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370 P. M. Berná et al.

1 Introduction

LetX be aBanach space (overK = R orC) and {en, e∗n}∞n=1 a biorthogonal system such
that B = {en} has dense span in X and 0 < κ1 ≤ ‖en‖, ‖e∗n‖ ≤ κ2 < ∞. Examples
include (semi-normalized) Schauder basesB, as well as more general structures (such
as Markushevich bases [11]). As suggested in [24,25], greedy algorithms can be
considered in this generality, by formally associating with every x ∈ X the series
x ∼ ∑∞

n=1 e∗n(x)en . Note that limn→∞ e∗n(x) = 0, so one may speak of decreasing
rearrangements of {e∗n(x)}.

We recall a few standard notions about greedy algorithms; see e.g. [21,22] for a
detailed presentation and background. We say that a finite set � ⊂ N is a greedy set
for x ∈ X, denoted � ∈ G (x), if

min
n∈�
|e∗n(x)| ≥ max

n∈�c
|e∗n(x)|,

and write � ∈ G (x, N ) if in addition |�| = N . A greedy operator of order N is a
mapping G : X→ X such that

Gx =
∑

n∈�x

e∗n(x)en, for some �x ∈ G (x, N ).

We write GN for the set of all greedy operators of order N , and G = ∪N≥1GN . By
convention, we set G0 = {0}. Given G, G ′ ∈ G we shall write G ′ < G whenever
G ∈ GN and G ′ ∈ GM with 0 ≤ M < N and �′x ⊂ �x for all x .

For every finite set A ⊂ N we also consider the projection operator

PAx =
∑

n∈A

e∗n(x)en,

and the “complement” projection PAc = I − PA.
Greedy operators are frequently used for N -term approximation. As usual, we let

�N =
{∑

n∈A anen : |A| ≤ N , an ∈ K
}
and σN (x) = dist(x, �N ). To quantify

the efficiency of greedy approximation one defines, for each N = 1, 2, . . ., the smallest
number LN such that

‖x − Gx‖ ≤ LN σN (x), ∀ x ∈ X, ∀ G ∈ GN . (1.1)

This is sometimes called a Lebesgue-type inequality for the greedy algorithm [22],
and LN is its associated Lebesgue-type constant. Likewise, one may consider “expan-
sional” N -term approximations using σ̃N (x) = inf{‖x − PAx‖ : |A| ≤ N }, and
define the smallest L̃N such that

‖x − Gx‖ ≤ L̃N σ̃N (x), ∀ x ∈ X, ∀ G ∈ GN . (1.2)

A celebrated result of Konyagin and Temlyakov [14] establishes that LN = O(1)
if and only ifB is unconditional and democratic. Explicit estimates for LN have been
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Lebesgue inequalities in general bases 371

obtained in various contexts for greedy bases [2,5,25], quasi-greedy bases [1,6,7,9,
23], and a few examples of non quasi-greedy bases [17,19,20]. The goal of this paper
is to present these inequalities in a more general setting, and improve them as much as
possible so that they actually become optimal in certain Banach spaces. This of course
depends on the quantities used for the bounds, which we list next. We shall use the
following notation

1A =
∑

n∈A

en and 1εA =
∑

n∈A

εnen, if ε = {εn},

and we say that ε = {εn} ∈ ϒ if |εn| = 1 for all n (where εn could be real or
complex). We also set |x |∞ = supn |e∗n(x)| and supp x = {n : e∗n(x) �= 0}, and we
write A ·∪ B ·∪ x to mean that A, B and supp x are pairwise disjoint.

• Unconditionality constants:

kN = sup
|A|≤N

‖PA‖ and kc
N = sup

|A|≤N
‖I − PA‖.

• Quasi-greedy constants1:

gN = sup
G∈∪k≤NGk

‖G‖ and gc
N = sup

G∈∪k≤NGk

‖I − G‖.

We shall also use the following variants

ĝN = min{gN , gc
N } and g̃N = sup

G∈∪k≤NGk
G ′<G

‖G − G ′‖ .

