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a b  s  t  r  a  c t

This paper  presents  a  novel  approach  to model  health  state  valuations using inverse probability  weighting

techniques. Our  approach  makes  no assumption  on the  distribution  of health  state  values,  accommodates

covariates in  a flexible  way,  eschews  parametric  assumptions  on the relationship  between  the  outcome

and the covariates, allows for an  undetermined  amount of  heterogeneity  in  the estimates  and  it  formally

tests and corrects for  sample  selection  biases.  The proposed  model  is  semi-parametrically  estimated and

it is  illustrated  with  health  state  valuation  data  collected  for  Spain  using the  SF-6D  descriptive  system.

Estimation results  indicate that  the  standard  regression model  underestimates  the  utility loss that the

Spanish general  population  assigns to departures  from  full  health,  particularly  so  for  severe departures.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Preference-based measures of health status are increasingly

being used to evaluate the outcomes of  health care interventions

and to inform resource allocation decisions. A  number of  health

state  descriptive systems have been designed for the characteriza-

tion  of health states and  estimation methods have been applied for

calculating a preference-based single index value for every state

defined within some of these systems. The HUI3 (Feeny et al.,

2002), the EQ-5D (EuroQol Group, 1990) or  the SF-6D (Brazier et al.,

1998)  are examples of these systems, and all of them describe

health states by defining a number of  dimensions or  attributes (e.g.

pain, physical functioning, ability for self-care, etc.) each admitting

different levels of severity or impairment. Since most descriptive

systems define many more health states than it is  feasible to elicit

direct valuations for in an empirical study, choices have to be made

about how best to estimate values for all states from direct obser-

vations on a subset of those states.

The standard approach to model health state values uses a  set of

dummy  indicator variables describing health states in terms of  their

level of severity in different dimensions of health to explain the
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individual valuations obtained. Under the assumption of normally

distributed errors, a regression of  health state values on the set

of  dummy  variables identifies the valuation effect of departures

from  full health. The estimates are then used to predict the value

associated to the health states not directly valued.

The main advantadge of the standard approach is its  simplic-

ity. However, it  has some limitations that are likely to undermine

its  benefits. First, the normality assumption is  not likely to hold

in practice given the skewed, truncated, non-continuous and hier-

archical nature of health state valuation data (Brazier et al., 2002)

and, thus, the estimates are likely to be biased. Second, the standard

approach does not provide any guidance on how to improve the

specification of the regression model by accounting for interactions

between the severity indicators or for personal characteristics. On

the  one hand, the linear regression model is not the appropriate

framework for meaningfully incorporating the large number of

interactions between the severity indicators that can be defined

in  any health state descriptive system (Brazier et al., 2002). On the

other hand, the traditional way of accommodating personal char-

acteristics to the standard model by introducing them additively

contravenes both the goal of estimating one preference-based tariff

for  the whole community (Dolan, 1997) and the theoretical require-

ment of the intercept being equal to unity (Brazier et al.,  2002,

2004).

As a  result, most articles that use the standard approach do not

control for personal characteristics nor for severity interactions,

0167-6296/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
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making misspecification of the regression model more likely. This,

in  turn, leads to biased estimates. Moreover, these articles implic-

itly  assume that the valuation impact of a  departure from full health

is  the same for respondents with different personal characteristics

and is independent of the severity of departures in other dimen-

sions  of health. This restrictive homogeneity assumption has been

rejected by the evidence in Dolan and Roberts (2002) and Kharroubi

et al. (2007a), among others. They find that some respondents’ char-

acteristics impact on the value they give to health states and that

this effect varies with the severity of the health state at  examina-

tion.

The debate on the valuation effect of personal characteristics

is related to that on whose values should count when evaluat-

ing health state intervention outcomes and informing resource

allocation decisions. The  common recommendation of using the

preferences of the whole population (Gold et al., 1996; NICE, 2004)

calls for obtaining population valid estimates, that is,  to adjust for

the  distribution of the covariates in the population. The standard

approach tries to fulfil this requirement by defining samples that

are representative for the population of interest with regard to the

sex and age interval distributions. The representativeness of the

estimates is then analyzed by comparing the descriptive statistics

of  a large set of covariates in the sample to those in the population

of  interest. Lastly, corrective weights intended to adjust for the age

and sex interval population distributions are introduced if  relevant

discrepancies are observed between the sample and population

descriptive statistics.

This way of proceeding does not provide the user with the

appropriate tools for testing and  correcting for sample selection

biases. Non-response issues and the drop of respondents providing

inconsistent responses results in sometimes relevant discrepancies

between the “representative” sample design and the estimation

sample. Moreover, there are many personal characteristics that

affect health state values whose sample distribution is not neces-

sarily that in the population even if age intervals and sex are equally

distributed in both instances. For example, Dolan and Roberts

(2002) find that marital status and the respondents’ ability to cope

with usual activities (i.e. one of the dimensions of their own health

state) affect health state valuations. Additionally, Kharroubi et al.

(2007a) find that the individual’s employment status, educational

level and own physical and social functioning have a  significant

effect on health state values.

The comparison of the univariate descriptive statistics of the

covariates in the estimation sample to those in the population of

interest is not a formal test  of sample selection biases and, thus, it

might lead to wrong conclusions. In particular, it raises doubts as

to  in how many covariates we have to find a significant difference

of  a given magnitude between the sample and population means

for  the estimates not to be valid at the population level. More-

over, finding no significant difference between the sample and the

population means of a  continuous variable is not necessarily very

informative about the presence of relevant discrepancies in other

moments of the distributions. Furthermore, multivariate distribu-

tions can differ significantly even if  univariate descriptive statistics

in  the estimation sample are close to those in the population of

interest.

Finally, the corrective weights used to ensure representa-

tiveness of the regression estimates suffer from the curse of

dimensionality problem, that is, its feasibility lowers as the num-

ber  of personal characteristics where relevant discrepancies are

observed between the sample and population descriptive statistics

increases. This problem is  circumvented in practice by restricting

the set of personal characteristics used to construct the weights

to the respondent’s sex and age group. However, this way of  pro-

ceeding does not remove sample selection biases in other personal

dimensions and, thus, it is  not likely to produce representative

estimates.

This  paper presents a new approach to estimating preference-

based measures of health status based on inverse probability

weighting (IPW) techniques. The IPW approach makes no assump-

tion on the distribution of health state valuations, allows for an

undetermined amount of heterogeneity in the estimates, accom-

modates covariates in a flexible way, formally tests and corrects

for sample selection biases and uses the distribution of personal

characteristics in the population of interest to guarantee the rep-

resentativeness of the estimates. The estimators that we propose

are semi-parametrically estimated and their large sample proper-

ties are derived. Additionally, and as opposed to the nonparametric

Bayesian approach in Kharroubi et al. (2007a,b), our approach pro-

vides the user with a simple table of estimated coefficients that

defines the estimated preference function, which results in relevant

efficiency and transparency gains. We illustrate our approach with

the SF-6D descriptive system. Notwithstanding, the IPW approach

could be equally applied to other systems (e.g. the EQ-5D) provided

that some requirements regarding the selection of  states which are

directly valued in the sample are met, as it will be further discussed.

The  paper has four more sections. Section 2  presents the

proposed approach and compares its  properties to those of the

standard parametric one. Section 3  describes the SF-6D descrip-

tive system and the data used to illustrate the proposed estimators.

Section 4  presents and discusses the estimation results and, finally,

Section 5  concludes.

2. Modelling

The standard model of health state valuations can be written as

Yij = ˛ + ˇ′Zj + εij (1)

where Yij is  the utility that individual i assigns to health state j,

Zj is  a  vector of dummy  indicator variables Zkw that equal one if

health state j reaches level of severity w  in dimension k  and zero

otherwise, for w  = 2, 3, .  .  .  ,  Wk and k =  1, 2,  . .  .,  K, ˛ is the intercept

and εij is a  zero mean error term.1 Model (1) is  the “main effects”

model, as opposed to other specifications that also control for level

effects, interactions between the elements of Zj or personal charac-

teristics. The model is estimated using the Ordinary Least Squares

(OLS) or  the Random Effects (RE) estimators, that is,  assuming that

ε  is  normally distributed. Most researchers use the RE estimator

since it  takes account that the same individual values several health

states, increasing the efficiency of the estimates relative to the OLS

estimator.

The main advantage of the standard approach is  that it  can be

easily implemented in any statistical package. However, it also has

some relevant limitations that are likely to undermine its benefits.

