Anadlisis Matematico Aplicado 1. Master en Matematicas

HOJA 3: Transformada de Fourier. Aplicaciones a EDPs

1. Decaimiento de soluciones de la ecuacion del calor.

Sea u(t,r) = Wy f(z), (t,x) € (0,00) x R%, la solucién formal de la ecuacién del calor con dato inicial
f € LP(R%), 1 < p < co. Demostrar

a) Decaimiento en t:
d
llu(t, )loo < cpllfllpt 2, para todot > 0.

b) Decaimiento en |z|: para cada T1 > Ty > 0 se tiene

lim wu(t,z) — 0, uniformemente en ¢ € [Ty, T1].
|z|—o00

¢) En b) prueba que de hecho la convergencia es uniforme en ¢ € [T, 00)?

Sugerencia: En a) usar Holder. En b) usar Holder y TCD. En c¢) usar a) y b).

2. La ecuacion de Laplace en el semiespacio superior.

Sea u(z,y) = f * Py(z), (z,y) € R? x (0,00), la solucién formal de la ecuacién de Laplace, donde

f € LP(R?) es el dato de frontera, y P, es el niicleo de Poisson. Demostrar
a) [u( )l < cllfllpy~ 47, para todo y > 0.

b) Si f € UC N L=(R?), entonces

lim u(z,y) = f(zo),
. (@,y) = f(zo)

¢) Propiedad de semigrupo: — u(xz,y1 + y2) = [Pyl sk u(-, yg)] (x), wy1,y2 > 0.
3. Regularidad C' de las soluciones de la ecuacion de Poisson.
Sea f € C.(R%), con d > 3, y considera los nticleos K (z) = \xl% y G(z) = V(‘xl%) = %.
a) Demuestra que K * f(x) est4 bien definida y es continua en todo x € R
b) Demuestra que G x f(x) estd bien definida y es continua en todo = € R%.
¢) Demuestra que K = f € C'(R2) y que se tiene VK * f(z)] = G * f(x).

Sugerencia: en a) y b) puede ser util la Prop 8.8 de Folland. En c) intenta dar una prueba directa con la
definicién de derivada parcial.

4. Regularidad en L? de la ecuacion de Poisson. Sea u € L*(R?) tal que Au € L.
a) Demuestra que 9;;u y 8,,0,,u € L?, y acota sus normas en términos de ||Aulf,.

b) Utiliza Plancherel para probar que
d
L3 ondal = [ i
R4 =1 R
Nota: Para ser rigurosos, en a) se debe usar la nocién de derivada débil del Ejerc 13.b.

5. Fcuacion de ondas en dimension d = 3.

a) A partir de las férmulas vistas en clase, demuestra la siguiente identidad de Kirchhoff para la
solucién u(t, z) de la ecuacién de ondas en R x R3

(K) wtn) = f 10+ 90 )+t dot), >0



b) Demuestra que si h es continua en un entorno de z( entonces

lim h(z)do(z) = h(xg).
t—0 Sf(xo)

¢) Deduce de lo anterior que si f € C1(R?) y g € C(R3) entonces

, _ _ oy ult ) —u(0,2) 3
%g%u(t,x)—f(x) y ut(O,x)—}g% ; =g(z), VxeR’.

Nota: un célebre teorema de Stein (1976) afirma que (b) es cierto en ctp xg € R3 si h € LP(R3) con p > 3/2 (y
en general falso si p < 3/2).

. Desigualdad de dispersion para la ecuacion de ondas en R3.

a) Suponer que f € C!' y g € C tienen ambas soporte compacto contenido en By (0) C R3. Demuestra
que la solucién de la ecuacién de ondas dada por (K) cumple

C

sup |u(t,x)] < —

z€R3 t

, sit>1,

donde C' = C(f,g) > 0.

b) Trata de demostrar el mismo resultado suponiendo sélo que |f(y)|, |V f(y)|,|g(y)| tienen buen de-
caimiento, digamos < ¢/(1 + |y|)V, con N suficientemente grande (a determinar).

Sugerencia: en a) usar que la medida o (S7(x) N B1(0)) < 1. En b), dividir R® en anillos {2771 < |y| < 27},
j =1, y usar que o (S7(z) N{Jy| < 27}) < 2%.

. Conservacion de energia en la ecuacion de ondas.

Considera la solucién formal encontrada en clase

ult, ) = /R i [ (6) cos(2rlelr) + 9<£>W} .

Demuestra usando Plancherel que la siguiente funcion de energia es constante
E(t) = /d (lua(t, @)/ + [Vsu(t, ) da
R

con hipétesis adecuadas en f y g (digamos f, g € CH(R?)).

