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Abstract

The computation of the topology of a real algebraic plane curve is greatly simplified if there
are no more than one critical point in each vertical line: the general position condition. When this
condition is not satisfied, then a finite number of changes of coordinates will move the initial curve
to one in general position. We will show many cases where the topology of the considered curve
around a critical point is very easy to compute even if the curve is not in general position. This
will be achieved by introducing a new family of formulae describing, in many cases and through
subresultants, the multiple roots of a univariate polynomial as rational functions of the considered
polynomial involving at most one square root.

This new approach will be used to show that the topology of cubics, quartics and quintics can
be computed easily even if the curve is not in general position and to characterise those higher
degree curves where this approach can be used. We will apply also this technique to determine the
intersection curve of two quadrics and to study how to characterise the type of the curve arising
when intersecting two ellipsoids.

Introduction

The problem of computing the topology of a real algebraic plane curve defined implicitly has received
special attention from both Computer Aided Geometric Design and Symbolic Computation, indepen-
dently. For the Computer Aided Geometric Design community, this problem is a basic subproblem
appearing often in practice when dealing with intersection problems. For the Symbolic Computation
community, on the other hand, this problem has been the motivation for many achievements in the
study of subresultants, symbolic real root counting, infinitesimal computations, etc. By a comparison
between the seminal papers and the more renewed works, one can see how the theoretical and practical
complexities of the algorithms dealing with this problem have been dramatically improved (see for
example [3] and [12]).

The computation of the topology of a real algebraic plane curve is greatly simplified if there are no
more than one critical point in each vertical line: the general position condition. When this condition
is not satisfied, then a finite number of changes of coordinates will move the initial curve to one in
general position. We will show here many cases where the topology of the considered curve around a
critical point is very easy to compute even if the curve is not in general position. This will be achieved
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by introducing a new family of formulae describing, in many cases and through subresultants, the
multiple roots of a univariate polynomial as rational functions of the considered polynomial involving
at most one square root.

This paper is divided into five sections. The first two sections introduce the general position
condition when computing the topology of a real algebraic plane curve and subresultants together
with some tools to use when solving the real root counting problem. Third section introduces formulae
describing the real multiple roots of an univariate polynomial in terms of their coefficients (typically
rational functions involving in the worst case a square root). Forth section show how to deal with
the computation of the branches around a critical point when we have an easy to deal with algebraic
description: this is the alternative we propose instead of using the “general condition” (in those cases
where the strategy presented here works). Fifth section introduces an application.

1 Computing the topology of P (x, y) = 0: why general position?

The characterizacion of the topology of a curve CP presented by the equation P (x, y) = 0 follows a
sweeping strategy usually based on the location of the critical points of P with respect to y (ie those
singular points or points with a vertical tangent) and on the study of the half-branches of Cf around
these points since, for any other point of CP , there will be only one half-branch to the left and one
hal-fbranch to the right.

Definition 1. Let P (x, y) ∈ R[x, y],

CP = {(α, β) ∈ R2 : P (α, β) = 0}

the real algebraic plane curve defined by P and α ∈ R.

• A point (α, β) ∈ C2 is called a critical point of CP if

P (α, β) =
∂P

∂y
(α, β) = 0.

• A critical point is said to be singular if

∂P

∂x
(α, β) = 0.

• A point (α, β) ∈ R2 is a regular point of CP if P (α, β) = 0 and it is not a critical point.

Non singular critical points are called ramification points.

The usual strategy to compute the topology of a real algebraic plane curve C defined implicitly by
a polynomial P (x, y) ∈ R[x, y] proceeds in the following way:

1. Compute the discriminant of P with respect to y, D(x) and its real roots, α1 < α2 < . . . < αr:
the x–coordinates of the critical points of CP .

2. For every αi, compute the real roots of P (αi, y), βi,1 < . . . < βi,si and determining which βi,j
are regular points and which βi,j are critical points. Each x = αi is called a critical line.

3. For every αi and every βi,j , compute the number of half-branches to the right and to the left of
each point (αi, βi,j).
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First two steps provide the vertices of a graph that will represent the topology of the considered
curve. Figure 1 shows how all this information will allow us to determine the topology of the cutcurve
once all these points have been determined (for details see [1, 8]). This graph is very helpful when
tracing the curve numerically, since we will know exactly how to proceed when coming closer to a
complicated point.

Figure 1: Critical points: red. Regular points in the critical lines: blue. Branches: violet. Critical
points projection: green.

First step starts with the computation of the discriminant R(x) of P with respect to y by any
available method (a determinant computation, subresultants, etc.) and typically of its squarefree part

D(x) =
R(x)

gcd(R(x), R′(x))
.

This step ends with the computation of the real roots of D(x).
In the second step, in order to avoid the numerical problems arising from the computation of

the multiple roots of every P (αi, y), a linear change of coordinates might simplify this and further
computations. Such change of coordinates puts the curve in a desirable position which is known as
the “general position” (see [5, 8]).