First, the normality assumption is not likely to hold with health

state valuation data (Brazier et al., 2002) and, thus, the regression

estimates are likely to be biased.2 Second, the linear regression

model is severely limited in the way  it controls for interaction

effects and personal characteristics. This model does not provide

1 For the SF-6D descriptive system K = 6  and Wk ranges from 4 to 6. Equivalently,

K  = 5 and Wk = W = 3 for the EQ-5D.
2 Dolan et  al. (1996) find evidence that the  distribution of health state values

obtained using the time trade-off method was non-normal for each health state.

Johnson et  al. (1998) find departures from normality when estimating US-based

population weights using the EQ-5D questionnaire. Diagnostic tests in Brazier et al.

(2002) reveal non-normal residuals in the  estimation of a preference-based measure

of  health for the UK general population using the  SF-36. Many other studies, like

Tsuchiya et  al. (2002) and Lamers et al. (2006), simply provide no formal test of the

underlying distributional assumption.
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the appropriate framework for meaningfully incorporating the

large number of interactions that can be defined in any health state

descriptive system (Brazier et al., 2002). Additionally, the introduc-

tion of personal characteristics additively contravenes both the goal

of  estimating one preference-based tariff for the whole community

(Dolan, 1997) and the requirement of the intercept being equal to

unity (Brazier et al., 2002).3

As a result of the second limitation, the great majority of articles

using the standard approach do not control for interaction terms

nor for personal characteristics. These articles implicitly assume

that the valuation impact of a  departure from full health is  the same

no matter the severity of the deviation in the remaining dimen-

sions of the health state under evaluation nor the respondents’

characteristics. Such an homogeneity assumption has been rejected

by  the evidence in Dolan and Roberts (2002) and  Kharroubi et al.

(2007a),  among others, who find that some respondents’ charac-

teristics impact on the value they give to health states and that this

effect varies with the severity of the health state at examination.

Moreover, by reducing the set of feasible specifications the second

limitation increases the risk of misspecification of the regression

model and, thus, the probability of obtaining biased estimates since

regression models rely heavily on extrapolation when differences

in  the covariate distributions for compared respondents are large.

The identification strategy is  presented for ˇkw,  the coefficient

associated with Zkw that measures the average health state valua-

tion impact of moving from level of severity 1  to level of severity w
in  dimension k. Let Xi be the vector of characteristics of individual

i  that potentially affect his valuations. The sample is  restricted to

respondents valuing levels of severity 1 and  w in dimension k  and

the  individual and health state subscripts i and j are dropped out

to  simplify the notation. The coefficient of  interest for the sample

with personal characteristics x that value health states with level

of  severity w′ in dimension k′ for k′ /=  k and w′ = 2, 3,  .  .  .  ,  Wk′ is4

ˇkw(x, zk′w′ ) = E[Y |Zkw = 1, X  =  x, Zk′w′ =  zk′w′ ]

− E[Y |Zkw = 0, X = x, Zk′w′ =  zk′w′ ]

where zk′w′ = {0, 1}. Equivalently, the valuation effect for an indi-

vidual randomly drawn from the estimation sample is

ˇkw = E[ˇkw(h)] = E[Y |Zkw = 1] −  E[Y |Zkw = 0] (2)

where H comprises X  and the set of  dummy  variables Zk′w′ for k′ /=  k

and w′ = 2, 3, . . . , Wk′ and expectations are defined over the dis-

tribution of H in the estimation sample. This way of writing ˇkw

makes it clear that we are not imposing the homogeneous valuation

impact assumption inherent to most applications of the standard

approach. In fact, we allow for the utility loss of moving from level of

severity 1 to level w in dimension k  to vary with any of the elements

in  H.

The estimator that we develop for ˇkw can be better interpreted

in  the context of the treatment effects literature. This literature

provides answers to questions concerning the efficacy of a particu-

lar programme or policy initiative. In this setting ˇkw is the average

valuation effect of a  binary treatment that consists in valuing health

states where dimension k reaches level of severity w instead of level

1.  The causal interpretation of ˇkw follows from the assumption

3 There are strong theoretical reasons for restricting the intercept to unity since it

captures the utility associated with full health, which equals one on the  conventional

full health-death scale used to estimate QALYs.
4 Existence of expectations is assumed throughout.

that unobserved individual characteristics do not affect health state

valuations or  their overall average impact is  zero.5

Among the broad list of available treatment effect estimators,

we opt for the so-called Inverse Probability Weighting estima-

tors for three reasons.6 First, they are easy to implement and

provide consistent and in some cases asymptotically efficient esti-

mates of the parameter of interest under fairly standard regularity

conditions. Second, they exhibit the best overall finite sample per-

formance among the broad class of treatment effect estimators

analyzed in Busso et al. (2009).  This is particularly relevant in the

current context since estimation samples are of modest size in

most empirical applications. Finally, weighting estimators can be

used to assess the effect of changes in the distribution of X on the

outcome of interest (DiNardo et al.,  1996) and, thus, they allow esti-

mation of preference functions for the population of interest from

non-representative samples.

Some additional notation is needed at  this point. Let

pkw(h) =  P(Zkw =  1|H  =  h) be the conditional probability of receiving

treatment given H.  This variable is  the propensity score in the treat-

ment  effects literature. The research value of the propensity score

rests on its power to solve the dimensionality problem. Adjust-

ing  for between-groups differences on a high dimensional vector

of  covariates can be either difficult or impossible, as is  the case

when using the standard corrective weights. Rosenbaum and Rubin

(1983) show that the propensity score captures all of the variance

on  the covariates relevant for adjusting between-group compar-

isons, that is, treated and control units with the same value of the

propensity score have the same distribution of  the elements in H.

Additionally, the following overlap assumption on the joint dis-

tribution of treatments and explanatory variables is necessary for

the  estimation problem to be well defined: 0 <  P(Zkw =  1|H) <  1.  This

common support condition requires that for a given value of H there

is some fraction of the estimation sample in the treatment and con-

trol groups to be compared. That is, a necessary condition for the

effect  of  Zkw to be identified is that no other element of H pre-

dicts treatment status perfectly. An implication of this condition is

that some respondents valuing levels of severity 1 and w in dimen-

sion k will not contribute to the estimation of  ˇkw.  In particular,

units  with propensity scores close to zero or  one will be partic-

ularly influential in the estimation of ˇkw,  making the estimation

imprecise. That is the case for respondents whose distributions of

the  elements of H substantially differ from those for respondents

in  the other treatment group.

The common support condition is not commonly invoked when

estimating a  linear regression model because the regression model

uses  its functional form to work off the common support in the

distribution of  the elements of H when estimating ˇkw. However,

that  can be highly misleading given the previously discussed speci-

fication problems inherent to the standard approach. The common

support condition ensures that identification does not  rest on  func-

tional form assumptions. This condition has relevant implications

on the selection of health states valued in the sample for ˇkw to

be identified. In particular, it  states that there is no level of sever-

ity  w′ in dimension k′, for w′ = 1, 2, 3,  .  .  .  ,  Wk′ and k′ /= k,  valued

only by respondents of a  given treatment status. Otherwise, the

effect  of interest cannot be separately identified from that for Zk′w′
unless we  rely on extrapolation, like the regression model does.

As previously discussed, extrapolation results in biased estimates

5 The assumption is known as selection on  observables (Barnow et  al., 1981)  or

strong ignorable treatment assignment (Rosenbaum and Rubin, 1983) and is  also

implicit in the  standard regression model.
6 Imbens (2004) provides an overview of the  estimators used in  the  treatment

effects literature under the selection on observables assumption.
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if differences between the covariate distributions of  respondents

of  different treatment status are relevant and  the parametric rela-

tionship between the outcome and the regressors is not properly

specified.7

The expectations in (2)  can be written as

E[Y |Zkw = t] = Yf (Y |H)g(H|Zkw = t)dh, for t = {0, 1} (3)

According to the latter expression, each expectation in (2) is

calculated using the distribution of H in the corresponding treat-

ment group. However, for ˇkw to be identified we need the same

distribution of H in the two expectations. In particular, we  use the

distribution of H in the sample of respondents valuing levels of

severity 1 or w in dimension k  that satisfy the common support

condition. Formally, let g(H) and g(H|Zkw =  t)  be the joint density

of  H in the estimation sample and in the collective of respondents

with treatment status t, respectively, and observe that by definition

g(H) = g(H|Zkw =  t)P(Zkw =  t)

P(Zkw = t|H)
, for t =  {0, 1}

That is, the distribution of H in the collective of respondents with

treatment status t can be changed for the distribution in the estima-

tion sample g (H) by simply introducing the appropriate weighting

function �t in (3)

E[Y |Zkw = t] = �t
P(Zkw =  t)

P(Zkw =  t|H)︸ ︷︷ ︸Yf (Y |H)g(H|Zkw =  t)dh

=  Yf (Y |H)g(H)dh, for t = {0, 1}

The effect of interest can now be written as

ˇkw = E
[
ZkwY

pkw

]
−  E

[
(1 −  Zkw)Y

1  − pkw

]
(4)