. La ecuacion de ondas no homogénea.

a) Demuestra que si F'(t,x) es suficientemente suave, la ecuacién de ondas no homogénea
uy = Agu+ F(t,x) en (0,00) x RY,  con u(0,z) = u(0,7) =0

tiene como solucion la integral de Duhamel

(1) u(t,x) = /Otv(t,x; s)ds

donde, para cada s > 0, la funcién v(¢, x; s) es la solucién de la ecuacién de ondas homogénea
vig = Agv en (s,00) x RY con v(s,z) =0, vi(s,x) = F(s, ).

b) Trata de interpretar fisicamente el significado de ().

. Fcuacidn de ondas con rozamiento. Si p > 0, considera la EDP

U + 2pur = Agu, con  u(0,x) =0, u(0,x) = g(z).

Utilizando el método visto en clase trata de llegar a la solucién formal
ult.o) = [ [ge) (e, )] de
Rd
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donde
sin (t1/|27€]? — p?)

, st 2m|E| >
ToniE 2 €] > n
wl(t, &) =

inh (/42 — |27€]2

sinh (fv/pe? — [2mef?) orle| < p

V2= 2mE?

Ejercicios opcionales

Desigualdad de dispersion para la ecuacion de ondas en R2.

Demuestra una desigualdad similar a la del Ejercicio 6 para la ecuacién de ondas en R?. Para ello,
utiliza la correspondiente formula explicita vista en clase, y trata de obtener un decaimiento del tipo

sup |u(t,z)| < C/V.

rER2

Otra desigualdad de dispersién para la ecuacion de ondas en R3.

a) Demuestra que si f € W2l y g € W1 se tiene

C
sup [u(t, z)] < — ([ fllwr + llgllwra), ¢ =1
reR3 t

b) Demuestra que la desigualdad anterior se puede mejorar a

Nota: Por simplicidad, considera f,g € C°(R?), dando por hecho que la desigualdad se extiende por densidad.

Sugerencia: en a) supén primero que f = 0y demuestra usando el teorema de la divergencia que

‘][ gdot’ S][ 9] +][ t|Vyl.
Se(z) By () By (x)

En b), puedes usar g(z1,2') = f_zlo gz, (8,2") ds para probar que

/ l9(2)| dz < 2t[|ga, ey ¥y / [f(2)|dz < 482|| foyas || L1 9)-
By (x) By (x)

Equiparticion de energia.

a) Sea h € L'(R?). Demuestra que

lim [ €€lng)de =o0.

t—00 Jpa
b) Sea u solucién de la ecuacién de ondas con datos iniciales tales que f,Vf,g € L*(R?%). Se definen
Fn (t) = /R Ot )2 de,  Epor(t) = /R Vou(t, z)[2dz, t>0,
de modo que Eki,(t) + Epot(t) = E(0). Demuestra que
tliglo Euin(t) = tllglo Epot(t) = E(0)/2.

Sugerencia: en a) suponer primero que h € CS° y usar polares y partes. Después extender a L' por densidad.
En b) utiliza Plancherel en Ey;,(t), desarrolla cuadrados, y concluye aplicando a).
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14.

Derivada débil en L?. Dada u € L?(R?), definimos su derivada débil Oz;u como el operador

(0, 0) = — / u(z) Oy p(x) i, € C(RY),

y decimos que Oy, u € L? si existe una funcién v € L2 tal que (8xju, ga) = [vp, Ve CX.

a) Demuestra que si u € C' entonces 8,,u coincide con la derivada usual

b) Demuestra que 0,,u € L? siy sélo si &a(€) € L2. En ese caso, ademds, Op;u = F! (2772'@-22).

c) Sid =1, considera u(z) = |z| ¢ (z), z € R, donde ¢ € C°(R) con ¢(z) = 1six € [—1,1]. Demuestra
que u no es derivable en el sentido usual, pero si es derivable en L?(R) y

Opu() = sign(z) ¥ (x) + [z] ¥/ (2).

Contraejemplo de reqularidad para la ecuacion de Poisson en C(RY), d > 2.

a) Demuestra que si y € (0,1) la funcién h(r) = [log(1/r)]?, 0 < r < 1/2, cumple
(1) h(r) = co, rh(r) =0, rh'(r)—0, r*h"(r)—=0, cuandor — 0F
b) Sea u(z,y) = (2% — y*)h(r), donde r = \/22 + y2 y h es una funcién en C*°(0, 00) que verifica (7).

Demuestra que

u € CHR?), Auc C(R?) pero gy, uy, & C(R?).



