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Abstract. We obtain Lebesgue-type inequalities for the greedy algorithm for arbi-
trary complete seminormalized biorthogonal systems in Banach spaces. The bounds
are given only in terms of the upper democracy functions of the basis and its dual.
We also show that these estimates are equivalent to embeddings between the given
Banach space and certain discrete weighted Lorentz spaces. Finally, the asymptotic
optimality of these inequalities is illustrated in various examples of not necessarily
quasi-greedy bases.

1. Introduction and main results

Throughout the paper (X, ‖ · ‖) is a separable infinite dimensional Banach space
over a field K = R or C, (X∗, ‖·‖∗) is its dual space, and {en, e∗n}∞n=1 a seminormalized
complete biorthogonal system in X. To every x ∈ X we associate a formal series
x ∼

∑∞
n=1 e∗n(x)en, so that limn e∗n(x) = 0. It is well-known that greedy algorithms

can be considered in this generality [32], which includes in particular the cases when
the system B = {en}∞n=1 is a Schauder or a Markushevich basis.

Given x ∈ X, the error of N -term approximation with respect to B is denoted by

σN(x) := inf
{∥∥x−∑

n∈A

cnen
∥∥ : cn ∈ K, |A| ≤ N

}
, N = 1, 2, 3, . . .

and the error of the expansional N -term approximation by

σ̃N(x) := inf
{∥∥x−∑

n∈A

e∗n(x)en
∥∥ : |A| ≤ N

}
, N = 1, 2, 3, . . .

A greedy set for x ∈ X of order N , written A ∈ G(x,N), is a set of indices A ⊂ N
such that |A| = N and

min
n∈A
|e∗n(x)| ≥ max

n/∈A
|e∗n(x)| .

A greedy operator of order N is any mapping GN : X→ X such that

x ∈ X 7−→ GNx =
∑
n∈Ax

e∗n(x)en ,

with Ax ∈ G(x,N). We write GN for the set of all greedy operators of order N .
To quantify the performance of greedy operators as N -term approximations, one

considers, for every N = 1, 2, 3, . . . , the smallest numbers LN = LN(B,X) and L̃N =
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L̃N(B,X) such that

‖x−GNx‖ ≤ LN σN(x), ∀ x ∈ X, ∀ GN ∈ GN (1.1)

and

‖x−GN(x)‖ ≤ L̃N σ̃N(x), ∀ x ∈ X, ∀ GN ∈ GN . (1.2)

As in [30, Chapter 2], we call (1.1) a Lebesgue-type inequality for the greedy
algorithm, and LN its associated Lebesgue-type constant.

The question of the performance of ‖x − GNx‖ compared to σN(x) was raised by
V. N. Temlyakov in the 90s; see [29, 30] for historical background. Lebesgue-type
inequalities were first proved for the trigonometric and the Haar systems in Lp spaces
[26, 27, 28, 32, 23]. Also, a celebrated result in [19] established that LN = O(1) if
and only if the system B is democratic and unconditional in X (also called a greedy
basis). Nowdays, Lebesgue-type inequalities are reasonably well-understood in the
larger class of quasi-greedy bases; see e.g. [31, 9, 12, 8].

For general bases, however, it is a challenging problem to find bounds for LN which
are both, asymptotically optimal and described in terms of reasonable quantities (such
as the unconditionality and democracy parameters). A first approach to this problem
was recently given in [2]. Here we present a different approach, which only depends
on the democracy functions of B = {en}∞n=1 and B∗ = {e∗n}∞n=1, and allows to cover
some cases not considered in [2].

To describe our results we shall use the following notation. We write Υ for the
collection of all ε = {εj}∞j=1 ⊂ K with |εj| = 1. For finite sets A ⊂ N we let

1εA :=
∑
j∈A

εjej and 1∗εA :=
∑
j∈A

εje
∗
j , ε ∈ Υ.

If ε ≡ 1 we just write 1A and 1∗A. We define the upper (super)-democracy parameters
associated with B and B∗, respectively, by

D(N) := sup
|A|=N
ε∈Υ

‖1εA‖ and D∗(N) := sup
|A|=N
ε∈Υ

‖1∗εA‖∗ . (1.3)

For each finite set A ⊂ N, we denote by PA the projection operator

PA(x) =
∑
n∈A

e∗n(x)en, x ∈ X,

and define the conditionality constants

KN = KN(B,X) := sup
{
‖PA‖ : |A| ≤ N

}
, N = 1, 2, 3, . . . (1.4)

Note that B is unconditional if and only if KN = O(1). In general, for every given

quantity AN = AN(B,X) (such as KN ,LN , L̃N , ...), we define

A∗N := AN(B∗, X̂),

where X̂ := span {e∗n}∞n=1 is considered as a closed subspace of X∗. In particular,
notice that K∗N ≤ KN .
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To every pair of positive non-decreasing sequences {η1(j)}∞j=1 and {η2(j)}∞j=1, we
associate the following numbers

SN(η1, η2) :=
N∑
j=1

∆η1(j)∆η2(j), (1.5)

TN(η1, η2) :=
N∑
j=1

η1(j)

j
∆η2(j), (1.6)

TN(η1, η2) := min
{
TN(η1, η2), TN(η2, η1)

}
. (1.7)

Here, ∆η(j) = η(j)− η(j − 1), j = 1, 2, . . . (with the agreement that η(0) = 0). Our
main result can then be stated as follows.

Theorem 1.1. Let {en, e∗n}∞n=1 be seminormalized, complete and biorthogonal in X.
Let TN = TN(D,D∗) as above. Then the following hold

KN ≤ TN , LN ,L
∗
N ≤ 1 + 3TN , and L̃N , L̃

∗
N ≤ 1 + 2TN . (1.8)

If, additionally, D (resp. D∗) is concave, then SN = SN(D,D∗) ≤ TN and

KN ≤ SN , LN ≤ 1 + 3SN , L̃N ≤ 1 + 2SN , (1.9)

(respectively, for K∗N ,L
∗
N , L̃

∗
N). Finally, these estimates are best possible, in the sense

that there exist X and {en, e∗n} for which all the equalities hold.

We add a few comments related with Theorem 1.1. First, the novelty concerns
mainly the class of not quasi-greedy and not democratic bases. Indeed, in many such
instances we actually obtain LN ≈ TN , and in general we always have TN . N ,
which was not always the case in [2]. See §8 below for various examples, including the
trigonometric system in Lp.

Secondly, in some special cases, such as for quasi-greedy and democratic B, we shall

see that TN . ln(N + 1). This bound does not recover L̃N ≈ 1, but it is best possible

for LN , L∗N and L̃∗N , which may all grow to the order ln(N + 1); see e.g. §8.2 below.
Another instance occurs when {en, e∗n} is bidemocratic (as in [7]), that is

D(N)D∗(N) ≤ cN, N = 1, 2, . . . (1.10)

Then TN(D,D∗) ≤ c ln(N + 1), and again there exist examples with L̃N ≈ L̃∗N ≈ 1
and LN ≈ L∗N ≈ ln(N + 1); see e.g. the new spaces KT (p,∞) in §8.5 below.

To prove Theorem 1.1, we need to translate the information on D and D∗ as em-
beddings between X and a certain family of discrete weighted Lorentz spaces. Let
{s∗j}∞j=1 denote the non-increasing rearrangement of a sequence {sn}∞n=1 ∈ c0. Given
a non-negative weight η = {η(j)}∞j=1 we set

`1
η =

{
s ∈ c0 : ‖s‖`1η :=

∞∑
j=1

s∗j
η(j)

j
<∞

}
. (1.11)

We write W for the class of all positive increasing weights, and define, for each η ∈W,
a new weight

η̂(j) = j∆η(j), j = 1, 2, . . .
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Below we shall mainly work with the space `1
η̂ of all s ∈ c0 with

‖s‖`1
η̂

:=
∞∑
j=1

s∗j ∆η(j) < ∞ . (1.12)

Notice that `1
η and `1

η̂ are also denoted d(w, 1) for wj = η(j)/j and wj = ∆η(j),
respectively; see e.g. [22, p. 175] or [5, Example 2.2.3(iv)]. It is known that for
doubling weights η ∈ W, both `1

η and `1
η̂ are quasi-normed spaces; moreover `1

η ⊂ `1
η̂,

and `1
η = `1

η̂ whenever the lower dilation index iη > 0. We shall make a minimum use
of these properties in the sequel, but we discuss some of them in §2.6 below.

At the other extreme we define the discrete weighted Marcinkiewicz space as

m(η) =
{

s ∈ c0 : ‖s‖m(η) := supk∈N
η(k)
k

∑k
j=1 s

∗
j <∞

}
. (1.13)

This is a normed space for every positive η. We remark that, when η′ = {j/η(j)}∞j=1,

then `1
η̂ and m(η′) satisfy a duality relation; see (2.18) below.

Finally, we say that a sequence space S embeds into X via B (with norm c), denoted

S
B, c
↪→ X , if for every s = {sn}∞n=1 ∈ S, there exists a unique x ∈ X such that

e∗n(x) = sn and it holds:

‖x‖ ≤ c ‖s‖S = c ‖{e∗j(x)}∞j=1‖S . (1.14)

Similarly, we say that X embeds into S via B (with norm c), denoted X
B, c
↪→ S , if

‖{e∗j(x)}∞j=1‖S ≤ c ‖x‖ , x ∈ X. (1.15)

Our two main results concerning embeddings can then be stated as follows.

Theorem 1.2. Let {en, e∗n}∞n=1 be seminormalized and biorthogonal in X, and η ∈W.
Then, the following are equivalent:

i) ‖1εA‖ ≤ η(|A|) for all finite A ⊂ N and all ε ∈ Υ .

ii) ‖
∑

anen‖X ≤ ‖a‖`1
η̂
, for all a = {an} ∈ c00.

Moreover, if B∗ is total, then each of the above is equivalent to

iii) `1
η̂

B, 1
↪→ X.

As noted above, `1
η̂ is a linear space if and only if the sequence η is doubling.

Theorem 1.3. Let {en, e∗n}∞n=1 be seminormalized biorthogonal and complete in X,
and η a positive sequence. Then, the following are equivalent:

(i) ‖1∗εA‖∗ ≤ η(|A|) for all finite A ⊂ N and all ε ∈ Υ .

(ii) X
B, 1
↪→ m(η′), with η′ = {j/η(j)}∞j=1.