This  suggests the following estimator of ˇkw which we  name as

the IPW1 estimator

̂̌
kw, IPW1 = n−1

∑n

i=1

ZkwiYij

p̂kwi
−  n−1

∑n

i=1

(1 −  Zkwi)Yij

1  − p̂kwi
(5)

This  equation suggests a simple two-step method to estimate

ˇkw. First, estimate the propensity score using a  binary discrete

choice model like the logit or probit models. Second, plug the fitted

values into the sample analog of (5). The IPW1 estimator identifies

the  effect of interest if  the estimation sample is  representative for

the population of interest, that is, if there are no sample selection

biases. However, since we cannot be sure a priori that the sam-

ple  distribution of the elements of X is  that in the population, we

improve on the latter estimator by accounting for the probability

that an individual randomly drawn from the population of inter-

est  is in the estimation sample.8 We  do so by rewriting expression

(3)  so that the two expectations are averaged over the distribu-

tion of X in the population of interest. Obviously, the feasibility of

7 Some studies that use the  standard approach report evidence of misspecifi-

cation of the regression model. A non-exhaustive list includes Dolan (1997) and

Johnson et al. (1998).  Brazier et al. (2002) express their surprise with the result of

no specification problems according to the Ramsey RESET test given the  skewness

of  their RE estimation residuals. Many other studies simply provide no formal test

of misspecification of the regression model.
8 On the one hand, deviations from  the original sample design due to, for exam-

ple, nonresponse issues or to the  exclusion of respondents providing inconsistent

responses might result in non-representative samples. On the other hand, it is dif-

ficult or even impossible to define representative samples for the  population of

interest with regard to the  whole set of covariates that have been found to  be

correlated with health state valuations (Dolan and Roberts, 2002; Kharroubi et al.,

2007a).

this approach rests on whether we  have an external representative

sample that contains information on X.  Conditioned on the avail-

ability of the external representative sample, the effect of interest

is  now written as9

ˇkw = E
[
DsZkwY

pkwps

]
− E

[
Ds(1 −  Zkw)Y

(1  −  pkw)ps

]
where the estimation sample comprises that used for the IPW1

estimate of ˇkw,  Ds is a binary indicator variable that equals one

if  the individual is in the estimation sample and zero if  he is  in the

external representative sample and ps(x) = P(Ds =  1|X  =  x) is the con-

ditional (on X) probability of being in the estimation sample. The

set  of indicator variables Zk′w′ for k′ /=  k  and w′ = 1, 2, 3,  . .  . ,  Wk′
is not included in ps(x) since representativeness is analyzed with

regard to the distribution of  personal characteristics. The  internal

sample analog of expression (6) is  the IPW2  estimator of ˇkw

̂̌
kw, IPW2 =  Psn

−1
∑n

i=1

ZkwiYij

p̂kwip̂si
− Psn

−1
∑n

i=1

(1 −  Zkwi)Yij

(1  − p̂kwi )̂psi
(6)

where Ps =  P(Ds = 1) is  the proportion of individuals in the estima-

tion sample. As before, the IPW2 estimate of ˇkw is obtained in two

steps. First, estimate discrete choice models for the two propen-

sity scores, compute the fitted values for the estimation sample

and ensure the common support condition in the two propensities.

Second, plug the fitted values into the sample analog of (7).  Under

this scheme, a  two-step weighted average of the outcome variable

recovers ˇkw in the population of  interest. In a  first step, the distri-

bution of health state values for respondents of a  given treatment

status is weighted-down (up) for those values of  the elements of

H that are (under) over-represented among respondents with that

treatment status. In a second step, the distribution of health state

values for sample respondents is  weighted-down (up) for those val-

ues of the elements of X  that are (over) under-represented among

individuals in the external representative sample.

This  estimator can also be interpreted in the related framework

of  imputation for missing data.10 To appreciate this, we  follow

Rubin (1974) and define ˇkw in terms of potential outcomes. Let

Yt be the valuation that individual i would have given had he

received treatment status t.  We  only observe the realized outcome

Y  =  DsZkwY1 + Ds(1 − Zkw)Y0 but want to know about the effect of the

treatment for an individual randomly drawn from the population

of interest (ˇkw). In this setting, ˇkw is the difference between the

population averages of Y1 and Y0,  which we label �1 and �0. We

only observe Y1 for treated individuals in the estimation sample

and the probability of  a “complete case” i is p = ps(x) × pkw(h). As

Lunceford and Davidian (2004) point out, weighting by the inverse

of  the product of propensity scores allows observation i to count for

himself and (p−1 −  1) other “missing” subjects with like covariates

h  in estimating �1.

The propensity score ps(x) adjusts for the distribution of

personal characteristics in the population of interest. Notice

that  this propensity score is  a generalization of the traditional

corrective sample weights used to ensure the representativeness

9 The availability of such a sample is not likely to  be a problem for most countries.

For example, the Census and the European Community Household Panel provide us

with the distribution of many sociodemographic, employment and health related

individual and household characteristics of the Spanish population. In particular,

we  use data from the  European Community Household Panel for Spain.
10 Each one of the two  terms in (7) approximates the average outcome for

units of a given treatment status using a weighted sample mean estimator of

Horvitz–Thompson type. Horvitz and Thompson (1952) introduced this type of

estimator to analyze samples drawn without replacement with unequal selection

probabilities from finite universes.
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of the regression model estimates in the standard approach.11 In

particular, the corrective weights used in the standard framework

provide a nonparametric estimate of the propensity score ps (x)
when X only includes dummy  indicator variables. The propensity

score allows us to overcome the dimensionality problem in the

construction of sample weights and, thus, to account for sample

selection biases in as many discrete and continuously measured

personal characteristics as necessary.

As discussed in Imbens (2004), the estimator in (7)  is  not

necessarily an attractive estimator for ˇkw since the weights for

observations of a given treatment status t  do not add up to unity.

Indeed, these weights add up to 1  conditioned on treatment status

t  in expectation terms, but because the variance of the sum is posi-

tive  the corresponding sample analog is likely to deviate from one.

Thus, we normalize the weights to unity and obtain the following

estimator:

̂̌
kw,IPW2 =

(∑n

i=1

Zkwi
p̂kwip̂si

)−1∑n

i=1

ZkwiYij

p̂kwip̂si

−
(∑n

i=1

(1 −  Zkwi)

(1 − p̂kwi )̂psi

)−1∑n

i=1

(1 −  Zkwi)Yij

(1  − p̂kwi )̂psi
(7)

The consistency and large sample properties of the IPW1 and

IPW2  estimators are derived in Appendix A  using the theory of M-

estimation.12 The IPW2  estimator can also be non-parametrically

estimated by simply producing non-parametric estimates of the

propensity scores and plugging the fitted values into (8).13 How-

ever, the number of observations required to attain an acceptable

precision for this type of non-parametric estimator increases

rapidly with the dimension of X.  Moreover, a  non-parametric

estimate conditioned on particular values of  X version of these esti-

mators may  be difficult to interpret if the dimension of  X is larger

than two. Furthermore, the net gains of moving from the standard

approach to an alternative one decrease as the implementation of

the  proposed estimator becomes more challenging. Thus, we focus

on semi-parametric approximations to IPW2 where the propensity

scores are parametrically estimated using standard discrete choice

models like the logit or probit models.

The IPW2 estimator is  member of  a  class of semi-parametric

consistent estimators developed in Robins et al. (1994) for general

missing data problems. Robins et al. (1994) show that the esti-

mator within the class having the smallest large-sample variance

combines regression on the explanatory variables and propen-

sity  score weighting. Contrary to the parametric standard model,

the regression model in the semi-parametric efficient estimator

is incorporated only as a  way of gaining efficiency over the IPW2

estimator, that will still be consistent. The asymptotically efficient

estimator is doubly robust in the sense that it provides consistent

estimates of ˇkw if  either the propensity score or the regression

model are correctly specified. Anyway, the double robust estima-

tor  cannot be implemented in our context because respondents

with treatment status t  do not value any possible combination of

level of severity w or 1 in dimension k with the levels of severity

that can be defined in the remaining dimensions of health. That is,

11 Tsuchiya et al. (2002) and Kharroubi et al. (2007a) introduce corrective weights

to reflect the non-representative age and sex distribution of their respondents in

the standard and the nonparametric Bayesian approaches, respectively.
12 A STATA code that implements the IPW1  and IPW2 estimators is  available from

the  authors upon request.
13 Craig and Busschbach (2009, 2011) develop non-parametric approaches to

health valuation. However, these estimators do not control for personal charac-

teristics.

we cannot regress health state values on H within each subsample

with treatment status t.  Indeed, we can just regress health state

values on X and some elements of Z for respondents with treat-

ment status t, where that subset of elements of Z is  likely to vary

with treatment status t  and also with the estimation subsamples

used to identify each element of ˇ.  Anyway, as shown in Busso et al.

