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LITTLEWOOD-PALEY DECOMPOSITIONS RELATED
TO SYMMETRIC CONES AND BERGMAN
PROJECTIONS IN TUBE DOMAINS

D. BEKOLLE, A. BONAMI, G. GARRIGOS anp F. RICCI

1. Introduction

Let Q be an irreducible symmetric cone in a Euclidean vector space V of
dimension n, endowed with an inner product (-|-) for which the cone € is self-
dual. We can identify V with R", by endowing the latter with such an inner
product. We denote by Ty =V 4+ the corresponding tube domain in the
complexification of V, which we may also identify with C". As in the text [8], we
write the rank and determinant associated with a cone by

r=rank 2, and A(z)=detx, forx V.

The precise meaning of these notions is explained in some more detail in §2.
A typical example is the light-cones in R", with n >3, defined by

Ay ={y=(y1,y) €R": ¢ = |y'[* >0, y, > 0}.

These are symmetric cones of rank 2 with determinant given by the Lorentz form
A(y) =12 —|y'|>. A second example is the cones Sym, (r,R) of positive-definite
symmetric matrices, which have rank r and the usual determinant for matrices. In
this last case, the underlying vector space V is the space of symmetric matrices
Sym(r,R), with dimension n =1r(r+ 1), and with a Euclidean norm defined by
the Hilbert—Schmidt inner product (which does not coincide with the canonical
inner product in the usual identification between V and R"). These two are the
most characteristic examples in the classification of symmetric cones. The reader
less familiar with the general theory should keep these cases in mind, and refer
occasionally to the text [8] (or the more informal lecture notes [3]).

The goal of this paper is to present, in the general setting of symmetric cones, a
special Littlewood—Paley decomposition adapted to the geometry of . This will
be applied to analytic problems, such as the boundedness of Bergman projectors
and the characterization of boundary values for Bergman spaces in the tube
domain Ty. To describe our setting, let us denote by S the space of Schwartz
functions f € S(R™) with Supp f C Q, and normalize the Fourier transform by

]?(5) =Ff = (2;)71 JRne*i(xK)f(x) dr, for £ € R".
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Our basic tool will be a special decomposition for functions in S,

(1.1) f= Zf 1, forall f € Sq,

where Jj are supported on ‘suitable frequency blocks’ B; which form a Whitney
covering of the cone €. More precisely, and in analogy with the dyadic
decomposition of the half-line (0,00) (that is, the 1-dimensional cone), we let B;
be the ‘balls’ B; = {§ € Q: d(£,&;) < 1}, obtained from the homogeneous structure
of the cone via an invariant distance d and a d-lattice {¢;}. These will turn out to
be the right sets for the discretization of many operators related to 2, since
functions typically appearing in multiplier expressions (such as A(¢) or e” € for
fixed y € Q) remain essentially constant when & € B;.

A characteristic example of this situation is the generalized wave operator on

the cone:
10
:A _—
N (iax)’

which is the differential operator of degree r defined by the equality

1 . ,
(1.2) A(f 3) [ez(zlg)] = A(f)e“zlg), where £ € R".
i Oz
This corresponds, in cones of rank 1 and 2, to
1d 19 & o
O=-— in(0 d o=——-(=—-=——...——= | inA,.
i dx in (0,00, an 4 (8;16% o} m;i) e

The Littlewood—Paley decomposition (1.1) provides a formal ‘discretization’ of the
action of O on functions with spectrum in :

Of = F T AQF©) = 3AE) fr g F 7 (my), for | € So,

where {m;} is a uniformly bounded family of multipliers.

From these facts it is natural to introduce a new family of Besov-type spaces,
BP1 adapted to the Littlewood—Paley decomposition (1.1). These are defined as
the equivalence classes of tempered distributions which have finite seminorms

1/q

(1.3 e = | A7) 15+ w31
J

Our first result shows that these spaces satisfy properties analogous to those of the
one-dimensional homogeneous Besov spaces, with the role of the usual derivation
played now by the wave operator 0. We have chosen a special normalization of
indices in (1.3) which is convenient for the applications that follow, but which is
slightly different from the standard notation in, for example, [9]. (When n = 1 and
¢; =27, the norm in (1.3) corresponds to the classical Besov space B, VI9(R).)

THEOREM 1.4. Let v € R and 1<p,q < co. Then

(1) B is a Banach space and does not depend on the choice of {1;} and {{;};

(2) O: Bl — B}, is an isomorphism of Banach spaces;

(3) if p,q> 1, then (B}9)" is isomorphic to ny'g,/q with the usual duality
pairing.
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The rest of the paper is devoted to applications of this theory to two open
problems involving the class of Bergman spaces. In this paper, a weighted mixed-
norm version of these spaces is defined by the following integrability condition:

(1.5) 1F |0 = Usz (JR \F(z + iy)|” dw)q/p A () dy] R

n

Thus, when 1<p,q < co and v € R, we denote by A2?(Tg) the closed subspace of
LP7 consisting of holomorphic functions in the tube Ty,. We observe that these
spaces are non-null only when v > n/r —1 (see, for example, [3]). The usual A”
space corresponds to p=¢ and v =n/r. To simplify notation we shall write
AP = APP and similarly L) = L7,
Two main questions concerning these spaces will be studied here:
(1) the characterization of boundary values of functions in AZ29 as
distributions in the Besov spaces B2,
(2) the boundedness of Bergman projectors P, in L7 spaces, where P, is the
usual orthogonal projection from L2 onto AZ.
Regarding the first question, the general idea is to write a holomorphic function
F in the tube T in terms of its Fourier—Laplace transform:

(1.6) F(2) = Lg(z) = j G g(e)de, for 2 € T,

for some distribution ¢ supported in Q. Roughly speaking, the new distribution
f = F g plays the role of the ‘Shilov boundary value’ for F, while the condition
F € AP is naturally related with f € BP?. Observe that we must exclude some
indices, since by Theorem 1.4 we can only give a meaning to (1.6) when
fq(ef(yl.)xg) has a finite Bf:/’g:/q—norm. As we shall see, this can only happen
when ¢ is below the critical index

- v+n/r—1
o = (m/ry /) = 1),

(with g, , = oo, if n/r <p’). A detailed justification of these facts will be presented
in §§3.4 and 4.1, leading to the following theorem.

THEOREM 1.7. Let v>n/r—1, 1<p<oo and 1<q < q, ,. Then, for every
F e Al there exists a (unique) tempered distribution f e S'(R") such that
f=>f*v; in S'(R"), ||fllgre < oo and F = Lf. Moreover we have

(1) lim, g yeq F(- +1y) = f, in both S'(R") and BJ;

(2) ||f||B‘§w gC’ ||F||A5-,r1, for all ' € Alf’q.

The converse result is more interesting, and turns out to be equivalent to the
second of the questions posed above. We only have a partial answer, for which we
need to introduce two new critical indices

_v+n/r—1

q, = Wa QV,p = min{pa pl} qy -

Observe that in 1-dimension the three indices are equal to oo, while in general we
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have the ordering
2<4,<q,p<qyp
The role of these new indices will be clarified later in relation to the

Bergman projectors.

THEOREM 1.8. Let v>n/r—1, 1<p<oo and 1<q<gq,,. Given a distri-
bution f € §'(R") such that f =3 f *¢; and || f| gz < 0o, then the holomorphic
function F' = L f belongs to AP"?, and moreover, there exists a constant C' > 0 so that

for f € B}

APS

1 -
& 17l <127

This theorem is sharp for 1<p<2, in the sense that for each ¢>gq, , = pg,
there is a distribution with || f||gr« < oo and H£f||qu = oco. We shall present these
examples in §4.4. When p > 2 we will construct similar examples, but only for
values of ¢ > ¢, = 2q,, leaving open the question when p’q, <¢ < min{2q,,q, ,}
One can conjecture that the theorem also has a positive answer in these cases,
with some evidence given by the sharp results for large p presented for light-cones
in §5.

We turn to the second application of our theory, the boundedness of Bergman
projectors in LP9. This is a challenging question which has been open for many
years, and which still is not completely solved. The three indices defined above
correspond to three steps of difficulty for this question. First, a trivial counter-
example (just involving local integrability of the Bergman kernel) shows that P,
can only be bounded in LP*Y when a,ﬁp < q<q,, Next, an argument involving
Schur’s lemma gives ¢, < ¢ < g, as the sharp range of boundedness for the positive
operator P, (where the Bergman kernel is replaced by its absolute value
|B,(z,w)|; see [1, 5]). Finally, it is shown in [4] that g5 , < ¢ < go, is the sharp
range of boundedness for P, in the spaces L2? (from which q,,, arises by
interpolation between ¢, and ¢,5 = 2q,). The techniques introduced in [4],
originally for light-cones, have also been the germ of the Littlewood—-Paley
decomposition we present here. Our main contribution to this problem, besides the
extension to general symmetric cones, is the equivalent formulation in terms of the
previous problem, which moreover will lead to new improvements as those
presented in §5. We gather these results in our next two theorems, which by
self-adjointness of P, we need to state only when ¢ > 2.

THEOREM 1.9. Let v >n/r—1,1<p <oc and 2<q < g, ,. Then, P, admits
a bounded extension from LP9 onto AP? if and only if

1/q

(1.10) 1CF e <C {Z AN I lt| L for £ e S
J

In particular, P, is bounded in L7 for all 1<p<oo and q,,<q<4q,,.
Moreover, P, does not admit bounded extensions to LIY when:

(1) 1<p<2 and ¢=q,,;

(2) 2 <p<oo and ¢= min{2q,,q, ,}
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THEOREM 1.11. For the light-cone A,,, with n>3, and for all v > %(n —2),
there exists a large p,,, such that P, is bounded in the sharp range 2<q < g, for
all p > p,,.

Figure 1.1 illustrates the regions of boundedness and unboundedness for P,
after the results in Theorems 1.9 and 1.11. Compared with [4], the first figure
removes the end-points in 1<p<2, and the region ¢>¢q,, when p > 2, with
counter-examples which are new even for light-cones. The second figure improves
upon these results for light-cones, reaching for the first time the sharp line ¢ = g, .
We can even improve a bit on this picture when n = 3 (see Corollary 5.17 and Figure
5.1 below). At this point it becomes natural to conjecture the boundedness of P,
in the whole blank region above. We observe that in the particular case of
LP-spaces (p=¢q) the conjecture becomes 2<p < min{2q,,q, +n/(n—r)}
(together with its dual interval), which in this paper we also settle for light-cones
and sufficiently large v (see Remark 5.13 below).

1/p 1/p

n+2
2n

n+r

2n

1
2

o=

1/q 1/q

1
—_ 2

FIGURE 1.1. Regions of boundedness for P, in general cones and light-cones.

We do not wish to conclude this introductory section without briefly explaining
our approach to this problem for light-cones, and its relation with classical
multiplier conjectures in Harmonic Analysis. In §§4 and 5 we shall reformulate
(1.10) in terms of simpler inequalities of the form

1/s
(1.12) ||f||p<cNa[Z||f*¢juz] . for f € Sa. (RY),

&€y

for appropriate combinations of the indices «, p, s, and with the sum restricted to
lattice points so that |{;] ~1 and A(&;) ~1/N. These inequalities have been
studied in light-cones in relation with restriction and cone multiplier problems,
where the ‘frequency blocks’ B(;) correspond precisely to the usual ‘dyadic’
partition of a truncated conical shell (as in, for example, [13] or [16]). When
p=s>2n/(n—2) one can conjecture the validity of (1.12) for all
o >1(n—2)— (n—1)/p, which if true would allow us to push for such p up to
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the critical line ¢ =g, , in Figure 1.1. This turns out to coincide with a weak
version of the local smoothing conjecture recently posed by T. Wolff [17, 12], and
it is precisely from his partial results that we obtain an improvement in our
problem. (We thank A. Seeger and A. Vargas for pointing out these references, as
well as the implications for our results.) Similarly, when 2 < p<2n/(n —2) and
s =2 the natural conjecture states the validity of (1.12) for all « > 0, which
would eventually imply an improvement for such p up to the vertical line ¢ = 2gq,
in Figure 1.1. This is closely related to the stronger local smoothing conjecture,
where one replaces the right-hand side of (1.12) with N°||(>]|f * w‘j\Q)l/QHP (and
restricts to 2 <p<2(n—1)/(n—2)). Again, from the latest progress on this
question [16, 18] we shall obtain new positive results for n =3 and p =4 (see
Figure 5.1). We finally point out that, regarding our problem, sharp inequalities of
the form (1.12) are not only sufficient, but also necessary. In particular, a positive
answer for the blank region in Figure 1.1 for all ¥ >1 would solve Wolff’s
conjecture in dimensions 3 and 4 (see Remark 5.14 below).

