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In the mid-1700s a debate raged between Jean d’ Alembert, Leonhard Euler, and Daniel Bernoulli
concerning the proper solution to the classical wave equation. This controversy was partially
solved by Lagrange and, more conclusively, by Fourier (50 years later) and it provides an
interesting case study for the role of mathematics in the modeling of physical phenomena. Of
particular note in this debate, was the meaning of boundary conditions. The controversy is
summarized from the point of view of this mathematical physics perspective.

INTRODUCTION

Mathematical descriptions of wave phenomena are fun-
damental to many areas of physics. A clear understanding
of the relations which describe the vibrating string is re-
quired to comprehend more complex wave motions. Few
physicists, however, are aware of the intense controversy
that existed over the original descriptions of the vibrating
string proposed during the eighteenth century. At the
height of the controversy one of the most fundamental and
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powerful theorems of mathematical physics emerged, was
overlooked, and had to wait 50 years for its rediscovery.
While the debate has long held interest for mathematical
historians, there has been little discussion of the way this
debate signaled the emergence of a new kind of physicist.
There are excellent reviews of the controversy, ' each pre-
sented as a topic from the history of mathematics. In pre-
senting our view of the debate, we have drawn extensively
from these sources, as well as the original papers.
Physicists will find the controversy enlightening. Many
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of the principles of applying mathematical formalism to
physical phenomena which we take for granted today were
poorly understood at the time of the debate. In particular,
the extent to which a mathematical formalism should ex-
plain a physical phenomena had yet to be fully established
during this post-Newtonian period of rational mechanics.
The resulting confusion contributed to the antagonism
between the participants.

This unclear connection between a physical phenomena
and its mathematical description suggests another perspec-
tive one may take of the controversy. In our view, the de-
bate is a dispute between a mathematician, a traditional
physicist, and a newly emerging scholar: the mathematical
physicist.

THE PRINCIPAL PARTICIPANTS

Jean le Rond d’Alembert made significant contributions
to physics which include treatises on motion in resistive
media, music, the three-body problem, and the precession
of the equinoxes.® He is probably best known by physicists
for his observation that the sum of the internal forces of a
rigid body must vanish (d’Alembert’s principle). His
mathematical accomplishments, however, distinguish him
as the most eminent French mathematician of the mid-
eighteenth century.* He is, therefore, “the mathematician”
in our presentation of the controversy. d’Alembert was the
first member of the debate to publish a study on the motion
of a vibrating string.”> He derived the partial differential
equation®

%y(xt) _ 3%(xt)
ar? x?
and constructed a general solution consisting of two arbi-
trary functions fand g:

yxt) =flx+1t) +g(x—1).

Applying the boundary conditions y(0, #) =y(L, 1)
d’Alembert reduced his solution to

Yoty =fx+0) +flx—1).

The only restrictions d’Alembert felt necessary to im-
pose on the arbitrary function f were that it be periodic,
odd,” and everywhere differentiable. This latter restriction
was required since f(x + ¢) is just f(x) translated to the left
or right by an amount ¢. d’Alembert was concerned only
with a general mathematical solution to the partial differ-
ential equation (1) and had no interest in any physical
significance of the interval 0<x < L. Indeed, it was not unu-
sual for d’Alembert to sacrifice physical reality for math-
ematical purity.®

There can be no doubt that Leonhard Euler was one of

(H

the most productive mathematicians of all times. During

his life he published more than 500 articles and books, aver-
aging over 800 pages a year. In addition to contributions in
every field of mathematics known during his time, he was
responsible for generating a large portion of present day
mathematical notation. Euler’s first independent contribu-
tion to science came at the age of 19 when he won an honor-
able mention from the Paris Academy of Science for a pa-
per on shipmasting. Prior to this, he had shared an award
with Daniel Bernoulli and Colin Maclaurin for a paper
they jointly authored on the tides. Euler was the first to
publish a mechanics textbook which applied the full ana-
lytic power of the calculus to Newtonian dynamics. Later,
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he produced another mechanics text which introduced the
Eulerian equations for rigid body rotations.

All of these analyses of physical problems, his demon-
strated mathematical prowess, and—most important—his
stand during the vibrating string debate, permit us to view
Euler as the ‘“mathematical physicist” in the controversy.
It must be added, however, that when Euler’s life is viewed
outside the context of this controversy, it is not so easy to
apply this label. Very often, in fact, physics appears to have
been nothing more for Euler than a starting point for a
rapid move to more pure (and less applied) mathematics.