• Democracy (and superdemocracy) constants:

μN = sup
|A|=|B|≤N

‖1A‖
‖1B‖ and μ̃N = sup

|A|=|B|≤N
ε,η∈ϒ

‖1εA‖
‖1ηB‖ ,

and their counterparts for disjoint sets, A ∩ B = ∅, denoted μd
N and μ̃d

N .• A-property constants:

νN = sup

{‖1εA + x‖
‖1ηB + x‖ : |A| = |B| ≤ N , ε, η ∈ ϒ, |x |∞ ≤ 1, A ·∪ B ·∪ x

}

.

All these are natural quantities in the greedy literature, and quite often it is not
hard to compute them explicitly; see Sect. 5 below for some examples. Elementary
inequalities for the less frequent g̃N and νN are also given in Sect. 2.1 below. These
sequences of constants produce natural lower bounds for the Lebesgue inequalities.

1 We use the notation ‖G‖ = supx �=0 ‖Gx‖/‖x‖, even if G : X→ X may be a non-linear map.
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372 P. M. Berná et al.

Proposition 1.1 For all N ≥ 1 we have

LN ≥ max
{
kc

N , L̃N
}
, and L̃N ≥ max

{
gc

N , νN } . (1.3)

Moreover,
νN ≥ max

{
μN , μ̃d

N , 1
2κ μ̃N

}
, (1.4)

where κ = 1 or 2, if X is real or complex, respectively.

We shall present two results concerning upper bounds.

Theorem 1.2 For all N ≥ 1 we have

LN ≤ kc
2N νN and L̃N ≤ gc

N νN . (1.5)

Moreover, there exists (X,B) for which both equalities are attained.

Theorem 1.3 For all N ≥ 1 we have

LN ≤ kc
2N + g̃N μ̃N and L̃N ≤ gc

N + g̃N μ̃N . (1.6)

Moreover, there exists (X,B) for which both equalities are attained.

We discuss a bit these theorems and their relation with earlier estimates in the
literature. Theorem 1.2 is a variant of a result of Albiac and Ansorena [1], which for
B quasi-greedy and democratic showed that

L̃N ≤ gcν, where gc = sup
N≥1

gc
N and ν = sup

N≥1
νN ;

see [1, Theorem 3.3.ii]. In the unconditional case, they announced as well the bound
LN ≤ kcν with kc = sup kc

N (see [1, Remark 3.8]), which itself improves the earlier
bound LN ≤ (kc)2ν by Dilworth et al. [5, Theorem 2]. Our (modest) contribution
here is the explicit dependence on N of the involved constants, together with a slightly
shorter and more direct proof. As discussed in [1], an interesting special case occurs
when B is an unconditional basis with kc

N ≡ 1. Actually, (1.3), (1.5) and the trivial
estimate

L̃N ≤ LN ≤ kc
N L̃N

(see [9, (1.7)]), give

Corollary 1.4 If for some N0 we have kc
N0
= 1, then kc

N ≡ 1 and

LN = L̃N = νN , ∀ N ≥ 1.

In particular, the optimality asserted in the last sentence of Theorem 1.2 is attained
for any 1-suppression unconditional basis. Optimality also holds in the following case.
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Corollary 1.5 If for some N0 we have νN0 = 1, then νN ≡ 1 and

LN = kc
N , and L̃N = gc

N = 1 , ∀ N ≥ 1.

This result is essentially proved in [1]. It is an open question whether in this case it
could happen that kc

N →∞; see [1, Problem4.4]. Aswe show inExample 5.5 below, if
one merely assumes supN νN <∞, then it may actually happen that kc

N ≥ gc
N →∞.

This is based on an example appearing earlier in [3, Example 4.8].
Theorem 1.2, however, has some drawbacks. The first one concerns νN , which in

practice may be much harder to compute explicitly than the standard democracy con-
stants μN and μ̃N . A second drawback comes from the multiplicative bound kc

2N νN ,
which may be far from optimal when both kc

N and νN grow to∞. This already occurs
with simple examples of quasi-greedy bases (see e.g. [9, (6.9)]).