We conclude by mentioning that a simplified version of our results, specialized
to the case when p =2 (for which the use of Plancherel’s theorem is available),
has been published separately in [2]. We also refer to the survey paper [6] for
complementary information concerning critical indices and their relation with
Hardy-type inequalities.

2. Whitney decompositions on the cone

In this section we introduce the notation and a list of technical results on
symmetric cones, mostly taken from the text [8]. We also give a detailed
construction of the ‘Whitney decomposition’ adapted to the analysis of the
problems stated above. The main lines and applications of such constructions
appear in previous papers: see [4] for the light-cone, and [2] for general
symmetric cones.

2.1. Background on symmetric cones

Let Q be a fixed symmetric cone in a real Euclidean vector space V, endowed
with the inner product (-|-). That is, € is a homogeneous open convex cone
which is self-adjoint with respect to (-]-). Let G(2) be the group of linear
transformations of the cone, and G its identity component. By definition, G(£2)
acts transitively on €. Further, it is well known that there is a solvable subgroup
T of G acting simply transitively on ). That is, every y € {2 can be written
uniquely as y =te, with t € T and a fixed e € Q). This gives an identification
O=T=G/K, where K is a maximal compact subgroup of G. Moreover,
K={geG:ge=e} =GNO(V). These properties can be found in Chapters I
and VI of the text [8].

It is well known that for every symmetric cone {2, its underlying vector space V'
can be endowed with a multiplication rule which makes it a Fuclidean Jordan
algebra with identity element e. With such multiplication, Q coincides with the set
{2 : 2 € V} of all squares in V. The notions of rank, trace and determinant in {2
are those inherited from the Jordan algebra structure of V' (see [8, Chapter II]).
We say that (2 is irreducible when V' cannot be decomposed as a direct sum of two
lower-dimensional subspaces which contain a pair of symmetric cones whose direct
sum equals © (alternatively, when V does not contain non-trivial ideals). For
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irreducible cones we may assume, after multiplying by a positive constant, that
the inner product in V is given by (z]y) = (xyle) = tr(zy) [8, p.51]. The reader
less familiar with these concepts should keep in mind the example of
positive-definite symmetric matrices, which we present in more detail in
Example 2.2 below.

Suppose now that the cone is irreducible, has rank r and its underlying space has
dimension n. Following [8, Chapter IV], we fix a Jordan frame {cy,...,c,} in V (that
is, a complete system of idempotents), to which we associate a Peirce decomposition
of the space V, that is, an orthogonal decomposition V' = @ <;<;<, V;;, where

Vi=Re, and V;={zeV:cqr=cz=3z}ifi<j

Then, by [8, Theorem VI1.3.6], T' may be taken as the corresponding solvable Lie
group, which factors as the semidirect product T'= NA = AN of a nilpotent
subgroup N (of lower triangular matrices), and an abelian subgroup A (of
diagonal matrices). The latter takes the explicit form

A= {P(a) ta= Zaici,ai > O},
=1

where P is the quadratic representation of V. This also leads to the classical
decompositions of the semisimple Lie group G = NAK and G = KAK.

Still following [8, Chapter VI|, we shall denote by A(x),...,A,.(x) the principal
minors of x € V, with respect to the fixed Jordan frame {c¢i,...,c,}. These are
invariant functions under the group N,

Apnz) = Ap(x), wherene Nz eV, k=1,...,r,
and satisfy a homogeneity relation under A,
Ay(P(a)z) = a?...af Ay(z), if a=aye, +...+ac,.

The determinant function A(y) = A,(y) is also invariant under K, and moreover,
satisfies the formula

(2.1) A(gy) = Alge)A(y) = Det(g) /" Aly).

It follows from this formula that an invariant measure in ) is given by
A(y)_"/ "dy. Finally, we recall a version of Sylvester’'s Theorem for symmetric
cones, which allows to write these as

Q={zecV:A(x)>0,k=1,...,7}.

EXAMPLE 2.2. The cone of positive-definite symmetric matrices. We describe
the above concepts for the cone 2 = Sym, (r,R), contained in the vector space
V = Sym(r,R). The Jordan algebra structure in V' corresponds to the symmetric
product X oY =1 (XY +YX), with the usual identity matrix e =I. A standard
Jordan frame is the set D; of diagonal matrices all of whose entries are 0 except
for the jth which is equal to 1. The Peirce decomposition in V is just the
decomposition of a symmetric matrix in terms of its (i,7) entries.

In this example, the automorphism group G(2) can be identified with Gl(r,R)
via the adjoint action

(2.3) g€ Gl(r,R),Y € Sym(r,R)—g-Y = gY¢" € Sym(r,R).
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Then, the group T consists in the lower triangular matrices in Gl(r,R), and the
factorization Y =t .1 is precisely the Gauss decomposition of a positive-definite
symmetric matrix. The subgroup N consists of all triangular matrices in Gl(r, R) with
1s on the diagonal, while A is given by the diagonal matrices P(a) = diag{a,...,a,}.
Finally, the associated principal minors are the usual principal minors from linear
algebra, that is, the determinants of the k& x k symmetric submatrices obtained by
restriction to the first k£ coordinates. One verifies easily with this example the
homogeneity properties with respect to N and A stated above.

2.2. The invariant metric and the covering lemma

With the identification Q = G/K, the cone can be regarded as a Riemannian
manifold with the G-invariant metric defined by

<§v 77>y = (t_1£|t_177)

if y = te and £ and n are tangent vectors at y € 2. We shall denote by d( -, -) the
corresponding distance, and by Bgs(§) the ball centered at & of radius 6. Note that,
for each g € G, the invariance implies that Bs(g¢) = gB;s(&).

We shall need some weak local invariance properties of the quantities that we
have defined on the cone. One consequence is the possibility of obtaining a
Whitney-type decomposition for general symmetric cones in terms of invariant
balls. Part of this material has already been presented in [2].

LEMMA 2.4. Let 6 > 0. Then there is a constant v = y(6,€2) > 0 such that

Ag(8) _
ALE) <7, fork=1,...,r.

dee)<s — ~<
Y

Proof. By invariance of the metric and the forms A, under N, we may assume
¢ = P(a)e. Further, since

Ap§)  _ Ay(P(a)')

Ap(Pla)e) — Aple) 7
we may even assume ¢’ =e. Now, the estimates above and below for A, in a
ball Bs(e) follow easily from the continuity of &+— A.(£), and a compactness
argument. O

The next lemma states the local equivalence between two Riemannian metrics.
The proof follows from standard arguments (see, for example, [14, 9-22]).

LEMMA 2.5. Let 6y > 0 be fixed. Then, there exist two constants 1, > 1y > 0,
depending only on ¢, and (), so that for every 0 < 6 <6, we have

{I¢ —el <md} < Bse) C {I¢ —el <mé}.

We can now estimate the volume of an invariant ball. Recall that the invariant
measure in € is given by

meas(B) = JBA(f)fn/r d¢, with B C Q measurable.
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Therefore, from the previous results it follows that, for all y € 2 and 0 < 6 < 6,
meas(B;s(y)) = meas(Bs(e)) ~ Vol(B;s(e)) ~ 6",

where the equivalences denoted by ‘~’ are modulo constants depending only on
and the fixed number ¢,. Observe, however, that this estimate cannot hold
uniformly in §; >> 1, since the invariant measure is in general not doubling. We
can now prove a covering lemma which will be of crucial importance for the rest of
the paper.

LEMMA 2.6. Whitney decomposition of the cone. Let § > 0 and R>2. Then,
there exist sequences of points {¢;}; in © such that

(i) {Bs(§;)}; is a disjoint family in €Q;

(ii) {Bgs(§;)}; is a covering of the cone ().
Moreover, for each such sequence the balls { Bps(§;)}; have the finite intersection
property. That is, if 6, R< Ry, then there exists an integer N = N(Ry,{2) so that
at most N of these balls can intersect an arbitrary set E C ) with diameter

(2.7) diam(E) = sup{d(&,n) : &,n € E} < Ryé.

Proof.  Consider {¢;};, a maximal subset of  (under inclusion) among those
with the property that their elements are distant at least 26 from one another. Let
us denote by Bj the balls By(¢;). They are pairwise disjoint, while, by maximality,
the balls {B; = Bys(§;)}; cover Q. Note also that, necessarily, the set {&};
is countable.

For the finite overlapping, let E be a set as in (2.7). Denote by J the set of
indices {j: Bgs(§;) N E # 0}, and fix a point § € Brs(§;,) N E for some j, € J.
Then, the condition on the diameter gives

UBé(fj) C Biagy+1)5(8)-
JjeJ

Now, by disjointness and invariance of the measure we have

|J| meas(B;(e)) = meas( U B;)

jeJ
< meaS(B@RUH)&(f)) = meaS<B(2RU+1)6(e))'

Thus, the remarks preceding the lemma give us a bound for N depending only on
Q and R,. O

REMARK 2.8. 1. A sequence of points {{;}; with the above properties will be
called a (6, R)-lattice of the cone. Observe that one can always define an
associated partition by letting

EIZBI, ey .E‘]:.B]\.EVJ,I7

We shall call {E;}; a Whitney decomposition of €.

2. If {¢;}, is a (6, R)-lattice, then so is {£;'};. Indeed, this follows from the fact
that y+—y ' is an isometry of the cone (see Chapter III of [8]). Therefore,
Bs(&) = Bé(fj)_l, and the conditions of Lemma 2.6 hold.
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3. One can look at the sequences {§J}J and {£'}; as a couple of dual lattices.
In fact, (§/|§/ ) = r, while using A(y~') = A(y) " we also have Vol(B;) ~ A(EJ)”/T
and Vol(B;') ~ A(¢))~ "/ Moreover, from the next lemma it will follow that
actually (£ \y) ~ 1 when £ € B; and y € B_

LEMMA 2.9. Let § > 0. There exists v = (£,8) > 0 such that, for y € Q and
£,¢ e Q with d(&,¢') <6, then

1 _ ¢y
2.10 - < <.
(210 €l =7
In particular, 1/ < [€]/|€'| <~, when d(&, &) <

Proof. By continuity it suffices to show (2.10) for y € Q. Using invariance
under G (and the fact that G = G*), we may assume that y =e. To show that
(&'le) <v(&le), let us write ¢ = kP(a)e, for k € K and a = aj¢; + ... + a,c,. Then the
new vector ¢” = P(a) 'k~ 1¢’ belongs to the fixed ball B(e). Therefore, we have

(€'le) = (P(a)¢"le) < VT | P(a)][[€"| <AIIP(a)ll,

where the labt bound appears because Bgs(e) is a compact set. Now P(a) has

eigenvalues a? and a;a; ;» and hence

(2.11) 1P(a)]| = max{a}, a;a;} < Zaz = (P(a)ele) = (Ele).