Definition 2. Let P ∈ R[x, y] be a squarefree polynomial. The real algebraic plane curve defined by P ,
CP , is in general position if the following two conditions are satisfied:

1. The leading coefficient of P with respect to y (which is a polynomial in R[x]) has no real roots.

2. For every α ∈ R the number of critical points in the vertical line x = α is 0 or 1.

Two are the main advantages of having the curve in general position (see [5, 8]):

1. It is possible to compute rational functions rαi(x) ∈ R(x) such that for each critical point
(αi, βi) we have βi = rαi(αi). This allows also to symbolically construct a squarefree polynomial
gi(αi, y), from every P (αi, y) (i.e., by symbolically dividing P (αi, y) by a convenient power of
y − rαi(α)i) whose real roots need to be computed too.

2. The edges of the topological graph representing CP around each critical point (αi, βi) can be
obtained using a straightforward combinatorial reasoning.

If the curve is not in general position we can apply the linear change of coordinates and restart the
process with the new polynomial. After a finite number of such transformations the general position
of the curve is guaranteed. Notice that these changes of coordinates do not modify the topology of
the curve and they can be undone at the end.
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Third step is accomplished by computing the number of real roots of the squarefree polynomials
P (γi, y) (i ∈ {1, 2, . . . , r+1}) with γ1 = −∞, γr+1 =∞, and for 2 ≤ i ≤ r, γi being any real number in
the open interval (αi−1, αi). When CP is in general position this implies that, to the right of x = αi−1,
all halfbranches start from (αi, βi) except one halfbranch starting from each regular point of CP in the
vertical line x = αi−1 (same thing happens to the left of x = αi).

2 GCD and Real Root counting through subresultants

Subresultants will be the algebraic tool to use to determine in a very easy and compact way the
greatest common divisor of two univariate polynomials or the number of different real roots of an
univariate polynomial when they involve parameters or algebraic numbers as coefficients.

Definition 3. Let

P (T ) =

p∑
i=0

aiT
i and Q(T ) =

q∑
i=0

biT
i

be two polynomials with coefficients in a field with p ≥ q and j ∈ {0, 1, . . . , q − 1}. Denoting

δk = (−1)
k(k+1)

2

for every integer k, we define the j–th subresultant polynomial of P and Q with respect to T in the
following way (as in [13]):

Sresj(P,Q) = (−1)jδp−j−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ap ap−1 ap−2 . . . . . . a0
. . .

. . .
. . .

. . .

ap ap−1 ap−2 . . . . . . a0
bq bq−1 bq−2 . . . . . . . . . b0

. . .
. . .

. . .
. . .

bq bq−1 bq−2 . . . . . . . . . b0
1 −T

. . .
. . .

1 −T

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

 q − j

 p− j j

and we define the j–th subresultant coefficient of P and Q with respect to T , sresj(P,Q), as the
coefficient of T j in Sresj(P,Q). The resultant of P and Q with respect to T is:

Resultant(P,Q) = Sres0(P,Q) = sres0(P,Q) .

There are many different ways of defining and computing subresultants: see [1, 13] and [9] for a
short introduction and for a pointer to several references. The use of only one sequence of subresultants
for dealing with the gcd and the real root counting problems motivates the “unusual” introduction
of the sign (−1)jδp−j−1 in the previous definition. In this way we avoid to use subresultants for
gcd computations and signed subresultants or the Sturm–Habicht sequence for solving the real root
counting problem.

Subresultants allow to characterize easily the degree of the greatest common divisor of two uni-
variate polynomials whose coefficients depend on one or several parameters. Since the resultant of P
and Q is equal to the polynomial sres0(P,Q):

sres0(P,Q) = 0 if and only if there exists T0 such that P (T0) = 0 and Q(T0) = 0. (1)

4



More generally, the determinants sresj(P,Q), which are the formal leading coefficients of the subre-
sultant sequence for P and Q, can be used to compute the greatest common divisor of P and Q thanks
to the following equivalence:

Sresi(P,Q) = gcd(P,Q) ⇐⇒

{
sres0(P,Q) = . . . = sresi−1(P,Q) = 0

sresi(P,Q) 6= 0
(2)

Sresi(P,Q) = gcd(P,Q) ⇐⇒

{
s0(P,Q) = . . . = si−1(P,Q) = 0

si(P,Q) 6= 0
(3)

The use of subresultants for solving the real root counting problem was introduced in [6] following
the seminal works of W. Habicht (see [10]). Proofs of the results described here can be found in
[1, 6, 7]. Next definition introduces the subresultant sequence associated to P as the subresultant
sequence for P and P ′, the main tool we will use to count the number of different real roots of a
univariate polynomial.

Definition 4.
Let P be a polynomial in R[T ] with p = deg(P ). We define the subresultant sequence of P as
Sresp(P ) = P , Sresp−1(P ) = P ′ and for every j ∈ {0, . . . , p− 2}:

Sresj(P ) = Sresj(P, P
′).