(2009),  the small sample properties of the double robust estimator

are  close to those for weighting estimator like the IPW2 estimator,

with the former estimator being slightly more variable and more

biased than the one developed in this paper.

Finally, the requirement of the intercept being equal to unity

is  satisfied by using the transformed outcome variable Y∗ =  Y − 1

instead of the original one.

3. Data and measurement issues

The data comes from a survey performed in the Spanish region of

Murcia over a  period of  two months in 2007. The sample (n = 1020)

was  designed using the age interval and sex distributions of  the

Spanish  general population. The goal of the survey was to obtain

direct valuations for a  selection of health states described according

to the SF-6D classification system. Later on such valuations would

be  modeled using our approach in order to predict values for the

18,000 health states that the SF-6D system can define. In what fol-

lows we briefly describe the SF-6D instrument, the selection of

health states valued, and the valuation survey.

3.1. The SF-6D

The SF-6D is  a  preference-based measure of health that attaches

utility scores to a set of  health states by using an algorithm based

on  preferences of the general population. A total of  18,000 health

states are defined by means of a  classification system composed

of six dimensions: physical functioning (PF), role limitations (RL),
social functioning (SF),  pain (PAIN),  mental health (MH), and vitality

(VIT).  Each dimension has between four to six levels of  severity and

every SF-6D health state is defined by  selecting one level from each

dimension.

Brazier et al. (2002) using a variant of the standard gamble (SG)

method, elicited preferences for a  selection of 249 health states

from a  sample (n  =  611) of the UK general population. Next, OLS

and  RE  models were estimated to predict all  18,000 SF-6D health

states. The model recommended by the authors for use  in cost-

utility analysis was an OLS model using mean health state values.

Brazier et al. (2004) improved the previous model by removing

non-significant estimates and aggregating those coefficients which

were inconsistent between them. They referred to such a model as

the  “parsimonious consistent model”.

In contrast to previous algorithms, which relied on paramet-

ric  models, Kharroubi et al. (2007b) –  using the same UK data

set as Brazier and colleagues – estimated a  set of non-parametric

(Bayesian) utility scores for the SF-6D. A drawback of this non-

parametric model is that it cannot be defined by a  simple table of

coefficients as in parametric models.

New SF-6D algorithms have been estimated by using the stan-

dard regression approach for other countries apart from the UK

(Lam et al.,  2008; Brazier et al., 2009; Ferrerira et al., 2010; Abellán-

Perpiñán et  al., 2011). The Spanish SF-6D value set derived in

Abellán-Perpiñán et al. (2011) uses the same database as in this

paper. The novelty of that value set is  that has a  minimum (a  floor)

which is significantly lower than those estimated in previous stud-

ies, making the range of SF-6D values more similar to the EQ-5D

scores range.
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3.2. Selection of health states and their valuation

Because of the descriptive richness of the SF-6D system, it is

impossible to value all possible permutations of each dimension.

Hence, a subset of health states has to be identified in order to esti-

mate additive or multiplicative specifications. A  total of 78 health

states were selected. Forty-nine were chosen by using the same

orthogonal design employed by  Brazier et al. (2002) in order to

identify the minimum sample of health states required to estimate

an additive function. Twenty-nine additional states were included

in  order to account for more complex specifications.

A  lottery equivalence method (McCord and  de  Neufville, 1986)

was chosen for the valuation of the health states. Such meth-

ods compare two risky prospects or lotteries in such a way that

the potential overvaluation of the sure outcome in comparison

to a risky prospect (the well-known certainty effect reported by

Kahneman and Tversky, 1979) leading to biased SG measurements

(very high utilities reflecting extreme risk aversion attitude) is  pre-

sumably avoided or, at least, minimized.

Specifically our method asks the respondents to state the proba-

bility p* that made them indifferent between prospect (FH, p, Death)

and  prospect (FH,  0.5, h), where FH  stands for full health and h

stands for the health state to be valued. Abellán-Perpiñán et al.

(2011),  after discussing other possible reasons, concluded that the

wider range of their SF-6D value set was mainly due to the usage of

this (probability) lottery equivalent method. Both theoretical and

empirical arguments supporting this finding are provided in their

paper.

The procedure used to search for indifference was  based on a

multiple sequence of choices, in such a  way that the interval of

values from which the indifference probability would be finally

selected became narrower as the respondent made a new choice.

Initially, p was fixed as 0.5 to know if the respondent considered

that  the health state was better or worse than death. If  for that

initial probability the respondent preferred the first lottery (FH, p,

Death), then the health state h was regarded as worse than death,

so  the indifference probability should be lower than 0.5. On the

contrary, if the respondent preferred the second lottery (FH, 0.5, h)

then h was regarded as better than death and p∗ should be higher

than 0.5.

Utility scores were calculated under expected utility from the

indifference values stated by the respondents as U(h) =  2p  * −  1,

assuming the conventions of U(FH) =  1 and U(Death) = 0. Utility

scores calculated in such a  way range from −1 to 1.

3.3.  The valuation survey

The total sample was divided into 17 subsamples (n  =  60 each)

retaining representativeness with respect to age and sex, in such a

way  that each of the 17 groups of respondents valued a  different

subset of five health states. This between-subject design allowed

us to obtain a higher number of valuations per health state than

Brazier et al. (2002),  in whose study each health state was  only

valued an average of 15 times.

The survey consisted of a  computer assisted questionnaire. All

the  interviews were run on notebook computers. Responses were

collected in personal interview sessions. Average time per inter-

view was about 20 min.

Before valuating the health states, a brief explanation of the SF-

6D classification system was presented to the respondents who

were then asked to rate the five SF-6D health states (anonymously

labeled as V, W, X, Y, Z)  by means of a  visual analogue scale.

The main section of the interview consisted in the valuation of

those five health states with the lottery equivalence method previ-

ously described. In the final part of the questionnaire information

Table 1
Characteristics of sample respondents and Spanish population.

Sample Populationa

Female 50.0 52.05

Age 43.60 (16.64) 46.97 (19.04)

MarStat1 59.84 63.59

MarStat2 6.53  11.25

Mid-educ 34.54 17.56

High-educ 31.02 20.55

Children (presence) 48.80 25.64

Children (number) 1.82  (0.66) 1.41  (0.63)

Income2 28.31 17.39

Income3 29.82 21.76

Income4 18.98 11.47

Smoke2 16.57 9.19

Smoke3 8.63  13.52

Smoke4 1.71 4.74

Own2 10.44 22.25

Own3 1.20 10.72

N  4980 11,515

Notes: The table reports percentages for discrete variables and means and standard

errors (in brackets) for continuous variables.
a The statistics are calculated using the Spanish sample of the  European Commu-

nity Household Panel for the year  2001.

about both health status and socioeconomic characteristics (sex,

age, studies, income level, etc.) was collected. Three instruments

were used to ask the respondents how healthy they felt: the EQ-

5D  self-report questionnaire, the SF-36 questionnaire and a visual

scale similar to that presented previously for the valuation of the

hypothetical states. Table 1  provides descriptive statistics of the

sociodemographic variables used in the analysis.

4.  Estimation results

We first analyze the results of implementing the standard

approach and provide some evidence on the valuation effect of the

respondents’ characteristics. Then, we compare the parametric and

the semi-parametric estimates of ˇ.

4.1. The standard approach

In  Table 2 we present OLS and RE estimates of  ̌ coming

from the “main effects” model (columns 1 and 2)  and from

an  expanded regression model that additively incorporates the

respondents’ characteristics that were collected in the survey

(columns 3  and 4). In all cases, the Ramsey RESET and Jarque–Bera

tests reject the null hypothesis that the model is correctly spec-

ified and that the estimation residuals are normally distributed,

respectively.

Let  us first comment on the estimates of ˇ. As is  commonly

found in most applications of the standard approach, the OLS and

RE  estimates are quite close in magnitude to each other. No clear

direction of  change in the magnitude of  the estimated  ̌ is  observed

when taking into account that a  respondent values several health

states, that is, when moving from the OLS to the RE estimates. In

fact, the only qualitative differences between the OLS and the RE

estimates concentrate on mild departures from full health in the

“physical functioning” and “pain” dimensions. The coefficient asso-

ciated with these variables is only found to be significantly different

from zero in the RE estimates.