Finally, let us remark that (£|e) is equivalent to |£]. Indeed, (£]e) < /T |¢| by the
Schwarz inequality. Conversely, for £ = P(a)e, we have

Z @2 = (€e). 0

Il =

LEMMA 2.12. For every g € G we have

lgll < lgel <V/r|lgll-

Proof. Write g = kP(a)h, for some h,k € K and a = a;¢; + ...+ a,c,. Then,
as in (2.11),
IP(a)]| < (ai + ...+ ap)"/* = [P(a)e| = |ge].
Thus,
|gel/lel <llgll = | P(a)[| <|ge]- O

2.3. Integrals on 2

To conclude with this preliminary section, we list some basic facts concerning
integrals in the cone. Following [8], we define the generalized power function of
x € Q by

Ay(z) = AT (2) AP (2) ... AY (z), fors=(sq,89,...,8,) €C’,

where A, are the principal minors with respect to a fixed Jordan frame
{¢i,...,¢,}. In particular, A (z)=aj'...ay when z=ajc;+...+a.c,. The
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lemmas from the previous section justify the following discretization of integrals
which we shall use often below.

PROPOSITION 2.13. Let 0 <6, R< R, be fixed, and {{;}; be a (6, R)-lattice
with associated Whitney decomposition {E;};. Then, for every s € R" there exists
a positive constant C' such that, for any y € Q and for any non-negative function
f on the cone, we have

LS e e ~f9 dg
Czj:e v AS(SJ)JEJf(é) A(g)n/,,,éjgf(f)e AS@A@W
<O Y e UMIOA (¢, _
> &), 10557

where v = v(Ry,2) is a constant as in (2.10).

We shall also need the gamma function in Q defined from the generalized

powers. That is, given s = (s, $3,...,5,) € C", one lets
B de

2.14 Tq(s :J e~ o) A .

(2.14) ols) = [ 7 800 1o

This integral is known to converge absolutely if and only if

—1
{Resj>(j—1)n/r T forall j=1,...,r.

Moreover, in such a case

(2.15) To(s) = (2m)" /2 H I (Sj -0- 1)n/r—_11) ’

J=1 "

where T is the classical gamma function in R, [8, Chapter VII]. We shall denote
To(s) =T(s) when s = (s,...,s). The next formula defines the Laplace transform
of a generalized power, and can be found in [8, p.124].

LeEMMA 2.16. For y € Q and s = (sy,89,...,8,) € C" with

—1
%esj>(j—1)n:7;1 , forj=1,...,r,
we have
el d -
(€lw) A = Do (s) Ag(y ™).
Jo™ 7 8:08) 3 e = Tl A7)

REMARK 2.17. We will sometimes write the above quantity As(yfl) in terms
of the rotated Jordan frame {c,,...,c;}. That is, if we denote by Aj, for
j=1,...,r, the principal minors with respect to this new frame, then

As(yfl) = [A% (y)rl, for all s = (sy,...,s,) € C",

where we have set s™ := (s,,...,$;) (see [8, p.127]).
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Our last lemmas are concerned with global and local integrability of generalized
powers. The first one is a simple consequence of our last result and the Plancherel
formula (see also [4]).

LEMMA 2.18. Let a € R, and define
I(y) = J |A(z + iy)| " dz, for ye Q.
R
Then, I, is finite if and only if o > 2n/r — 1. In this case, I,(y) = c(a) A(y)~*™/".

We next establish the critical index for local integrability at the origin.

LEMMA 2.19. Let o € R and

e~ (le)
A1+ [log A, 016D
Then, g, is integrable if and only if o > 1.

9a(§) =

Proof. This is a simple exercise using Gaussian coordinates (see Chapter VI of
[8]). Indeed, with the notation in [8], the integral of g, is equal to

2
e 22 . (r—j)d—l]
c, —— U du N dur
J(O,oo)" (1 +2|logu,|)* Ll_[l ! '

00 —u?
=04J " du 0
o (1+2[logu, )" u,

Finally, we conclude with the critical index for integrability at infinity.

LEmMA 2.20. Let a,6 € R, 8> —1 and

. A(y)
Japs\Y) = A(y(y + e)(]_ + log A(y + e))(S .

Then, g,p54 Is integrable if and only if o —f>2n/r—1 or a —f=2n/r—1
and 6 > 1.

Proof. This time we use the ‘polar coordinates’ of the cone
y=k(ee,+...+e¢c,), wheret, <ty <...<t,and ke K
(see [8, p.105]). Then, A(y+e) = [[}=1(e" + 1), and

J ga,ﬁ,&(y> dy
Q

_ CJoo Jt “‘rz ettt t,) (n/746) Hj<k(Sh(%(tk _ tj)))d
oo [T (el + 1) (14 2 log(1 + €4))°

where d =dimV;; =2(n/r —1)/(r —1). For the necessary condition, we can
consider only the case when o — 8 = 2n/r — 1 and 6§ = 1. Moreover, we restrict the

dt,...dt,,

—00J —00
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region of integration so that sht¢ > ce!, and obtain

0o (27141 3 e(t]+ At )(1-n/r) (te—t,)/2
I>c e dty...dt,
- JT'LH L 144, H
>c! Jm M dr=D4/2 4 o
o 1414, '
To estimate from above, we use the bound

HSh Yte —t)) He t—t;) H i—1=(r=1)/2);

J<k j<k j=1

Then the integral I is bounded by the product

r—1 J+oo e(d(j71)+ﬁ+1)tj J+oc e(d(r71)+ﬁ+l)tr
X
J ( +e

——— dt dt
=Dk (1 + log(1 4 )’

Each integral is convergent at —oo since 3+ 1 > 0. We use the conditions on «, (3
and 6 to conclude the proof easily for the integrability at +oo. O

3. Besov spaces with spectrum in )

3.1. The Littlewood—Paley decomposition

Through the rest of the paper, {¢;} will be a fixed (8, R)-lattice in Q with § =3
and R =2. We can easily construct a smooth partition of the unity associated
with the covering B; = B, (¢;). For this, we choose a real function ¢, € C*(B;(e))
such that

0<po<1, and ¢lpe) =1
We write each point {; = g;e, for some fixed g; € G (which, for simplicity, we take
to be self-adjoint). Then, we can define ¢;(£) := ¢y(g;'€), so that
(3.1) 0; € CX(By()), 0<p;<1 and ¢jlp =1.

We assume that £, = e, so that there is no ambiguity of notation. By the finite
intersection property, there exists a constant ¢ > 0 such that

—<<I> Zgo]

PROPOSITION 3.2. In the conditions above, let @/)j = ;/®. Then

(1) §; € C=(By(€)));

(2) 0<9;<1, and Z]d}]( )=1, forall £ €Y

(3) the v; are uniformly bounded in L'(R"); in particular, there exists a
constant C' > 0 such that

(3.3) \f*¥ll, <C|fll,, forall fe L’(R"), all j, and 1<p<oo.

Proof. The first two statements are clear. For the last one, note first that

1l = 117~ (2olg5 )/ @)z = IF " (wo/®(g; Nl



330 D. BEKOLLE, A. BONAMI, G. GARRIGOS AND F. RICCI
Now, when £ € By(e) we can write

&)= volgi'9;6)

ke,

where J; = {k : By(§;) N By(§;) # 0} is a finite set with at most N elements by the
finite intersection property. Further, we claim that the following uniform estimate
holds true:

(3.4) lgi' 9,1l <C, when k € J;, for all j.

Indeed, since d(g;'gje,e) = d(¢;,&,) <4, by Lemmas 2.12 and 2.9,
lgi gl ~ lgk gjel ~ le| ~ 1.

From (3.4) the proposition follows easily. Indeed, integrating by parts we have

(35) f_l(wo/q)(gj .))(x) — JB‘)(e) BY(L‘f) 5(07(62) dé-

_ izle) D" (00/®(g;))(€)
= € N
By(e) (—‘ZE| )
where D" denotes a power of the Laplacian. All functions D*(¢,/®(g;-)) are
bounded. Thus, choosing L =0 for |z|<1, and L>in for |z|>1, we can

majorize F '(py/®(g;-)) uniformly in j by an integrable function, and this
establishes the result. O

dg,

In this paper we shall mainly be concerned with Besov-type seminorms derived
from the couple {¢;,9;} as in (1.3). That is, for v € R, 1<p,g< o0, and f €
S'(R") we let

(3.6)

. { (S AE) I vl i g < oo,
! AE) If *wll,  ifg=oo

We shall make use of the fact that these seminorms do not actually depend on the
choice of the lattice {{;} or the test functions 1);. Moreover, they can also be
defined with test functions which are not normalized as in the previous
proposition. That is, we may replace {1;} by any family

(3.7) Xi(6) = X(g;'€),

defined from an arbitrary x € C2°(B,(e)) so that 0 < x <1 and X is identically 1
in By(e). These and other elementary equivalences are stated and proved in the
following lemma.

LEMMA 3.8. Let {{;,v;} be as at the beginning of this section, and fix
veR and 1<p,q<oo. Then, for any other (6, R)-lattice {fj} with associated
Littlewood—Paley functions {%} and for any family {x;} as in (3.7), we have the
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equivalences

1/q

Saieirents] ~ [Sa@irean]

J J

1/q

[Sa@sents]” ~ [Savens ]

J J

for all f € S'(R™). Moreover, when g € G and q < oo, the following equivalence
holds:

STATE) (fog) =lli ~ Age) P~ ZA &) 1 * ;8.
J

Proof. We just consider the case ¢ < oo, the modifications for ¢ = co being
trivial. For the first part, we can write, for each j,

/lZJ = Z $j$k77

where the index k runs through a set J; = {k: Brs(€,) N By(& ;) # 0} of at most
N = N(6,R,?) elements. Then, using (3 3) and Lemma 2.4 we have

ZA E) I+ wle<CY S ATE) If * il

J ked;

<’ ZA (&) I1f * il

The converse inequality follows similarly. For the second equivalence in the
lemma, the fact that y ]1/1 j 1/)4, immediately implies the left inequality. A similar
use of the finite intersection property as we did above gives the right-hand side.

Finally, for our last statement, it is sufficient to prove an inequality of the form
‘<’ the converse inequality ‘2’ following after replacing g by its inverse. Now,
using a first change of variables, and the fact that the determinant of the
transformation ¢ in R" is equal to A(ge)”", we are linked to consider the
LP-norms of the functions

A(ge) I f (50 7) = A(ge) PN faapx (Y097,
k

For each fixed j this last sum has at most N terms, since the Fourier transform of
Yy * (Y09 ') is non-zero only if d(&;,g"¢;) < 4. So
If * @0 g D, <CAge)" D> If *tull,,
kid(g"€.6) <4

the factor A(ge)™" appearing as the determinant of the transformation ¢ in the
computation of the L'-norm of ;o g '. Now, when d(g*¢;,&;) < 4, then A(¢)) is
equivalent to A(g*&.) = A(ge)A(&). Thus we conclude that

DATE NS (o g F<CAGe) Y Y ATEIS .

J o kid(g7&.5)<4
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We get the required inequality by multiplying by A(ge) ™ /P"" and summing
in the j indices first. O

Recall now that Squ denotes the space of Schwartz functions f on R"
with Supp f C . The next proposition gives the Littlewood—Paley decomposition
[ =2, f*1; for functions in f € S,, and relates it with the Besov space norm.

PROPOSITION 3.9. Every f € Sq admits a Littlewood—Paley decomposition
[ =2, f*1; with convergence in S(R"). Further, for every v € R and 1 <p,q< o0
there are a constant C = C(p,q,v) > 0 and an integer £ = {(p,q,v) >0 so that

1/q

(3.10) s = | A (&) 17l
J
<Cpy(f) < oo, for all f € S,

where p;(p) = SUp|q| </ SUPgers (1 + 1€)" [0%p(€)| denotes a Schwartz seminorm.

The proof depends on a lemma which gives appropriate estimates for test
functions in Sg,.

LEMMA 3.11. Let N,M>0. Then, there are a constant C = C(N,M) >0
and an integer ¢ = ((N,M) >0 such that, for every f € Sq,

(1) £ < Cpy(F) AM(€) (1 + [¢))™, for all £ € Q;
(2) if 1<p< oo, then

1f * 5ll, < Coe(F) MMM (1 1), for all j.

Proof of Lemma 3.11. For the first statement, it suffices to show that for
every f € Sg and M >1 there is M’ >1 so that

(3.12) 1£(&)| < Cpar (F) AM(€),  whenever A(€) < 1,6 € Q.