For every j in {0, . . . , p} the principal j–th subresultant coefficient of P is defined as:

sresj(P ) = coefj(Sresj(P ))

It is important to quote here that the discriminant of P is equal to the polynomial sres0(P ) modulo
the leading coefficient, ap, of P :

sres0(P ) = apdiscriminant(P ).

Sign counting on the principal subresultant coefficients provides the number of different real roots
of the considered polynomial. Next definitions show which are the sign counting functions to be used
in the sequel (see [6, 7]).

Definition 5.
Let I = {a0, a1, . . . , an} be a list of non zero elements in R.

• V(I) is defined as the number of sign variations in the list {a0, a1, . . . , an},

• P(I) is defined as the number of sign permanences in the list {a0, a1, . . . , an}.

Definition 6.
Let a0, a1, . . . , an be elements in R with a0 6= 0 and with the following distribution of zeros:

I = {a0, a1, . . . , an} =

= {a0, . . . , ai1 ,
k1︷ ︸︸ ︷

0, . . . , 0, ai1+k1+1, . . . , ai2 ,

k2︷ ︸︸ ︷
0, . . . , 0, ai2+k2+1, , ai3 , 0, . . . . , 0, ait−1+kt−1+1, . . . , ait ,

kt︷ ︸︸ ︷
0, . . . , 0}
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where all the ai’s that have been written are not 0. Defining i0 + k0 + 1 = 0 and:

C(I) =

t∑
s=1

(
P({ais−1+ks−1+1, . . . , ais})−V({ais−1+ks−1+1, . . . , ais})

)
+

t−1∑
s=1

εis

where:

εis =

 0 if ks is odd

(−1)
ks
2 sign

(
ais+ks+1

ais

)
if ks is even

Next the relation between the number of real zeros of a polynomial P ∈ R[x] and the polynomials
in the subresultant sequence of P is presented. Its proof can be found in [6, 7].

Theorem 7.
If P is a polynomial in R[T ] with p = deg(P ) then:

C({sresp(P ), . . . , sres0(P )}) = #{α ∈ R : P (α) = 0}.

The number of different real roots of P is determined exactly by the signs of the last p − 1
determinants sresi(P ) (being the first two ones lcof(P ) and p lcof(P ) with lcof(P ) denoting the
leading coefficient of P ). If all sresj(P ) are different from 0 then the number of different real roots of
P agrees with the difference between the number of sign agreements and the number of sign changes
in the list of principal subresultant coefficients of P . It is easy to recognise here that, in this case,
this is the same than the difference between the number of sign changes in {Sresj(P )(−∞)}j=0,1,...,p

and the number of sign changes in {Sresj(P )(+∞)}j=0,1,...,p (in the same way than when using Sturm
sequences).

The definition of the polynomials in the subresultant sequence of P through determinants allows
to perform computations dealing with real roots in a generic way: if P is a polynomial with param-
eters or algebraic numbers as coefficients whose degree does not change after specialisation then the
subresultant sequence for P can be computed without specialising the parameters and the result is
always good after specialisation (modulo the condition over the degree of P ). This is not true when
using Sturm sequences (the computation of the euclidean remainders makes to appear denominators
which can vanish after specialisation) or negative polynomial remainder sequences (even fixing the
degree of P , the sequence has not always the same number of elements: see [6, 14] for a more detailed
explanation).

Notation 8.
If P is a polynomial in R[T ] with p = deg(P ) and 0 ≤ k ≤ p−2 then the coefficients of the subresultant
of P of index k will be denoted in the following way:

Sresk(P )
def
= sk(P )T k + sk,k−1(P )T k−1 + . . .+ sk,1(P )T + sk,0(P ) .

This definition is extended to indexes p and p− 1 by introducing:

Sresp(P )
def
= P Sresp−1(P )

def
= P ′

When the context shows clearly who P is, we will write sk and sk,j instead of sk(P ) and sk,j(P ).

The results presented in this section will be mainly applied to a polynomial P (α, y) where α is a
real algebraic number.
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3 Multiple real roots of univariate polynomials through subresul-
tants

We introduce here formulas describing the real multiple roots of an univariate polynomial in terms of
their coefficients. This will be always possible for degrees 2, 3, 4 and 5 and in most cases for degrees 6
and 7. It will be also characterised when this will be possible in the general case. Recently, in [11], the
multiplicity structure of an univariate polynomial has been characterised in terms of its coefficients.

The main aim of deriving these formulae is to use them to describe de y-coordinates of the points
on a critical line of a real algebraic plane curve defined implicitely.

Cases 2 and 3 are not considered here since they are very easy to analyse.

