Funciones de Varias Variables 3

Hoja 1: Teorema de la función inversa

- 1. Sea $F(x,y) = (x^3 + y^3, x^3 y^3)$. Demuestra que
 - a) F es biyectiva de $\mathbb{R}^2 \to \mathbb{R}^2$
 - b) |DF(x,y)| se anula en algunos puntos (que debes determinar)
 - c) F^{-1} no es diferenciable en algunos puntos (que debes determinar).
- 2. Para n>1 demuestra que, en general, si $F:\mathbb{R}^n\to\mathbb{R}^n$ es de clase $C^\infty(\mathbb{R}^n)$ entonces

$$|DF(x)| \neq 0, \ \forall x \in \mathbb{R}^n \implies F \text{ inyectiva.}$$

Sugerencia: considera $F(x,y)=(e^x\cos y,e^x\sin y)$, y una modificación adecuada para $n\geq 3$.

- 3. Sea $F(x,y) = \left(\frac{x^2-1}{4} + \frac{\cos y}{3}, \frac{xy}{2}\right)$. Demuestra que F es contractiva en $B = \overline{B_1(0)}$, probando para ello
 - a) $F(B) \subset B$
 - b) existe $\lambda < 1$ tal que $||DF(x,y)|| \leq \lambda, \forall (x,y) \in B$.

Encuentra el valor de $(x, y) \in B$ tal que F(x, y) = (x, y).

Sugerencia: En b), mayora la norma $||DF|| \le ||DF||_2$.

4. Demuestra que $F(x,y,z) = (e^{2y} + e^{2z}, e^{2x} - e^{2z}, x - y)$ es inyectiva en \mathbb{R}^3 , y concluye que F^{-1} es de clase C^{∞} en su dominio $V = F(\mathbb{R}^3)$.

Sugerencia: usar el TFI global (no es necesario calcular V).

5. Para los siguientes sistemas de ecuaciones no lineales

a)
$$\begin{cases} u = x + y^5 \\ v = x^5 + y \end{cases}$$
 b)
$$\begin{cases} u = x - y^2 \\ v = x^2 + y + \frac{y^3}{3} \end{cases}$$

demuestra que existen $r_1, r_2 > 0$ tales que admiten solución para todo $(u, v) \in B_{r_2}(0, 0)$, y que éstas son únicas si pedimos que (x, y) esté en $B_{r_1}(0, 0)$. ¿Sabrías cuantificar los valores de r_1 y r_2 ?

Sugerencia: Para cuantificar los r, debes mayorar $N(r) = \sup_{\bar{D}} \|DF(x,y) - DF(0,0)\|$.

6. Considera una función $F: \mathbb{R}^2 \to \mathbb{R}^2$ dada por

$$F(x,y) = (u(x,y), v(x,y)).$$

Da condiciones adecuadas en F para que, en un entorno de (x_0, y_0) , se pueda despejar x = x(u, v) e y = y(u, v). Demuestra que en ese caso se tiene

$$\frac{\partial x}{\partial u} = \frac{\frac{\partial v}{\partial y}}{\frac{\partial (u,v)}{\partial (x,y)}}, \quad \frac{\partial x}{\partial v} = \frac{-\frac{\partial u}{\partial y}}{\frac{\partial (u,v)}{\partial (x,y)}}, \quad \frac{\partial y}{\partial u} = \frac{-\frac{\partial v}{\partial x}}{\frac{\partial (u,v)}{\partial (x,y)}}, \quad \frac{\partial y}{\partial v} = \frac{\frac{\partial u}{\partial x}}{\frac{\partial (u,v)}{\partial (x,y)}},$$

donde usamos la notación $\frac{\partial(u,v)}{\partial(x,y)} = \det(DF)$.

7. Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $f(x,y) = (x^3 + y, y^5 + y^2 - x^3 + 1)$. Probar que f es biyectiva, determinar el conjunto de puntos $(u,v) \in \mathbb{R}^2$ donde su inversa g(u,v) = (x(u,v),y(u,v)) es de clase C^{∞} y averiguar $\frac{\partial^2 x}{\partial u \partial v}(0,0)$.