The relation between democracy functions and embeddings goes back to early pa-
pers in the topic [32, 15, 13]. A detailed study for quasi-greedy bases was recently
given in [1]. Our approach is closer to that in [8, Proposition 3.6 and Corollary 3.7],
where bounds for LN are obtained for general bases under assumptions of the form
`q,∞ ↪→ X ↪→ `p,1, where `p,r are the classical (unweighted) Lorentz spaces.
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The outline of the paper is as follows. Section 2 collects preliminaries about bases,
weights and discrete Lorentz spaces. The proofs of Theorems 1.2, 1.3, and 1.1 are
given in sections 3, 4, and 5, respectively. In section 6 we give some estimates for
D∗(N), and in section 7 we present corollaries of Theorem 1.1 in various special cases.
Finally, section 8 is devoted to examples of optimality, some of them new in the
literature.
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2. Preliminaries

2.1. Biorthogonal systems. We recall some basic notions; see e.g. [16]. Let X be
a separable Banach space, and consider B = {en}∞n=1 ⊂ X and B∗ = {e∗n}∞n=1 ⊂ X∗.
Then the collection {en, e∗n}∞n=1 is called

(a) a biorthogonal system if e∗n(em) = δn,m for all n,m ∈ N
(b) seminormalized if there exist A,B ∈ (0,∞) such that A ≤ ‖en‖, ‖e∗n‖∗ ≤ B

for all n ∈ N
We additionally say that

(c) B is complete in X if span{en : n ∈ N} = X.
(d) B∗ is total in X if the only x ∈ X such that e∗n(x) = 0 for all n ∈ N, is x = 0.

This property is known to be equivalent to

span{e∗n : n ∈ N}
w∗

= X∗.
Biorthogonal systems as above are ubiquitous: any separable Banach space contains,
for any ε > 0, a complete and total biorthogonal system {en, e∗n}∞n=1 so that 1 ≤
‖en‖, ‖e∗n‖ ≤ 1 + ε holds for every n (see [16, Theorem 1.27]). Specific examples
include Schauder bases and their rearrangements, as well as the trigonometric system
in, for instance, C(T) or L1(T).

In the sequel we shall use the terminology s-biorthogonal to denote systems that
are seminormalized and biorthogonal.

2.2. Democracy constants. The definition of upper (super)-democracy sequence
D(N) was already given in (1.3). The following properties are elementary.

Lemma 2.1. The sequence D(N) in (1.3) is quasi-concave, that is

D(N) ≤ D(N + 1) and
D(N + 1)

N + 1
≤ D(N)

N
, N = 1, 2, . . .

PROOF: First observe that we can write

D(N) = sup
|A|=N
ε∈Υ

‖1εA‖ = sup
|A|≤N
ε∈Υ

‖1εA‖. (2.1)

Indeed, if |A| ≤ N , take any B ⊂ N such that A ⊂ B and |B| = N , and write
1εA = 1

2
[(1εA + 1B\A) + (1εA−1B\A)]. Then (2.1) follows from the triangle inequality.
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Clearly, (2.1) implies that D(N) is non-decreasing. To see that D(N)/N is non-
increasing one can argue as in [7, p. 581], that is, for |A| = N write

1εA = 1
|A|−1

∑
n∈A

1ε(A\{n}),

and then use the triangle inequality. 2

Sometimes we shall also make use of the lower (super)-democracy sequences

d(N) := inf
|A|=N
ε∈Υ

‖1εA‖, and d(N) := inf
|A|≥N
ε∈Υ

‖1εA‖. (2.2)

Observe that d(N) is non-decreasing, d(N) ≤ d(N), and if B is a Schauder basis, say
with constant M, then also d(N) ≤ M d(N). In general, however, d(N) may be much
smaller than d(N). The corresponding notions for B∗ will be denoted by d∗(N) and
d∗(N).

Lemma 2.2. If {en, e∗n}∞n=1 is a biorthogonal system in X, then

N ≤ min
{
D(N) d∗(N) , D∗(N) d(N)

}
, ∀ N ∈ N.

Proof. Let |A| ≥ N and take any B ⊂ A with |B| = N . Then

N = 1∗εA(1εB) ≤ ‖1εB‖‖1∗εA‖∗ ≤ D(N)‖1∗εA‖∗.
The result now follows taking infimum over all |A| ≥ N and ε ∈ Υ. A similar
argument gives the other inequality. �

Finally, recall from [19], that B is called superdemocratic when supN D(N)/d(N) <
∞. In general, we shall quantify superdemocracy with the sequence

µN := sup
n≤N

D(n)

d(n)
. (2.3)

2.3. Abel summation formula. We shall make frequent use of the following ele-
mentary identity: for all finite sequences {xn}Nn=1 in X and {dn}Nn=1 in K it holds

x1d1 +
N∑
n=2

dn(xn − xn−1) =
N−1∑
n=1

(dn − dn+1)xn + xNdN . (2.4)

2.4. Weight classes. A weight is any sequence η = {η(j)}∞j=1 of non-negative num-
bers with η(1) > 0. We use the following notation

• η > 0 for a positive weight, that is, η(j) > 0 for all j = 1, 2, . . .
• W for the set of positive non-decreasing weights, that is, 0 < η(1) ≤ η(2) ≤ . . .
• Wd is the subset of doubling weights, that is, η ∈ W with η(2j) ≤ cη(j), for

some c ≥ 1 and all j = 1, 2, . . .
• Wqc is the subset of quasi-concave weights, that is, η ∈W with

η(j + 1)

j + 1
≤ η(j)

j
, j = 1, 2, . . .

• Wco is the subset of all concave weights, that is, η ∈W with

∆2η(j) = ∆η(j)−∆η(j − 1) ≤ 0, for j = 2, 3, ..., (2.5)
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Recall from §1 that ∆η(j) := η(j) − η(j − 1), j = 1, 2, . . . , and by convention we
always set η(0) = 0. It is easy to see from the above definitions that

Wco ⊂Wqc ⊂Wd ⊂W.

Also, every η ∈ Wqc has a smallest concave majorant η] ∈ Wco with η ≤ η] ≤ 2η.
Finally, notice that D,D∗ ∈Wqc, by Lemma 2.1 above.

Associated with a weight η we consider the following sequences

• summing weight: η̃(N) =
∑N

j=1
η(j)
j
.

• difference weight: η̂(j) = j∆η(j) (if η ∈W)
• dual weight: η′(j) = j/η(j) (if η > 0).

It is elementary to verify the identities:˜̂η = η, ̂̃η = η, (η′)′ = η. (2.6)

Moreover, for every η ∈W, the following hold

η ∈Wqc ⇐⇒ η̃ ∈Wco ⇐⇒ η̂ ≤ η ⇐⇒ η′ ∈Wqc. (2.7)

Finally observe that, if η ∈W, then

η̃(N) ≤ η(N)
∑N

j=1
1
j
≤ η(N)(1 + lnN). (2.8)

Example 2.3. .

(i) If η(j) = [ln(j + c)]γ, γ > 0, then η ∈Wco (for sufficiently large c) and

η̃(j) ≈ [ln(j + 1)]γ+1, η̂(j) ≈ [ln(j + 1)]γ−1.

(ii) If η(j) = jα[ln(j + c)]γ, with α ∈ (0, 1) and γ ∈ R (or with α = 1 and γ ≤ 0),
then η ∈Wco (for sufficiently large c) and η̃ ≈ η̂ ≈ η.

2.5. Regular weights and dilation indices. Below, we will sometimes be inter-
ested in weights η ∈W with the property

c1η(N) ≤ η̃(N) ≤ c2 η(N), N = 1, 2, . . . (2.9)

for some c1, c2 > 0. We shall call these weights regular. We now give some conditions
under which (2.9) holds. The lower estimate holds trivially with c1 = 1 when η ∈Wqc.
More generally, one has the following

Proposition 2.4. Let η ∈Wd with doubling constant c. Then

η(N) ≤ c
ln 2

η̃(N), N = 1, 2, . . . (2.10)

Moreover, η̃ ∈Wd with doubling constant bounded by 3c/2.

Proof. If N = 2n+ 1,

η̃(N) ≥
2n+1∑
j=n+1

η(j)

j
≥ η(n+ 1)

2n+1∑
j=n+1

1

j
≥ η(2n+ 1)

ln 2

c
.

Arguing similarly when N = 2n shows (2.10). Finally, the last assertion follows from

η̃(2N) =
N∑
j=1

η(2j)

2j
+

N∑
j=1

η(2j − 1)

2j − 1
≤ c

2

N∑
j=1

η(j)

j
+ c

N∑
j=1

η(j)

j
= 3c

2
η̃(N).

�
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The upper bound in (2.9) requires some power growth in η, as shown in Example
2.3. This growth is typically quantified with the notion of dilation index ; see [20]. To
each η > 0, we associate two dilation sequences given by

ϕη(M) = inf
k≥1

η(Mk)

η(k)
and Φη(M) = sup

k≥1

η(Mk)

η(k)
, M = 1, 2, 3, . . . (2.11)

The lower and upper dilation indices associated with η are defined, respectively, by

iη = sup
M>1

ln(ϕη(M))

lnM
and Iη = inf

M>1

ln(Φη(M))

lnM
. (2.12)

For instance, for the weights η in Example 2.3 we have iη = Iη = 0 in case (i), and
iη = Iη = α in case (ii). Observe also that ϕη′(M) = M/Φη(M), so we always have

iη′ = 1− Iη. (2.13)

Proposition 2.5. Let η ∈W. Then supN≥1
η̃(N)
η(N)

<∞ ⇐⇒ iη > 0.

Proof. Assume first that iη > 0. Then, for some integer s0 > 1 we have λ := ϕη(s0) >
1. Suppose first that N = sn0 for some n = 1, 2, 3, . . . . Then,

η̃(N) = η̃(sn0 ) = η(1) +
n−1∑
k=0

sk+1
0∑

j=sk0+1

η(j)

j

≤ η(1) +
n−1∑
k=0

η(sk+1
0 )

sk+1
0∑

j=sk0+1

1

j
≤ (1 + ln s0)

n∑
k=0

η(sk0) . (2.14)

Now, by definition ϕη(s0) ≤ η(sk+1
0 )/η(sk0), and therefore

η(sk0) ≤ λ−1 η(sk+1
0 ) ≤ ... ≤ λ−(n−k)η(sn0 ), k = 0, 1, . . . , n.

Inserting this expression into (2.14) we obtain

η̃(N) ≤ 1 + ln s0

1− λ−1
η(sn0 ) = c η(N) .

For arbitrary N > 1, choose n ∈ N such that sn−1
0 < N ≤ sn0 . Then,

η̃(N) = η̃(sn−1
0 ) +

N∑
j=sn−1

0 +1

η(j)

j
≤ cη(sn−1

0 ) + η(N) ln s0 . η(N).