Indeed, we then write (3.12) for DVf to get the full statement. So, let us prove
(3. 12) Let & € 2 be fixed, and choose &, € I so that dist(£, 9) = |£ — &|. Since
Suppf C Q, we have 9 f(&)) =0, for every multi-index a. Thus, given M >1
there is a constant C' = C(M) such that |f( )< Cou(f ) € — &M, We claim that
€ — &l <A(E)Y", which will clearly establish (3.12).

To show our claim, we may assume that £ = P(a)e, where a = ay¢; + ... + a,¢,.
Suppose also that a; = min{ay,...,a,}. Then

€ — &l = dist(&,09) <[ — (a3ey + ... + alc,)|
=ai <(ai...a)"/"=A©""

Let us now prove the second statement in Lemma 3.11. It is sufficient to prove
the same inequality, with the system y; instead of ¢;. Given f € Sq, we proceed
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as in (3.5):
(3.13) f*xj@:):J 9 F(€)x (g5 '€) de
= &) [ e Flgermie) ae

_ ANIT (¢ ez’,(gj:c|§) ( ( )5(\( ))
=& | o

d€.
By(e) ( |gj

The estimates in the first part, together with Lemmas 2.4, 2.9 and 2.12, imply
that, on the invariant ball By(e),

IDE(Flg ) <+ lglD™ D 10" F)(g;)l

o] <2L
G
<C'plf) — %
(1+1gDY
for some integer ¢ = ¢(M, N, L). Therefore
ey AY(E) 1
f sy (2)| < Cpo(F) A7 (&5 d , forxzeR"
Pl S D S G ) o e
Taking L”-norms and changing variables, we conclude with
N A(gl)ﬂﬁr(n/’r')(l/p’)
(3.14) I1f Xl SCpel(f) ———y—- O

(L +1&0)

Proof of Proposition 3.9. Once we show the convergence of the series
> f *¢7, the fact that the sum equals f is immediate from Supp f C Q and
> ’(/}] Xq- Now, from the previous lemma and Proposition 2.13, we have

Do IF bl = an %) 50y

< cfZM@j) (+1g) <o
J

AME) g
o (1+ g™ A"

where the last integral is finite for V and M large enough. A similar argument
applies to ||(1 + |¢]) 0" (fi@)”oo, establishing our claim.

For the second assertion in the proposition, we use the second estimate in
Lemma 3.11. Assuming ¢ < oo (otherwise the estimate is trivial) we have

A(g;) Ml
(1+ )N

A(é)Mﬁ(n/v’)(Q/p’)—V d¢
o (L+DY A

(3.15) 11140 <Cu(F)* S AT(E)

J

< C/pe(f)qj

which is finite for a sufficiently large choice of N and M. ]
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We observe that we have strongly relied on the assumption on the support of f
The next proposition gives the sharp region of the indices v, p and ¢ for
which general Schwartz functions have finite B}%-seminorms. We state this fact
separately since such conditions will appear in the sequel in relation with the
index g, .

PrROPOSITION 3.16. Let v € R and 1<p,q< oo be such that
(3.17) AL
p'r r
(or (1/p")(n/r)>v when q= o). Then, there exist C = C(p,q,v) >0 and an
integer ¢ = {(p,q,v) >0 so that

-~

(3.18) Il fllgre < Cpy(f) < 00, for all f e S(R").
Moreover, this property can hold for all f € S(R") only if v, p and ¢ satisfy (3.17).

Proof. As before we assume that g < co, with obvious modifications when
g = oo. First one observes that, when f € S(R"), the conclusion of Lemma 3.11 is
still valid with M = 0. Thus, similar reasoning as in (3.15) gives

AP0/ (e)  ge
(L+1ED™ A

and this integral is finite under the condition (¢/p’)(n/r) > v+ n/r — 1. To show
that this condition is critical, take any f € S(R") such that f is identically 1 in
the Euclidean ball centered at 0 of radius 1. Then, for such an f, one has the
bound from below

. 1/q
e <) | !

_ V. i
||f||q g =C A(f) VHX’Hq}C”J A(q/p )(n/r) V(f)i,
" j;ﬁz,;c T Jeengee A"
and this last integral is infinity unless (q/p")(n/r) > v +n/r — 1. 0

3.2. Properties of Besov spaces

Given a closed set F C R", we shall denote by Sp = Sp(R") the space of
tempered distributions with Fourier transform supported in F. Recall the
expression of the ‘seminorm’ |[|f[|pre in (1.3), and observe that a distribution
f € S5 satisfies [ f[|pre =0 if and only if f € Sjq. This leads to the following
natural definition of Besov spaces with spectrum in €.

DEeFINITION 3.19. Given v € R and 1<p,q < co, we define BY'? as the space
of equivalence classes of tempered distributions

BY = {f € S : || flp < 00}/Sha-

It follows right away from Lemma 3.8 that B*? does not depend on the choice
of {¢;} or the lattice {{;}. Moreover, B}* is invariant under the action of G, and

(3.20) 1f © gllgpe ~ Age) "D £ .
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Before collecting in the next proposition other basic properties of the spaces B,
we make a minor comment on the notation used below.

NOTATION 3.21. Throughout this paper, the standard action of tempered
distributions over Schwartz functions will be denoted by

(f.¢) = sto, for f € S'(R"), o € S(R").

For convenience, we shall often use the anti-linear pairing:

b= (19) = | f7. for [e SR, o e SR,

This has the notational advantage of a simple Plancherel identity: (f, ¢) = <f, o),
leading to a natural pairing between f € S;—Z(R") and ¢ € S (rather than using
(f,¢) = (f,@(=-)), which requires one to deal with ¢ € S_g).

With the above considerations we have the following lemma.

LEMMA 3.22. Let ve€R, 1<p<oo and 1< qg<oo. Then, there exists
¢ ={(v, p,q) >0 so that, for every distribution f € S'(R") with || f|| gr« < 0o, we have

(3.23) (< Clflsps el oo <CUNfllppe (@), for all p € Sq.

—vq'/q

When g = 1 or ¢ = oo, the same holds with ||| ,,»,, replaced by ||¢||

r !
By
7,/{1//[1 v

Proof. Remember that 121\]- = {/%)?j for all j. Therefore, using Proposition 3.9
and Lemma 3.8 we have

(3.24) (LN D I * w0 x) < DI wslllle % x;ll,
J J

SO Sfllspe ol gorar -

—vq'[q

Finally, observe that ||gaHquqf = ||<pHBp«‘qr , which, for ¢ € Sq, is bounded by a
—vq' /g v(1—q’)
Schwartz seminorm by Proposition 3.9. The modifications needed for the cases

q = 1, o0 are obvious. O

PropPOSITION 3.25. Let 1<p,q< oo and v € R. Then

(1) BP? is a Banach space; R

(2) the space Dq :={f € S(R"): Supp f is compact in Q} is dense in BY;
moreover, for every class f + Shq in B, the series ), f x ¢); converges to
(the class of) f in the space B}Y.

Proof.  Suppose {f,,}, is a Cauchy sequence of distributions in S for the
BPfi-seminorm. Then, from the previous lemma it follows that (f,,,¢) converges
for every ¢ € Sq, and moreover, it defines a continuous (anti-linear) functional in
Sg. We can extend it to Sg @ S by letting it be identically zero in the second
summand, and finally extend it to the whole Schwartz space S(R") by the
Hahn-Banach theorem. This gives a tempered distribution f & S& which in
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particular satisfies

fxv(xz) = lim f, x¢;(z), forallz € R" and all j.

Therefore, by Fatou’s lemma

”f”Bﬁ'q < h_m ”fm”Blf"q < 00,
m—oQ
and in a similar fashion lim,,_. | f — f,l/grs = 0. This shows that B} is a
Banach space.

For the density, let f be a fixed distribution in S’ﬁ with || f||gre < co. We shall
show that f is the BJ“-limit of the partial sums of the series ) ; f * ¢;. Remark
that each finite sum belongs to LP(R"), and therefore can be approached by a
Schwartz function with Fourier transform supported in a compact set of €,
justifying the density of Dg. Now, it is easily seen that partial sums (for any
order) constitute a Cauchy sequence in BP?. Since B is a Banach space, they
converge to a distribution u € 5’5. It remains to show that u and f belong to the

same equivalence class in S’6 /Shq, which is an immediate consequence of the fact
that fx¢; =ux*1;. (|

For the duality of the spaces B2 recall the Holder type inequality in (3.23):

[(Fo )l = [F. 9l <CUfllgorar Nlgllppes  for g € Do,
~vq'/

!
q

valid for every f € S with || f]| < oco. Observe that g € D+ (f, g) is a linear

prla’
—vq' /g
functional in D which depends only on the equivalence class f + Sh,. Thus, by
the above inequality and the density of Dg, it defines a continuous linear
functional @, in BJ. Further, if ®; =0, then (f,g) =0, forall g€ Dy, and

necessarily f € S)q,. Thus, the correspondence
(3.26) f+8ge B, —®p e (B))

is well defined and injective.

PrROPOSITION 3.27. Let v € R and 1<p,q < co. Then, the mapping in (3.26)
is an anti-linear isomorphism of Banach spaces.

Proof. By the previous comments it suffices to show that for every
® € (B)", there exists a distribution f € S such that

(3.28) ®(g) = (f,9), forallge Dy and |fll,.. <C|@].
—vq' /g

Now, since Dy C Sg — BP?, by the Hahn-Banach theorem we can extend @
continuously to S(R"), and find a tempered distribution f € 5’ﬁ such that
(:D(g) - (fag)a for aug € DSZ'

We now claim that each f*4);, which a priori is only a smooth function with
polynomial growth, does belong to L? (R"), and moreover, the sequence of their
L? -norms belongs to the suitable space of sequences. Indeed, for every finite
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sequence g; € S(R") with >, A(&;) "|lg;ll <1 we have
‘ZU*%,QJ ‘ (Zg]*wj)‘

J
kY,

_<Clal,

The constant C' depends only on the number N in the finite intersection property,
the constant v related to the variation of the function A inside an invariant ball
of radius 2, and the L'-norm of the ;. Since the constant is independent of the
finite set of indices, (3.28) follows. We do not give the details of the proof, since it
is completely analogous to that of Lemma 3.8. 0

Let us remark that for two classes of tempered distributions f+ S} in BJY
and g+ S), in BY Uq, I the duality pairing can also be expressed as

(3.29) Dy(g+ Sha) = Z (f* V5,9 % X;),

J
where the series converges absolutely by (3.23). This representation is sometimes
convenient, and of course, independent on the choice of {1, x;}.

3.3. The O operator and Besov multipliers

Next we describe some analytic properties of the spaces BZ?. The first one
concerns the role of the generalized wave operator O (introduced in (1.2)) as a
natural isomorphism between these spaces. Below we shall be interested in
fractional and negative powers of O, which can be defined by the rule

(3.30) o’f = FH(A"F),

at least for distributions f € 8'(Q) so that Suppf is compact in Q. Our next
result is a more general version than (2) in Theorem 1.4.

PrOPOSITION 3.31. Let v,8 € R and 1<p,q <oo. Then there is a constant
C > 0 such that, for every distribution f € 8'(R") with Supp f compact in €2,

(3.32) C™ s <187 fllgrs, <Clfllspe.