There are no inconsistencies in the estimated  ̌ and both the OLS

and RE estimates indicate that being limited in the kind of work or

other  activities as a result of physical health (RL2) has no signif-

icant effect on health state valuations. An inconsistency occurs if

the coefficient estimated for Zkw is not strictly higher than that for
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Table 2
Standard approach estimates.

Main effects model Expanded model

OLS RE OLS RE

c 1.000 1.000 1.000 1.000

PF2 −0.015 −0.025** −0.016 −0.025**

PF3 −0.034*** −0.056*** −0.031*** −0.054***

PF4 −0.090*** −0.120*** −0.088*** −0.118***

PF5 −0.111*** −0.107*** −0.103*** −0.106***

PF6 −0.338*** −0.335*** −0.332*** −0.333***

RL2 −0.014 0.007 −0.014 0.005

RL3 −0.038*** −0.045*** −0.041*** −0.046***

RL4 −0.070*** −0.088*** −0.078*** −0.091***

SF2 −0.037*** −0.071*** −0.036*** −0.070***

SF3 −0.060*** −0.078*** −0.063*** −0.079***

SF4 −0.203*** −0.194*** −0.203*** −0.194***

SF5 −0.208*** −0.239*** −0.210*** −0.240***

PAIN2 −0.018 −0.044*** −0.016 −0.043***

PAIN3 −0.034*** −0.047*** −0.033*** −0.048***

PAIN4 −0.198*** −0.172*** −0.202*** −0.174***

PAIN5 −0.202*** −0.230*** −0.208*** −0.232***

PAIN6 −0.318*** −0.343*** −0.318*** −0.342***

MH2  −0.066*** −0.026*** −0.064*** −0.025***

MH3  −0.078*** −0.050*** −0.080*** −0.050***

MH4 −0.096*** −0.072*** −0.096*** −0.073***

MH5  −0.224*** −0.196*** −0.226*** −0.197***

VIT2 −0.058*** −0.043*** −0.055*** −0.042***

VIT3 −0.121*** −0.093*** −0.120*** −0.094***

VIT4 −0.157*** −0.158*** −0.154*** −0.155***

VIT5 −0.199*** −0.181*** −0.197*** −0.180***

Female 0.015** 0.015

Age −0.003*** −0.003**

Age squared 0.003*** 0.003**

MarStat1 0.059*** 0.063***

MarStat2 −0.014 −0.018

Mid-educ 0.003 −0.002

High-educ −0.020** −0.022

Childrena −0.010** −0.010*

Income2 0.021** 0.025*

Income3 0.036*** 0.039**

Income4 0.055*** 0.051***

Smoke2 −0.001 −0.011

Smoke3 0.026** 0.030

Smoke4 −0.047* −0.054

Own2 0.007 0.011

Own3 0.038 0.041

Adj. R2 0.850 0.855 0.856 0.861

Ramsey’s resetb 0.000 0.000 0.000 0.000

Jarque–Berab 0.000 0.000 0.000 0.000

N 4990 4990 4980 4980

a Number of children in  the household.
b We report p-values for the null hypothesis that the model has no omitted variables (Ramsey’s Reset) and that the errors are normally distributed (Jarque-Bera).
* Significance at the 10% level.

** Significance at the 5% level.
*** Significance at the 1% level.

Zkw′ , for w′ > w.  However, there are two exceptions to this con-

sistency rule in the SF-6D. Firstly, levels 5  and 6  of the “physical

functioning” dimension (“your health limits you a  little/a lot in

bathing and dressing”) do not necessarily imply a  poorer condi-

tion  than that of levels 3  or  4 (“your health limits you a little/a lot

in  moderate activities”). In  a  similar way, level 3 of the “role limi-

tations” dimension (“you accomplish less than you would like as a

result of emotional problems”) does not reveal a  worse health con-

dition than that described in level 2  (“you are limited in the kind of

work or other activities as a result of emotional problems”).

Estimates in columns 3 and 4 show that health state values are

correlated with some of the respondents’ characteristics even after

adjusting for differences in the severity of the health states being

valued. In particular, valuations are significantly affected by the

respondent’s age and marital status and by other household level

characteristics like household income and the number of children

at  home.14 According to RE estimates, health state valuations are

primarily affected by the respondent’s age and marital status and

by the level of income he enjoys at home.

The estimated non-linear effect of age implies that valuations

increase slowly from the age of 18 to about the age of 47, fall slowly

up to about 70 and then fall sharply in later years. This means that

a  20 year old individual gives about the same value than an other-

wise equivalent 70 year old individual. This non-linear association

between the age of the respondent and health state values was also

found in Dolan and  Roberts (2002) and Kharroubi et al. (2007a) for

the  United Kingdom Time Trade-Off and Standard Gamble valua-

tions  of the EQ-5D and SF-6D, respectively. In particular, Dolan and

14 The significant OLS estimates obtained for the  sex and educational level of the

respondent are not confirmed by the RE  estimates.
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Roberts (2002) also find that the age that maximizes valuations is

about 45 years. In contrast, the corresponding age in Kharroubi et

al.  (2007a) is between 60 and  65 years.

The estimates in Table 2  indicate that there is a  positive, mono-

tonic and quantitatively relevant correlation between household

income and health state valuations. The values of respondents

whose household income is  between 2000 and 3000 euros per

month are, on average, 0.040 higher than those of respondents

whose household income is  below 1500 euros per month. That dif-

ference amounts to 0.053 if  we compare the latter group to those

whose total household income is above 3000 euros per month.

The positive association between household income and health

state values can be interpreted in the light of the results in Lubetkin

et al. (2005).  They find a  positive and relevant association between

personal income and health-related quality of life in a  large sam-

ple of the United States general population using the EQ-5D. That

is,  ceteris paribus and on average terms, high-income people enjoy

better health than low-income people and, thus, we  hypothesize

that they are more likely to assign a low chance to the event of a

bad  health outcome when it is presented to them. Moreover, even

if  respondents judge the likelihood of  the valued health states inde-

pendently of their disposable income, the negative consequences of

the  realization of a bad health outcome are likely to be very differ-

ent for low- and high-income individuals. The  positive coefficient

estimated for household income in Table 2 is  compatible with the

hypothesis that respondents value health states according to the

utility losses that they expect should that health state be realized.

The estimates in Dolan and Roberts (2002) confirm the presence

of  systematic differences in the valuations of married and single

respondents. However, while we find that the valuations of mar-

ried  or cohabiting people are, on average, 0.067 higher than the

valuations of single people, they find that the average valuation of

the latter collective is  0.006 higher than that of the former one.

Regarding children, Kharroubi et al. (2007a) find no significant

association between the presence of children aged under 16 years

in  the household and the respondents’ valuations. We  obtain the

same result when we control for whether there is  a child aged under

12 years in the household or  not.15 However, when we allow for the

presence and number of children in the household we  obtain a  neg-

ative and significant association between the number of children

at  home and the respondent’s valuations.

Although existing studies disagree on the sign and magnitude

of  the effect of some personal characteristics, they provide robust

evidence on the relevance of accounting for personal characteristics

when estimating preference-based value functions.16

4.2. The IPW approach

The first two columns of Table 3  present IPW1 and IPW2 esti-

mates of  ̌ calculated using the set of personal characteristics

in Table 2. The external sample necessary to obtain IPW2 esti-

mates  comes from the Spanish sample of the European Community

Household Panel for the year 2001, the latest available year. To

facilitate the comparison, the RE main effects model estimates in

Table 2 are displayed in column 3. We  take these numbers as being

representative of the standard approach estimates since, as shown

in  Table 2, they are numerically equivalent to the OLS estimates and

15 These estimates are available upon request to  the authors.
16 It is beyond the scope of this paper to explain these discrepancies. They might

totally or partially be the  result of differences in the  elicitation methods, specifi-

cations and estimation methods used or they might simply reflect cross-country

differences in the distribution of personal characteristics or in the effect of those

characteristics.

to those coming from more complex specifications that also con-

trol for personal characteristics. The semi-parametric estimates in

columns 4 and 5 are calculated by restricting the elements of X to

the respondents’ sex and age groups and, finally, in the last column

we use corrective weights to adjust the RE main effects model esti-

mates to the sex and age group distributions of the Spanish adult

population, as is  frequently done to ensure the representativeness

of the standard model estimates.

There are relevant differences between the IPW2 and RE esti-

mates of  ̌ in columns 2 and  3. While just one out of the 25

regression estimates is non-significantly different from zero, the

semi-parametric estimates indicate five non-significant estimates.