Conversely, assume that iη = 0. Then ϕη(M) = 1 for all M ≥ 2. In particular, for

each M ≥ 2 there exists kM ∈ N with η(MkM )
η(k)

≤ 2, ∀k ≥ kM . Therefore

η̃(MkM) ≥
MkM∑
k=kM

η(k)

k
≥ 1

2
η(MkM) lnM,

leading to supN
η̃(N)
η(N)

=∞.

�

Corollary 2.6. Let η ∈Wqc. Then η′ is regular if and only if Iη < 1.
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PROOF: First, η ∈ W already implies η′(N) = N/η(N) ≤
∑N

j=1 1/η(j) = (̃η′)(N).

Next η ∈Wqc implies η′ ∈W, and by Proposition 2.5, the converse inequality (̃η′) . η′

is equivalent to iη′ > 0, and the result follows from the identity in (2.13). 2

2.6. Weighted Lorentz spaces. We recall a few basic properties of the class of
discrete weighted Lorentz spaces. Although not necessary for the proofs of Theorems
1.1, 1.2 and 1.3, this subsection clarifies the role of the different conditions we impose
on the theorems.

For a non-negative weight η and 0 < r ≤ ∞ we let

`rη =

{
s = {sn}∞n=1 ∈ c0 : ‖s‖`rη :=

( ∞∑
j=1

[
s∗jη(j)

]r 1
j

)1/r

<∞

}
(2.15)

(with the obvious modification if r = ∞). In the literature `rη is sometimes denoted

d(r, w) with wj = η(j)r

j
, and the weight w is required to decrease to 0 and

∑∞
j=1wj =

∞; see e.g. [22, p. 175] or references in [5, p. 28]. We will be dealing only with
the case r = 1 but we shall consider more general weights, namely w = {η(j)/j} and
w = ∆η, for η ∈W.

It is well-known that d(1, w) are quasi-normed spaces if and only if W (N) =∑N
j=1wj satisfies a doubling condition (see [5, Theorem 2.2.16]). Hence η̃ ∈ Wd

implies that `1
η is quasi-normed, and η ∈ Wd implies that both `1

η̂ and `1
η are quasi-

normed (by (2.6) and Proposition 2.4).
Clearly if η ∈ Wqc then η̂ ≤ η and therefore `1

η ↪→ `1
η̂. Below we show that this is

the case also for η ∈Wd. The following basic lemma will be used often.

Lemma 2.7. If ν, ξ are non-negative sequences, the following holds

ν̃ ≤ ξ̃ ⇐⇒
∞∑
j=1

a∗j
ν(j)

j
≤

∞∑
j=1

a∗j
ξ(j)

j
, ∀ non-increasing a∗j .

In particular, ν̃ ≤ ξ̃ if and only if `1
ξ ↪→ `1

ν with embedding of norm 1.

Proof. Suppose that ν̃ ≤ ξ̃. Then, using the Abel summation formula in (2.4),

N∑
j=1

a∗j
ν(j)

j
= a∗1ν(1) +

N∑
j=2

a∗j(ν̃(j)− ν̃(j − 1)) =
N−1∑
j=1

(a∗j − a∗j+1)ν̃(j) + a∗N ν̃(N)

≤
N−1∑
j=1

(a∗j − a∗j+1)ξ̃(j) + a∗N ξ̃(N) =
N∑
j=1

a∗j
ξ(j)

j
.

Now, let N → ∞ and we obtain the result. To show the other implication, we only
have to take a∗j = 1 if 1 ≤ j ≤ N and a∗j = 0 in other case. �

Corollary 2.8. (i) If η ∈Wd, then `1
η ↪→ `1

η̂.

(ii) If η ∈W, then `1
η̂ ↪→ `1

η ⇐⇒ iη > 0 .

(iii) If η ∈Wd, then `1
η = `1

η̂ ⇐⇒ iη > 0 .

PROOF: Combine Lemma 2.7 with (2.6) and Propositions 2.4 and 2.5. 2
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Corollary 2.9. `1
η = c0 if and only if η̃ is bounded. In particular, `1

η̂ = c0 if and
only if η ∈W is bounded.

PROOF: The inclusion `1
η ↪→ c0 is always true. For the converse, write c0 = `1

ξ with
ξ = {1, 0, 0, . . .}, and use Lemma 2.7. 2

We now turn to the discrete weighted Marcinkiewicz space defined in (1.13), which
we compare with the Lorentz space `∞η in (2.15). Observe that, for s = {sn} ∈ c0,

‖s‖m(η) = sup
|A|=N
N∈N

η(N)
N

∑
n∈A

|sn|. (2.16)

So m(η) is a normed space for any non-negative weight η. It is also easy to see that,
m(η) = c0 if and only if η is bounded.

Lemma 2.10. (i) m(η) ↪→ `∞η , with embedding norm 1.

(ii) If η ∈W, then `∞η
c
↪→ m(η) if and only if (̃η′) ≤ cη′ , that is

N∑
j=1

1

η(j)
≤ cN

η(N)
, N = 1, 2, . . . (2.17)

(iii) If η ∈Wqc, then m(η) = `∞η ⇐⇒ Iη < 1.

Proof. (i) This follows easily from s∗N ≤ 1
N

∑N
j=1 s

∗
j .

(ii) Assume that `∞η
c
↪→ m(η). Then picking s = {1/η(j)} ∈ `∞η we obtain

‖s‖m(η) = sup
N

η(N)

N

N∑
j=1

1

η(j)
≤ c‖s‖`∞η = c,

obtaining the condition (2.17). Conversely, (2.17) and the inequality s∗j ≤
‖s‖`∞η
η(j)

easily

lead to ‖s‖m(η) ≤ c‖s‖`∞η .

(iii) This follows from (i), (ii) and Corollary 2.6. �

We conclude with a duality result which is known in the literature; see [5, §2.4].
We present an elementary proof.

Theorem 2.11. If η ∈Wd and inf
N∈N

η(N)
N

= 0, then (`1
η̂)
∗ = m(η′) isometrically.

Proof. Let a ∈ `1
η̂ and b ∈ m(η′). We may apply Lemma 2.7 with ν(j) = jb∗j and

ξ(j) = ‖b‖m(η′) η̂(j), since ν̃(n) ≤ ξ̃(n), and conclude that
∞∑
j=1

|ajbj| ≤
∞∑
j=1

a∗jb
∗
j ≤ ‖b‖m(η′)

∞∑
j=1

a∗j∆η(j) = ‖b‖m(η′)‖a‖`1
η̂
. (2.18)

This shows that m(η′) ⊆ (`1
η̂)
∗. Conversely let Φ ∈ (`1

η̂)
∗ and denote bn = Φ(en) with

{en} the standard basis in c00. If εn = sign(bn), then for each |A| = N we have∑
n∈A

|bn| = |
∑
n∈A

ε̄nbn| ≤ ‖Φ‖‖1ε̄A‖`1
η̂

= ‖Φ‖ η(N). (2.19)

We claim that b = {bn}∞n=1 ∈ c0. Indeed, if not, there would be a δ > 0 and a sub-

sequence |bnj | ≥ δ, and (2.19) gives δN ≤
∑N

j=1 |bnj | ≤ ‖Φ‖η(N), which contradicts
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the property infN η(N)/N = 0. Finally, (2.19) implies that
∑N

j=1 b
∗
j ≤ ‖Φ‖η(N), and

therefore ‖b‖m(η′) ≤ ‖Φ‖. This completes the proof of the theorem. �

2.7. Properties of TN(η1, η2). We show elementary relations for

SN(η1, η2), TN(η1, η2), and TN(η1, η2),

defined in (1.5)-(1.7), and also for the quantity

UN(η1, η2) :=
N∑
j=1

η1(j) η2(j)

j2
, N = 1, 2, . . . (2.20)

Lemma 2.12. If η1, η2 ∈Wqc then

SN(η1, η2) ≤ TN(η1, η2) ≤ max{TN(η1, η2), TN(η2, η1)} ≤ UN(η1, η2). (2.21)

Moreover if we assume that iη1iη2 > 0 then

TN(η1, η2) ≈ UN(η1, η2). (2.22)

Finally, if η1 ∈Wco and iη2 > 0 (or η2 ∈Wco and iη1 > 0), then

SN(η1, η2) ≈ TN(η1, η2). (2.23)

PROOF: The assertion (2.21) follows easily using that ∆η(j) ≤ η(j)/j when η ∈Wqc.
If iη2 > 0, we can apply Corollary 2.8.ii to obtain

UN(η1, η2) = ‖{η1(j)/j}Nj=1‖`1η2 ≤ c ‖{η1(j)/j}Nj=1‖`1
η̂2

= c TN(η1, η2).

If iη1 > 0, a symmetric argument gives UN(η1, η2) ≤ cTN(η2, η1), and hence (2.22).
Finally, if η1 ∈Wco and iη2 > 0, then Corollary 2.8.ii gives

TN(η2, η1) = ‖{∆η1(j)}Nj=1‖`1η2 ≤ c ‖{∆η1(j)}Nj=1‖`1
η̂2

= c SN(η1, η2), (2.24)

which together with (2.21) gives (2.23). A similar reasoning works interchanging η1

and η2. 2

Example 2.13. If η1(j) = j and η2(j) = 1 for all j = 1, 2, 3, . . . . Then, iη1 = 1,
iη2 = 0 and

SN(η1, η2) = TN(η1, η2) = 1, TN(η2, η1) = UN(η1, η2) ≈ ln(N + 1) .

Hence, (2.22) may not hold if iη2 = 0.

Lemma 2.14. Let η1, η2, ξ2 be non-negative sequences with η2 ≤ ξ2.

(i) If η1 ∈Wqc, then TN(η1, η2) ≤ TN(η1, ξ2).

(ii) If η1 ∈Wco, then SN(η1, η2) ≤ SN(η1, ξ2).

PROOF: (i) is elementary using Abel’s formula (2.4):

TN(η1, η2) =
N−1∑
j=1

[η1(j)

j
− η1(j + 1)

j + 1

]
η2(j) +

η1(N)

N
η2(N) ≤ TN(η1, ξ2),

since η1 ∈Wqc and η2 ≤ ξ2. The proof of (ii) is similar. 2
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3. Embeddings of discrete spaces into X

3.1. Proof of Theorem 1.2. The implication ii)⇒ i) is clear since

‖1εA‖ ≤
∥∥{εj}j∈A∥∥`1

η̂

=

|A|∑
j=1

∆η(j) = η(|A|) .

