
Análisis Matemático Aplicado I. Máster en Matemáticas

HOJA 3: Transformada de Fourier. Aplicaciones a EDPs

1. Decaimiento de soluciones de la ecuación del calor.

Sea u(t, x) = Wt ∗f(x), (t, x) ∈ (0,∞)×Rd, la solución formal de la ecuación del calor con dato inicial
f ∈ Lp(Rd), 1 ≤ p <∞. Demostrar

a) Decaimiento en t:

‖u(t, ·)‖∞ ≤ cp‖f‖p t−
d
2p , para todo t > 0.

b) Decaimiento en |x|: para cada T1 > T0 > 0 se tiene

ĺım
|x|→∞

u(t, x)→ 0, uniformemente en t ∈ [T0, T1].

c) En b) prueba que de hecho la convergencia es uniforme en t ∈ [T0,∞)?

Sugerencia: En a) usar Hölder. En b) usar Hölder y TCD. En c) usar a) y b).

2. La ecuación de Laplace en el semiespacio superior.

Sea u(x, y) = f ∗ Py(x), (x, y) ∈ Rd × (0,∞), la solución formal de la ecuación de Laplace, donde
f ∈ Lp(Rd) es el dato de frontera, y Py es el núcleo de Poisson. Demostrar

a) ‖u(·, y)‖∞ ≤ cp‖f‖p y−d/p, para todo y > 0.

b) Si f ∈ UC ∩ L∞(Rd), entonces

ĺım
(x,y)→(x0,0)

u(x, y) = f(x0),

c) Propiedad de semigrupo: u(x, y1 + y2) =
[
Py1 ∗ u(·, y2)

]
(x), y1, y2 > 0.

3. Regularidad C1 de las soluciones de la ecuación de Poisson.

Sea f ∈ Cc(Rd), con d ≥ 3, y considera los núcleos K(x) = 1
|x|d−2 y ~G(x) = ∇( 1

|x|d−2 ) = (2−d)x
|x|d .

a) Demuestra que K ∗ f(x) está bien definida y es continua en todo x ∈ Rd.

b) Demuestra que ~G ∗ f(x) está bien definida y es continua en todo x ∈ Rd.

c) Demuestra que K ∗ f ∈ C1(R2) y que se tiene ∇[K ∗ f(x)] = ~G ∗ f(x).

Sugerencia: en a) y b) puede ser útil la Prop 8.8 de Folland. En c) intenta dar una prueba directa con la

definición de derivada parcial.

4. Regularidad en L2 de la ecuación de Poisson. Sea u ∈ L2(Rd) tal que ∆u ∈ L2.

a) Demuestra que ∂xju y ∂xi∂xju ∈ L2, y acota sus normas en términos de ‖∆u‖2.

b) Utiliza Plancherel para probar que∫
Rd

d∑
i,j=1

|∂xi∂xju|2 =

∫
Rn

|∆u|2.

Nota: Para ser rigurosos, en a) se debe usar la noción de derivada débil del Ejerc 13.b.

5. Ecuación de ondas en dimensión d = 3.

a) A partir de las fórmulas vistas en clase, demuestra la siguiente identidad de Kirchhoff para la
solución u(t, x) de la ecuación de ondas en R× R3

(K) u(t, x) = −
∫
S2
t (x)

[
f(y) +∇f(y) · (y − x) + tg(y)

]
dσ(y), t > 0.
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b) Demuestra que si h es continua en un entorno de x0 entonces

ĺım
t→0
−
∫
S2
t (x0)

h(z) dσ(z) = h(x0).

c) Deduce de lo anterior que si f ∈ C1(R3) y g ∈ C(R3) entonces

ĺım
t→0

u(t, x) = f(x) y ut(0, x) = ĺım
t→0

u(t, x)− u(0, x)

t
= g(x), ∀x ∈ R3.

Nota: un célebre teorema de Stein (1976) afirma que (b) es cierto en ctp x0 ∈ R3 si h ∈ Lp(R3) con p > 3/2 (y

en general falso si p ≤ 3/2).

6. Desigualdad de dispersión para la ecuación de ondas en R3.

a) Suponer que f ∈ C1 y g ∈ C tienen ambas soporte compacto contenido en B1(0) ⊂ R3. Demuestra
que la solución de la ecuación de ondas dada por (K) cumple

sup
x∈R3

|u(t, x)| ≤ C

t
, si t ≥ 1,

donde C = C(f, g) > 0.

b) Trata de demostrar el mismo resultado suponiendo sólo que |f(y)|, |∇f(y)|, |g(y)| tienen buen de-
caimiento, digamos ≤ c/(1 + |y|)N , con N suficientemente grande (a determinar).

Sugerencia: en a) usar que la medida σ
(
S2
t (x) ∩ B1(0)

)
. 1. En b), dividir R3 en anillos {2j−1 ≤ |y| < 2j},

j ≥ 1, y usar que σ
(
S2
t (x) ∩ {|y| ≤ 2j}

)
. 22j .

7. Conservación de enerǵıa en la ecuación de ondas.

Considera la solución formal encontrada en clase

u(t, x) =

∫
Rd

e2πix·ξ
[
f̂(ξ) cos(2π|ξ|t) + ĝ(ξ)

sin(2π|ξ|t)
2π|ξ|

]
dξ.

Demuestra usando Plancherel que la siguiente función de enerǵıa es constante

E(t) :=

∫
Rd

(
|ut(t, x)|2 + |∇xu(t, x)|2

)
dx

con hipótesis adecuadas en f y g (digamos f, g ∈ C1
c (Rd)).