In particular, 07 extends to an isomorphism 0°: B?Y — B Bq°

Proof. Indeed, given f e S'(R") with Suppf compact in 2 we have
197 s, =D A IF T (F 8715
J
<Y AG) T fegllg IF &AM
J

Using A(g€) = A(ge)A(€), for g € G, we have

||-7:71(5(\jAﬁ)||1 = Aﬁ(fj) ||f71(>?Aﬁ)||1 = CﬁAﬁ(fj)v
from which (3.32) follows easily. To extend 0” to the space BP? one proceeds by
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density. More precisely, given any f € Sé with [| f|| gz« < 0o, we denote by a’f a
representative from the equivalence class of 3;07(f *¢;), which by (3.32) (and
Proposition 3.25) is a Cauchy series in the B, -seminorm. Observe that

= v+fq =
078}, = 0 (or its equivalence class), while by uniqueness of the extension, 0” does
not depend on the Littlewood—Paley functions {;}. O

A further step in the previous idea leads to a functional calculus in B}
based on the operator 0. Let m € C*°(0,00) be a Mihlin-type multiplier in one
dimension. That is, there is a constant C'= C(m) so that

(3.33) sup [€]F |mW(6)| <O, forall k=0,1,....
&0

Then, it makes sense to define the operator m(0) by

m(@)(f) = F " (m(D)]),
at least for f € S'(R") with Suppf compact in €. Observe that a typical example
is given by the imaginary powers m(§) =¢7 for v € R. Then we have the
following result.

PrROPOSITION 3.34. Let v€R, 1<p,g<oco and m € C®(0,00) satisfying
(3.33). Then, there is a constant C = C'(m) such that

[m(@)(Nlspe < Con |/l e for f € Da.

In particular, m(0) extends to a bounded operator in BY.

Proof. For the proof it suffices to estimate

(3.35) Im(Q)(f) * Will, < I * Wl IF~H (m(A)R )1, for f € Dq.
Now,
(3.36)  [IF (m(A)X )1 = IF H(m(AE) AL
< Cpo(m(A(&5)A)X)
¢
<C’ su AE) ImP(AE)A <.
< &B(E@; (&))" M (AE)A©)] <

Thus, raising (3.35) to the g¢th power and summing we easily complete
the proof. O

REMARK 3.37. 1. The previous proposition also holds under the milder
hypothesis m € C"™(0,00) and (3.33) for k=0,1,...,n+ 1. This follows from
the fact that the key inequality (3.36) is actually valid with £ =n+ 1.

2. A similar result can be proved with higher-dimensional multipliers. More
precisely, given m € C'*((0,00)") satisfying

% Q. 9“m _
ges(ou,opo)" g oo & |<C,, foralla=(ay,...,q,) >0,

we can define the operator
T,f=F '(m(Ar,....A)f) if f €Dy,

Then, an analogous proof gives || T, f||gre < C|| f|| gre.



LITTLEWOOD-PALEY DECOMPOSITIONS 339

3. In the previous examples m is a Fourier multiplier belonging to M, for all
1 < p < oo. More general examples of multipliers for B} can be constructed as
follows. Let {m;}; be a uniformly bounded family of multipliers in M,(R") with
Suppm; contained in a fixed compact set of Q. Let m(£) =Y ;m;(g;'¢) and
T,.f=F" Ym f) Then |7, fllgre <C| fllpre. In particular, we may take
m; =€, where ¢; = £1, and conclude that m. =);e4; is a multiplier for
BJ4. Observe however, that if we let ¢; = 1, the function m, = xq ¢ M,(R") for

any p # 2.

3.4. Fourier—Laplace extensions

It is well known that to every distribution supported in a closed cone £ we can
associate an analytic function in the tube domain T, via the Fourier—Laplace
integral. More precisely, this is given by

ﬁg(z)z(g,e“Z'f)):JQ ) g(¢)de, for = € Ty,

which makes sense for compactly supported distributions g in €2, and can also be
given a meaning for all g € S'(R") with Suppg C Q (see [11, Chapter VII]).

In this section we wish to describe the analytic functions associated with
(classes of) distributions in our Besov spaces BP?. To avoid dealing with
equivalence classes, it is convenient to restrict the indices v, p and ¢ so that B2
can be embedded in the usual space of tempered distributions.

LeMMA 3.38. Let v >0, 1<p<oo and 1<q<q,,. Then, for every f € Sg
with || f||gre < 00, the series Y ; f *1); converges in the space S'(R"). Moreover
the correspondence

Bp,q N S/(Rn)
f+Shar— fF = Zf*w]

is continuous, injective, and does not depend on the Littlewood—Paley functions {1);}.

Proof. The proof of the convergence of the series is completely analogous
to that of Lemma 3.22. In fact, using the Holder-type inequality in (3.23) we
can write

(3.39) D _IF x5 0) < Cllfllpge
J

ll o, for o € S(R).

~vq' [q
Now, from ¢ < g, , and Proposition 3.16 we obtain

(3.40) ||<p|\B,,/q/ <COpy(@) < 00, for all p € S(R).

-vq'/q

Using the previous two formulas and the density of Dy, we are able to verify the
last statement of the lemma. O

REMARK 3.41. From now on, whenever we restrict to the indices v > 0,
I1<p<ooand 1<q<gq,, as in the previous lemma, we shall identify B}*? with
the corresponding space (BE q) of tempered distributions. Observe that all these
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distributions have finite order, are supported in © and satisfy the Littlewood—
Paley decomposition f =3, f ;.

For the purposes of this paper, we shall prefer to speak of Fourier—Laplace
extensions for distributions f with spectrum in §2. That is, we define

Ef(z) = LF(2) = (f.e'0)) = JQ EOF (&) de,  for z € Ty,

which we shall call the Fourier—Laplace extension of f, and which defines a
holomorphic function in the tube domain Ty,. For distributions f € B¢ this takes
the form

(3.42) (wa]) Zc (F9;)(2), for z € Ty,

where as we shall see below, the last series converges uniformly in compact sets
of T,. We stick to the notation £f to recall that we are choosing the special
representative ft= >_; [+, from the equivalence class f + Shq. Observe that in
general £(S}) = 0, while £(S)g) is not zero. The main result about Fourier—
Laplace extensions is the following proposition.

PROPOSITION 3.43. Let v>0, 1<p<oo and 1<q<gq,,. Then for every
distribution f =3, f*1; € Bl the series in (3.42) converges uniformly on
compact sets to a holomorphic function in Tq, and moreover

(3.44) Ef(z +iy)| S CA(y) MO0 | s, for @+ iy € Ty,
In addition, for each y € , the distributions & f(- +1iy) satisfy

(- +iy) = ZS c+iy) xyy,  in S'(R"),

and

(3.45) IEFC-+iy)ll g <C N fllpges  HmlIEFC- +iy) = fllppe = 0.

yeQ

Proof. 1In the first part we shall only prove the pointwise convergence and
(3.44). The proof can easily be adapted to obtain uniform convergence on compact
sets. Since B'? is invariant under the action of G' as well as under translations in
the z variable, we can reduce to the case y = ie and x = 0, using (3.20) to prove
(3.44) in the general case. Now, by definition of £ and following the same steps as
n (3.23), we can write

SOIEC # ) ie) = D1 x5, F (e

<O s IF ~ Ocaet™ )l vy -

-vq'/q

So, it suffices to compute the norm of

B = f—l(XQB—(e\-)) _ FQ(TL/T‘) A—H/T((. + ’[,e)/l)



LITTLEWOOD-PALEY DECOMPOSITIONS 341

Now, proceeding as in (3.13) with the function h we obtain the estimate

1D ey
(3.46) |h o (z)| S CA™" (&) L el¢) /7
J 71+ gl
—(el&;)/2y
<O —
J (1 4 |g]x|2)1
Taking L” "_norms and summing, we are led to
1/q'
1] oo <CH A(f)'/q//(ﬁ(n/r)(q//l?) oclel) dg
Bi'/: '/a Q A(g)nh

By Lemma 2.16 this integral is finite provided ¢ < g, ,.
For the second part, fix y €  and j, and use the Dominated Convergence
Theorem with ), [E(f * 1) (x + iy)| < C, (from the first part) to write

ED+iy) x))(@) = D_(EF Y- + i) xy)(@)
k
- Z Jﬂf(f)'@k(f)e_(yk) Jj(f)ei(‘”‘f) de
k

= | et R0 de = e« y) o+ ).
Summing in j and using the previous step again we see that
E(f) (@ +iy) =Y (EN( +iy) « ¥y)(),
J
converging uniformly and absolutely in z, and hence also in S8'(R").
Let us finally prove the statements in (3.45). First of all,

IEF(- +iy) ||BM—ZA (&) I|F 71 (Fabje @y
ZA‘” EN T = ill 1F 7 Rje Y C NN,

where in the last step we have estimated the L'-norm by a Schwartz seminorm

(3.47) 17 ®ie YD) = 17~ (e )]y

< Opy(Re ")

<C/(1+ g’ e

<C", forall jand all y € Q.
Finally, for the convergence, use the density to write f = g+ h, with g € D and
h with a small Bf%norm. It is well known that £g(z) is smooth up to the
boundary with convergence of Eg(- +iy) to g in the S(R")-topology (and by

Proposition 3.16 also in the BY9-topology). The convergence for f then follows
from a standard %5 argument. O

REMARK 3.48. Let us finally remark that the index ¢, , in the previous
proposition is optimal. Indeed, from the duality theorem, the continuity of the
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linear form f»—>gf(z'e) will imply that F~!(yqe () ) belongs to BPZ .- This
continues to be the case after convolution with F~!(e®3), for any @ € CX(R")
identically 1 in a neighborhood of 0. Thus, it follows from Proposition 3.16 that
we must have ¢ < g, .

4. Bergman spaces and projectors

In this section we shall show Theorems 1.7 and 1.8, as well as the boundedness
of the Bergman projector announced in the introduction. Heuristically, the
correspondence between holomorphic functions F' in the Bergman space AY? and
distributions f in BP? is given by the Fourier—Laplace formula

F(z) = Ef(2) = Lf(2) = LZ 1EH9F(6) de,  for z € T,

The distribution f plays the role of a Shilov boundary value for the holomorphic
function F. The main result in this section is the equivalence of norms
| F'[| 4po ~ || fl| gre, which follows from a suitable discretization of the integral
above using the Whitney decomposition in §2. Several technical estimates will
appear in this process, involving gamma integrals in  and Littlewood—-Paley
inequalities as in (1.12), forcing us at some point to assume further restrictions in
the indices v, p and ¢. The sharp range of parameters for the equivalence of these
two norms is still an open question, which depends on the conjecture associated
with (1.12) (see §5 for a further discussion on these matters).

For the proof of the theorems we shall need three preliminary results. Recall
that a holomorphic function F' € H(Ty,) belongs to the Hardy space H?(Ty,) when

| F|l g2 = sup || F(- + i)l p2(gry < o0
yeN

The first result is known as the Paley—Wiener Theorem for Hardy spaces (see
Chapter IIT of [15]).

PROPOSITION 4.1. A function F € H?*(Ty) if and only if F = Llj? for some
f € L*(R") with Supp f C Q. In this case, |[F||: = £l 22 ey -

Next we need a density result that is a simple modification of the one presented
in [4] (see also [10]).

ProproOSITION 4.2. Let v>n/r—1 and 1<p,q < oo. Then, the norms of
the spaces AP are complete. Moreover, the intersection H?(Ty) N AP is dense
in AP,

Finally we establish an elementary discretization of AZ*Y-norms.

PrROPOSITION 4.3. Let v>n/r—1 and 1<p,q < oo. Then, for every lattice
{y;} in Q there exists ¢ > 0 such that

1/q
(4.4) Pl < (ZA” wlIF( +zyj>||‘I)

<c||F||gpe, for all F e APY(Tg).
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Proof. The proof relies on the mean value property, via the following
lemma. ]

LEMMA 4.5. Let 1<p,q < oo. Then, for every F € H(T,) and y, € 2 we have

dy 1/q
rogmI

(19 PG+l <c|[, IFC+ il
B(yp,1)
where the constant depends only on p and q.