We now show that i)⇒ ii). Let a ∈ c00 and N = | supp a|. Write a∗j = |aπ(j)|, where
π : {1, ..., N} → supp a is a greedy bijection, that is |aπ(j)| ≥ |aπ(j+1)|, j = 1, 2, ... Let
also εj = sign(aπ(j)). If we define

SJ =
J∑
j=1

εjeπ(j) (3.1)

(and S0 = 0), then using Abel summation formula (2.4) we can write

∑
n∈suppa

anen =
N∑
j=1

a∗jεjeπ(j) =
N∑
j=1

a∗j(Sj − Sj−1) =
N−1∑
j=1

(a∗j − a∗j+1)Sj + a∗NSN .

Then, by assumption i),

∥∥∥ ∑
n∈suppa

anen

∥∥∥ ≤ N−1∑
j=1

(a∗j − a∗j+1)‖Sj‖+ a∗N‖SN‖ ≤
N−1∑
j=1

(a∗j − a∗j+1)η(j) + a∗Nη(N)

= a∗1η(1) +
N∑
j=2

a∗j(η(j)− η(j − 1)) = ‖a‖`1
η̂
, (3.2)

which is the desired result.
The implication iii) ⇒ ii) is immediate, so it remains to prove i) ⇒ iii) under

the assumption that the system is total. Let a ∈ `1
η̂, which we shall assume with

infinite support (otherwise we may use (3.2)). As before, write a∗j = |aπ(j)| where
π : N → supp a is a greedy bijection, and εj = sign(aπ(j)). Letting SJ be as in (3.1),
we have

J∑
j=1

(a∗j − a∗j+1)‖Sj‖ ≤
J∑
j=1

(a∗j − a∗j+1)η(j)

(by (2.4)) = a∗1η(1) +
J+1∑
j=2

a∗j [η(j)− η(j − 1)]− a∗J+1η(J + 1)

≤
∞∑
j=1

a∗j∆η(j) = ‖a‖`1
η̂
<∞.

Therefore, the series
∑∞

j=1(a∗j − a∗j+1)Sj converges to some x ∈ X and ‖x‖ ≤ ‖a‖`1
η̂
. It

only remains to show that

e∗n(x) = an, ∀ n ∈ N. (3.3)
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If n 6∈ supp a then e∗n(Sj) = 0 for all j, and thus e∗n(x) = 0. Let then n ∈ supp a, and
write n = π(jn), so that

e∗n(x) = lim
J→∞

e∗n

(
J∑
j=1

(a∗j − a∗j+1)Sj

)
= lim

J→∞

J∑
j=jn

(a∗j − a∗j+1)εjn

= lim
J→∞

(a∗jn − a
∗
J+1)εjn = a∗jnεjn = aπ(jn) = an,

where we have used that a ∈ c0. Finally, there is a unique element x with the property

(3.3) by the totality of the system B∗. This shows that `1
η̂

B,1
↪→ X, and completes the

proof of the theorem. 2

Remark 3.1. The statement of Theorem 1.2 resembles a well known property of the
classical Lorentz spaces Lp,1. Namely, if ‖ · ‖ is an order preserving norm defined on
the set S of all simple functions of a measure space (Ω,Σ, dµ), then the inequality
‖χE‖ ≤ µ(E)1/p for all E ∈ Σ, implies that ‖f‖ ≤ ‖f‖Lp,1(µ) for all f ∈ S; see [25,
Thm V.3.11].

Remark 3.2. In the special setting of quasi-greedy bases, a result similar to Theorem
1.2 was proved earlier by the fourth author in [17, Lemma 2.1]. More precisely, if B
is quasi-greedy in X and η ∈ Wd is such that ‖1A‖ ≤ η(|A|), then `1

η ↪→ X via B.

Theorem 1.2 actually shows that one can choose a better space, since `1
η ⊂ `1

η̂. See
also [1, Theorem 3.1].

4. Embeddings of X into discrete spaces

4.1. Proof of Theorem 1.3. (i) ⇒ (ii). For x ∈ X, write a∗j(x) = |e∗π(j)(x)|, where

π is a greedy permutation onto suppx, that is, |e∗π(j)(x)| ≥ |e∗π(j+1)(x)|, j = 1, 2, ....

We also let εj = sign(e∗π(j)(x)), j = 1, 2... Then

η′(N)

N

N∑
j=1

a∗j(x) =
1

η(N)

N∑
j=1

a∗j(x) =
1

η(N)

( N∑
j=1

ε̄je
∗
π(j)

)
(x)

≤ 1

η(N)
‖

N∑
j=1

ε̄je
∗
π(j)‖∗‖x‖ ≤ ‖x‖.

(ii)⇒ (i). Let A ⊂ N be a finite set and ε ∈ Υ. Then,

‖1∗εA‖∗ = sup
‖x‖=1

|1∗εA(x)| = sup
‖x‖=1

|
∑
j∈A

εj e∗j(x)| . (4.1)

Now, given x ∈ X, and denoting {a∗j(x)}j as in the proof of the previous implication,
we have ∣∣∣∑

j∈A

εj e∗j(x)
∣∣∣ ≤∑

j∈A

|e∗j(x)| ≤
|A|∑
j=1

a∗j(x) ≤ η(|A|)‖x‖,

with the last inequality due to the assumption (ii). Inserting this estimate into (4.1)
gives the desired expression (i). 2
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Remark 4.1. In the setting of quasi-greedy bases, a different version of Theorem
1.3 involving lower democracy function h` was proved in [17, Lemma 2.2]. Namely,
X ↪→ `∞h` ; see also [1, Theorem 3.1]. Such embedding, however, cannot hold for general
bases. For instance, consider the space X of all sequences a = {an}∞n=1 ∈ c0 with

‖a‖ := sup
M≥1

∣∣∣ M∑
n=1

an

∣∣∣ <∞ ,

with the standard canonical basis {en}. Then, h`(N) = inf |A|=N ‖1A‖ = N . However,
the embedding X ↪→ `∞h` cannot hold since a = {(−1)n}Nn=1 belongs to X with ‖a‖ = 1,
but supn na

∗
n = N →∞.

5. Proof of Theorem 1.1

The results we prove here are slightly stronger than those announced in Theorem
1.1. Throughout this section, the sequences η1, η2 ∈W are such that

(1) ‖1εA‖ ≤ η1(N) and (2) ‖1∗εA‖∗ ≤ η2(N), ∀ |A| = N, ∀ ε ∈ Υ. (5.1)

As noted above, these inequalities are satisfied for η1 = D and η2 = D∗.

5.1. Estimates for KN . Instead of estimating KN , we work with the larger quantity

Ku
N = sup

|A|≤N
ε∈Υ

‖PεA‖,

where PεAx =
∑

n∈A εne
∗
n(x)en.

Lemma 5.1. Suppose the sequences η1, η2 ∈W satisfy (5.1). Then:

(i) If η1 ∈Wqc, then Ku
N ≤ TN(η1, η2).

(ii) If η1 ∈Wco, then Ku
N ≤ SN(η1, η2).

Proof. Given any x ∈ X, we denote by {a∗j(x)} the decreasing rearrangement of
{e∗n(x)}, that is, a∗j(x) = |e∗π(j)(x)|, where π is a greedy bijection onto suppx; see

the proof of the Theorem 1.3. If |A| ≤ N and ε ∈ Υ, then part (1) of (5.1) and the
implication i)⇒ ii) of Theorem 1.2 imply

‖PεAx‖ ≤
|A|∑
j=1

a∗j(PεAx)∆η1(j) ≤
N∑
j=1

a∗j(x)∆η1(j) =: AN(x), (5.2)

the last inequality due to a∗j(PεAx) = a∗j(PAx) ≤ a∗j(x) (and η1 ∈W).

We start by proving (ii). Denoting SJ(x) =
∑J

j=1 a
∗
j(x), and using the Abel sum-

mation formula (2.4)

AN(x) = S1(x) η1(1) +
N∑
j=2

[Sj(x)− Sj−1(x)]∆η1(j)

=
N−1∑
j=1

[
∆η1(j)−∆η1(j + 1)

]
Sj(x) + ∆η1(N)SN(x) . (5.3)
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Now, the inequality (2) in (5.1) and i)⇒ ii) of Theorem 1.3 imply that

1

η2(j)
Sj(x) =

η′2(j)

j

j∑
k=1

a∗k(x) ≤ ‖x‖ , j = 1, 2, . . . (5.4)

Since η1 ∈ Wco, we may insert in (5.3) the inequalities for Sj(x) in (5.4), and then
another use of (2.4) gives,

AN(x) ≤
[N−1∑
j=1

[∆η1(j)−∆η1(j + 1)]η2(j) + ∆η1(N)η2(N)
]
‖x‖

=
N∑
j=1

∆η1(j)∆η2(j) ‖x‖ = SN(η1, η2) ‖x‖ .

Plug this into (5.2) to obtain the desired estimate for Ku
N .

To prove (i) assume η1 ∈ Wqc. Then η1 ≤ η̃1, so that (5.1) holds with η1 replaced
by η̃1. Since η̃1 ∈Wco (see (2.7)), by part (ii) of this Lemma (just proved)

Ku
N ≤ SN(η̃1, η2) =

N∑
j=1

η1(j)

j
∆η2(j) = TN(η1, η2) .

On the other hand, observe that in (5.2) we could also argue as follows

AN(x) =
N∑
j=1

a∗j(x)∆η1(j) ≤ sup
k∈N

[
k

η2(k)
a∗k(x)

] N∑
j=1

η2(j)

j
∆η1(j)

≤ ‖{a∗j(x)}‖m(η′2) TN(η2, η1) ≤ ‖x‖TN(η2, η1),

the last inequality due to (2) in (5.1) and (i) ⇒ (ii) in Theorem 1.3. Thus, we have
shown that (5.1) implies

Ku
N ≤ min

{
TN(η1, η2), TN(η2, η1)

}
=: TN(η1, η2).

�

5.2. Estimates for LN .

Lemma 5.2. Suppose the sequences η1, η2 ∈W satisfy (5.1). Then:

(i) If η1 ∈Wqc, then LN ≤ 1 + 3TN(η1, η2).

(ii) If η1 ∈Wco, then LN ≤ 1 + 3SN(η1, η2).

