≻ C 11 55

TOTAL Strong A ≻ B 114 1 8.8 Strong C ≻ D 65 0 17.8
B ≻ A 16 63 D ≻ C 34 92

Weak A ≻ B 32 3 26.8 Weak C ≻ D 27 1 37.3
B ≻ A 12 9 D ≻ C 21 10

aSee main text for definitions.
bTransparent methods include Bisection, Ping‐pong, and List.
cNontransparent methods include Hidden Choice‐Based Matching and Random Binary Choice.
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5 | CONCLUSIONS

The main objective of this paper was to understand better the mechanisms that generate preference reversals and how
to avoid/reduce that phenomenon. Our main result is that two explanations of preference reversals, presented at the
beginning of the paper, are complementary. First, subjects that are more consistent in repeated choices produce less
preference reversals. As far as we know, this is the first paper to explore the role of imprecision as an explanation of
preference reversals in health. However, even when we focus only on strongly consistent subjects, the asymmetric pat-
tern of preference reversals continues when transparent methods are used. Methods based on nontransparent choices
reduce the rate of preference reversals for both strongly and weakly consistent subjects. This seems to support the expla-
nation of preference reversals based on the Task Goal hypothesis. It is evident in our results that this finding is more
compelling with pair C‐D than with pair A‐B, which suggests that the propensity for asymmetric reversals to occur
may depend on the particular pairs involved. A key difference between pairs A‐B and C‐D is that, in straight choices,
a majority of subjects (about 60%) chose the P‐bet over the $‐bet in the first case, whereas with pair C‐D, more than
60% of the sample chose the $‐bet over the P‐bet, which makes it easier to find the expected asymmetry. This shows that
it is more difficult to investigate preference reversals when outcomes are health states than when they are money. If
outcomes are monetary, it is easier to design lotteries with some common features, for example, with similar expected
value. We have tried to devise lotteries with similar expected utilities, but we have used population averages in order to
do that. However, the preferences of our subjects can be different from those averages. The important point is that in
those pairs (such as C‐D) where preference reversals are more abundant, we have shown that both the imprecision
and the transparency of the method are relevant to explain preference reversals.

What are the implications of these results for preference elicitation methods in health? One is that matching
methods should try to hide, as much as possible, the goal of the task. In that way, the subject seems to treat each choice
in the iteration process independently from the rest, without being influenced by past choices or other considerations.
Furthermore, the results of HCBM suggest that it may not be necessary to abandon iterative methods and move to non‐
iterative ones, such as RBC (i.e., Discrete Choice Experiments), to avoid compatibility effects. This is an interesting find-
ing because iterative methods are more efficient (require fewer questions) than non‐iterative. Our results highlight the
importance of the distinction between transparent and nontransparent methods. This distinction is not new, but we do
not think that the vast majority of researchers who use matching methods, such as Time Trade‐Off or Standard Gamble,
are aware of the potential relevance of using nontransparent methods. It is not uncommon to find papers arguing that
they use CBM because “it leads to fewer inconsistencies than directly asking subjects for their indifference values”
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(Bleichrodt, Gao, & Rohde, 2016, p. 220) without mentioning the difference between transparent and nontransparent
CBM. It is as if they assume that all CBM produce fewer inconsistencies. This paper suggests that this is not the case.
Our results show that moving from standard matching to sequences of binary choices is not enough to avoid the prob-
lems of standard matching. If we want to use CBM methods to estimate utilities for health states, nontransparent
methods seem to reduce biases present in transparent methods, reducing/avoiding compatibility effects and making
choice and matching more similar.