Euler’s original analysis of the vibrating string problem
appeared in two papers of identical content (the first in
French and the second in Latin) in 1748 and 1749.° He
derived the more general wave equation

1 3%t _ d%(x,p)
& It ok
found the solution
y(x) =fx +ct) +gx —ct),
and applied the boundary conditions to yield
»xt) =flx+ct) +flx —ct) . (3)

Euler differed from d’Alembert on the specification of
the function /. He claimed that f could be deduced solely
from initial conditions: If ¥(x) and ¥(x) are the initial
position and velocity of the string, then

y(x,t)

(2)

X + ct

= %[Y(x fof) + Y(x—et) + - V(s)ds] .
(4

X —ct

(4)

Further, Euler proclaimed that the functions Y (x) and
V(x) need not be functions in the ordinary sense, but may
by any curve drawn by hand in the interval 0<x<L and
extended along the real line with odd periodicity. Euler,
“the mathematical physicist,” clearly had in mind the
plucked string; he was using a physical observation to im-
pose a mathematical condition. When he permitted these
new curves with corners to be solutions to the wave equa-
tion, the controversy was on its way.

Daniel Bernoulli was unmistakably the traditional
physicist in the controversy. Coming from a distinguished
family of mathematicians, he is credited with numerous
contributions to fluid dynamics. However, his mathemat-
ical abilities did not compare with those of d’Alembert or
Euler. A note of caution is appropriate here: It would be a
mistake within the context of the controversy to view Ber-
noulli’s contributions as anything less than remarkable. At
the time of this debate Bernoulli had a position of medicine
at Bale. Bernoulli’s approach to the vibrating string prob-
lem smacks of a physicist; his solution is based entirely
upon the physical phenomena of the vibrating string. He
asked his readers to listen to the string! His analysis was
probably based on Brook Taylor’s previous observation of
the wave’s fundamental amplitude:

y(x) =Asin(wx/L) .

Bernoulli argued that the solution must be a sum of this
fundamental and higher harmonics:

y(x,t) = A, sin(zwx/L)cos(mct /L)
+ A, sin(2wx/L)cos(2mect /LY + -+ .  (§5)
The principle of superposition was unknown at this time,

G. F. Wheeler and W. P. Crummett 34



so Bernoulli devoted a great amount of space in his two
papers of 1753 to attempts at justifying this sum.’® He ex-
amined the oscillatory motions of a system of several parti-
cles, but provided no mathematical support for his argu-
ments. In the end, he could suggest no method by which the
coeflicients 4, 4,..., in Eq. (5) might be evaluated.

THE CONTROVERSY

Since there are, at this point, three participants in the
debate, the actual dates of the ensuing replies and retorts to
replies are somewhat entangled. (Also, very often there
was a considerable time, occasionally years, between com-
position and publication.) For clarity, we will not closely
adhere to the chronological order of the various publica-
tions, but will focus attention on the important content of
the arguments.

D’ALEMBERT VERSUS EULER

While d’Alembert objected to Euler’s new functions
with corners, his initial response during the late 1750s (ac-
tually published in 1773), was more restrained than that of
a later paper. In this initial criticism of Euler’s approach,
he restated his opinion that the function f [in Eq. (3)]
must be periodic, odd, and everywhere differentiable.'!
This paper is important to mathematical physics since d’A-
lembert rederived his solution by a new technique, which
was the first application of the method of separation of
variables.

His 1761 response was a genuine attack on Euler.’> He
objected to Euler’s use of physical arguments for the admis-
sion of his new functions. He pointed out that the very
approximation which permits the derivation of the wave
equation (small displacements from equilibrium ) prohibits
the use of physical arguments. He continued his assault on
mathematical grounds by questioning the interpretation of
the wave equation for a plucked string (Fig. 1).

d’Alembert noted that in the neighborhood of the point p
(at which the string is plucked) the right and left slopes are
unequal:

| ¥

Oxipy  Oxlip—
Hence, (3%)/(3x?) is undefined. And, he asks, if it is un-
defined, how can it equal (1/¢?)(d%p)/(3t?)?

d’Alembert continued: Since y(x,t) is determined (as
Euler claimed) from this function extended over the whole
real line [Eq. (4) ], there are times when the wave equation
is undefined at any point on the string!

Euler’s replies to d’ Alembert’s criticisms were weak and
presented in papers of 1762 and 1765.'>'* In essence, his
arguments reduce to the assertion that since the displace-
ments are small, the curve at a corner point deviates only

Y
/ + % ->
X=0 X=p X=L
Fig. 1. Euler’s “plucked” string.
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infinitesimally from a differentiable function. He main-
tained that any error introduced was so smalled as to be
“entirely nothing.” d’Alembert, of course, was not con-
vinced.