Proof. We follow the standard approach in [19]. Let x ∈ X and write GNx = PΓx for
some Γ ∈ G(x,N). Take any z =

∑
n∈B cnen with |B| ≤ N . Then,

‖x−GNx‖ = ‖x− PB∪Γ(x) + PB\Γ(x)‖
≤ ‖P(B∪Γ)c(x)‖+ ‖PB\Γ(x)‖ =: I + II . (5.5)

For the first term we use that P(B∪Γ)c(x) = P(B∪Γ)c(x− z), and therefore

I = ‖(I − PB∪Γ)(x− z)‖ ≤ ‖x− z‖+ ‖PB(x− z)‖+ ‖PΓ\B(x− z)‖
≤ (1 + 2KN)‖x− z‖ . (5.6)
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To estimate II we proceed as follows. First, using (5.1) and i)⇒ ii) in Theorem 1.2,

II = ‖PB\Γ(x)‖ ≤
|B\Γ|∑
j=1

a∗j(PB\Γ(x))∆η1(j) ≤
|Γ\B|∑
j=1

a∗j(PΓ\B(x))∆η1(j) ,

where in the last step we have used that Γ is a greedy set for x and |B \ Γ| ≤ |Γ \B|.
Now, PΓ\B(x) = PΓ\B(x − z), and we may use that a∗j(PΓ\B(x − z)) ≤ a∗j(x − z) to
conclude

II = ‖PB\Γ(x)‖ ≤
|Γ\B|∑
j=1

a∗j(x− z)∆η1(j) .

The right hand side resembles that of (5.2), with AN(x) replaced by A|Γ\B|(x − z).
We estimate A|Γ\B|(x− z) as in Lemma 5.1. For η1 ∈Wco (case (ii)), we obtain

II = ‖PB\Γ(x)‖ ≤ SN(η1, η2) ‖x− z‖. (5.7)

Thus, combining (5.5), (5.6), and (5.7), together with Lemma 5.1 (ii), we are led to

‖x−GNx‖ ≤ (1 + 2KN + SN(η1, η2)) ‖x− z‖
≤ (1 + 3SN(η1, η2))‖x− z‖ .

Taking the infimum over all such z we finally obtain LN ≤ 1 + 3SN(η1, η2).
For η1 ∈Wqc (case (i)), we modify the preceding argument (as we did in the proof

of Lemma 5.1 (i)) to obtain LN ≤ 1 + 3T (η1, η2). �

5.3. Estimates for L̃N .

Lemma 5.3. Suppose the sequences η1, η2 ∈W satisfy (5.1). Then:

(i) If η1 ∈Wqc, then L̃N ≤ 1 + 2TN(η1, η2).

(ii) If η1 ∈Wco, then L̃N ≤ 1 + 2SN(η1, η2).

Sketch of a proof. Repeat the argument from the preceding lemma with z = PB(x).
The term II is estimated exactly as above, while for the term I we proceed as follows

I = ‖(I − PB∪Γ)(x)‖ = ‖x− PB(x)− PΓ\B(x− PB(x))‖
≤ ‖x− PB(x)‖+ ‖PΓ\B(x− PB(x))‖
≤ (1 +KN)‖x− PB(x)‖ . (5.8)

Now use (5.8) in place of (5.6) to obtain

L̃N ≤ 1 + 2SN(η1, η2),

or a similar estimate with TN(η1, η2) if we assume η1 ∈Wqc. �

5.4. Estimates for L̃∗N and L∗N . These can now be obtained applying the previous
estimates to the system {e∗n, en}, after interchanging the roles of η1 and η2 (and using
the property η2 ∈Wqc or η2 ∈Wco, respectively).

This completes the proof of all the asserted inequalities in Theorem 1.1, namely
(1.8) and (1.9). The optimality of the inequalities is illustrated with an example in
§8.1 below. 2
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5.5. First corollaries.

Corollary 5.4. If c1 = supn ‖en‖ and c2 = supn ‖e∗n‖∗, then

TN(D,D∗) ≤ min
{
c2D(N), c1D

∗(N)
}
≤ c1c2N. (5.9)

Proof. Using D(j) ≤ c1j (and D∗ ∈W), we deduce

TN(D,D∗) ≤ c1

∑N
j=1 ∆D∗(j) = c1D

∗(N).

Changing the roles of D and D∗ the result follows easily. �

Remark 5.5. Inserting (5.9) in Theorem 1.1 one recovers the classical bound LN ≤
1 + 3c1c2N ; see e.g. [2, Theorem 1.8].

The next corollary could be applied quickly in some practical situations.

Corollary 5.6. Let {en, e∗n}∞n=1 be a complete s-biorthogonal system in X. Then

i) max{LN ,L
∗
N} . min{D(N), D∗(N)} .

ii) If min{D(N), D∗(N)} . KN , then LN ≈ KN ≈ min{D(N), D∗(N)} .
iii) If d(N) ≈ 1 , then LN ≈ D(N) .

Proof. i) follows from Theorem 1.1 and the previous corollary.
ii) follows from (i) and the known lower bound LN & KN ; see e.g. [12, Proposition

3.3].
iii) Finally, if d(N) ≈ 1, then the superdemocracy parameter in (2.3) takes the

form µN = supn≤N D(n)/d(n) ≈ D(N). So the result follows from (i) and the known
lower bound LN & µN ; see [2, Proposition 1.1]. �

6. Estimates for D∗(N)

In practice, Theorem 1.1 needs good bounds of the upper democracy sequences
D(N) and D∗(N), associated with B and B∗. Sometimes the dual norm ‖ · ‖∗ is not
explicit, or is hard to compute. In this section we give bounds for D∗(N) which only
involve parameters of B, namely the lower superdemocracy constants, d(N) or d(N),
defined in (2.2), and the quasi-greedy constants

gN = sup
n≤N
‖Gn‖, gcN = sup

n≤N
‖I −Gn‖, and ĝN = sup

0≤k≤n≤N

∥∥Gn −Gk‖.

Note that, by the triangle inequality, ĝN ≤ 2 min{gn, gcN}.

Proposition 6.1. Let {en, e∗n}∞n=1 be a complete s-biorthogonal system in X. Then

N

d(N)
≤ D∗(N) ≤

N∑
j=1

ĝj
d(j)

. (6.1)

The proof is a slight generalization of known arguments from [7, Proposition 4.4]
and [33, Theorem 5] (see also [3, Theorem 4]). We first recall another result from [7]
(with the notation given in [2, Lemma 2.3]).

Lemma 6.2. Let {en, e∗n}∞n=1 be a complete s-biorthogonal system in X. If x ∈ X,
Λ ∈ G(x,N) and εn = sign (e∗n(x)), then

min
n∈Λ
|e∗n(x)| ‖1εΛ‖ ≤ ĝN ‖x‖ .
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PROOF of Proposition 6.1: The left hand side of (6.1) was shown in Lemma
2.2. For the right inequality, we pick |A| = N and ε ∈ Υ, and we shall estimate
‖1∗εA‖∗ = sup‖x‖=1 |1∗εA(x)|. Take x ∈ X with ‖x‖ = 1, and let π be a greedy ordering
of x. Then

|1∗εA(x)| =
∣∣∣∑
n∈A

εne
∗
n(x)

∣∣∣ ≤∑
n∈A

|e∗n(x)|

≤
N∑
j=1

|e∗π(j)(x)| =
N∑
j=1

|e∗π(j)(x)|
‖1δΛj‖
‖1δΛj‖

,

where Λj ∈ G(x, j) is a greedy set for x of size j and δ = {sign (e∗n(x))}. By Lemma
6.2 and ‖x‖ = 1,

|1∗εA(x)| ≤
N∑
j=1

ĝj
‖1δΛj‖

≤
N∑
j=1

ĝj
d(j)

.

Taking the sup over all ‖x‖ = 1, |A| = N and ε ∈ Υ gives the desired result. 2

As special cases we obtain the following.

Corollary 6.3. Let {en, e∗n}∞n=1 be a complete s-biorthogonal system in X.

(i) If B is quasi-greedy then d′(N) ≤ D∗(N) . (̃d′)(N) . If additionally d ∈ Wqc,
then D∗(N) . d′(N) ln(N + 1), and if Id < 1 then D∗(N) ≈ d′(N).

(ii) If B is superdemocratic then d′(N) ≤ D∗(N) . (
∑N

j=1
gj
j

) d′(N). If additionally

ig > 0, then d′(N) . D∗(N) . gN d
′(N).

Proof. (i) is direct from (6.1) and supN ĝN < ∞, and for the second part, from (2.8)
and Corollary 2.6. In (ii) one uses d(N) ≈ D(N) ∈ Wqc in (6.1), together with
Proposition 2.5. �

We conclude with a new definition, which we find appropriate in this context.

Definition 6.4. We say that {en, e∗n}∞n=1 has the property (D∗) if D∗(N) ≈ d′(N).

We list various examples where this property holds (or fails).

(1) All bidemocratic bases (as in (1.10)) have the property (D∗).
(2) All quasi-greedy bases with d ∈ Wqc and Id < 1 have the property (D∗), by

Corollary 6.3.i.
(3) Property (D∗) may fail when Id = 1, even for greedy bases. Indeed, the

canonical system in the discrete Triebel-Lizorkin space fq1, 1 ≤ q ≤ ∞, is a
greedy basis with d(N) ≈ D(N) ≈ N . However, using the duality between fq1
and bmoq′ , one can show that D∗(N) ≈ [ln(N + 1)]1/q

′
.

(4) The canonical basis in `p ⊕ `q has the property (D∗), for all 1 ≤ p, q ≤ ∞. In

fact, d(N) ≈ N
1
p
∧ 1
q , so d′(N) ≈ N

1
p′ ∨

1
q′ ≈ D∗(N).

(5) The trigonometric system in Lp(T) has the property (D∗) when 1 < p ≤ ∞; see
§8.3 below. However, this property fails for p = 1, since d′(N) ≈ N/ ln(N +1),
but D∗(N) ≈ N .
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7. Corollaries in special cases

In this section we investigate the growth of TN(D,D∗) when B is quasi-greedy,
superdemocratic, or has property (D∗). In all these cases we show that LN .
TN(D,D∗) . LN ln(N + 1), so the loss in Theorem 1.1 is at most logarithmic.

Lemma 7.1. Let {en, e∗n}∞n=1 be a complete s-biorthogonal system in X. Then

TN(D,D∗) ≤
N∑
j=1

ĝj µj
j

. (7.1)

Proof. By Proposition 6.1, D∗(N) ≤
∑N

j=1
ĝj
d(j)

=: η(N). Using D ∈Wqc and Lemma

2.14 it follows that

TN(D,D∗) ≤ TN(D, η) =
N∑
j=1

D(j)

j

ĝj
d(j)

≤
N∑
j=1

ĝj µj
j

.