Theorem 1.3 intends to cover some of these drawbacks, with an estimate which is
asymptotically optimal at least for quasi-greedy bases. In fact, if we set

q := sup
N

ĝN = min
{
sup
G∈G

‖G‖, sup
G∈G

‖I − G‖ }
(1.7)

then, in Sect. 3.6 we shall show that

Corollary 1.6 If B is a quasi-greedy basis then

max{kc
N , μN } ≤ LN ≤ kc

2N + 8 κ2 q2 μN (1.8)

and
max{gc

N , μN } ≤ L̃N ≤ gc
N + 8 κ2 q2 μN , (1.9)

where κ = 1 if K = R, and κ = 2 if K = C.

The fact that LN ≈ kN + μN for quasi-greedy bases is already known [9]. Our
contribution here is an improvement of the implicit constants in the second summand,
compared to O(q4) in [9], and 8q3 in [6]. Similarly, for L̃N the earlier estimates in
[23, Theorem 2] only gave 8q4 for the involved constants in the second summand.

Another consequence of Theorem 1.3 is the following asymptotic equivalence

Corollary 1.7 If B is superdemocratic (that is supN μ̃N <∞), then

LN ≈ kN and L̃N ≈ gN . (1.10)

Example 5.5 below provides a non-trivial application of this result. We do not know
whether (1.10) continues to hold for all democratic bases.

Finally, we should say that the estimates in (1.6), being multiplicative, suffer from
a similar drawback as (1.5), namely they may be far from efficient when both μ̃N and
g̃N grow to infinity. For such cases one always has the following trivial upper bounds

Theorem 1.8 If K = supm,n ‖em‖‖e∗n‖, then for all N ≥ 1 we have

LN ≤ 1 + 3K N and νN ≤ L̃N ≤ 1 + 2K N . (1.11)
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374 P. M. Berná et al.

Moreover, there exists an example of (X,B) for which all the equalities hold.

The optimality for LN in Theorem 1.8 was first proved by Oswald [17]. We give a
different and simpler construction in Example 5.1 below.

The outline of the paper is the following. We start in Sect. 2 with a few elementary
lemmas. In Sect. 3 we give the details proofs of Theorems 1.2, 1.3, 1.8, and their
corollaries. In Sect. 4 we prove the lower bounds asserted in Proposition 1.1. Finally,
Sect. 5 is devoted to the computations of explicit examples.

2 Some elementary Lemmas

2.1 Elementary bounds for g̃N and νN

Lemma 2.1 For each N ∈ N we have

gN ≤ g̃N ≤ min{2ĝN , gN gc
N , kN }. (2.1)

In particular, g̃N = gN when gc
N = 1.

Proof gN ≤ g̃N ≤ kN is obvious by definition and g̃N ≤ 2ĝN follows easily from
the triangle inequality. Finally, for each G ∈ ∪k≤NGk and G ′ < G we can write
Gx − G ′x =∑

n∈�x\�′x e∗n(x)en with �x\�′x ∈ ∪k≤NG (x − G ′x, k); hence

‖Gx − G ′x‖ ≤ gN‖x − G ′x‖ ≤ gN gc
N‖x‖.

��
Lemma 2.2 For each N ∈ N we have

max{μ̃d
N , μN } ≤ νN ≤ gc

N + gN μ̃d
N . (2.2)

Proof μ̃d
N ≤ νN and μN ≤ νN follow selecting x = 0 and x = 1A∩B , respectively, in

the definition of νN . On the other hand, for each |A| = |B| ≤ N , ε, η ∈ ϒ, |x |∞ ≤
1, A ·∪B ·∪x wehave ‖x‖ ≤ gc

N‖1ηB+x‖ and ‖1εA‖ ≤ μ̃d
N‖1ηB‖ ≤ μ̃d

N gN‖1ηB+x‖.
Hence the inequality νN ≤ gc

N + gN μ̃d
N is easily obtained. ��

2.2 Truncation operators

For each α > 0, we define the α-truncation of z ∈ C by

Tα(z) = α sign(z) if |z| ≥ α, and Tα(z) = z if |z| ≤ α.