D’ALEMBERT AND EULER VERSUS BERNOULLI

d’Alembert objected to Bernoulli’s series solution on
physical grounds.!! For those of us who have principle of
superposition well engraved in our view of the vibrating
string, his objections can seem somewhat mystifying. d’A-
lembert did not view any motion of the string as a com-
pound motion of separate distinct modes. Instead, he felt
that there was one and only one frequency associated with a
vibrating condition. Hence, a trigonometric decomposition
was not appropriate since it represented a multiple of fre-
quencies.

Euler’s criticisms of Bernoulli’s solution were directed
toward the algebraic properties of his solution. Euler felt
that this trigonometric series could not possibly be general
enough to represent an arbitrary function f, whether or not
that function be one drawn by hand or a function in the
traditional (d’Alembert) sense. Euler, our mathematical
physicist, especially disputed the notion that Bernoulli’s
series could represent the wave form generated from the
initial condition of “snapping” the string at one end (see
Fig. 2)." ‘

It is within Euler’s arguments that a major mathematical
misconception originated, one which none of the partici-
pants were ever able to surmount. No one realized that the
solution need only be for the interval 0<x<L. What hap-
pens outside is irrelevant. Although Euler and d’Alembert
disagreed over the degree of generality for the functions
which could constitute a solution, they both agreed that the
inherent properties of the trigonometric functions were
sufficiently restrictive so as to exclude their use to represent
any arbitrary function. The problem was periodicity.
Eighteenth century mathematicians understood the intrin-
sic periodicity of the trigonometric functions. However, no
one perceived that the periodicity established by specifying
a function f(x) in the interval 0<x<L was a geometrical
periodicity defined within the interval. Euler argued that
Bernoulli’s series was odd (in x) and all functions are not
odd. We recognize this argument as irrelevant since the
function can be made odd or even, depending upon how it
is extended along the negative x axis.

This confusion over periodicity caused Euler to miss an
effective attack he could have made on Bernoulli’s solu-
tion.'* If his solution [Eq. (5) ] is differentiated to yield the
transverse velocity function, at # =0 this series is zero.
Hence, Bernoulli’s solution is only appropriate for zero ini-
tial string velocity. This is less general than Euler’s own
solution.

X=0 X=L

Fig. 2. Euler’s “snapped” string.
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At this point we have d’Alembert objecting to physical
arguments for solutions to a partial differential equation,
and calling for the other participants to engage in math-
ematics. Euler is defending his new functions with corners
but relying on vague infinitesimal arguments to support his
case. Finally, Bernoulli is asking the others to listen to the
string, but providing no mathematical support for his argu-
ments. And then, a fourth participant joins the controversy
with a completely new approach.

LAGRANGE: ANOTHER MATHEMATICAL
PHYSICIST ENTERS THE DEBATE

Luigi de 1a Grange Tournier entered the debate in 1759
with a lengthy paper on sound propagation.’® For his ap-
proach to the problem, and the many other lasting contri-
butions he made to physics, we are inclined to distinguish
him also as a mathematical physicist.

Lagrange’s analysis of the vibrating string is contained
within his paper on sound propagation. He reviewed the
derivation of the wave equation, and the arguments of d’A-
lembert, Euler, and Bernoulli. He supported Euler’s solu-
tion determined from the initial conditions, and the admis-
sion of the new functions with corners. However, Lagrange
objected to Euler’s unclear use of infinitesimals. He dis-
missed Bernoulli’s solution, endorsing Euler’s arguments
against the generality of the trigonometric series. He, too,
fell into the periodicity trap.

Lagrange’s approach to the vibrating string problem
completely avoided the wave equation. He constructed the
string from a collection of n, equally spaced, point masses,
connected by a light cord. This yielded a set of n equations
of the form'’

d?,

dt?

Lagrange solved the system of equations first for a finite
number of masses. Next he generated the solution for the
vibrating string by allowing the number of masses to be-
come infinite as the spacing between each decreased to
zero. He found*®

L
y(xt) = %— J; dXY(X) [sin(-?)sin(%)cos(%)

. 27X\ . (Zﬂx) (27rct) ]
si sin cos 4o
+ n( L ) L L

L
+ _Z_J dXV(X) [sin(z)—()sin(ﬂ)cos(ﬁ)
¢ Jo L L L

1 . (217'X) . (21Tx) (277'ct> ]
+ —sin sin cos + 1
2 L L L

where Y(x) and V(x) are the initial position and velocity
of the string. This result brought Lagrange very close to the
Fourier series. (Fourier was born in 1768.) If the initial
displacement Y(x) is substituted into Lagrange’s solution
for t =0, and the order of the integral and sum are re-
versed, we have

2 2 L . (n7X . (nmx
Y(x)=— j Y(X sm(——)dX ]sm(———).
) L 2 [ o 0 L L

n=1

=1 — Wi + Vi)

This is an odd Fourier series.
Grattan-Guinness suggests that there are at least three
reasons Lagrange did not discover the series.'® First, he
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was not looking for a theorem of mathematical analysis. He
was concerned with the vibrating string as a problem relat-
ed to the nature of sound propagation. Second, Lagrange
was seeking an integral solution, and not an infinite series
result. This also is a consequence of his view of the string’s
motion in the context of a theory of sound. Finally, the
series representation would have been Bernoulli’s solution,
with coefficients given by the integrals. And, of course,
Lagrange did not feel the trigonometric series was suffi-
ciently general. Ravetz notes that during this period sever-
al mathematicians came very close to the Fourier series.?’
However, all apparently viewed it as a very accurate inter-
polation mechanism.