�

Corollary 7.2. Let {en, e∗n}∞n=1 be a complete s-biorthogonal system in X. If B =
{en}∞n=1 is superdemocratic, then

max
{
KN , L̃N ,LN , g

∗
N , µ

∗
N , L̃

∗
N ,L

∗
N

}
. TN(D,D∗) . gN ln(N + 1). (7.2)

In particular,

LN . TN(D,D∗) . L̃N ln(N + 1) , N = 1, 2, . . . (7.3)

Finally, if ig > 0 then, TN ≈ LN ≈ L̃N ≈ KN ≈ gN .

Proof. Call Cs := supN µN <∞. Then (7.1) gives

TN(D,D∗) ≤ Cs

N∑
j=1

ĝj
j
≤ Cs ĝN(1 + lnN). (7.4)

The results now follow easily from Theorem 1.1 and the known lower bounds LN ≥
L̃N ≥ gcN and L̃∗N & max{g∗N , µ∗N}; see e.g. [2, Prop 1.1]. Apply Proposition 2.5 to
(7.4) in order to handle the case of ig > 0. �

Remark 7.3. From (7.2) we see that, for superdemocratic bases,

KN . gN ln(N + 1), (7.5)

that is, KN/gN cannot grow arbitrarily. This was known for quasi-greedy bases [6,
Lemma 8.2], but seems to be unnoticed for general superdemocratic bases.

Remark 7.4. Remark 4.6 in [7] provides an example of a superdemocratic basis
with ig > 0, which is neither quasi-greedy nor bidemocratic. Our result implies the

asymptotically optimal bound LN ≈ L̃N ≈ KN ≈ gN .

Corollary 7.5. Let {en, e∗n}∞n=1 be a complete s-biorthogonal system in X. Assume
that either B = {en}∞n=1 is quasi-greedy, or {en, e∗n}∞n=1 has the property (D∗). Then

max
{
KN , L̃N ,LN , g

∗
N , µ

∗
N , L̃

∗
N ,L

∗
N

}
. TN(D,D∗) . µN ln(N + 1). (7.6)

In particular, (7.3) holds, and moreover,

µN . L̃N ≤ LN . µN ln(N + 1) , N = 1, 2, . . . (7.7)
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Finally, if iµ > 0, then LN ≈ L̃N ≈ µN .

Proof. (i) If Cq = supj≥1 ĝj <∞, then (7.1) gives

TN(D,D∗) ≤ Cq

N∑
j=1

µj
j
≤ Cq µN (1 + lnN) . (7.8)

The assertions now follow from Theorem 1.1 and the lower bounds in [2, Prop 1.1].

(ii) Assuming property (D∗), and using that D∗ ∈Wqc, one has

D(j)∆D∗(j) ≤ D(j)
D∗(j)

j
≈ D(j)/d(j) ≤ µj, j ∈ N. (7.9)

Thus, also in this case we deduce TN(D,D∗) .
∑N

j=1 µj/j ≤ µN(1 + lnN). �

As a consequence we obtain a criterion for TN(D,D∗) . ln(N + 1), which includes
in particular all greedy bases.

Corollary 7.6. Let {en, e∗n}∞n=1 be a complete s-biorthogonal system in X. If B =
{en}∞n=1 is almost greedy, or {en, e∗n}∞n=1 is bidemocratic, then

max
{
KN , L̃N ,LN , g

∗
N , µ

∗
N , L̃

∗
N ,L

∗
N

}
. TN(D,D∗) . ln(N + 1) . (7.10)

Proof. This follows from (7.6), using µN ≈ 1. �

We pose two questions.

Question 1: Characterize the systems {en, e∗n} for which TN(D,D∗) . LN ln(N+1).

Question 2: Characterize the systems for which max{LN ,L
∗
N} . ln(N + 1).

Concerning Question 1, all the examples we have tested seem to satisfy this property.
Concerning Question 2, TN(D,D∗) . ln(N + 1) gives a sufficient condition, but we
do not know whether it is necessary.

8. Examples

In this section we give explicit examples which illustrate the essential sharpness of
our previous results.

8.1. Example 1: The difference basis in `1. Let {en}∞n=1 denote the canonical
basis in `1(N), and consider the system

x1 = e1 , xn = en − en−1 , n = 2, 3, . . . (8.1)

This is a monotone basis in X = `1, sometimes called the difference basis. Observe
that for finitely supported real scalars {bn}∞n=1 one has∥∥∥ ∞∑

n=1

bnxn

∥∥∥ =
∞∑
n=1

|bn − bn+1| . (8.2)



EMBEDDINGS AND LEBESGUE INEQUALITIES FOR GREEDY ALGORITHMS 21

In particular, ‖x1‖ = 1 and ‖xn‖ = 2 if n ≥ 2. The dual system consists of the
`∞-vectors x∗n =

∑∞
m=n e∗m, so for {cn} ∈ c00 it holds that∥∥∥ ∞∑

n=1

cnx
∗
n

∥∥∥
∗

= sup
n≥1

∣∣∣ n∑
j=1

cj

∣∣∣ . (8.3)

The system {x∗n}∞n=1 is called the summing basis; see e.g. [22, p.20].

Lemma 8.1. For {xn,x∗n}∞n=1 as above and N = 1, 2, 3, . . . , we have

(i) d(N) = 1 and D(N) = 2N

(ii) d∗(N) = 1 and D∗(N) = N .

Proof. For A ⊂ N, |A| = N and ε ∈ Υ = {±1}, if follows from (8.2) that

1 ≤ ‖1εA‖ =
∥∥∥∑
n∈A

εnxn

∥∥∥ ≤ 2N . (8.4)

Using again (8.2), it is easily seen that the right equality in (8.4) is attained by

testing with
∑N

j=1 x2j, while the left equality is attained with
∑N

j=1 xj. This shows

the statements in (i). The statements in (ii) about the summing bases are similar
(and can also be found in [2, Example 5.1]). �

Proposition 8.2. The system {xn,x∗n}∞n=1 satisfies SN(D,D∗) = TN(D,D∗) = 2N .
Moreover,

KN = K∗N = 2N , L̃N = L̃∗N = 1 + 4N , and LN = L∗N = 1 + 6N .

In particular, equalities are attained everywhere in Theorem 1.1.

Proof. From Lemma 8.1 we have

TN(D,D∗) =
N∑
j=1

D(j)

j
∆D∗(j) = 2N = TN(D∗, D) = SN(D,D∗) ,

establishing the first assertion. Theorem 1.1 then implies

K∗N ≤ KN ≤ 2N, L̃N , L̃
∗
N ≤ 1 + 4N, and LN ,L

∗
N ≤ 1 + 6N.

The equalities for K∗N , L̃∗N and L∗N were shown in [2, Proposition 5.1]. We show here

that equalities are attained also for L̃N and LN . First consider

x =
2N+1∑
j=1

xj +
3N∑

j=2N+1

x2j .

Then, σ̃N(x) ≤
∥∥∥∑2N+1

j=1 xj

∥∥∥ = 1. However, choosing GNx =
∑N

j=1 x2j we have

‖x−GNx‖ =
∥∥∥N+1∑
j=1

x2j−1 +
3N∑

j=2N+1

x2j

∥∥∥ = 4N + 1 .

Therefore, L̃N ≥ ‖x−GNx‖/σ̃N(x) ≥ 4N + 1 . Finally, consider

x = x1 +
N∑
j=1

x4j−2 +
N∑
j=1

x4j−1 −
N∑
j=1

x4j +
N∑
j=1

x4j+1 .
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Taking GNx =
∑N

j=1 x4j−2 we obtain ‖x − GNx‖ = 1 + 6N. On the other hand,

choosing y = 2
∑N

j=1 x4j ∈ ΣN , we have

σN(x) ≤ ‖x+ y‖ =
∥∥ 4N+1∑

j=1

xj
∥∥ = 1.

Thus, LN ≥ ‖x−GNx‖/σN(x) ≥ 1 + 6N . �

8.2. Example 2: The Lindenstrauss basis and its dual. Let {en}∞n=1 denote the
canonical basis in `1(N), and consider the vectors

xn = en −
1

2
e2n+1 −

1

2
e2n+2 , n = 1, 2, 3, . . . (8.5)

The system L = {xn}∞n=1 was introduced by J. Lindenstrauss in [21]. It is a basic
sequence of `1, hence a basis of a subspace D = span {L} in `1. To describe the dual
system we consider the following vectors in c0:

yn :=
n∑
j=0

2−jeγj(n), n = 1, 2, 3, . . . (8.6)

where γ0(n) = n and γj+1(n) = bγj(n)−1

2
c, j ≥ 0 (with the convention eγ = 0 if γ ≤ 0).

It is shown in [18, Example 2] that Y = {yn}∞n=1 is a Schauder basis in c0 with dual
vectors y∗n = xn. In particular, there exists some c > 0 such that

c ‖y‖c0 ≤ sup
x∈D

‖x‖
`1

=1

|〈x, y〉| = ‖y‖D∗ ≤ ‖y‖c0 , y ∈ c0 ;

see e.g. [11, Exercise 6.12]. So we can identify D̂ and c0 with equivalent norms. We
summarize a few other properties of the biorthogonal pair {L,Y}.

• L is conditional in D, and D has no unconditional basis; [24, p. 454-457].
• L is a quasi-greedy basis in D, with supN≥1 ‖GN‖ ≤ 3; see [10].
• Y is not quasi-greedy in c0; see [10].
• KN(L,D) ≈ ln(N + 1) , N = 1, 2, 3, . . . ; see1 [12, §6].

Theorem 8.3. For the Lindenstrauss basis L in D we have TN(D,D∗) ≈ ln(N + 1).
Moreover,

L̃N ≈ 1, and LN ≈ L∗N ≈ L̃∗N ≈ KN ≈ g∗N ≈ µ∗N ≈ ln(N + 1). (8.7)

Remark 8.4. The results for the system Y seem to be new. In fact, in this example,
Theorem 1.1 performs better than Theorems 1.2 and 1.3 from [2], which would only
yield the non-optimal bound LN(Y , c0) . [ln(N + 1)]2.

We only need upper estimates for D and D∗, but we shall actually prove more.

Lemma 8.5. For the Lindenstrauss basis L in D we have the following

(i) d(N) ≈ N and D(N) = 2N.

(ii) d∗(N) ≈ 1 and D∗(N) ≈ ln(N + 1).

1This is shown in [12] for the system {en − (e2n + e2n+1)/2}∞n=1, but the same arguments, with
obvious modifications, work for the basis in (8.5).
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Proof. i) Let 1εA =
∑

n∈A εnxn , with |A| = N , ε ∈ Υ. Since ‖xn‖ = 2, one always
has ‖1εA‖ ≤ 2N . To see that this bound is attained consider

x =
N∑
n=1

x3n =
N∑
n=1

(e3n −
1

2
e2·3n+1 −

1

2
e2·3n+2 ).