According to these estimates, being slightly limited in vigorous

activities (PF2), being limited in social activities most of the time

(SF3),  having pain that interferes with normal work a  little (PAIN3)

and  feeling tense or downhearted most of the time (MH4) has no

significant effect. The same holds for being limited in the kind of

work or other activities as a  result of physical health (RL2) according

to both the standard and the semi-parametric estimates. Condi-

tioning on the estimated coefficients being significantly different

from zero in both approaches, the semi-parametric estimates are

higher in absolute value in 16 out of 20 coefficients and the dif-

ference between the IPW2 and the RE estimates is of much larger

magnitude in those cases. On average, while the IPW2 estimates

are 61% higher than the RE ones for the 16 coefficients for which

the IPW2 estimates are larger in absolute value, the RE estimates

are just 12% higher than the corresponding IPW2  estimates for the

remaining 4 coefficients. That is, the IPW approach provides lower

valuation impacts of departures from full health than the standard

approach does.

One of the reasons why  the standard and the IPW esti-

mates differ are the different estimation samples used by the

two approaches. In particular, while regression models use their

functional form to extrapolate and overcome lack of overlap in

the covariate distributions between treatment groups, the IPW

approach uses the common support condition to obtain estimates

that are not sensitive to the choice of specification. As previously

discussed, the common support condition implies dropping units

with extreme values of the propensity score. In practice, instead of

using ad hoc methods for trimming the sample we  follow Crump

et  al. (2009) and discard observations with estimated propensity

score outside an interval [˛, 1 − ˛], where the optimal cut-off value

˛ is  determined by the marginal distribution of the propensity

score. This results in relevant precision gains. In particular, we

calculate optimal cut-off values for each of  the propensity scores

involved in each semi-parametric estimate. In most cases the opti-

mal  value is  close to 0.1.17 The main cost of the approach developed

in  Crump et al. (2009) is  that potentially some external validity is

lost  by focusing on a  subset of the original sample. This cost is  min-

imized in our case since the IPW2  estimator changes the sample

distribution of X  to that in the population of interest and, thus, it

removes sample selection biases based on personal characteristics

in  X.  Moreover, we have analyzed the stability of the estimates of

ˇ  for different values of ˛. The estimates, available upon request to

the authors, are stable and increase their precision as  ̨ gets closer

to  its optimal value.18

Next, differences between the IPW1  and IPW2  estimates in

columns 1 and 2  indicate that the distribution of personal

17 Crump et al. (2009) find that most of the precision gains are captured by using a

rule of thumb to  discard observations with the estimated propensity score outside

the range [0.1, 0.9].
18 We  reach to  the same conclusion for the multiple specifications of the  propensity

score that have been used in order to  improve its balancing power.
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Table 3
Standard and semi-parametric estimates of ˇ.

IPW1 IPW2 RE IPW1a IPW2a REb

c 1.000 1.000 1.000 1.000 1.000 1.000

PF2 −0.030 −0.011 −0.025** −0.026 −0.028 −0.026***

PF3 −0.050** −0.062* −0.056*** −0.060** −0.063*** −0.057***

PF4 −0.138*** −0.162*** −0.120*** −0.156*** −0.158*** −0.121***

PF5 −0.145*** −0.149*** −0.107*** −0.148*** −0.152*** −0.110***

PF6 −0.392*** −0.451*** −0.335*** −0.396*** −0.398*** −0.334***

RL2 −0.022 −0.027 0.007 −0.027 −0.028 0.009

RL3 −0.029** −0.044** −0.045*** −0.041* −0.040* −0.043***

RL4 −0.125*** −0.134*** −0.088*** −0.117*** −0.116*** −0.088***

SF2 −0.043* −0.051* −0.071*** −0.033* −0.035* −0.074***

SF3 −0.022 0.007 −0.078*** −0.030 −0.030 −0.080***

SF4 −0.162*** −0.157*** −0.194*** −0.162*** −0.165*** −0.197***

SF5 −0.221*** −0.219*** −0.239*** −0.233*** −0.232*** −0.238***

PAIN2 −0.054** −0.074** −0.044*** −0.059** −0.062** −0.045***

PAIN3 −0.058** −0.029 −0.047*** −0.081*** −0.078*** −0.042***

PAIN4 −0.194*** −0.209*** −0.172*** −0.193*** −0.194*** −0.172***

PAIN5 −0.247*** −0.274*** −0.230*** −0.244*** −0.244*** −0.228***

PAIN6 −0.320*** −0.326*** −0.343*** −0.300*** −0.303*** −0.343***

MH2  −0.073*** −0.063** −0.026*** −0.102*** −0.103*** −0.024***

MH3  −0.128*** −0.136*** −0.050*** −0.171*** −0.172*** −0.051***

MH4  −0.056* −0.019 −0.072*** −0.062* −0.064** −0.072***

MH5 −0.169*** −0.176*** −0.196*** −0.171*** −0.170*** −0.195***

VIT2 −0.077*** −0.090*** −0.043*** −0.088*** −0.089*** −0.043***

VIT3 −0.162*** −0.165*** −0.093*** −0.189*** −0.185*** −0.089***

VIT4 −0.219*** −0.220*** −0.158*** −0.223*** −0.220*** −0.160***

VIT5 −0.232*** −0.247*** −0.181*** −0.230*** −0.234*** −0.178***

a The elements of X are restricted to  the respondents’ sex and age group.
b We use corrective weights to adjust to  the sex and age groups distribution in  the  Spanish sample of the ECHP for 2001.
* Significance at the 10% level.

** Significance at the 5% level.
*** Significance at the 1% level.

characteristics in the sample significantly differs from that in the

Spanish adult population. These differences are of lower magnitude

than those found when comparing the RE  to the IPW2  estimates.

In  most cases the IPW2 estimate exceed the corresponding IPW1

one. On average, the estimate of ˇkw increases by 13% in absolute

value when using the distributions of personal characteristics in the

Spanish adult population instead of those in the estimation sample.

The finding that adjusting to the population distribution of

the covariates results in relevant variations in the magnitude

of the semi-parametric estimates contrasts with the evidence in

Kharroubi et al. (2007a) and Dolan and Roberts (2002).  These arti-

cles find that the standard model estimates are almost invariant

to the inclusion of corrective weights that adjust to the age inter-

val and sex distributions in the population. In fact, we reach the

same conclusion when comparing the unweighted RE estimates

in column 3 to those in column 4  where we use corrective weights

defined over the respondents’ sex and age groups. Interestingly, the

semi-parametric estimates also lead to the same result once the ele-

ments of X are restricted to the respondents’ sex and age groups.

As  shown in columns 4 and 5,  the IPW1  and IPW2 estimates of

ˇkw obtained using the restricted set of personal characteristics are

almost identical for any k and  any w.  Moreover, the restricted semi-

parametric estimates are close in magnitude to the IPW1  estimates

in column 1 but they differ substantially from the IPW2  estimates

in column 2, where we adjust for the population distribution in

the whole list of personal characteristics in Table 2.  This suggests

that  adjusting to the population distributions of  a reduced set of

discretely measured personal characteristics is not enough to guar-

antee the population validity of the estimates. The propensity score

seems far more effective in removing sample selection biases.

The estimation of the propensity score ps(x) allows us to for-

mally test for sample selection biases, that is, to identify the

characteristics whose sample distribution differs from that in the

Spanish adult population. A  significant coefficient in the estimation

of the discrete choice model for the propensity score indicates that

the distribution of the corresponding characteristic is  not balanced

between the population and the sample. As an illustrative exam-

ple, in Table 4 we present the results of estimating a  logit model

for  the propensity score ps(x) in the estimation of the coefficient

associated to dimension “personal functioning” in its second level

of severity (PF2). We find that the sample distribution of any char-

acteristic but the respondents’ sex significantly differs from that in

the  Spanish adult population. This finding that there are relevant

compositional differences between the sample and the population

Table 4
Logit estimation of propensity score ps(x) for the coefficient associated to level of

severity 2  in dimension “personal functioning”.

Variable Coefficient

Constant −2.708***

Female −0.038

Age 0.052***

Age sq. −0.013

Marstat1 −1.626***

Marstat2 −1.620***

Mid-educ 0.870***

High-educ 0.375***

Children a 1.074***

Income2 1.235***

Income3 0.952***

Income4 1.131***

Smoke1 0.461***

Smoke2 −0.884***

Smoke3 −1.629***

Own2 −0.804***

Own3 −1.950***

Psedo R2 0.236

N 13,509

a Number of children in the  household.
*** Significance at the  1% level.
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Table 5
Standard and semi-parametric consistent estimates.