Proof of Lemma 4.5. By homogeneity, we may assume y, = e. Let us consider
first the case p <gq. Then, by the mean value property for subharmonic functions,

|F($+ie)|p<cJ ( )J |F(z + 2" +iy)|” dz’ dy.
B(e,1

2’| <1

Thus, integrating in x and using Holder’s inequality we obtain

/4
pC il <e], IFCmRa<e ([ 1rC i)
Ble,1) B(e,1)

Suppose instead that ¢<p. Then, the mean value property gives

p/q
|F(z+ie)|p§0<J J |F(z+x/+iy)|qu'dy> .
B(e)J|z'|<1
A new integration in z and Minkowski’s inequality give the same result. 0

Continuing with the proposition, we assume for simplicity that {y;} is a
(3,2)-lattice, that is, {B;(y;)}; covers 2 with the finite intersection property. The
right-hand side of (4.4) follows from a discretization of the integral on € defining
|F ||315,{, as in Proposition 2.13. We then use the previous lemma to conclude the
required result. For the left-hand side we just need a kind of converse for (4.6),
where as before we can assume y, =e. But this follows from the fact that,
when F' € A, the function y — [|F(- +4y)||, is monotonic in 2 (see, for example,
[4, 10]), and therefore

[, e ) <cppe o
-4y < -+ 1ice)l|,,
Be,)) YA (y) !

for some constant ¢ = ¢(2) > 0. This establishes the proposition. O

4.1. The proof of Theorem 1.7

We wish to show that every F € AP? can be written as F=¢& f for some
distribution f € BJY. Suppose first that I belongs to the dense set H HTo) N AP,
so that, by Proposition 4.1, F=Lf for some function f € L*(R™) with
Supp f C Q. We shall show the inequality || f|/gre <C |F]||4ra. Observe that,
since f=3_; f*; in L? (and hence in S’(R")), it will follow from this and the
definition of € that £f = Lf.
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To prove the inequality of norms, let us first choose y; = §j’1 the dual lattice of
{¢;}. Then, Young’s inequality gives

ILf*x;ll, = ||.7-"1(A(§) *(y,\ﬁ)d(g) (yj\é))Hp
< F e T, I1F &)

Since §]-_1 = gj_le and g; is self-adjoint, we observe that the last factor is
actually constant,

17 Xe" ) = 1F R = e < 0.

This leads to the estimate

(4.7) ||f||Bw\CZ:A () 1 x4l
<c ZA” yi) |7~ (Fe~ W)
=c ZA” i) 1FC +iyplly <cI1F] 0,

where in the last inequality we have used Proposition 4.3.

For general F € AP? one proceeds by density. Approximating with { m} in
H?*(Ty) N AP4, we obtain a corresponding sequence of functions f,, € L?(R"),
which by (4.7) is a Cauchy sequence in B“. Then, by completeness of this space
and Lemma 3.38, f,, converges (in BP? and in S') to a distribution f € B}
such that f =73 f*1;. Moreover, ||f|gre <C|F|[4re. It remains to prove that
F =&(f), for which we can use the continuity of the pointwise evaluation
functional f+ Ef(z) in (3.44). Indeed, for each z € Ty, we have

Ef(z) = lim Ef,(2) = lim Lf,,(2) = lim F,,(2) = F(2).

m—oQ m—o0 m—0Q0
Finally, the convergence

liHéF(- +iy) = f, in BY? and S'(R"),

veo
is just a consequence of Proposition 3.43 and Lemma 3.38. This completes the
proof of the theorem. O
4.2. The proof of Theorem 1.8

We start with a preliminary result which gives the trivial range of indices for
which an inequality similar to (1.12) in the introduction holds.

LEMMA 4.8. Let 1<p < 0o and let 1<s<p, = min{p, p'}. Then there exists
a constant C' such that, for every sequence of functions f; € L¥(R") satistying
Supp fj C By(&;), we have the inequality

(19) Hzf p<c(;||fj|;;)l/5
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Proof. 1t is sufficient to prove the stronger inequality

1/s
IS 5o < ()
J p J

valid for all sequences of functions in L”. The x; are chosen as in § 3.1 with their L-
norm uniformly bounded, and their Fourier transform supported in By({;) and
identically 1 on the ball By(¢;). For this last inequality, the proof is immediate when
s = 1 by Minkowski’s inequality, as well as for s = p = 2 by the finite intersection
property of the balls. We interpolate between these two cases to conclude. g

REMARK 4.10. Our proof for Theorem 1.8 depends directly on (4.9), in which
unfortunately the best exponent s for each fixed p seems not to be known (ideally,
s =2 would be the best possible). Having in mind future improvements, we
restate our theorem below with a more general version of the previous inequality.
We shall find later some equivalent expressions closer to (1.12), and discuss in §5
the validity of such inequalities for light-cones.

THEOREM 4.11. Let v>n/r—1 and 1<p,s < oo. Assume that there exist
numbers p,6>0 and a constant C = C(u,6) > 0 such that

D 0
J

holds for every finite sequence {f;} C LP(R") with Supp]?j C By(§;). Then, for
every index

— -1)
(4.13) q<min{s@,8%7%;¢}a
‘f 1 ’

(4.12) ‘

1/s
<c [ T M(fj)eé@ewf,w;]
P 7

and for every distribution f with | f|/gre < oo, the function F = E(Y; f*1);)
belongs to A%, and moreover,

1 ape S A1 By

Observe that Theorem 1.8 follows from Lemma 4.8, which establishes the
validity of (4.12) for p=6=0 and s=p, = min{p, p'}. In this case ¢, =1,
and the condition on ¢ simplifies to ¢ < min{sq,,q, ,} = psq,, as stated in
Theorem 1.8.

Turning to the proof of Theorem 4.11, we need to show that, for every f € Dy,
the function F(z) := Lf(2) belongs to AJ(Ty) with || F|| 4p« <C|| f||gre. This will
be enough to conclude, since in the general case one can proceed by density. We
shall use the following consequence of (4.12), which as we shall see later is actually

equivalent to it.

LEMMA 4.14. Let 1<p,s < oo, and assume that (4.12) holds for some ji,6 > 0.
Then, for every f € Dg and y € Q, the function F(- +iy) = F ~'(fe~"") belongs
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to LP(R"). Moreover,
(4.15) IFC+ i), S A @) fll -
with constants independent of f or y € 2.

Proof. By homogeneity (see Lemma 3.8), it is sufficient to prove (4.15) when
y = ne, for some fixed 7 >0 to be chosen below. Let us denote §= fe ", so
that g = ;g *v; € Dg. Applying (4.12) to g we obtain

lgll, = I1F(- + ine)ll,
R 1/.5
< (ZM@M@'W1<f¢je”<e~>>||;, )
J

1/s
< ( S AT 2 |f1<e”<e'>>zj>||i) .
J

Now, H}'_l(e_”(e")fj)ﬂl is bounded by a constant times e "%l¢) (by (3.47)), and
thus we only have to choose n larger than 6/+. O

We now conclude the proof of our theorem. Given f € Dy, and F(z) := ﬁf(z),
the previous lemma applied to F~'(fe~¥1®) gives us

R 1/s
IF(C izl S A7) | 55 A6 IF Faie o)

1/s
savi) [ Sarg e ;|
J
where once again we have used (3.47). Thus,

ri= [ IFC il A ) dy

a/s
< JQAwq/s(y) (Z Afu(gj)eﬂ/(ylfj)Hf . ¢j|;) Auﬂl/,»(y) dy.
J
When ¢<s we directly conclude that
TS A | A e 00 A7 ay
J

where the gamma integral equals a multiple of A(fj)’”’/ *7¥. whenever

v —puq/s > n/r —1. This leads to one of the conditions stated in (4.13).
Suppose now that ¢ >s. Then we multiply and divide the summands by

Ay(§j), for some multi-index t = (t;,...,t,) € R" to be chosen below. After
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applying Holder’s inequality, we obtain

I< JQAﬂW/S(y) { Z Afw/s(fj)eﬂ/(y‘gﬂﬂf 1|4 Atq/s(fj):l
J

(a/s)/(a/s)' oy
} A" dy.

) { D Ay (Ee )
J

According to Proposition 2.13, the last bracket can be transformed into a gamma
integral, which in order to be finite requires the following condition in the indices:

/T

tla/s)' > (=D, forallj=1,....r.

1 b
Thus, replacing the expression inside the brackets by a multiple of A’it*(q /S),(y),
we have

IS STAE) £ lld A iyys(€))
j

8 JQAi(ﬁ*ﬂt)q/s(y)e_7<y|5.i)A(y)u—n/v- .

Computing the gamma integral again, we obtain a finite multiple of A, ), /s,y(fj)
if we impose the following condition in the indices:

. n/r—1 .
—g(tr,(j,1)+u)+u>(j—1) / T forallj=1,...,r.

Therefore, we will conclude with I < || f[|%,. if we can choose real numbers t;
so that ’

1 j7—-1/n 1 r—j (n -
a1 G <o g () ) e o=t

Using the fact that

1 1

@y Tl

we see that this is only possible when

j—1 1 j— 1
J ) s — (v (Z1) 427 1)), forj=1,....m
r—1\r q/s r r—1\r

Solving for ¢/s, this forces us to have

¢ i v /r=D+2((G-1)/r=1))(n/r —1)
= min -
s 1<j<r p+ (G =1/(r=1))(n/r—1)

@/, if v>2u+n/r—1,

={ - —1
v-(n/r=1) if v<2u+n/r—1.
I

This is precisely the range of v and ¢ assumed in (4.13) so the theorem is
completely proved. O

To conclude this section we state some equivalent but simpler expressions of the
sufficient condition (4.12) above.
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ProposiTION 4.16. Let 1<p,s<oo and p>0. Then the following
properties are equivalent.
1. There exist 6 > 0 and a constant Cs > 0 such that

1/s
@) |5 <a[Sareesimp]
J P J

for every finite sequence {f;} in L¥(R") satistying Suppfj C By(&))-
2. There exists a constant C' > 0 such that
1/s

(418) H;@p«{;A%wwﬂ

for every finite sequence {f;} in LP(R") satisfying Suppfj C By(§;) N Hy, where
Hy is the band in between two hyperplanes Hy = {1 < (e[¢) < 2}.
3. There exists a constant C' > 0 such that

(419)  ||F T (Fe U, <CAT () || fllppe, for all | € Do and all y € .

Proof. We have already proved in Lemma 4.14 that (4.17) implies (4.19). To
prove that (4.19) implies (4 18) take a corresponding sequence {f;} as in (4.18).
Define the functions g; = = el® f and apply the inequality (4.19) for y = e to the
function g =}, g; € Dg. Then,

5]

Using the finite intersection property, and the fact that the L”-norms of f; and g;
are comparable, we easily obtain the right-hand side of (4.18).

It remains to prove that (4.18) implies (4.17). To do this, we are going to slice
the cone with hyperplanes, and then apply a scaled version of (4.18) to the
restrictions of ), f; to the bands

1/s

4;A~em<@§p%mm%wm;
k

Hy, = {2"" < (¢le) < 2"}, where k € Z.