Euler felt Lagrange’s solution supported his own argu-
ments for the generality of the initial conditions. Lagrange
agreed but considered his methods preferable since they
avoided Euler’s infinitesimal arguments. (However, La-
grange clearly could not escape the use of infinitesimals.)

With the appearance of Lagrange’s paper, the intensity
of the debate significantly declined. Too much mathemat-
ics had yet to be clarified for meaningful progress to be
made. More partial differential equations were derived,
geometrical interpretations of their solutions began to
evolve, and the theory of functions was refined. Finally, in
1807, Joseph Fourier was led to his famous series while
studying the heat diffusion equation. Lagrange was the
only living member of the debate. He objected to Fourier’s
results, questioning the convergence of the series. Fourier
was eventually able to demonstrate the convergence of at
least one of his solutions. The subsequent mathematical
rigor required to determine the conditions under which the
general series would converge had a major influence on
nineteenth century mathematics.

CONCLUSIONS

The vibrating string controversy was an important epi-
sode in the history of physics. In addition to founding the
analysis for many theories of wave motion, it helped focus
attention toward the relation of mathematics to physical
theory. It is interesting that in retrospect, the solutions pro-
posed by each of the participants were correct: d’Alem-
bert’s differentiable functions of x + ¢z are general solu-
tions to the wave equation. Euler’s solutions determined by
the initial conditions are perfectly valid. Fourier has shown
that Euler’s new functions can be represented by a trigono-
metric series. And, finally, Bernoulli’s solution is a special
case of the trigonometric series for zero initial velocity.
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An older approach to the problem of projectile motion with quadratic drag force is presented with
the fly ball as an example. In this approach, analytical solutions for the velocity, curvature, and
arc length are obtained as functions of the slope angle. It is shown that the velocity and curvature
do not have their extrema at the top of the trajectory but during the early phase of descent. The
entire problem is reduced to simple integrations over the slope angle.

1. INTRODUCTION

It has been widely stated that the motion of a projectile
under a drag force proportional to the square of the veloc-
ity has no analytical solution and therefore must be tackled
numerically.! —* With the advent of desk computers, var-
ious numerical schemes have been developed to solve cou-
pled equations of motion in x and y and the solutions have
been applied to find the range of the shot put, golf ball,
and baseball.* This has somewhat obscured the fact that, in
the absence of wind, intrinsic solutions of the problem exist
in terms of the slope angle 6 of the velocity vector v.>~1°
Expressions for v can be found in several standard text-
books,’~® and so are discussions on more general forms of
the drag force.® ~'° Moreover, the entire problem of finding
the horizontal distance x, vertical distance y, and time # can
be reduced to much simpler integrations over 6.5%!! In this
paper, we revisit this older approach with reference to the
trajectory of a fly ball leaving the bat at a speed of 100 mph
at an angle of 60° to the horizontal.*

II. EXACT SOLUTIONS FOR VELOCITY,
CURVATURE, AND ARC LENGTH

Since air resistance is antiparallel to the velocity, the
equations of motion can be written as

dv .
m— = — in 8 — cv?
ar mgs cv (n
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and
mv?
p
where m is the mass of the projectile, g the acceleration due

to gravity, and ¢ the quadratic drag coefficient. The radius
of curvature p of the trajectory is given by

= mg cos 6, (2)

ds ds dt dt
= —_——== ——— = — ) — (3)
deo dt do dé
Substitution of Eq. (3) in Eq. (2) gives
vﬁ= —gcos 6. 4)
dt
Eliminating ¢ between Eqs. (1) and (4), we get,
ﬂ—vtan0=—c—v3 sec 6. (5)
do mg

This is a particular case of Bernoulli’s equation.'? Follow-
ing Timoshenko and Young,” Eq. (5) can be conveniently
rewritten as

d(vcos 8) __c de

(vcos8)®  mgcos’l’ 2
Integrating both sides, we get,
_
(v cos )2

= ——c;[ln(secﬁ +tan @) +sec@tanf]1 +C. (7)
m
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