We extend Tα to an operator in X by

Tα(x) =
∑

n

Tα(e∗n(x))en =
∑

n∈
α

α
e∗n(x)

|e∗n(x)|en +
∑

n /∈
α

e∗n(x)en, (2.3)
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Lebesgue inequalities in general bases 375

where 
α = {n : |e∗n(x)| > α}. Since 
α is a finite set, the last summand can be
expressed as (I − P
α)x , so the operator is well-defined for all x ∈ X.

Lemma 2.3 If x ∈ X and ε = {sign e∗n(x)}, then

min


|e∗n(x)| ∥∥1ε


∥
∥ ≤ g̃N ‖x‖, ∀ 
 ∈ G (x, N ). (2.4)

Proof Set α = min
 |e∗n(x)|. Notice first that

Tαx =
∫ 1

0

[∑

n

χ[0, α

|e∗n (x)| ](s) e∗n(x)en

]
ds =

∫ 1

0
(I − P
α,s )x ds, (2.5)

where we have set 
α,s = {n : |e∗n(x)| > α
s } for each s ∈ (0, 1]. Hence

α1ε
 = Tαx − P
c x =
∫ 1

0
(P
x − P
α,s x) ds.

Note that 
α,s ∈ G (x, ks) with ks = |
α,s | and 
α,s ⊆ 
α ⊂ 
. Hence

‖P
x − P
α,s x‖ ≤ g̃N‖x‖, 0 < s ≤ 1.

The result now follows. ��
Remark 2.4 The slightly weaker inequality

min


|e∗n(x)| ∥∥1ε


∥
∥ ≤ 2min{gN , gc

N } ‖x‖. (2.6)

was proved in [4, Lemma 2.2] with an elementary Abel summation argument.

The next lemma is a slight improvement over [3, Proposition 3.1].

Lemma 2.5 For all α > 0 and x ∈ X we have

‖Tαx‖ ≤ gc|
α | ‖x‖, ‖(I − Tα)x‖ ≤ g|
α | ‖x‖, (2.7)

where 
α = {n : |e∗n(x)| > α}. Moreover, for every |A| <∞

‖Tα(I − PA)x‖ ≤ kc
|A∪
α | ‖x‖. (2.8)

Proof The result follows from Minkowski’s integral inequality applied to (2.5), and
to the following two formulae derived from it

(I − Tα)x =
∫ 1

0
P
α,s x ds
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376 P. M. Berná et al.

and

Tα(I − PA)x =
∫ 1

0
(I − P
α,s )(I − PA)x ds, =

∫ 1

0
(I − PA∪
α,s )x ds.

��
Remark 2.6 Observe that, together with (2.8), one has the trivial estimate

‖Tα(I − PA)x‖ ≤ gc|
α | k
c
|A| ‖x‖. (2.9)

Being multiplicative, (2.9) is typically worse than (2.8) (if say both kc
N and gc

N grow
fast as N →∞). However in some cases it may better (e.g. when gc|
α | = 1).

2.3 Convex extensions

We shall use an elementary convexity lemma. As usual, the convex envelop of a set S
is defined by co S = {∑n

j=1 λ j x j : x j ∈ S, 0 ≤ λ j ≤ 1,
∑n

j=1 λ j = 1, n ∈ N}.
Lemma 2.7 For every finite A ⊂ N, we have

co
{

1εA : ε ∈ ϒ
}
=

{
∑

n∈A

znen : |zn| ≤ 1

}

.