To make this argument precise, we select a sequence of smooth 1-variable
functions {p,} so that Suppp, C (2571 28 and ez pr =1 in (0,00). We let

Fix(8) = pi((€le)) f5(€), so that

(4.20) Supp?j,kCB2(fj)ﬂHk and || f;ll, <C | fill,-

By Minkowski’s inequality we can write

s

where the sets of indices J) are defined so that By(&;) N Hy # 0. In order to
estimate the norm of Fk, we must first perform a dilation by ¢ = 27% so that,
replacing Fj with F ®) — s/v | :(6+), we do not change the LP-norms and the

<
p keZ

> fin

=

= > lIE,,

p keZ
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Fourier transform is now supported in H. Thus, we are able to apply (4.18):

1/s

k(b) * by

1B, = \ e [ S AHEN B il
P /

Now, observe that each fjﬁi) has Fourier transform supported in By (6¢;), and {6¢;}
is still a (27 2)-lattice in the cone. Thus, by the finite intersection property, the set
of indices j for which B,(6¢;) intersects a fixed set B,(§,) has at most N = N ()
elements, independently of ¢ and 6. Thus,

S — (() S
IE S DA™ E) DI = il
¢ J
Now, changing the order of sums, restricting ¢ to the bounded set of indices
jj = {l: By(&§) N By(6¢;) # 0},
and using the fact that A(§,) ~ A(6;) for such indices, we obtain

IIFkIIpSZA “(66) D IRl

/GJ

<6 H ZA a g] ||f7ka N2kwﬂ ZA # ||fj||pa

JeJy,

where in the last step we have also used (4.20). Thus, raising to the power 1/s
and summing in k£, we have shown that

1/s
1<y [ZA“(@)IIL-IIZ] s

kez L jeg,

Multiplying and dividing by eZk, and applying Holder’s inequality we obtain

- S’k S 1/5 -7.5’8 —s’/k l/s'
1D 3 NI T R D S

keZ jed,, keZ

The last term is a finite constant when p > 0, while in the first factor we can
replace 2 by €"&l®) for a sufficiently large 7. To conclude it remains only to
show that, for each ﬁxed J, the set of all k€ Z such that Hj intersects By(&;)
contains at most N = N () elements. To see this observe, from Lemma 2.9, that
each such k£ must satisfy

2"y < (gle) < 428,

or equivalently (1/27) (§;le) < 2" < 2v(¢;|e). Taking logarithms we see that this is
only possible for a constant number of such values of k. The proof of Proposition
4.16 is then complete. g

4.3. Boundedness of Bergman projectors in L}

In this section we shall prove the equivalence between the identification of A2
and BP? and the boundedness of the Bergman projector P, in L.
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Recall that the Bergman projector P, is defined for functions F' € L2(Ty,) as
(4.21) P,F(z +iy) = JR” JQB,,(J: —u+i(y 4 ) Fu + iv) A(v)" ™" dv du,
with the Bergman kernel given by
(4.22) B,(z —w) = d(v) A~ ((z — w) /i)

= cDJQei(‘Z*E‘O A& dE,  for z,w € Ty,

for some positive constants ¢, and d(v) (see, for example, Chapter XIII of [8]). It
is clear that P,F(z) defines a holomorphic function in Ty whenever the integral in
(4.21) converges absolutely. The following lemma shows that this is the case
exactly when F'€ L} and q < g, ,. This elementary fact also gives us a trivial
range of unboundedness for P, (see [5]).

LemMMA 4.23. Let v>n/r—1 and 1<p < co. Then
v+n/r—1
((n/r)(1/p") = 1),

Moreover, if q<q,, or q>4q,, then P, does not admit bounded extensions
into L},

(424)  Be+ie) € LI (Te) <> q<d, =

Proof. The first statement is an elementary application of Lemma 2.18 to the
formula in (4.22). For the second statement test with F'(z) = A’”*"/T(%z)xQ(ie)(z),
where Q(ie) is a closed polydisk in T, centered at ie. Then

P,F(z) =c, B,(z+ie), forze Ty,

by the mean value property for (anti)-holomorphic functions. Therefore, if
q=4q, ,, then P, cannot be bounded into L} Y, and by self-adjointness not into
LP® either. U

We pass now to the study of boundedness of P, in L} when g, , < ¢ <q,,-
This is a difficult open question for which only partial results are known (see [4]
for the light-cone, and [2] for the simpler case L2?). We prove here the following
equivalence between this problem and the kind of estimates for Fourier—Laplace
integrals that we have considered before.

THEOREM 4.25. Let v>n/r—1 and 2<q<g,, Then, the Bergman
projector P, is bounded in LY if and only if there exists a constant C' such that

(4.26) ILfl|pzs SCN\fllgpe, for f € Dy

Proof of the necessity condition. Let 2<q<¢q,, and assume that the
projector P, is bounded in L%, We want to compute ||£f||Lm for f € Dg. It is
sufficient to test it on functions in L™ N L2. Moreover since £ f € AP? and the
projection is self-adjoint (and hence, bounded in L7 ' ), we can also test it on
functions which are in A,f’l"ql N A2. Such functions may be written as £g = Lg,
with g =3 g%, € Bf”q’, and we know from Theorem 1.8 that, for this range of
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exponents, the norm of £g in A,f’”q’ is equivalent to the norm of g in Bl’}/’q’. So it is
sufficient to prove that

<O\ fllgre

|, ] 7+ g Ty e

for some constant C' which does not depend on f and g. Using the Paley—Wiener
Theorem for A2 (see, for example, [8, p.260]), we know that the left-hand side is
equal to

oE

Then, Plancherel’s Theorem and the definition of the fractional powers of O tell us
that this is the usual duality pairing between f and O "g. As a consequence, it is
bounded by

Ol llgollogl o -

-vq'/q

To conclude, we use Proposition 3.31, which gives the equivalence of the norm
1579l oo With the norm ||g]| This finishes the proof of this direction. [

o,
BIJ 4
va'Jq v

For the other direction, we will prove a little more. We will show that P, is

always bounded from L7 into a new holomorphic function space B2 := E(BP),
consisting of Fourier—Laplace extensions of distributions in B2*.

DEFINITION 4.27. Given v >0, 1<p<oc and 1<¢q<gq,, we define the
holomorphic function space

BT o= { F = = Y £(70,)+ £ € Spwith |l < .
J

endowed with the norm [|F||grs = || f|| gro.

By Proposition 3.43, BP? is continuously embedded into H(Ty) and its
functions satisfy the inequality

|F'(z + iy)| < cA(y)—('n/r)(l/p)—(v/q) Ifllgpe,  for =+ iy € Ty,
Moreover, Theorems 1.7 and 1.8 tell us that
AP C B when 1<q<q,,, and Al"=Bl? when1<q<gq,,.

Observe also that A2 is a dense subspace of BE? (since £(Dg) C AP?), but in
general is not closed. In fact, examples in the next subsection show that the
inclusion is strict whenever ¢> min{2, p}q,. We now prove the announced
statement, which allows us to complete the proof of Theorem 4.25.

PROPOSITION 4.28. Let v >n/r—1, 1<p < oo and 2<q < g, ,. Then, with
the previous notation, P, extends as a bounded operator from L} into BJ*?. That
is, for every F' € LP? there exists g € BY'? such that P,F = Eg with

(4.29) 1P, Fllgps = llgllpps S C NI Fllpps,  for F e L(Tq).
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REMARK 4.30. Observe that for F € A2N AP, P,F =F = gf, and therefore,
(4.29) actually generalizes the inequality | f[|gre < C ||F|[ 42« in Theorem 1.7.

Proof. Tt is enough to show (4.29) for functions F' in the dense set L2 N L2,
proceeding otherwise as in the last part of §4.1. Since P, is a projector, for such
functions we will have P,F € A2, and therefore, by the Paley—Wiener Theorem
for A2 there exists a unique function g€ L?(€; A7 (€) d€) such that

(4.31) P,/F(z>:ca<z>:L)e“w”y‘%<s>d£, for z = o+ iy € Th.

Observe that g=>";g*t; in S'(R") (since g=3; §1Zj in L*(Q; A77(€) d€)), and
therefore P,F = Lg= Eg. Thus, to prove P,F € Bl? we just need to bound
llgll gre. From the duality of Besov spaces (Proposition 3.27), it follows that it is
sufficient to prove that

(g, ) S ClIFl[pzallepll pyrar 5 for @ € Do

—vq' /g

As in the previous proof, we use the fact that
(o.) = | Eat T ) £+ Ay ayde

|| F@Fa et + wpawy " ayas,

with h = 0%p. So,
g, P S CIF | gall€R] 4prar-
To conclude, we use Theorem 1.8 applied to h, and Proposition 3.31 as before to
have the equivalence of the norm ||¢| v, with the norm ||A[[ ., . O
—vg' g v
As a corollary, we can use the previous section to extend the range of exponents
for which the Bergman projector is bounded.

COROLLARY 4.32. If v>n/r—1, 1<p<oo and ¢,,<q<gq,,, then P,
admits a bounded extension to LI?. That is, there exists a constant C >0
such that

1P, Fl s <C|Fllpe, for all F e LY.

4.4. Necessary conditions

In this section we shall construct counter-examples to Theorem 1.8, for some
values of v, p and ¢ above the critical indices. That is, we shall show that the
space B of Fourier—Laplace extensions of BY? cannot be embedded into A2
Our examples are actually stronger and show that B¢ cannot even be embedded
into AL that is, there does not exist a constant C' such that, for all f & B
one has the inequality

(4.33) JR"|F(I +ie)[" dz < C| Iy, for F=E(f).

Observe that this indeed contradicts Theorem 1.8 since, by Lemma 4.5, the
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integral on the left-hand side is always smaller than || F'|| yps. Our results are stated
in the following proposition.

PROPOSITION 4.34. Let v>n/r—1,1<p<oo and 1<q < ¢, ,. Then, there
cannot exist a constant C' such that the inequality (4.33) is valid for all f € B¢
in the following two cases:

(a) 1<p<2 and ¢=q,,;

(b) 2 <p < oo and ¢> min{2q,,q, ,}.

Proof.  We shall use a different method for (a) and (b). The first one is based
on an explicit holomorphic function, and the second on a Rademacher argument
with Littlewood—Paley inequalities. For the first part, we shall find F € H(Ty)
such that

J |F(z 4 ie)|’ dz = co  and ||DF||Lpfq < 00,
- ;

for all ¢>pq, (with ¢ < g, ,). This gives a contradiction with (4.33), since if that
held, we would conclude that

IEC+ie)ll, S I fllspe ~ IOl s

v+q

<CIE@zzs, = CIIOF]|ps, < oo,

At this point, an example involving the O operator may seem a bit cumbersome,
but it is actually quite natural since the boundedness of the Bergman projection
turns out to be equivalent to the existence of generalized Hardy inequalities. For
more on this direction we refer to [4] (in the case of the light-cone), and to the
survey paper [6]. Our specific example will be the holomorphic function

F(z) = A((z+i€) /i)™ (1 + log A((z +ie) /i) "V, for z € Ty,

where we choose o = (2n/r — 1)/p. We are using the standard convention

log A(z/i) = Zlog {

since in this case Re[(A;/A;_1)(z/i)] >0, for each z € Ty and j=1,...,7 (see,
for example, the discussion in [10, §7]). We also remark that, since
[A((z+1ie)/i)| > A(y +e) > 1, the expression under the power 1/p has positive
real part, and defines a holomorphic function.

To compute the first integral we estimate the denominator of F(z) using the
elementary facts

/i),

|1+ log A((z + ie)/i)| < $rm+ 1+ log |A(z + ie)] and |A(z +ie)| < Az +e),
when z € 2. This leads to the expression
dx

J |F(x+ie)|pdm2C’J ST = 00,
0JA( + P (14 10 A(r £ )

by Lemma 2.20.
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For the second integral we first calculate OF(z). Observe that around each
zo € Ty there is a neighborhood U so that

F(z) = g.,(A((z +ie)/i)), forze U,

where g, (w) = w (1 + log w) Y7 is a function of one complex variable with a
determination of the log depending on z,. We remark that functions corresponding
to two points z; and z; will only differ by constants which are irrelevant for our
estimates below, and for this reason we shall drop the subindex in g.

We can now compute OF(z) using the formula

(Bg)(A(z/1))

(1.35) oA/ = R

for z € T,

where B = b(w%) is the 1-variable differential operator of degree r given by the
Bernstein polynomial

b(A) = (—1)T)\<)\+g) ()\+ (r— 1)%[).

One can verify the equality (4.35) directly, using the Taylor series of g and
O[A™(2/i)] = b(n)A" Y (2/i) (see, for example, [8, p.142]). Thus, an easy
computation of the derivatives of g(w) leads to the expression

I0F(2)| < C|A((z +ie) /i)t (1 +log Ay + €))7, for 2=z +iy € Ty,

where we have also used |A(u+iv)|>A(v), for ve Q. Now, we can apply
Lemmas 2.18 and 2.20 to estimate the integral

a/p
Jo([Llore+inpas) ™ s ay

<C j (J do >/ A (y) dy
o le\r A@tiy+e) ) (1+log Aly + €))7

_ C«/J Az/+q—71/r(y) dy
= oAy + e)((aJrl)p*n/T)fI/P (1+4log Ay + e))q/p’

and observe that the last quantity is finite for every ¢=p(1+v/(n/r —1)).