Since 2 · 3n + 2 < 3n+1, one deduces that ‖x‖ = 2N . Hence D(N) = 2N.
We now give a lower estimate for d(N). Observe that∥∥∥ M∑

n=1

bnxn

∥∥∥
`1

= |b1|+ |b2|+
M∑
n=3

∣∣bn − 1
2
bbn−1

2
c
∣∣ + 1

2

2M+2∑
n=M+1

∣∣bbn−1
2
c
∣∣.

From here it easily follows that ‖1εA‖`1 ≥ |A|/2, since for n ∈ A we have |bn −
1
2
bbn−1

2
c| ≥ 1/2. Thus2

N/2 ≤ d(N) ≤ 2N. (8.8)

ii) Using (8.8) and gN ≤ 3 in Proposition 6.1 yields

D∗(N) ≤ C ln(N + 1). (8.9)

The reverse inequality, D∗(N) & ln(N + 1) follows from∥∥∥ 2N+1−2∑
i=1

yi

∥∥∥
∗
≥ N

2
; (8.10)

see (10) in [10]. To estimate d∗ we quote the equality (9) in [10],∥∥∥ 2N+1−2∑
i=1

(−1)i yi

∥∥∥
c0

= 1 . (8.11)

Since Y is a Schauder basis, this actually implies that d∗(N) . 1. On the other hand,
given any A ⊂ N, if we set n0 = minA, then

‖
∑
n∈A

εnyn‖c0 & ‖yn0‖c0 = 1,

which implies3 d∗(N) & 1. �

PROOF of Theorem 8.3: By Lemma 8.5 we have D(j) = 2j, and therefore,

SN(D,D∗) = TN(D,D∗) = 2D∗(N) ≈ ln(N + 1). (8.12)

Thus, Theorem 1.1 gives a logarithmic upper bound for all the quantities in (8.7).

Also, L̃N ≈ 1 is known from [10] (since L is quasi-greedy and democratic).
For the lower bounds, first note that LN & KN & ln(N +1) was shown in [12, §6.1].

Lemma 8.5 also gives µ∗N ≈ ln(N + 1). Finally, L∗N ≥ L̃∗N & g∗N , and the estimate
g∗N & ln(N + 1) can easily be obtained from (8.10) and (8.11). 2

2Slightly more elaborate computations actually lead to d(N) = N + 1.
3Slightly more elaborate computations, using the definition of yn in (8.6), actually give d∗c0(N) = 1,

and also D∗c0(N) = log2(N + 1) if N + 1 = 2n.
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8.3. Example 3: The trigonometric system in Lp(Td). Consider the system
T d = {e2πik·x}k∈Zd in the Lebesgue space Lp(Td), 1 ≤ p < ∞, or in C(Td) when

p = ∞. Temlyakov proved in [26] that LN ≈ N |
1
p
− 1

2
|. Here we recover this result as

an application of Theorem 1.1 (at least if p 6= 2).

Proposition 8.6. For the system T d in Lp(Td) with 1 ≤ p ≤ ∞, p 6= 2, we have

TN(D,D∗) ≈ LN ≈ L̃N ≈ KN ≈ L∗N ≈ L̃∗N ≈ N |
1
p
− 1

2
|. (8.13)

Proof. From the Hausdorff-Young inequality and elementary inclusions, it is straight-
forward to prove that

N
1
2
∧ 1
p′ ≤ ‖1εA‖p ≤ N

1
2
∨ 1
p′ , (8.14)

for all |A| = N and ε ∈ Υ. Thus,

D(N) ≤ N
1
2
∨ 1
p′ and D∗(N) ≤ N

1
2
∨ 1
p ,

and therefore

TN(D,D∗) ≤ UN(D,D∗) =
N∑
j=1

j|
1
p
− 1

2
|

j
≤ cpN

| 1
p
− 1

2
| ,

with cp = 1/|1
p
− 1

2
|. This and Theorem 1.1 provide upper bounds for the constants

in (8.13). The lower bounds follow from gN & N |
1
p
− 1

2
|; see [26, Remark 2]. �

Remark 8.7. When X = L2 one of course has KN = L̃N = LN = 1. Observe,
however, that D(j) = D∗(j) =

√
j only gives TN ≈ ln(N + 1). This loss is due to the

fact that, in Theorem 1.1, we only make use of the weak assumptions `2,1 ↪→ X ↪→ `2,∞,
rather than the full force of X = `2.

8.4. Example 4: A summing basis by blocks. This is a slight modification of
an example exhibited in [12, Proposition 7.1]. It again illustrates that Theorem 1.1
produces asymptotically optimal bounds, which cannot be obtained with the results
in [2]. Take any {ωj}∞j=1 ∈Wqc, say with ω1 = 1. Define a space X consisting of (real)
sequences x = (xn)∞n=1 ∈ c0 such that

‖x‖ = max

{
‖x‖∞, sup

j≥1
sup
N≥1

ωj
j

∣∣∣ ∑
n∈∆j
n≤N

xn

∣∣∣} < ∞,

where ∆j = {2j, ..., 2j + 2j − 1}, j = 1, 2, ... By definition of the norm, the canonical
system B = {en}∞n=1 is a monotone basis in X, with ‖en‖ = ‖e∗n‖∗ = 1 for all n.

Proposition 8.8. In this example we have TN(D,D∗) ≤ 2ωN , and therefore

KN ≤ 2ωN , L̃N ≤ 1 + 4ωN , and LN ≤ 1 + 6ωN , N = 1, 2, . . . (8.15)

Moreover, all these quantities are bounded below by min{gN , gcN} ≥ ωN .

PROOF: For any |A| = N and ε ∈ Υ we claim that

1 ≤ ‖1εA‖ ≤ ‖1A‖ = max

{
1, sup

j

ωj
j
|∆j ∩ A|

}
≤ 2ωN . (8.16)

Indeed, the last inequality is justified using the quasi-concavity of ω as follows:

• if j ≥ N , then
ωj
j
|∆j ∩ A| ≤ ωj

j
|A| = ωj

j
N ≤ ωN



EMBEDDINGS AND LEBESGUE INEQUALITIES FOR GREEDY ALGORITHMS 25

• if j ≤ N , then
ωj
j
|∆j ∩ A| ≤ ωj

j
|∆j| = 2ωj ≤ 2ωN .

On the other hand, we have the trivial estimate ‖1∗εA‖∗ ≤ |A|. Therefore, arguing
as in Corollary 5.4 we obtain TN(D,D∗) ≤ 2ωN , and therefore (8.15). We now show

the lower bound. Let x =
∑2N−1

j=0 (−1)je2N+j, which has support in ∆N and ‖x‖ = 1.

Choosing GNx =
∑N−1

`=0 e2N+2`, we see that

gN ≥ ‖GNx‖ = ωN and gcn ≥ ‖(I −GN)x‖ = ωN .
2

8.5. Example 5: An example of Konyagin and Temlyakov. We slightly gen-
eralize a construction in [19] of a quasi-greedy superdemocratic basis which is not
unconditional. For 1 ≤ p < ∞ and 1 ≤ r ≤ ∞, let KT (p, r) be the set of all
sequences x = {xn}∞n=1 ∈ c0 with norm

|||x||| = max
{
‖x‖`p,r , ‖x‖bp

}
< ∞

where

‖x‖`p,r =

(
∞∑
j=1

(j1/px∗j)
r 1

j

)1/r

, and ‖x‖bp = sup
N≥1

∣∣∣ N∑
n=1

xn
n1/p′

∣∣∣.
The example in [19, §3.3] is the case KT (2, 2), while KT (p, p), 1 < p <∞, was later
considered in [12]. A trivial case corresponds to r = 1, for which K(p, 1) = `p,1.

We summarize the main results in the next theorem, where we write B = {en}∞n=1

for the standard canonical basis.

Theorem 8.9. Let 1 ≤ r ≤ ∞.

(i) If 1 < p <∞ then
(
KT (p, r),B

)
is quasi-greedy, bidemocratic and

LN ≈ L∗N ≈ KN ≈ [ln(N + 1)]1/r
′

and L̃N ≈ L̃∗N ≈ 1. (8.17)

(ii) If p = 1 then
(
KT (1, r),B

)
is superdemocratic and

LN ≈ L̃N ≈ L∗N ≈ L̃∗N ≈ KN ≈ gN ≈ µ∗N ≈ [ln(N + 1)]1/r
′
. (8.18)

We split the proof in various lemmas, starting with the computation of D and D∗.

Lemma 8.10. If 1 ≤ r ≤ ∞, the following holds for the space KT (p, r):

(i) If 1 < p <∞, then d(N) ≈ D(N) ≈ N1/p, and d∗(N) ≈ D∗(N) ≈ N1/p′.

(ii) If p = 1, then d(N) ≈ D(N) ≈ N , d∗(N) = 1 and D∗(N) ≈ [ln(N + 1)]1/r
′
.

In particular,
(
KT (p, r),B

)
is always superdemocratic, and is bidemocratic if p > 1.

PROOF: If |A| = N and ε ∈ Υ, then

|||1εA||| ≤ |||1A||| ≤ max
{

[
N∑
j=1

(j
1
p )r 1

j
]

1
r ,

N∑
j=1

1
j1/p

′

}
=

N∑
j=1

1
j1/p

′ ≤ pN1/p, (8.19)

and

|||1εA||| ≥ ‖1εA‖`p,r = [
N∑
j=1

(j
1
p )r 1

j
]

1
r ≥ cp,rN

1/p,
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for some cp,r > 0. This shows that d(N) ≈ D(N) ≈ N1/p for all 1 ≤ p <∞. For the
assertion about the dual system, observe that if |||x||| = 1, then

|1∗εA(x)| ≤
∑
n∈A

|xn| ≤
N∑
j=1

x∗j

≤ ‖x‖`p,r
[ N∑
j=1

j
r′
p′ 1
j

] 1
r′ ≤

{
N1/p′ if 1 < p <∞
[ln(N + 1)]

1
r′ if p = 1

(8.20)

So taking sup over |||x||| = 1 we obtain the asserted upper bounds for D∗(N). For the
lower bound, using (8.19),

|||1∗εA|||∗ ≥ 1∗εA(1ε̄A)/|||1ε̄A||| ≥ N/(pN
1
p ) = N

1
p′ /p. (8.21)

So, when 1 < p < ∞ we have already proved d∗(N) ≈ D∗(N) ≈ N1/p′ . When p = 1,
one can obtain d∗(N) = 1 from (8.21) and

|||1∗{1,...,N}|||∗ = sup
|||x|||=1

∣∣ N∑
n=1

xn
∣∣ ≤ 1.