Proof We sketch the proof in the complex case, where it may be less obvious. The
inclusion “⊆” is clear, since each 1εA belongs to the set R on the right hand side,
and R is a convex set. To show “⊇” one proceeds by induction in N = |A|. It is
clear for N = 1, so we show the case N from the case N − 1. We may assume that
A = {1, . . . , N }. Pick any z = ∑N

n=1 znen ∈ R, that is |zn| ≤ 1. Write zN = reiθ ,
and by the induction hypothesis

z′ =
N−1∑

n=1
znen =

∑

ε

λε (ε1e1 + . . .+ εN−1eN−1),

for suitable numbers 0 ≤ λε ≤ 1 such that
∑

ε λε = 1. Then we have

z = 1+r
2

[
z′ + eiθ eN

] + 1−r
2

[
z′ − eiθ eN

]

=
∑

ε,±
1±r
2 λε (ε1e1 + . . .+ εN−1eN−1 ± eiθ eN ),

which belongs to the set on the left hand side. ��
The next lemma is a straightforward extension of the inequality defining νN .
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Lemma 2.8 Let x ∈ X and α ≥ max |e∗n(x)|. Then

∥
∥x + z

∥
∥ ≤ νN

∥
∥x + α1ηB

∥
∥, ∀ η ∈ ϒ

and for all B and z such that | supp z| ≤ |B| ≤ N, B ·∪ x ·∪ z and |z|∞ ≤ α.

Proof Wemay assume thatα = 1. By definition of νN , the result is truewhen z = 1εA,
for any ε ∈ ϒ and any set A with |A| = |B| and A ·∪ B ·∪ x . By convexity of the norm,
it continues to be true for any z ∈ co

{
1εA : ε ∈ ϒ

}
. Then the general case follows

from Lemma 2.7. ��
In a similar fashion one shows

Lemma 2.9 Let z ∈ X and B ⊂ N such that | supp z| ≤ |B| ≤ N. Then

∥
∥z

∥
∥ ≤ μ̃N max |e∗n(z)| ∥∥1ηB

∥
∥, ∀ η ∈ ϒ.

3 Proof of the Theorems

The general outline for proving estimates of LN and L̃N goes back to the work of
Konyagin and Temlyakov [14], with the improvements coming from refinements in
certain steps. In Theorem 1.2 we use the ideas developed by Albiac and Ansorena [1],
slightly simplified according to our previous lemmas.

3.1 Proof of Theorem 1.2

Let x ∈ X and � ∈ G (x, N ), and call α = min� |e∗n(x)|. Pick any z ∈ �N and
A ⊃ supp z with |A| = |�| = N . Then we can write

x − P�x = (I − PA∪�)x + PA\�x =: X + Z . (3.1)

Since |X |∞, |Z |∞ ≤ α and | supp Z | ≤ |A \ �| = |�\A|, we can apply Lemma 2.8
with η = {sign e∗n(x)} to obtain

‖x − P�x‖ ≤ νN
∥
∥α1η(�\A) + P(A∪�)c x

∥
∥

= νN
∥
∥Tα

[
(I − PA)x

]∥
∥ = νN

∥
∥Tα

[
(I − PA)(x − z)

]∥
∥

≤ νN kc
|A∪�| ‖x − z‖ ≤ νN kc

2N ‖x − z‖, (3.2)

using Lemma 2.5 in the second to last inequality. Thus, taking the infimum over all
z ∈ �N we conclude that

LN ≤ νN kc
2N .

The estimate for L̃N is similar: for any set A with |A| = |�| = N we have

‖x − P�x‖ ≤ νN
∥
∥Tα

[
(I − PA)x

]∥
∥ ≤ νN gc

N ‖x − PAx‖,
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378 P. M. Berná et al.

using again Lemma 2.5 (and |
α| ≤ |�| = N ). By a standard perturbation argument
as in [1, Lemma 3.4], this inequality continues to hold for all |A| ≤ N . This implies
that L̃N ≤ νN gc

N , and establishes the theorem. ��
Remark 3.1 Notice that we could use in (3.2) the estimate in Remark 2.6, leading to
the slightly smaller bound

LN ≤ min{kc
2N , kc

N gc
N } νN .