IPW2 RE

c 1.000 1.000

PF2 −0.011 −0.025**

PF3 −0.062* −0.056***

PF4 −0.162*** −0.120***

PF5 −0.149*** −0.107***

PF6 −0.451*** −0.335***

RL2 −0.027 0.007

RL3 −0.044** −0.045***

RL4 −0.134*** −0.088***

SF2 −0.051* −0.071***

SF3 −0.078***

SF4 −0.194***

SF34a −0.090***

SF5 −0.219*** −0.239***

PAIN2 −0.074** −0.044***

PAIN3 −0.047***

PAIN4 −0.172***

PAIN34b −0.100***

PAIN5 −0.274*** −0.230***

PAIN6 −0.326*** −0.343***

MH2  −0.063** −0.026***

MH3 −0.136*** −0.050***

MH4  −0.072***

MH5  −0.196***

MH45c −0.138***

VIT2 −0.090*** −0.043***

VIT3 −0.165*** −0.093***

VIT4 −0.220*** −0.158***

VIT5 −0.247*** −0.181***

a Dummy indicator variable that equals one if the “social functioning” dimension

reaches levels of severity 3 or  4, and zero otherwise.
b Dummy indicator variable that equals one if the “pain” dimension reaches levels

of severity 3 or 4, and zero otherwise.
c Dummy indicator variable that equals one if the “mental health” dimension

reaches levels of severity 4 or  5, and zero otherwise.
* Significance at the  10% level.

** Significance at the  5% level.
*** Significance at the  1% level.

of interest is common to the estimation of  ps(x) for any of the IPW2

estimates in Table 3.19

Following Brazier and Roberts (2004),  we  estimate a  IPW2

parsimonious consistent model by aggregating levels of a given

dimension when inconsistencies are found, that is, when the coef-

ficient estimated for Zkw is  not higher than that estimated for Zkw′ ,
for  w′ > w. Bearing in mind the previously discussed exceptions

to  this rule, we find three inconsistencies. The  estimate for PAIN2

is larger in absolute value than that for PAIN3, the coefficient for

MH4  is smaller in absolute value than that associated to MH3 and,

finally, the estimate for SF3  is  not significantly different from zero,

while those for SF2  and SF4 are lower than zero. As opposed to the

standard model, the IPW approach does not  require the estima-

tion  of the full vector  ̌ once an inconsistency is detected. The RE

model estimates are included for comparability purposes, since no

inconsistencies are found in these estimates.

The consistent estimates presented in Table 5 allow us to

estimate values for the 18,000 health states defined by the

SF-6D classification system. The  resulting RE and IPW2  esti-

mated tariffs are summarized in Table 6 and their densities are

depicted in Fig. 1.  As expected given the preceding discussion, the

semi-parametrically estimated values tend to be significantly

lower than those predicted using the standard regression model.

These discrepancies are observed in any of the distributional

19 These estimates and also those for the first step estimate of the  propensity score

pkw(x) are available upon request to the  authors.

Table 6
RE and IPW2 tariffs. Summary statistics of the values predicted for the 18,000 health

states defined by the  SF-6D.

IPW2  RE

Mean 0.354 0.440

S.D. 0.249 0.212

Minimum −0.553 −0.382

Percentiles

10 0.021 0.156

25 0.192 0.299

50  0.368 0.452

75 0.532 0.594

90  0.667 0.708

Negative values (%) 8.82 2.53

moments and they tend to be higher the lower is the predicted util-

ity of a health state, that is, the higher is  its severity. The difference

between the zth percentile of the RE and IPW2 distributions of val-

ues lowers from 0.135 for z =  10 to 0.041 for z =  90. In relative terms,

the 10th and 90th percentiles of the IPW2 distribution are 86.5 and

5.8% higher than the corresponding percentiles of the RE distribu-

tion. A  similar picture emerges when looking at the proportion of

predicted negative values. While only 2.5% of the values predicted

on the basis of the standard approach estimates are lower then

zero, the corresponding number for the semi-parametric values is

3.5 times higher. In  particular, almost 9% of the semi-parametric

values are strictly lower than zero. The densities of the predicted

tariffs in Fig. 1  confirm that the standard approach underestimates

the utility loss that the Spanish adult population gives to devia-

tions from full health, particularly so when dealing with severe

deviations.

The IPW and the standard models cannot be directly compared

in  terms of their predictive ability since they use different estima-

tion samples. While the regression model uses its  functional form

to work off the common support when estimating ˇkw,  the IPW

model restricts the sample to respondents valuing levels of sever-

ity 1 and w in dimension k whose estimated propensity score is

not  close to zero or  one. To get a feeling about the predictive ability

of  the models, we  restrict the sample to respondents not excluded

in  the semi-parametric estimation of none of the coefficients used

to predict the value of a  particular health state. We find that the

predictive performance of the models is  similar with a  root mean

squared error of 0.139 for the RE model, 0.167 for the IPW2  consis-

tent model and  0.137 for the IPW1 model associated to the IPW2

consistent model. The IPW1 model is  included for comparability

0
.5

1
1.
5

2

-.5 0 .5 1

RE IPW2

Fig. 1.  A comparison of the RE  and IPW2 tariffs’ predicted values. Note: The graph

presents the  densities of the  values predicted for the 18,000 health states defined

by  the SF-6D using the RE  and IPW2 consistent estimates in Table 5.



1290 I. Méndez et al.  / Journal of Health Economics 30 (2011) 1280– 1292

purposes, since the IPW2  model imposes the distribution of char-

acteristics in an external sample and, thus, it is  expected to perform

poorer in terms of within sample predictive ability. The  associated

IPW1  model performs slightly better than the RE model.

5.  Conclusions

This paper presents a novel approach to model health state

valuations using inverse probability weighting (IPW) techniques

with important advantages over the standard regression model.

Our approach makes no assumption on the distribution of health

state values, accommodates covariates in a  flexible way, eschews

parametric assumptions on the relationship between the outcome

and the regressors, allows for the valuation impact of departures

from full health to be heterogeneous in personal characteristics

and in the severity of departures in other dimensions of health.

Additionally, unlike the standard approach, our approach produces

population valid estimates even if  the estimation sample is not

representative for that population with regard to many discrete

and  continuously measured variables. The proposed estimators are

semi-parametrically estimated and we also derive its  large sample

properties.

The standard model estimates are likely to be very sensitive

to  differences in the covariate distributions of respondents valu-

ing different health states since it applies regression models that

use extrapolation to deal with limited support in the distribution

of the covariates. In contrast, our approach calls for selecting the

health states for which direct valuations are obtained for identifica-

tion  not to rest on extrapolation. That will be the case in the main

effects model if there is common support in the level of severity

of  the remaining dimensions of health between respondents valu-

ing health states with a departure from full health in a  particular

dimension and those valuing health states with full health in that

dimension.

We illustrate our approach with the SF-6D descriptive system.

The results indicate that the standard and the semi-parametric esti-

mates differ to a great extent, with the utility loss of a  departure

from full health being higher in most cases when estimated using

our approach. In fact, when the estimated coefficients are used to

predict utilities for the 18,000 health states defined in the SF-6D

we find that the standard approach systematically underestimates

the  valuation impact of departures from full health and that the

magnitude of the underestimation increases with the severity of

the  health state at examination.

Moreover, we also find evidence that the standard approach

fails  in its goal of producing population valid estimates by intro-

ducing corrective weights that adjust to the sex and age intervals

distribution in the population of interest. We  consider continuous

generalizations of the corrective weights that easily overcome their

limitations and allow us to test  and correct for sample selection

biases.

The IPW approach is  easier to implement and interpret than

the  nonparametric Bayesian approach in Kharroubi et al. (2007b).

In particular, and contrary to the nonparametric estimator, our

approach provides the user with a  table of estimated coefficients

that defines the estimated preference function, which results in

efficiency and transparency gains.

Finally, the IPW approach is  suitable for application to any of

the  existing multi-attribute descriptive systems. In  particular, it

would be of interest to semi-parametrically estimate the EQ-5D

value sets, since this is the most widely used instrument for the

description and valuation of health states. With reference to this,

it  should be stressed the importance of the common support con-

dition in the selection of the health states valued in the sample.