3.1 deg(P ) = 4

If a4 6= 0 then the polynomial in R[x]

P (T ) = a4T
4 + a3T

3 + a2T
2 + a1T + a0

factors, when there are multiple roots, only in the following five ways:

1. P (T ) = a4(T − β)4 with β ∈ R.

2. P (T ) = a4(T − β)3(T − γ) with β, γ ∈ R and β 6= γ.

3. P (T ) = a4(T − β)2(T − γ)2 with β, γ ∈ R and β 6= γ.

4. P (T ) = a4(T − γ)2(T − γ)2 with γ ∈ C− R.

5. P (T ) = a4(T − β)2(T − γ1)(T − γ2) with γ1 6= γ2 (if γ1 ∈ C− R then γ2 = γ1 ∈ C− R).

Polynomials si = si(P ) and si,j = si,j(P ) will characterise each possibility in the following way
(according to (3)):

1. If s0 = s1 = s2 = 0 then

gcd
(
P, P ′

)
= P ′ = Sres3(P ), P (T ) = a4(y − β)4 and β = −s3,2

3s3
= − a3

4a4
.

2. If s0 = s1 = 0, s2 6= 0 and s22,1 − 4s2s2,0 = 0 then

gcd
(
P, P ′

)
= Sres2(P ), P (T ) = a4(T − β)3(T − γ),

with β, γ ∈ R, β 6= γ and

β = −s2,1
2s2

, T − γ =
P (T )

a4(T − β)3
and γ =

a0
a4β3

when β 6= 0. If β = 0 then γ = a3/a4 with a3 6= 0.

3. If s0 = s1 = 0, s2 6= 0 and s22,1 − 4s2s2,0 > 0 then

gcd
(
P, P ′

)
= Sres2(P ), P (T ) = a4(T − β1)2(T − β2)2

with β1, β2 ∈ R and

β1, β2 =
−s2,1 ±

√
s22,1 − 4s2s2,0

2s2
.
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4. If s0 = s1 = 0, s2 6= 0 and s22,1 − 4s2s2,0 < 0 then

gcd
(
P, P ′

)
= Sres2(P ), P (T ) = a4(T − γ)2(T − γ)2

with γ ∈ C− R.

5. If s0 = 0 and s1 6= 0 then

gcd
(
P, P ′

)
= Sres1(P ), P (T ) = a4(T − β)2(T − γ1)(T − γ2),

with γ1 6= γ2 (if γ1 ∈ C− R then γ2 = γ ∈ C− R) and

β = −s1,0
s1

and (T − γ1)(T − γ2) =
P (T )

a4(T − β)2
.

In all cases we have characterized the real roots, simple or multiple, of any degree 4 polynomials with
multiple roots as explicit functions of the coefficients of P , a0, a1, a2, a3 and a4. These functions are
either rational functions in the ai’s or the square root of a polynomial in the ai’s known to be strictly
positive.

3.2 deg(P ) = 5

If a5 6= 0 then the polynomial in R[x]

P (T ) = a5T
5 + a4T

4 + a3T
3 + a2T

2 + a1T + a0

factors, when there are multiple roots, only in the following five ways:

1. P (T ) = a5(T − β)5 with β ∈ R.

2. P (T ) = a5(T − β)4(T − γ) with β, γ ∈ R.

3. P (T ) = a5(T − β)3(T − γ)2 with β, γ ∈ R.

4. P (T ) = a5(T − β)3(T − γ1)(T − γ2) with β, γ1, γ2 ∈ R and γ1 6= γ2.

5. P (T ) = a5(T − β)3(T − γ)(T − γ) with with β ∈ R and γ ∈ C− R.

6. P (T ) = a5(T − β)2(T − γ1)2(T − γ2) with γ1 6= γ2 and β, γi ∈ R.

7. P (T ) = a5(T − β)2(T − γ1)(T − γ2)(T − γ3) with γ1 6= γ2 6= γ3 and β, γi ∈ R.

8. P (T ) = a5(T − β)2(T − γ1)(T − γ2)(T − γ2) with β, γ1 ∈ R and γ2 ∈ C− R.

9. P (T ) = a5(T − β)(T − γ)2(T − γ)2 with β ∈ R and γ ∈ C− R.

We define τ0(T ) = P (T ) and, for k ≥ 1:

τk(T ) = gcd(τk−1, τ
′
k−1).

Polynomials si(P ) will characterize each possibility for the greatest common divisor of P and P ′,
τ1(P ), in the following way (according to (3)):
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1. If s0(P ) = s1(P ) = s2(P ) = 0 and s3(P ) = 0 then τ1(T ) = P ′ = Sres4(P ),

P (T ) = a5(T − β)5 and β = −s4,3(P )

4s4(P )
= − a4

5a5
.

2. If s0(P ) = s1(P ) = s2(P ) = 0 and s3(P ) 6= 0 then τ1(T ) = Sres3(P ). The only possible cases
are:

(a) P (T ) = a5(T − β)4(T − γ) with β, γ ∈ R and β 6= γ.

(b) P (T ) = a4(T − β)3(T − γ)2 with β, γ ∈ R and β 6= γ.