For instance, if we assume gc
N = 1 for some N (or equivalently, for all N ), since

kc
N ≤ kc

2N , we obtain

LN ≤ kc
N νN ,

which we shall use in Corollary 1.5.

3.2 Proof of Theorem 1.3

With the same notation as in (3.1), it is clear that

‖(I − PA∪�)x‖ = ‖(I − PA∪�)(x − z)‖ ≤ kc
2N ‖x − z‖. (3.3)

So we only need to estimate the term ‖PA\�x‖. We pick any set �̃ ∈ G (x− z, |A\�|),
and use the elementary observation

max
A\� |e

∗
n(x)| ≤ min

�̃
|e∗n(x − z)|; (3.4)

see e.g. [9, p. 453]. Then, Lemma 2.9 with η = {sign e∗n(x − z)}, followed by (3.4)
and Lemma 2.3 give

∥
∥PA\�x

∥
∥ ≤ μ̃N max

A\� |e
∗
n(x)| ‖1η�̃‖

≤ μ̃N min
�̃
|e∗n(x − z)| ‖1η�̃‖

≤ μ̃N g̃N ‖x − z‖. (3.5)

So, adding up (3.3) and (3.5) and taking the infimum over all z ∈ �N one obtains

‖x − Gx‖ ≤ (
kc
2N + μ̃N g̃N

)
σN (x),

as asserted in (1.6).
The estimate for L̃N is again similar: given a set A with |A| = |�| = N , we can

replace (3.3) by

‖(I − PA∪�)x‖ = ‖(I − P�\A)(I − PA)x‖ ≤ gc
N ‖x − PAx‖, (3.6)
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since �\A ∈ G (x − PAx, |�\A|) and |�\A| ≤ N . The second estimate in (3.5) is
valid in this case setting z = PAx and �̃ = �\A. Thus we conclude

‖x − G N x‖ ≤ (
gc

N + μ̃N g̃N
)

inf|A|=N
‖x − PAx‖,

and as before, this last quantity coincides with σ̃N (x) by [1, Lemma 3.4]. The opti-
mality of the constants is a consequence of Example 5.2, that we discuss below. ��
Remark 3.2 In (3.3) one could replace kc

2N by gc
N kc

N , arguing as in (3.6). Thus, in the
special case when gc

N = 1 for some N , the bounds become

LN ≤ kc
N + gN μ̃N and L̃N ≤ 1+ gN μ̃N ,

since g̃N = gN ; see Lemma 2.1.

3.3 Proof of Theorem 1.8

The first estimate in (1.11) is implicit in the first papers in the topic (see e.g., [19,20] or
[17, (1.8)]).We sketch below the elementary proof, as it also gives the second estimate.
With the notation in (3.1), notice that

∥
∥PA\�x

∥
∥ ≤

∑

m∈A\�
|e∗m(x)|‖em‖ ≤ sup

m
‖em‖

∑

n∈�\A

|e∗n(x)|

≤ sup
m,n
‖em‖‖e∗n‖ N ‖x − z‖, (3.7)

since e∗n(x) = e∗n(x − z) when n /∈ A. Thus, using either (3.3) or (3.6) we see that

LN ≤ kc
2N + K N and L̃N ≤ gc

N + K N . (3.8)

Now (1.11) follows from (3.8) and the trivial upper bound

kN ≤ k1 N �⇒ gc
N ≤ kc

N ≤ 1 + k1 N , (3.9)

since k1 = supn≥1 ‖en‖‖e∗n‖ ≤ K. The optimality of the constants is a consequence
of Example 5.1, that we discuss below. ��

3.4 Proof of Corollary 1.4

The proof was already sketched in the introduction, except for the fact that kc
N ≡ 1.

This in turn follows from kc
N0
= 1 and

1 ≤ kc
1 ≤ kc

N ≤ (kc
1)

N , ∀ N = 1, 2, . . . (3.10)
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The last inequality in (3.10) is easily obtained from I−PA =∏
n∈A(I−P{n}). For the

middle inequality observe that, in an infinite dimensional spaceX, for every compactly
supported x ∈ X we can write (I − P{n})x = (I − PA)x for a suitable A = Ax of
cardinality N . Thus, ‖(I − P{n})x‖ ≤ kc

N‖x‖, and hence kc
1 ≤ kc

N .