The implication of our results is more complicated in the case of imprecision. Although biases due to compatibility
can be reduced using different techniques (i.e., nontransparent methods), imprecision cannot be addressed with such a
“simple” change. The only solution here seems to be to help subjects to increase the degree of precision. This is not easy
in the case of the evaluation of health states. In spite of that, because preference imprecision seems to have an effect on
how people respond to survey questions in the health domain, it is important to have an idea of the degree of impreci-
sion involved in subject's responses.
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APPENDIX A

Results assuming that a preference is implied by the valuation task (RPE) when intervals do not overlap.
TABLE A1 Direct choices versus choices implied by the valuation task (Round 1)

Choice

Valuation McNemar
(p value)b Choice

Valuation
McNemar
(p value)b

A ≻ B B ≻ A A ≈ Ba C ≻ D D ≻ C C ≈ Da

Bisection A ≻ B 23 0 5 0.1336 C ≻ D 15 1 0 0.0159
B ≻ A 4 8 10 D ≻ C 10 15 9

Ping‐pong A ≻ B 26 2 2 0.2888 C ≻ D 18 0 1 0.0026
B ≻ A 6 8 6 D ≻ C 11 15 5

HCBM A ≻ B 24 0 5 0.2482 C ≻ D 10 2 1 0.4497
B ≻ A 3 11 7 D ≻ C 5 22 10

List A ≻ B 16 0 1 0.0015 C ≻ D 10 0 0 <0.0001
B ≻ A 12 9 6 D ≻ C 19 7 8

RBC A ≻ B 11 0 1 0.2482 C ≻ D 7 2 0 1.0000
B ≻ A 3 11 3 D ≻ C 0 14 7

Note. HCBM = Hidden Choice‐Based Matching; RBC = Random Binary Choice.
aCases in which preference could not be inferred from the Reference Probability Equivalent responses, because indifference intervals for each lottery overlap.
bMcNemar's test two‐sided.
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TABLE A2 Direct choices versus choices implied by the valuation task (Round 2)

Choice

Valuation McNemar
(p value)b Choice

Valuation
McNemar
(p value)b

A ≻ B B ≻ A A ≈ Ba C ≻ D D ≻ C C ≈ Da

Bisection A ≻ B 27 0 3 0.0736 C ≻ D 18 0 1 0.0736
B ≻ A 5 13 2 D ≻ C 5 13 13

Ping‐pong A ≻ B 34 1 1 1.0000 C ≻ D 22 0 0 0.0077
B ≻ A 0 8 6 D ≻ C 9 16 3

HCBM A ≻ B 27 2 1 1.0000 C ≻ D 12 1 3 0.4795
B ≻ A 3 13 4 D ≻ C 1 23 10

List A ≻ B 26 0 0 0.0736 C ≻ D 17 0 0 0.0026
B ≻ A 5 7 3 D ≻ C 11 9 8

RBC A ≻ B 23 0 0 1.0000 C ≻ D 14 1 0 1.0000
B ≻ A 1 16 4 D ≻ C 0 17 10

Note. HCBM = Hidden Choice‐Based Matching; RBC = Random Binary Choice.
aCases in which preference could not be inferred from the Reference Probability Equivalent responses, because indifference intervals for each lottery overlap.
bMcNemar's test two‐sided.

TABLE A3 Direct choices versus choices implied by the valuation task (Round 3)

Choice

Valuation McNemar
(p value) (2) Choice

Valuation
McNemar
(p value)b

A ≻ B B ≻ A A ≈ Ba C ≻ D D ≻ C C ≈ Da

Bisection A ≻ B 29 0 1 0.4795 C ≻ D 20 0 0 0.0233
B ≻ A 2 9 9 D ≻ C 7 12 11

Ping‐pong A ≻ B 29 0 3 0.0736 C ≻ D 23 0 0 0.0233
B ≻ A 5 7 6 D ≻ C 7 15 5

HCBM A ≻ B 27 2 2 0.4795 C ≻ D 12 2 1 0.6831
B ≻ A 0 17 2 D ≻ C 4 24 7

List A ≻ B 25 0 0 0.0233 C ≻ D 14 0 1 0.0077
B ≻ A 7 7 3 D ≻ C 9 9 5

RBC A ≻ B 25 1 0 1.0000 C ≻ D 17 0 0 1.0000
B ≻ A 0 12 5 D ≻ C 0 14 9

Note. HCBM = Hidden Choice‐Based Matching; RBC = Random Binary Choice.
aCases in which preference could not be inferred from the Reference Probability Equivalent responses, because indifference intervals for each lottery overlap.
bMcNemar's test two‐sided.

1246 PINTO PRADES ET AL.