8. La ecuación de ondas no homogénea.

a) Demuestra que si F (t, x) es suficientemente suave, la ecuación de ondas no homogénea

utt = ∆xu+ F (t, x) en (0,∞)× Rd, con u(0, x) = ut(0, x) = 0

tiene como solución la integral de Duhamel

(†) u(t, x) =

∫ t

0
v(t, x; s) ds

donde, para cada s > 0, la función v(t, x; s) es la solución de la ecuación de ondas homogénea

vtt = ∆xv en (s,∞)× Rd, con v(s, x) = 0, vt(s, x) = F (s, x).

b) Trata de interpretar f́ısicamente el significado de (†).

9. Ecuación de ondas con rozamiento. Si µ > 0, considera la EDP

utt + 2µut = ∆xu, con u(0, x) = 0, ut(0, x) = g(x).

Utilizando el método visto en clase trata de llegar a la solución formal

u(t, x) =

∫
Rd

e2πix·ξ
[
ĝ(ξ) e−µtw(t, ξ)

]
dξ,
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donde

w(t, ξ) =



sin
(
t
√
|2πξ|2 − µ2

)√
|2πξ|2 − µ2

, si 2π|ξ| > µ

sinh
(
t
√
µ2 − |2πξ|2

)√
µ2 − |2πξ|2

, si 2π|ξ| < µ

Ejercicios opcionales

10. Desigualdad de dispersión para la ecuación de ondas en R2.

Demuestra una desigualdad similar a la del Ejercicio 6 para la ecuación de ondas en R2. Para ello,
utiliza la correspondiente fórmula expĺıcita vista en clase, y trata de obtener un decaimiento del tipo

sup
x∈R2

|u(t, x)| ≤ C/
√
t.

11. Otra desigualdad de dispersión para la ecuación de ondas en R3.

a) Demuestra que si f ∈W 2,1 y g ∈W 1,1 se tiene

sup
x∈R3

|u(t, x)| ≤ C

t
(‖f‖W 2,1 + ‖g‖W 1,1), t ≥ 1.

b) Demuestra que la desigualdad anterior se puede mejorar a

sup
x∈R3

|u(t, x)| ≤ C

t
(‖D2f‖L1 + ‖∇g‖L1), t > 0.

Nota: Por simplicidad, considera f, g ∈ C∞c (R3), dando por hecho que la desigualdad se extiende por densidad.

Sugerencia: en a) supón primero que f ≡ 0 y demuestra usando el teorema de la divergencia que∣∣∣−∫
St(x)

g dσt

∣∣∣ ≤ −∫
Bt(x)

|g| + −
∫
Bt(x)

t |∇g|.

En b), puedes usar g(z1, z
′) =

∫ z1
−∞ gx1(s, z′) ds para probar que∫

Bt(x)

|g(z)| dz ≤ 2t‖gx1‖L1(R3) y

∫
Bt(x)

|f(z)| dz ≤ 4t2‖fx1x2‖L1(R3).

12. Equipartición de enerǵıa.

a) Sea h ∈ L1(Rd). Demuestra que

ĺım
t→∞

∫
Rd

eit|ξ|h(ξ) dξ = 0.

b) Sea u solución de la ecuación de ondas con datos iniciales tales que f,∇f, g ∈ L2(Rd). Se definen

Ekin(t) =

∫
Rd

|∂tu(t, x)|2 dx, Epot(t) =

∫
Rd

|∇xu(t, x)|2 dx, t > 0,

de modo que Ekin(t) + Epot(t) ≡ E(0). Demuestra que

ĺım
t→∞

Ekin(t) = ĺım
t→∞

Epot(t) = E(0)/2.

Sugerencia: en a) suponer primero que h ∈ C∞c y usar polares y partes. Después extender a L1 por densidad.

En b) utiliza Plancherel en Ekin(t), desarrolla cuadrados, y concluye aplicando a).
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13. Derivada débil en L2. Dada u ∈ L2(Rd), definimos su derivada débil ∂xju como el operador

(
∂xju, ϕ

)
:= −

∫
u(x) ∂xjϕ(x) dx, ϕ ∈ C∞c (Rd),

y decimos que ∂xju ∈ L2 si existe una función v ∈ L2 tal que
(
∂xju, ϕ

)
=
∫
v ϕ, ∀ϕ ∈ C∞c .

a) Demuestra que si u ∈ C1 entonces ∂xju coincide con la derivada usual

b) Demuestra que ∂xju ∈ L2 si y sólo si ξj û(ξ) ∈ L2. En ese caso, además, ∂xju = F−1
(
2πiξj û

)
.

c) Si d = 1, considera u(x) = |x|ψ(x), x ∈ R, donde ψ ∈ C∞c (R) con ψ(x) = 1 si x ∈ [−1, 1]. Demuestra
que u no es derivable en el sentido usual, pero śı es derivable en L2(R) y

∂xu(x) = sign(x)ψ(x) + |x|ψ′(x).

14. Contraejemplo de regularidad para la ecuación de Poisson en C(Rd), d ≥ 2.

a) Demuestra que si γ ∈ (0, 1) la función h(r) = [log(1/r)]γ , 0 < r ≤ 1/2, cumple

(†) h(r)→∞, rh(r)→ 0, rh′(r)→ 0, r2h′′(r)→ 0, cuando r → 0+

b) Sea u(x, y) = (x2 − y2)h(r), donde r =
√
x2 + y2 y h es una función en C∞(0,∞) que verifica (†).

Demuestra que
u ∈ C1(R2), ∆u ∈ C(R2) pero uxx, uyy 6∈ C(R2).
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