3.5 Proof of Corollary 1.5

Since ν1 ≤ νN0 = 1 it follows that ν1 = 1. A simple induction argument, see [1,
Lemma 2.1], shows that

νN ≤
(
ν1

)N
,

so we shall have νN ≡ 1. From here, arguing as in [1, Theorem 2.3] one obtains
L̃N ≡ 1, and by (1.3) also gc

N ≡ 1. Thus, we can invoke the last sentence in Remark
3.1 to obtain that LN ≤ kc

N . This together with the lower bound LN ≥ kc
N in (1.3)

establishes the Corollary. ��

3.6 Proof of Corollary 1.6

We need an additional inequality to pass from μ̃N to μN . Consider the new constant

γN = sup
{‖1εB‖
‖1εA‖ : B ⊂ A, |A| ≤ N , ε ∈ ϒ

}
, (3.11)

and observe that γN ≤ ĝN . We also have the following

Lemma 3.3 Let κ = 1 or 2, if X is real or complex, respectively. Then,

∥
∥1εB

∥
∥ ≤ 2κ γN

∥
∥1ηA

∥
∥, ∀ B ⊂ A, |A| ≤ N , ε, η ∈ ϒ. (3.12)

Proof Observe that changing the basis {en} to {ηnen} does not modify the value of
γN . So we may assume in (3.12) that η ≡ 1. We use the convexity argument in [6,
Lemma 6.4]. First notice that (3.11) actually implies

‖x‖ ≤ γN‖1A‖, ∀ x ∈ S =
{ ∑

A′⊂A

θA′1A′ :
∑

A′⊂A

|θA′ | ≤ 1
}
. (3.13)

In the real case, splitting B = B+ ·∪ B−, with B± = {n ∈ B : εn = ±1}, it is clear
that 1εB = 1B+ − 1B− ∈ 2S. In the complex case, a slightly longer argument as in [6,
Lemma 6.4] gives that 1εB ∈ 4S. So, in both cases we obtain (3.12). ��
Remark 3.4 Recalling [24, Def 3], B is unconditional for constant coefficients if
‖1εA‖ ≈ ‖1A‖, for all finite A and ε ∈ ϒ . Using Lemmas 2.7 and 3.3 one easily
sees that this is the same as supN γN < ∞. It is also a weaker notion than B being
quasi-greedy; see Example 5.5 below.
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Lemma 3.5 Let κ be as in Lemma 3.3. Then,

μ̃N ≤ 4 κ2 γN μN , ∀ N = 1, 2, . . . (3.14)

Proof Take A, B ⊂ N with |A| = |B| ≤ N and ε, η ∈ ϒ . We must show that

‖1εA‖ ≤ 4 κ2 γN μN ‖1ηB‖. (3.15)

In the real case, split A = A1 ·∪ A2 with A j = {n ∈ A : εn = (−1) j }, and pick any
partition B = B1 ·∪ B2 such that |B j | = |A j |, j = 1, 2. Then

‖1εA‖ ≤ ‖1A1‖ + ‖1A2‖ ≤ μN
[‖1B1‖ + ‖1B2‖

] ≤ 4 γN μN ‖1ηB‖,

using Lemma 3.3 in the last step. In the complex case, arguing as in (3.13) from the
previous lemma, we have 1εA ∈ 4S. Now given x =∑

A′⊂A θA′1A′ ∈ S, we pick for
each A′ a subset B ′ ⊂ B such that |A′| = |B ′|. Again, we have

‖x‖ ≤
∑

A′⊂A

|θA′ |‖1A′ ‖ ≤ μN

∑

A′⊂A

|θA′ |‖1B′ ‖ ≤ μN 2κ γN ‖1ηB‖,

using Lemma 3.3 at the last step. This easily gives (3.15). ��
Proof of Corollary 1.6 By Theorem 1.3, (2.1) and Lemma 3.5, the last summand in
(1.6) can now be controlled by

g̃N μ̃N ≤ 2ĝN 4κ2 γN μN ≤ 8κ2 ĝ2
N μN .