Finally, setting εn = (−1)n and x =
∑N

n=1
(−1)n

n
en, we have |||x||| ≈ [ln(N + 1)]1/r and

therefore

|||1∗ε{1,...,N}|||∗ ≥
∣∣∑N

n=1
1
n

∣∣/|||x||| ≈ [ln(N + 1)]1/r
′
.

This and (8.20) show that D∗(N) ≈ [ln(N + 1)]1/r
′
, and establish the lemma. 2

The following proof is a variation of [19, §3.4].

Lemma 8.11. Let 1 < p <∞ and 1 ≤ r ≤ ∞. Then B is quasi greedy in KT (p, r).

Proof. Since the canonical basis is unconditional in `p,r and KT (p, 1) = `p,1 we may
assume that r > 1. Also, it suffices to show that ‖GNx‖bp ≤ C |||x|||, for all GN ∈ GN
and all N . Let x ∈ KT (p, r), Λ ∈ G(x, N), α = minj∈Λ x

∗
j and Mα =

(
|||x|||
α

)p
≥ 1.

Then, for M ≤Mα, using that |xj| ≤ α if j ∈ Λc, we obtain∣∣∣∣∣
M∑
j=1
j∈Λ

xj
j1/p′

∣∣∣∣∣ ≤
∣∣∣∣∣
M∑
j=1

xj
j1/p′

∣∣∣∣∣+

∣∣∣∣∣
M∑
j=1
j∈Λc

xj
j1/p′

∣∣∣∣∣ ≤ ‖x‖bp + α
Mα∑
j=1

1

j1/p′

. |||x|||+ αM1/p
α . |||x|||. (8.22)

For M > Mα, we use (8.22) to obtain∣∣∣∣∣
M∑
j=1
j∈Λ

xj
j1/p′

∣∣∣∣∣ ≤
∣∣∣∣∣
Mα∑
j=1
j∈Λ

xj
j1/p′

∣∣∣∣∣+

∣∣∣∣∣ ∑
Mα<j≤M

j∈Λ

xj
j1/p′

∣∣∣∣∣ . |||x|||+
∣∣∣∣∣ ∑
Mα<j≤M

j∈Λ

xj
j1/p′

∣∣∣∣∣︸ ︷︷ ︸
(I)

. (8.23)
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To estimate (I), take a number q such that max{1, p/r} < q < p. Set s = rq/p > 1
(if r =∞, then s =∞ as well). By the Hardy-Littlewood rearragement inequality,

(I) ≤
N∑
j=1

x∗j
(j +Mα)1/p′

≤ α1−p/q
N∑
j=1

(x∗j)
p/qj1/qj1/q′

(j +Mα)1/p′

1

j

≤ α1−p/q

(
∞∑
j=1

(j1/px∗j)
sp/q 1

j

)1/s( ∞∑
j=1

(
j1/q′

(j +Mα)1/p′

)s′
1

j

)1/s′

≤ α1−p/q|||x|||p/q
(
∞∑
j=1

js
′/q′

(j +Mα)s′/p′
1

j

)1/s′

︸ ︷︷ ︸
(II)

.

Finally, we estimate (II) as follows:

(II) ≤ M−1/p′

α

(∑
j≤Mα

js
′/q′

j

)1/s′

+

(∑
j>Mα

1

j
( 1
p′−

1
q′ )s

′

1

j

)1/s′

. M1/q′−1/p′

α ≤
(
|||x|||/α

)p(1/p−1/q)
. (8.24)

Hence, using (8.24) in the estimate of (I),

(I) . α1−p/q|||x|||p/q|||x|||1−p/q/α1−p/q = |||x|||. (8.25)

Thus (8.25), (8.23), and (8.22) show that ‖GNx‖bp . |||x|||, establishing the result. �

Lemma 8.12. For 1 ≤ p < ∞ and 1 ≤ r ≤ ∞, we have KN & (ln(N + 1))1/r′. In
particular, B is not unconditional in KT (p, r) if r > 1.

Proof. Consider x =
∑2N

n=1
(−1)n

n1/p en, with N ≥ 1. Then,

|||x||| =
(∑2N

n=1
1
n

)1/r

≈ [ln(N + 1)]1/r.

On the other hand, for the set A = {1, 2, ..., 2N} ∩ 2Z, with cardinality N , then,

|||PA(x)||| ≥ ‖PA(x)‖bp =
∑N

n=1
1

2n
≈ ln(N + 1).

Thus, KN ≥ |||PA(x)|||/|||x||| & [ln(N + 1)]1/r
′
. �

Lemma 8.13. For all 1 ≤ r ≤ ∞, the space KT (1, r) satisfies gN & (ln(N + 1))1/r′.
In particular, B is not quasi-greedy in KT (1, r) if r > 1.

Proof. For fixed n ≥ 1, consider

x =
(

1,− 1

2n
, ...,− 1

2n︸ ︷︷ ︸
2nelements

,
1

2
,
1

2
,− 1

2n+1
, ...,− 1

2n+1︸ ︷︷ ︸
2n+1elements

, ...,
1

2n
, ...,

1

2n
,− 1

22n
, ...,− 1

22n︸ ︷︷ ︸
22nelements

, 0, . . .
)
.

Then ‖x‖b1 = 1, and since the decreasing rearrangement of x is given by(
1,

1

2
,
1

2
,
1

4
,
1

4
,
1

4
,
1

4
, ...,

1

22n
, ...,

1

22n
, 0, . . .

)
,

we also have ‖x‖`1,r ≈ [
∑2n

j=0(2jx∗2j)
r]1/r = [2n+ 1]1/r ≈ |||x|||.



28 P.M. BERNÁ, O. BLASCO, G. GARRIGÓS, E. HERNÁNDEZ, AND T. OIKHBERG

Now, if N = 1 + 2 + ...+ 2n = 2n+1 − 1, then

GN(x) =
(

1, 0, ...0,
1

2
,
1

2
, 0, ..., 0, ...,

1

2n
, ...,

1

2n

)
,

and therefore ‖GN(x)‖b1 = n + 1. Hence, |||GN(x)||| ≥ n + 1 = log2(N + 1), and we
conclude

gN ≥ |||GN(x)|||/|||x||| & (n+ 1)1/r′ ≈ [ln(N + 1)]1/r
′
.

�

PROOF of Theorem 8.9:
Assume first that 1 < p < ∞. From Lemmas 8.10 and 8.11, B is quasi-greedy

and bidemocratic, so also B∗ must be quasi-greedy by [7, Theorem 5.4]. Thus, by

[7, Theorem 3.3], L̃N ≈ L̃∗N ≈ 1, as asserted in (8.17). Also LN ≈ L∗N ≈ KN , by
[12, Theorem 1.1], and hence the lower bounds on the left side of (8.17) follow from
Lemma 8.12. We must give an upper bound for KN . We shall use a direct argument,
based on the fact that KT (p, r) ↪→ `p,r. Going back to (5.2) in the proof of Theorem

1.1, first notice that we can choose the sequence η1(N) =
∑N

j=1 1/j1/p′ because of

(8.19). Then, for |A| ≤ N ,

|||PA(x)||| ≤
N∑
j=1

x∗j∆η1(j) =
N∑
j=1

x∗j
j1/p

j

≤
( N∑
j=1

(x∗jj
1/p)r

1

j

)1/r( N∑
j=1

1

j

)1/r′

≤ |||x||| [ln(N + 1)]1/r
′
.

This gives KN ≤ [ln(N + 1)]1/r
′
, and completes the proof when p > 1.

Assume now that p = 1. Since min{LN , L̃N , KN} & gN and min{L∗N , L̃∗N} ≥ µ∗N ,
the lower bounds follow from Lemmas 8.10 and 8.13.

To establish the upper bounds we shall give a direct argument which avoids The-
orems 1.1, 1.2, 1.3, as X = KT (1, r) is only a quasi-Banach space4. As before, the
trivial embedding `1 ↪→ KT (1, r) gives

|||PAx||| . ‖PAx‖`1 =

|A|∑
j=1

x∗j

≤
[ |A|∑
j=1

(jx∗j)
r 1
j

] 1
r
( |A|∑
j=1

1
j

) 1
r′
. |||x|||

[
ln(|A|+ 1)

] 1
r′ , (8.26)

from which one derives KN . [ln(N + 1)]
1
r′ . To obtain an upper bound for LN , using

the notation and the arguments following (5.5), one has

II = |||PB\Γ(x)||| .
∥∥PB\Γ(x)

∥∥
`1

=

|B\Γ|∑
j=1

a∗j
(
PB\Γ(x)

)
≤
|Γ\B|∑
j=1

a∗j(x− z).

So using again (8.26) one obtains

II . |||x− z|||
[

ln(N + 1)
] 1
r′ .

4We thank an anonymous referee for pointing out this fact.
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From these expressions, the arguments in (5.5) and (5.6) lead to

|||x−GNx||| . |||x− z|||
[

ln(N + 1)
] 1
r′ ,

and hence LN . (ln(N + 1))1/r′ . Finally, a bound for L∗N can be obtained similarly
as follows. If x ∈ X∗, we use the expression for the dual norm

II = |||PB\Γ(x)|||∗ = sup
|||y|||=1

∣∣〈PB\Γ(x), y〉
∣∣

Now, for fixed |||y||| = 1, the Hardy-Littlewood inequality ([4, Theorem 2.2, Chapter
2]) and the reasoning following (5.6) give∣∣〈PB\Γ(x), y〉

∣∣ ≤ |B\Γ|∑
j=1

a∗j
(
PB\Γ(x)

)
y∗j ≤

|Γ\B|∑
j=1

a∗j(x− z)y∗j

≤
[ ∞∑
j=1

(jy∗j )
r 1
j

] 1
r
( |Γ\B|∑

j=1

a∗j(x− z)r
′ 1
j

) 1
r′

. |||y||| ‖x− z‖`∞
[

ln(N + 1)
] 1
r′ .

Since KT (1, r)∗ ↪→ `∞ we obtain

II . |||x− z|||∗
[

ln(N + 1)
] 1
r′ ,

and conclude that

|||x−GNx|||∗ . |||x− z|||∗
[

ln(N + 1)
] 1
r′ .

Thus, we have also shown L∗N . (ln(N + 1))1/r′ , and completed the proof of Theorem
8.9.

2
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