3. If s0(P ) = s1(P ) = 0 and s2(P ) 6= 0 then τ1(T ) = Sres2(P ). The only possible cases are:

(a) P (T ) = a5(T − β)3(T − γ1)(T − γ2) with β, γ1, γ2 ∈ R and β 6= γ1 6= γ2.

(b) P (T ) = a5(T − β)3(T − γ)(T − γ) with β ∈ R and γ ∈ C− R.

(c) P (T ) = a5(T − β)2(T − γ1)2(T − γ2) with β, γ1, γ2 ∈ R and β 6= γ1 6= γ2.

(d) P (T ) = a5(T − β)(T − γ)2(T − γ)2 with β ∈ R and γ ∈ C− R.

4. If s0(P ) = 0, s1(P ) 6= 0 then τ1(T ) = Sres1(P ). The only possible cases are:

(a) P (T ) = a5(T − β)2(T − γ1)(T − γ2)(T − γ3) with β, γ1, γ2, γ3 ∈ R and β 6= γ1 6= γ2 6= γ3.

(b) P (T ) = a5(T − β)2(T − γ1)(T − γ2)(T − γ2) with β, γ1 ∈ R and γ2 ∈ C− R.

In order to separate cases 2(a) and 2(b), we start noting that τ1(T ) = Sres3(τ0). In case 2(a) we
have

τ1(T ) = s3(τ0)(T − β)3

and in case 2(b) we have
τ1(T ) = s3(τ0)(T − β)2(T − γ).

Subresultants s0(τ1) and s1(τ1) separate these two cases:

• if s0(τ1) = s1(τ1) = 0 then τ1(T ) = s3(τ0)(T − β)3 and P (T ) = a5(T − β)4(T − γ).

• if s0(τ1) = 0 and s1(τ1) 6= 0 then τ1(T ) = s3(τ0)(T −β)2(T −γ) and P (T ) = a5(T −β)3(T −γ)2.

In case 2(a) we have

β = −s3,2(τ0)
3s3(τ0)

= −s3,2(P )

3s3(P )
, T − γ =

τ0(T )

a5(T − β)4
=

P (T )

a5(T − β)4
and γ = − a0

a5β4
.

And, in case 2(b), we have
τ2(T ) = Sres1(τ1) = s1(τ1)(T − β)

and

β = −s1,1(τ1)
s1(τ1)

, T − γ =
τ1(T )

s3(τ0)(T − β)2
and γ = − s3,0(P )

s3(P )β2
.

Cases 3(a), 3(b), 3(c) and 3(d) are separated by the degree of τ2(T ) and the signs of a5, s3(P ) and
s2(P ) in the following way:
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• Case 3(a): deg(τ2(T )) = 1 and C({a5, 5a5, s3(P ), s2(P ), 0, 0}) = 3.

• Case 3(b): deg(τ2(T )) = 1 and C({a5, 5a5, s3(P ), s2(P ), 0, 0}) = 1.

• Case 3(c): deg(τ2(T )) = 0 and C({a5, 5a5, s3(P ), s2(P ), 0, 0}) = 3.

• Case 3(d): deg(τ2(T )) = 0 and C({a5, 5a5, s3(P ), s2(P ), 0, 0}) = 1.

Cases 3(a) and 3(c) requiere a5, s3(P ) and s2(P ) to have the same sign. Formulae for β and the other
real roots of P (T ) for these four cases follow:

• Case 3(a):

β = −s2,1(τ0)
2s1(τ0)

= −s1,1(τ1)
s1(τ1)

and (T − γ1)(T − γ2) =
P (T )

a5(T − β)3
.

• Case 3(b):

β = −s2,1(τ0)
2s1(τ0)

= −s1,1(τ1)
s1(τ1)

and (T − γ)(T − γ) =
P (T )

a5(T − β)3
.

• Case 3(c):

(T − β)(T − γ1) =
τ1(T )

s2(P )
, T − γ2 =

s2(P )2P (T )

a5τ1(T )2
and γ2 =

s2(P )2a0
a5s3,0(P )2

.

• Case 3(d):

T − β =
P (T )

a5(Sres2(P ))2
and β = − a0

a5s22,0
.

In both cases 4(a) and 4(b), we have

β = −s1,1(P )

s1(P )

and they are separated by analysing the signs of a5, s3(P ), s2(P ) and s1(P ):

• Case 4(a): C({a5, 5a5, s3(P ), s2(P ), s1(P ), 0}) = 4.

• Case 4(b): C({a5, 5a5, s3(P ), s2(P ), s1(P ), 0}) = 2.

In case 4(a) we have

(T − γ1)(T − γ2)(T − γ3) =
P (T )

a5(T − β)2

and in case 4(b) we have

(T − γ1)(T − γ2)(T − γ2) =
P (T )

a5(T − β)2
.

Both polynomials have no multiple roots and we know that they have exactly three and one different
real roots respectively.