1

8. Considera un polinomio genérico de grado 3 (con coeficientes reales)

$$P(x) = x^3 + a_2x^2 + a_1x + a_0 = \prod_{j=1}^{3} (x - z_j).$$

a) Demuestra que los coeficientes y las raíces están relacionados por las fórmulas

$$\begin{cases} a_0 = -z_1 z_2 z_3 \\ a_1 = z_1 z_2 + z_1 z_3 + z_2 z_3 \\ a_2 = -z_1 - z_2 - z_3 \end{cases}$$

b) Utiliza lo anterior y el TFI para probar que si las raíces z_j son reales y simples, entonces se pueden expresar localmente en términos de los a_j mediante funciones de clase C^{∞} .

Sugerencia: demuestra que $\frac{\partial(a_0, a_1, a_2)}{\partial(z_1, z_2, z_3)} = (z_1 - z_2)(z_2 - z_3)(z_3 - z_1).$

- 9. Supongamos que $f: \mathbb{R}^n \to \mathbb{R}^n$ es de clase C^1 y coerciva con constante de coercividad $\lambda > 0$, es decir, $||f(x') f(x)|| \ge \lambda ||x' x||$ para todo par $x, x' \in \mathbb{R}^n$. Probar que f un difeomorfismo de clase C^1 , es decir, f es biyectiva y f^{-1} es también de clase C^1 . Deducir que si $g: \mathbb{R}^n \to \mathbb{R}^n$ es de clase C^1 y existe $0 < \varepsilon < 1$ tal que $||dg(x)|| \le \varepsilon$ para todo $x \in \mathbb{R}^n$, entonces f(x) = x + g(x) es un difeomorfismo de clase C^1 .
- 10. En la demostración que hemos visto en clase del teorema de la función inversa (donde denotamos por a el punto con diferencial invertible al que alude el enunciado del teorema), el entorno U = B(a, r) de a donde $f|_U$ es inyectiva se ha fijado de acuerdo con dos condiciones:
 - a) $\det(df(x)) \neq 0$ para todo $x \in U$;
 - b) $||df(x) df(a)|| \le \frac{1}{2||df(a)^{-1}||}$ para todo $x \in U$.

Probar que si $S, T \in \mathcal{M}_{n \times n}(\mathbb{R})$, T es invertible y $||S - T|| < \frac{1}{||T^{-1}||}$, entonces S también es invertible. En consecuencia, la condición a) es redundante.

Sugerencia: notar que si P es un punto fijo de la aplicación $F: \mathcal{M}_{n\times n}(\mathbb{R}) \to \mathcal{M}_{n\times n}(\mathbb{R})$ dada por $F(A) = T^{-1} + T^{-1}(T-S)A$, entonces $P = S^{-1}$.

Opcionales

11. La prueba del Teorema de la Función Inversa se simplifica bastante notacionalmente si suponemos que

$$x_0 = F(x_0) = 0$$
 y $DF(x_0) = I$. (*)

Suponiendo que el teorema se ha probado en este caso particular, el objetivo del ejercicio es deducir el teorema en el caso general es decir, para $H \in C^1(\Omega)$ con

$$x_0 \in \Omega$$
, $y_0 = H(x_0)$ y $A = DH(x_0)$ invertible.

a) Define $\varphi(x) = x + x_0$ y $\psi(y) = y - y_0$, y demuestra que

$$F = A^{-1} \circ \psi \circ H \circ \varphi$$

cumple las hipótesis en (*)

- b) Encuentra una fórmula para H en términos de F
- c) Aplicando el TFI a F, existe un abierto $U_0 \ni 0$ tal que $F: U_0 \to F(U_0)$ es un homeomorfismo. Encuentra abiertos adecuados con $U \ni x_0$ y $V \ni y_0$ de modo que

$$H: U \to V$$
 es homeomorfismo.

d) Sabiendo, por el TFI, que $G_0 = (F|_{U_0})^{-1}$ es de clase C^1 en $F(U_0)$, demuestra que

$$G := (H|_U)^{-1} \in C^1(V),$$

y encuentra una fórmula para G en términos de G_0

e) Demuestra que

$$DG(y) = [A \circ DF(G(y) - x_0)]^{-1}, \quad y \in V.$$