Let us now pass to the second type of counter-examples, and obtain case (b) in
the proposition. We may assume g > 2. We know from Proposition 4.16 that the
inequality (4.33) implies the existence of a constant C' such that

(4.36) H >

for any finite sequence {f;} of Schwartz functions satisfying Supp]?j C Bys(§5)
and restricted to indices j so that [§;| < 1. Let us prove that this implies very
easily the necessity of ¢ < 2¢, (which has already been announced in [4] for
light-cones). Indeed, let us take szsjajei<5f")f, with {e;} a sequence of

q
<CY AT
p

Rademacher functions, and the support of f a small neighborhood of 0. Taking
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the mean over all the €; and using Khintchine inequalities, we find that
1/2 1/q
2 —
| Sht]<c| Zae ]
J J
with perhaps a different constant C, independent of the sequence {a;}. Now,

choosing a; = A(fj)”/ (4=2) and using ¢ > 2, we see this implies that

> AP LC < oo

Jilg;1<1

Using Proposition 2.13, we find that this is equivalent to the fact that

2w/(g-2) _ d€
JWA(f) NG < 00,

which, in turn, is equivalent to the condition ¢ < 2gq,. O

5. Sharp results for light-cones

In this section we particularize the previous problems to the light-cone A,,. As
we shall see, the sufficient conditions given in Proposition 4.16 are related to
inequalities which appear in study of the so-called ‘cone multiplier problem’. In
particular, we establish a link between our problem and Wolff’s conjecture for
[|-[|p.mic-norms (see [17, 12]). Moreover, our sufficient conditions are ‘essentially
necessary’, so whatever progress appears in each of these problems will have
consequences in the other.

Figure 1.1 shows the regions of boundedness for the Bergman projector P, in
LP%-spaces for a general symmetric cone. In the ‘blank region’, our main
contribution up to now is Theorem 4.25, which gives the equivalence between
boundedness of P, in L% and the inequality

(5.1) 1L S | fllpge,  for f € Do,
Recall that the natural range of indices for this question is
l/>%n71, I<p<oo, 2<q<qy)
while the ‘blank region’ corresponds to
p'q, < ¢ <min{2q,,q,,}, forp>2.

We shall apply results by Iaba and Wolff and by Tao and Vargas to conclude
positively in this region when p is sufficiently large, and obtain a small interval
around the left-hand point for all p > 2.

5.1. A Whitney covering for the light-cone

From now on, we let 2 = A,, denote the light-cone in R" with n >3. We first
describe explicitly a Whitney decomposition for A,,.

A lattice in the light-cone is constructed as follows. For every j>1, take a
maximal 2 /-separated sequence {wij )}:":1 in the sphere S"2 ¢ R""!, with respect
to the Euclidean distance (so that k; ~ 2/"=2)) Then, define the following grid of
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points in A,

(5.2) gr=022V1-2%)), forlez j>1, k=1, k,
and the corresponding sets
Ely={(r,€) e, 2" <7 <2 270 <1 ¢y < 27HH2
and |¢'/|¢'| - | <6277},

where the constant ¢ is chosen in such a way that the regions cover the cone. The
geometric picture in R? is as follows: the sets Efk are truncated conical shells of
height ~ 2, of thickness ~ 272/, and further decomposed into ki~ 2/ sectors, all
of equal arc-length ~ 2=/, This is the usual decomposition of An in the study of
cone multipliers (see, for example, [13, 16, 17]). The next proposition shows that it
is also a Whitney covering of the cone.

PropPOSITION 5.3. With the notation above, the grid {fﬁk} is a lattice in A,,.
Moreover, there exist 0 < 1y, < ny such that the corresponding family of invariant
balls satisfies

(a) {Bn.(gf,k)} is disjoint in §;
(b) {an(ffyk,)} is a covering of Q;
(C) Bnl( g,k:) C Eék C an(f )

Proof.  In view of the definition in §2.2, it suffices to find two fixed (invariant)
balls B C B, centered at e and such that

(5.4) gf,k(B) C Ef,k C gﬁ,k(B’%

for some fixed automorphisms of the cone gﬁ,k mapping e into ffi?k. Using dilations

as well as rotations with axis e = (1,0,...,0), it is sufficient to prove this for the
points (1,V1—27%.0) = gje. Then, an elementary exercise shows that the
corresponding set F; is such that

Ej(c) C E; C Ej(c),

for constants ¢ and ¢ independent of j, and where E;(c) is the set of all £ € A,
for which

-1 (£le) -1 A(€) -1 A (6)
© = (gje|e) e s A(gje) e s Al(gje)

(recall that for light-cones A;(§) = & — &). Let us finally prove that g]-_l(Ej(c)) is
contained in a ball and contains a ball, centered at e and with radii independent
of j. From the invariance properties of the quantities involved, this last set
consists of elements ¢ for which

< (gile) < c, < A€ < ¢ < A6 <ec

Using the explicit value (g;iéle) =& + V1 —27%¢, one finds that it is an
elementary exercise to find two such balls with radii independent of j. O

<c

With this covering, the necessary and sufficient conditions for (5.1) take the
following explicit form. To simplify notation, we write Ej; EJ .
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ProposITION 5.5. Necessary and sufficient condition in A,,. Let 1<p,s < oco.
Suppose that for some p > 0 there exists C,, such that

k

J

> h

k=1

] k 1/s
(5.6) <C, 92infs |: ZJ ||fk||;] , forall j>1,
p k=1

for every sequence {f,.} satisfying Supp fi C E; ;. Then P, is bounded in L} for
all ¢ and v such that

(5.7) q/s <min{q,/q,, (v — (50— 1))/u}.

Conversely, if P, is bounded in LY for some v > n/r — 1 and 2 < p,q < oo, then
(5.6) holds with p=v and s = q.

Proof. For the first part, by Theorem 4.11 and the second equivalence in
Proposition 4.16, we only need to show that (5.6) implies the inequality

kj o, k; . 1/s
szz:lfj,k gc,u’ [ Z22w /S;Hfj,kup} )
J k= =

» i
with p' perhaps larger than, but arbitrarily close to, u. Here f;; are arbitrary
functions with Fourier transforms in the regions F;;. To prove the previous
inequality, start using Minkowski’s inequality for the sum in j, apply (5.6) in each
block for fixed j, and conclude with Holder’s inequality. For the converse, we
know from (4.33) that the condition

IF 7 (fe ), <C I fllgps, for f € Dy,

is necessary for the boundedness of P, in L[*(Ty), which by Proposition 4.16 we
can write as (5.6) when f =3, f; and f, is supported in E;. O

5.2. Positive results for light-cones

There are two situations where we can obtain new regions of boundedness from
the sufficient condition in (5.6). These correspond to two fine inequalities related
with the so-called ‘cone multiplier problem’ [13, 7, 16, 17].

The first one is a consequence of the following results of T. Wolff and I. Iaba,
which we state below adapted to our notation.

THEOREM 5.8 (see [17,12]). Ifn>6 and p > p, := 2n/(n — 4), the inequality

, 1/p
(59) Hm <cgz%<<“>/2<"1>/P+€>[Z||fk||z] |
k P k

for alle >0, j=1,2,..., holds for all smooth functions f;, with spectrum in E}.
Moreover, (5.9) also holds when n =3 for all p > p; =74, when n=4 for all
p>py =18, and when n =5 for all p > p; = 2.

5

REMARK 5.10. As stated in [17, 12], the natural conjecture says that (5.9)
must hold for all p > 2n/(n —2). The exponent & (n —2) — (n—1)/p is the best
possible for each such p.
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The following corollary is a personal communication by A. Seeger.

COROLLARY 5.11. If n>3 and V>%(TL—2), the Bergman projector P, is
bounded in L}(T), ) for all ¢ <4, ,, whenever p > p,,, where

n 2(n—1
Pny ::pn+(’/,177/)+ and Vn :—%(n_2)+(n_2)( 77’_%)'

Proof. 1If we first assume v > v,,, then (5.9) implies (5.6) with s =p > p,, and
all > p(3(n—2)—(n—1)/p). Computing the numbers in (5.7) one easily sees
that ¢/p < q,/q, (for all such p) implies ¢ < g, ,. On the other hand, the second
condition does not play any role when ¢,/q, <(v —%(n—2))/u, or equivalently
v=2p+ 1 (n —2), from which one easily covers all cases v > v,.

When v <y, one must use the inequality

> ke
k

valid by interpolation when (1/p,1/s) lies in the segment

1 —
s-{ (L0415 0s0a)
pp 1

and for all p > p,. Computing again in (5.7) for all p > s((n —2)/2s" —n/2p) we
see that ¢q/s < q,/q, leads to ¢ < g, ,, while the second condition is irrelevant if

(5.12) ‘

) , 1/s
<C. 92j((n=2)/2s"=n/2p+e) [ Z ||fk||;} , forall e >0,
P k

V> u(p,s) = (s—l)(n—2)—%+%(n—2).

Now, if v <, we can choose (1/py,1/sy) € S, so that v = v(py,sy). Then P, is
bounded in L for all ¢ < g, , and p > py. An elementary calculation shows that

pezpn+(ljn—V)/(l/—%(n—?)). g

REMARK 5.13. In particular, if we study boundedness of P, in L} (that is,
p = q), then by interpolation we obtain a positive answer in the full conjectured
range 2 < p < q, +n/(n—2) (and its dual interval) whenever

v=3(n—2)+3(n—=2)(p, —2(n—1)/(n-2)).

If Wolff’s conjecture (5.9) held for the best possible p, (that is, 2n/(n — 2)), this
would imply boundedness of the unweighted Bergman projector P, in L¥(A,),
for all 2 < p < (3n —2)/(n — 2), which was the original problem stated in [1].

REMARK 5.14. Conversely, solving the Bergman projection problem in LY (A,,)
would have implications on Wolff’s conjecture, at least in low dimensions. More
precisely, if we assume that P, is bounded in L%?(A,,) for all ¢ € (2,9, +n/(n — 2))
and some fixed v, then the inequality (5.9) would hold as well with p = g, +n/(n — 2)
(by Proposition 5.5). In particular, if n = 3 or 4, and we are assuming the above
assertion for all v > 1, then (5.9) would follow for all p > 2n/(n — 2). When n > 5 this
implication is weaker due to the restriction v > %n — 1, which eventually would imply
(5.9) only in the (non-critical) range p > (3n —4)/(n — 2).
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A second but less direct approach also gives a slight improvement for the
3-dimensional cone Aj. This is based on the square function estimate

k; k; 1/2
Sk (Z | fil? )
k=1 k=1

Observe that (5.15) and Minkowski’s inequality imply (5.6) with s = 2. The natural
conjecture states that (5.15) must hold for all g >0 when p=2(n—1)/(n — 2).
There are partial non-trivial results when n = 3 and p = 4. The first one, due to
Mockenhaupt, is a geometric argument leading to p =1 (see [13]), but this index
does not produce new results on the boundedness of Bergman projectors. There
are however several improved estimates using bilinear restriction on the cone, which
appear in works of Bourgain [7], Tao and Vargas [16], and Wolff [18]. These lead to
the following theorem, which seems to contain the current best-known exponent.

(5.15)

< C,u 2]#
p

p

THEOREM 5.16 (see [16, 18]). Ifn =3, the inequality (5.15) holds with p = 4
for all p>1—L.

Proof. Combine Theorem 5.1 in [16], with the sharp bilinear restriction index
for n =3 in [18]. O

From this discussion and a straightforward computation of the numerology we
conclude the following result.

COROLLARY 5.17. When n =3 and p =4, the Bergman projector P, is
bounded in L%(Ay) for all 2<q < (3+3;)q, and all v > §+ 3. (See Figure 5.1).

1/p

1/8 1/4 1/2 1/q

FIGURE 5.1. Region of boundedness for P, in Aj.

REMARK 5.18. When p = 4, this result slightly improves the estimate which
by interpolation can be obtained from Corollary 5.11. In fact, with p; = 74, the
latter leads to boundedness of P, in L}(Aj) for all 2<q < (%4—%)% and
v > %—1— 70.
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