In all cases we have characterized the multiple real roots of any degree 5 polynomial with multiple
roots as explicit functions of its coefficients. These functions are either rational functions in those co-
efficients or rational functions involving the square root of a polynomial, in those coefficients known to
be strictly positive. Simple real roots of these polynomials (with multiple roots) are also characterized
in the same way with the exception of cases 4(a) and 4(b) where these real roots (0 or 3) come from
a cubic equation (without multiple roots).
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3.3 deg(P ) = 6 or deg(P ) = 7

When the degree of P is 6 or 7, not in all cases we can describe the multiple real roots as rational
functions of the coefficients of P , or rational functions involving the square root of a polynomial in
those coefficients known to be strictly positive, like before. The unique cases where the strategy
followed for degrees 4 and 5 fails are the following:

• deg(P ) = 6:

– P (T ) = a6(T − γ1)2(T − γ2)2(T − γ3)2 with γ1, γ2, γ3 ∈ R and γ1 6= γ2 6= γ3.

– P (T ) = a6(T − γ1)2(T − γ2)2(T − γ2)2 with γ1 ∈ R and γ2 ∈ C− R.

• deg(P ) = 7:

– P (T ) = a7(T −γ1)2(T −γ2)2(T −γ3)2(T −γ3) with γ1, γ2, γ3, γ4 ∈ R and γ1 6= γ2 6= γ3 6= γ4.

– P (T ) = a7(T − γ1)2(T − γ2)(T − γ3)2(T − γ3)2 with γ1, γ2 ∈ R, γ1 6= γ2 and γ3 ∈ C− R.

In all remaining cases, we can proceed like before concerning multiple real roots. In all cases, we
can compute a polynomial without multiple roots whose real roots are the simple real roots of the
considered polynomial.

3.4 deg(P ) = n

The analysis presented for degrees 4, 5, 6 and 7 can be generalized as presented in the next theorem.

Theorem 9. Let P (T ) be a polynomial in R[T ] factorizing in the following way:

P (T ) =

r∏
i=1

(T − βi)mi

r+s∏
i=r+1

((T − γi)(T − γi))mi

t∏
k=1

(T − δk)
t+q∏

k=t+1

(T − φk)(T − φk) =

n∑
`=0

a`T
`

with mi > 1 and βi, δk ∈ R and γi, φk ∈ C− R (all of them different). Then:

1. If there are no repetitions in m1,m2, . . . ,mr+s, then every βi can be described explicitly like a
rational function of the a`’s.

2. If the repeated elements in m1,m2, . . . ,mr appear at most twice and every mi, 1 ≤ i ≤ r, does not
appear in mr+1,mr+2, . . . ,mr+s then every βi can be described explicitly like a rational function
of the a`’s involving in some cases the square root of a polynomial in the a`’s known to be strictly
positive.

Proof. Without loss of generality, we assume m1 ≥ m2 ≥ . . . ≥ mr and mr+1 ≥ mr+2 ≥ . . . ≥ mr+s.
We proceed like in the case deg(P ) = 5 by defining τ0(T ) = P (T ) and, for k ≥ 1:

τk(T ) = gcd(τk−1, τ
′
k−1).

If there are no repetitions in m1,m2, . . . ,mr+s and m1 > mr+1, then deg(τm1−1(T )) = 1 and β1 is
the unique root of τm1−1(T ). If m1 < mr+1, then deg(τm1−1(T )) = 2 and γ1 and γ1 are the roots of
τm1−1(T ). Since τ1(T ) is one of the subresultants of P , τ2(T ) is one of the subresultants of τ1(T ), and
so on, we can conclude that the coefficients of τm1−1(T ) are polynomials in the a`’s and that β1 can
be described explicitly like a rational function of the a`’s. The first part follows either after removing
(τm1−1(T ))m1 from P (T ) and repeating the same process.
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When τk(T ) is computed, we know the subresultants of τj(T ), 0 ≤ j ≤ k − 1 so that we can
shorten this process once we know that the number of different real roots of τk(T ) is equal to 1 or 0:
in the first case we continue until the corresponding τk(T ) has only one real root and no imaginary
roots (this happens when τk+1(T ) has no real roots and this information is provided directly by the
subresultants producing τk+1(T )); in the second case we eliminate (τk(T ))k+1 from P (T ) since we are
only interested in the real roots of P (T ).

If the repeated elements in m1,m2, . . . ,mr appear at most twice and every mi, 1 ≤ i ≤ r, does not
appear in mr+1,mr+2, . . . ,mr+s, then we proceed like in the previous case. The only difference appears
when dealing with β1 and β2 such that m = m1 = m2 > mj : in this case we stop when computing
the 2 degree polynomial τm−1(T ), whose roots are β1 and β2. When the biggest multiplicity appears
in the “complex” side, then we proceed in the same way until we reach τk(T ) with no real roots: in
this case, again, we eliminate (τk(T ))k+1 from P (T ), since we are only interested in the real roots of
P (T ).