If we  look at the studies which have derived the EQ-5D tariffs for

the  United Kingdom, Spain, the Netherlands and Japan, we con-

clude  that this overlap requirement in the levels of  severity of  the

dimensions of health is  met  in six out of the 10 estimated coeffi-

cients in the case of  the UK (Dolan, 1997) and Spain (Badia et al.,

2001) estimations, whereas the condition is satisfied in just one out

of  10 estimated coefficients in the Dutch (Lamers et al., 2006) and

Japanese (Tsuchiya et al.,  2002) tariffs. Consequently, the validity

of the Dutch and Japanese estimates rests on whether the corre-

sponding regression models were correctly specified or not. That

is, the Dutch and  Japanese tariffs are less likely to be robust to the

misspecification of the regression model than those in Dolan (1997)

and Badia et al. (2001).
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Appendix A. Asymptotic properties

We  derive the asymptotic properties of ̂̌
kw,IPW2 and  present

those of ̂̌kw,IPW1 as a  particular case. The subscript IPW2 is dropped

out to reduce the notation. The properties of ̂̌
kw are derived by

viewing it as an M-estimator, that is, as the solution to a set  of esti-

mating equations.20 In  particular, ̂̌kw is one element of the vector

�̂ that solves the vector equation∑n

i=1
 (Wi, �̂) = 0

where Wi = [Yi,  Zk′w′ ,  Xi], for k′ /=  k  and w′ = 2, 3, . .  . , Wk′ and

� = [ı, � ,  ˇkw]. The vector equation   has three equations and can

be written as∑n

i=1
 1(Wi, �) =

∑n

i=1

Dsi − psi(Xi,  ı)

psi(Xi, ı)[1 − psi(Xi, ı)]

∂psi(Xi, ı)

∂ı
= 0

∑n

i=1
 2(Wi, �) =

∑n

i=1

Zkwi − pkwi(Hi, �)

pkwi(Hi,  �)[1 − pkwi(Hi,  �)]

∂pkwi(Hi, �)

∂�
= 0

∑n

i=1
 3(Wi, �) =

∑n

i=1

{
A(1)

ZkwiYi
p̂kwip̂si

− A(0)
(1 − Zkwi)Yi
(1  − p̂kwi )̂psi

− ˇkw

}
= 0

where psi =  psi(Xi,  ı),  pkwi =  pkwi(Hi,  �), p̂kwi =  (Hi, �̂), p̂si = (Xi, ı̂),
A(t)  = N(

∑n
i=1

(Zt
kwi

(1  −  Zkwi)
1−t)/(̂pt

kwi
(1 − p̂kwi)1−t p̂si))

−1 for t  ={
0, 1

}
and N is  the total number of individuals in the estimation

sample. The solutions to equations  1

(
Wi,  �

)
and  2

(
Wi,  �

)
are

the  maximum likelihood estimates of ı and � ,  the coefficients of

the binary response models used to estimate the propensity scores

ps and pkw,  respectively. We estimate the propensity scores using

the  logistic regression model, where p(Q, ϕ) =  {1 + exp (− QTϕ)}−1.

The  solution to equation  3(Wi, �) is  the coefficient of interest.

By  standard results on  M-estimation, under the true parameter

value �

√
n(̂� − �) −→ N(0, A(�)−1B(�){A(�)−1}T )

20 Stefanski and Boos (2002) provide an excellent review of the theory of M-

estimation. Additionally, Lunceford and Davidian (2004) derive the asymptotic

properties of the IPW1 estimator.
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where

A(�) = E[− ̃(W, �)]

with  ̃(W, �) = ∂ (W,  �)/∂�T and

B(�) = E[ (W, �) (W,  �)T ]

To estimate the asymptotic variance use

Â = 1

n

∑n

i=1
− ∂ (Wi, �̂)

∂�T

B̂ = 1

n

∑n

i=1
 (Wi, �̂) (Wi, �̂)T

where the derivative of    can be calculated as

∂ (W, �)

∂�T
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂ 1(W, �)

∂ıT
∂ 1(W, �)

∂�T
∂ 1(W, �)

∂ˇT
kw

∂ 2(W, �)

∂ıT
∂ 2(W, �)

∂�T
∂ 2(W, �)

∂ˇT
kw

∂ 3(W, �)

∂ıT
∂ 3(W, �)

∂�T
∂ 3(W, �)

∂ˇT
kw

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where

A11i =
∂ 1(W,  �)

∂ıT
=  − 1

psi(1 − psi)
PıP

T
ı

A12i =
∂ 1(W,  �)

∂�T
=  A13i =

∂ 1(W,  �)

∂ˇT
kw

= 0

A21i =
∂ 2(W,  �)

∂ıT
=  A23i =

∂ 2(W,  �)

∂ˇT
kw

= 0

A22i =
∂ 2(W,  �)

∂�T
=  − 1

pkwi(1 − pkwi)
P�P

T
�

A31i =
∂ 3(W,  �)

∂ıT
=  −

[
DsiDkwiY

∗
i

pkwipsi2
− DsiDkwiY

∗
i

(1 − pkwi)psi2

]
Pı

A32i =
∂ 3(W,  �)

∂�T
=  −

[
DsiDkwiY

∗
i

p2
kwi
psi

+ DsiDkwiY
∗
i

(1 − pkwi)
2psi

]
P�

A33i =
∂ 3(W,  �)

∂ˇT
kw

=  −1

where Pı = ∂/∂  ı{psi}, P� =  ∂/∂  �{pkwi} and Y∗
i

= DkwiA(1)Yi +  (1 −
Dkwi)A(0)Yi. Equivalently, the elements of B  are calculated as

B11i =  1(Wi, �) 1(Wi,  �)
T = 1

psi(1 − psi)
PıP

T
ı

B12i =  1(Wi, �) 2(Wi,  �)
T = 0

B13i =  1(Wi, �) 3(Wi,  �)
T =

[
DsiDkwiY∗

i

pkwipsi2
− DsiDkwiY∗

i

(1 − pkwi)psi2

]
Pı

B21i =  2(Wi, �) 1(Wi,  �)
T = 0

B22i =  2(Wi, �) 2(Wi,  �)
T = 1

pkwi(1  − pkwi)
P�P

T
�

B23i =  2(Wi, �) 3(Wi,  �)
T =

[
DsiDkwiY∗

i

p2
kwi
psi

+ Dsi(1  − Dkwi)Y∗
i

(1 − pkwi)
2psi

]
P�

B31i =  3(Wi, �) 1(Wi,  �)
T = BT

13i

B32i =  3(Wi, �) 2(Wi,  �)
T = BT

23i

B33i =  3(Wi, �) 3(Wi,  �)
T =

(
DsiDkwiY∗

i

pkwipsi
− Dsi(1 − Dkwi)Y∗

i

(1 − pkwi)psi
− ˇkw

)2

Finally, it can be shown that the large-sample variance of ˇkw is

V(ˇkw) =  A−1
33

(B33 −  BT23B
−1
22
B23 −  BT13B

−1
11
B13)(A−1

33
)T

The expression of the large-sample variance of ˇkw in the case

where �  and ı are known is A−1
33
B33(A−1

33
)T .  The additional two

terms  in the parenthesis are the adjustment in the large-sample

variance of the effect of interest coming from the first step esti-

mation of the two propensity scores. Interestingly, it  results that

estimation of the propensity scores leads to smaller large-sample

variance for these IPWestimators than using the true values. That is,

as  Lunceford and Davidian (2004) point out, even if  the functional

form of the propensity score is  known exactly, it is  beneficial from

an  efficiency viewpoint to estimate it. Hirano et al. (2003) explain

this  result in the context of  the Generalized Method of Moments

and  the Empirical Likelihood estimators.

The expression for the variance of the IPW1 estimator includes

only the first two terms in the parenthesis in the latter expression,

where B23 and B33 are now calculated as the sample average of

the following expressions evaluated at the estimated value of the

elements of �

B23i =
[
DkwiY

∗
i

p2
kwi

+ (1 −  Dkwi)Y
∗
i

(1  −  pkwi)
2

]
P�

B33i =
(
DkwiY

∗
i

pkwi
− (1  − Dkwi)Y

∗
i

(1  − pkwi)
− ˇkw,IPW1

)2

Appendix B. Variable definitions and sources

The variables for the Spanish population are constructed using

the Spanish sample of the European Community Household Panel

(ECHP) for the year 2001, the latest available year, provided by

Eurostat. In the empirical analysis we control for the sex and age

(in years) of the respondent, whether he is  married or cohabit-

ing (MarStat1) or  separated, divorced or widow (MarStat2) and

whether the respondent has attained a  secondary level of  edu-

cation (Mid-educ) or  an university degree (High-educ). We  also

classify respondents according to whether their monthly total

household income is  below 1500 euros, between 1500 and 2000

euros (Income2), between 2000 and 3000 euros (Income3) or  above

3000 euros (Income4). Regarding their smoking behaviour, we

distinguish between non-smokers and  respondents who  actually

smoke less than 10 cigarettes per day (Smoke2), between 10 and 20

cigarettes (Smoke3) and more than 20 cigarettes per day (Smoke4).

Additionally, we  construct two  dummy  variables that indicate if  the

respondent thinks that his general health is fair (Own2) or  bad/very

bad  (Own3). The remaining categories in the answer to the question

of  how is your health in general are good and very good. We  control

for the number of children in the household. However, while the

variable constructed using ECHP data refers to children under the

age of 16 years, the corresponding variable from the collected data

refers to children aged under the age of 12.
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