Remark 10.
The proof of the previous theorem can be done in a more direct way by using the squarefree decom-
position of P (T ). The included proof provides the algorithm producing the desired description for the
multiple real roots of P (T ) and the polynomial without multiple roots whose real roots are the simple
real roots of P (T ).

4 Avoiding general position: branch computations around critical
points

In order to analyse the topology of CP when there are only one critical point in a critical line it is
very easy to determine how many half-branches there are to the left and to the right of the considered
critical point. When there are more than one critical point the situation becomes more complicated
but having an explicit and easy to manipulate description of the considered critical point allows to
determine the required information about the half-branches.

If (α, β) ∈ R2 is a singular point of CP then

P (α, β) =
∂P

∂y
(α, β) =

∂P

∂x
(α, β) = 0.

4.1 Ramification points of CP
Recall that (α, β) ∈ R2 is a critical and non singular point of CP when P (α, β) = Py(α, β) = 0 and
Px(α, β) 6= 0. Applying the Implicit Function Theorem this means that around (α, β) the curve CP
can be described as a function x = Φ(y) such that α = Φ(β). Since

Φ′(β) = −Py(α, β)

Px(α, β)
= 0

we have three possibilities, since y = β can be:

• a local minimun of Φ: 2 half-branches to the right of (α, β), 0 to the left; or

• a local maximun of Φ: 0 half-branches to the right of (α, β), 2 to the left; or

• an inflection point of Φ: 1 half-branch to the right of (α, β) and 1 to the left.
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Characterising the behaviour of the function x = Φ(y) at y = β requires to evaluate the derivatives
Pyy(α, β), Pyyy(α, β), Pyyyy(α, β), . . . until one of them does not vanishes since: if Φ(1)(β) = Φ(2)(β) =
· · · = Φ(k−1)(β) = 0, Φ(k)(β) 6= 0, then (applying recursively implicit differentiation to P (Φ(y), y) =
0), we have that Φ(k)(β)Px(α, β) = −P

y
k···y

(α, β) and we can apply the higher order derivative test to

determine whether the point is a local maximum, a local minimum, or a flex.

4.2 Singular points of CP : degy(P ) = 4

Due to the low degree of the curve, the only ambiguity that can arise happens when there are two
double roots β1 < β2 of the polynomial P (α, y). Otherwise it is locally general position for the critical
line x = α. Since we work with a quartic, we have, at most 4 branches to each of the sides of our
critical line. Since we have found two double roots for P (α, y), we know that the coefficient of y4

must be nonzero. We’ll suppose it is 1 for simplicity. Moreover, since P is defined over the reals, the
number of real branches to each side of the critical line must be even.

If we have four branches to join with the singular points to one of the sides, then it must be two
for each due to multiplicity. If there are no real branches to one of the sides, we have no work to do
for such branch.

Finally, the tricky case is when we have just two branches to join. These two branches must go to
the same point, since the other critical point must attract two conjugate complex branches. First of
all, we consider Qi(s, t) = P (s+α, t+βi). Then the behavior of (0, 0) as a point for Qi is the same as
the behavior of (α, βi) for P . Factoring the lowest homogeneous component of Qi we have the slopes
of the (at most two) tangent lines to CP at (α, βi). Then:

• If one of the point has all slopes to be complex non real, it is an isolated point, so the other
takes the branches.

• If one of the points has two different real slopes, it takes the two arcs, since it is a real node.

In the case that there is just one slope for the tangent lines to the curve at the critical points, we
will consider the cubic curve given by Py(x, y) = 0. The polynomial Py(α, y) vanishes in β1, β2 and an
intermediate point γ ∈ (β1, β2) since it is the derivative of P (α, y). This means that there are three
real branches of CPy through the vertical line x = α. Due to the low degree, the only posibility is what
happens in Figure 2 or the symmetric case, and the relative position of the branches of CP and CPy

determines how to join the half branches.

4.3 Singular points of CP : degy(P ) = 5

We now consider degyP = 5. The nontrivial cases here are:

• P (α, y) has two double roots.

• P (α, y) has a triple root and a double root.

We will address each case separately, but first we consider, as before, that P is monic on y (and
degy(P ) = 5, otherwise, we proceed as in lower degree). Then, reasoning in a similar way, we see that
the number of real branches between critical lines must be 1, 3 or 5.
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CP
CPy

Figure 2: To the left, the real branches of CP go to the below critical point because two branches of
CPy are above them both. To the right, we have the complementary situation.

4.3.1 P (α, y) has two double roots.

This case can be treated as in the case of degree 4. We have two critical points that take either two
or no branches each, and one single point that wil take one.

If we have 5 branches to distribute, each critical point takes two and the non-critical point takes
one. We distribute the branches to avoid crossings outside the critical line.

If we have just one branch, the non-critical point takes it.
If we have three branches, one goes to the noncritical point and the other two are assigned either

checking whether the tangent lines are real and different at the singularities, or considering the curve
CPy and reasoning as in the degree 4 case:

• If there are at least two branches of CPy above at least two of the three branches of CP , then the
critical point below takes two branches.

• Otherwise, the critical point above takes two branches.

4.3.2 P (α, y) has a triple root and a double root.

Here, the triple critical point takes 1 or three branches, and the double one takes two or none.
If there are five branches to distribute, three go to the critical point corresponding to the triple

root, and two go to the critical point corresponding to the double root.
If there is just one branch, the critical point corresponding to the triple root takes it.
If there are three branches, we again check the slopes of the tangent lines:

• If one of the critical points has two complex non-real slopes, the other one takes the until now
unassigned branches.

• If one of the critical points has (at least) two real slopes, it takes the until now unassigned
branches.

If we do not have enough data, then we consider again CPy . It has one real branch through the double
point, one real branch passing between the critical points and two possibly non-real branches passing
through the triple point.
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• If CPy has just two real branches, the double point takes the until now unassigned branches.

• If two of the four real branches of CPy lie above the three branches of CP , the below critical point
takes the until now unassigned branches.

• Otherwise, the above critical point takes the until now unassigned branches.

It is impossible that the three branches of CP lie between the four branches of CPy with this configu-
ration at the critical line.

4.4 Singular points of CP : the general case

We can generalise what we have got with the slopes of the tangent lines at critical points for general
degree. It is well known that a tangent line to a curve at a singular point (α, β) corresponds to a
branch through it. Therefore, if the lowest degree homogeneous component h(s, t) of P (s+α, t+β) is
square free and not a multiple of s, each linear factor of h(s, t) in R[s, t] corresponds to a real branch
through the point, and each quadratic factor corresponds to two conjugate non-real branches. This
solves the problem for general singularities without vertical tangents.

5 Characterising the intersection curve between two ellipsoids

Given two ellipsoids A : XAXT = 0 and B : XBXT = 0, X = (x, y, z, 1), their characteristic
equation (or polynomial) is defined as

f(λ) = det(λA+B) = det(A)λ4 + . . .+ det(B)

which is a quartic polynomial in λ with real coefficients. The characterization of the relative position
of two ellipsoids in terms of the sign of the real roots of their characteristic equation was introduced
by [17].

Theorem 11.
Let A and B be two ellipsoids with the characteristic equation f(λ). Then:

1. The characteristic equation f(λ) always has at least two negative roots.

2. A and B are separated if and only if f(λ) has two distinct positive roots.

3. A and B touch each other externally if and only if f(λ) has a positive double root.

With this theorem, we can decide the basic relative positions, i.e., separation, externally touching
and overlapping, of two ellipsoids by the real root pattern of the characteristic polynomial of the
quadric pencil formed by these two ellipsoids However, the root pattern of the characteristic polynomial
is not enough to characterize the arrangement of two ellipsoids.

A more in-depth algebraic characterization using the so-called index sequence was introduced in
[15] to classify the morphology of the intersection curve of two quadratic surfaces in the the 3D
real projective space. The index sequence of a quadric pencil not only includes the root pattern
of the characteristic polynomial, but also involves the Jordan form associated to each root and the
information between two consecutive roots. The index sequence requires to define the index function
of a quadric pencil.

The behaviour of the index function for a pencil of ellipsoids is captured by the eigenvalue curve S
defined by the equation S(λ, µ) = det(λA+B−µI4) = 0 . S has degree four in both λ and µ. Because
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λA + B is a real symmetric matrix for each λ ∈ R, there are in total four real roots for S(λ, µ) = 0,
counting multiplicities. For each value λ0, the index function Id(λ0) equals to the number of positive
real roots of S(λ0, µ) = 0.

Since S(λ, µ) = 0 is a very special quartic curve (there are always four real branches (taking into
account multiplicities) its analysis is extremely simple. If λ = α is a critical line then S(α, µ) factorizes
in the following way:

1. S(α, µ) = τ4(y − β)4.

2. S(α, µ) = τ4(y − β)3(y − γ) with γ ∈ R.

3. S(α, µ) = τ4(y − β)2(y − γ)2 with γ ∈ R.

4. S(α, µ) = τ4(y − β)2(y − γ1)(y − γ2) with γ1 6= γ2.

In 3.1 we can find formulae showing, in terms of α, the values of β, γ, γ1 and γ2 allowing to
determine easily Id(α). Computing Id(λ) for λ not giving a critical line reduce to apply Descartes’
law of signs (see Remark 2.38 in [1]) to the polynomial S(λ, µ) as polynomial in µ. The way the four
branches touch every critical line is easily determined by using the techniques described in 4.2.

6 Conclusions

In this paper we have introduced a family of formulae describing the multiple roots of a univariate
polynomial equation like rational functions of the coefficients of the considered polynomial. These
formulae have been used to try to avoid the use of the “general position condition” when computing
the topology of a real algebraic plane curve defined implicitly. A concrete application has been also
described and next step will be to design a new algorithm computing the topology of an arrangement
of quartics and quintics by using the formuale and strategy introduced here.
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