This clearly implies (1.8) and (1.9). ��
Remark 3.6 Observe that we actually have the more general bounds

LN ≤ kc
2N + 8κ2 γN ĝN μN , and L̃N ≤ gc

N + 8κ2 γN ĝN μN . (3.16)

In some cases, these estimates are strictly better than (1.8) and (1.9); see Example 5.5
below.

3.7 Proof of Corollary 1.7

First observe that

kN

2
≤ max{1, kN − 1} ≤ kc

N ≤ 1+ kN ≤ 2kN .

So, setting μ̃ = sup μ̃N , from (1.3), (1.6) and (2.1) we see that

kN

2
≤ kc

N ≤ LN ≤ kc
2N + g̃N μ̃ ≤ 1+ 2kN + kN μ̃ ≤ (3+ μ̃)kN .
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Similarly, one obtains

gc
N ≤ L̃N ≤ gc

N + g̃N μ̃ ≤ (1+ 2μ̃)gc
N ,

and as before gN
2 ≤ gc

N ≤ gN + 1 ≤ 2gN . ��

4 Lower bounds: Proof of Proposition 1.1

The lower bounds in (1.3) are quite elementary, and most of them have appeared
before in the literature. We sketch the proof of those we did not find explicitly in this
generality.

4.1 LN ≥ kcN

This can be found in [9, Proposition 3.3].

4.2 ˜LN ≥ νN

Let |A| = |B| ≤ N , ε, η ∈ ϒ , and x ∈ X such that A ·∪ B ·∪ x and |x |∞ ≤ 1. We must
show that

‖1εA + x‖ ≤ L̃N ‖1ηB + x‖, (4.1)

For every j ≥ 1 we can find a set C j with |C j | = N − |A|, disjoint with A ∪ B, and
such that maxn∈C j |e∗n(x)| ≤ 1/j . We set

y j = 1εA + 1ηB + (I − PC j )x + 1C j ,

and select G N ∈ GN such that G N (y j ) = 1ηB + 1C j . Then

‖1εA + (I − PC j )x‖ = ‖y j − G N (y j )‖ ≤ L̃N σ̃N (y j )

≤ L̃N ‖(I − PA∪C j )y j‖ = L̃N‖1ηB + (I − PC j )x‖.

Since lim j→∞ PC j x = 0 we obtain (4.1).

4.3 ˜LN ≥ gcN

We must show that for every x ∈ X and every � ∈ G (x, k) with k ≤ N , we have

‖x − P�x‖ ≤ L̃N‖x‖. (4.2)

Let α = minn∈� |e∗n(x)|. Notice that for every j ≥ 1 we can find a set C j ⊂ �c, with
|C j | = N − k, and maxn∈C j |e∗n(x)| ≤ α/j . Let

y j = x − PC j x + α1C j ,
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so that � ·∪ C j ∈ G (y j , N ). Thus

‖y j − P�∪C j y j‖ ≤ L̃N σ̃N (y j ) ≤ L̃N ‖y j − PC j y j‖,

which is the same as

‖x − P�x − PC j x‖ ≤ L̃N ‖x − PC j x‖.

Since lim j→∞ PC j x = 0 (in X) we obtain (4.2).

4.4 νN ≥ max{μN, μ̃d
N }

This was shown in (2.2) above.

4.5 νN ≥ 1
2κ

μ̃N

Given |A| = |B| ≤ N and ε, η ∈ ϒ , we must show that

‖1ηB‖ ≤ 2κ νN ‖1εA‖.

It is enough to prove it for ε ≡ 1 (otherwise, apply the result to B = {εnen}). Recall
from (3.13) (and [6, Lemma 6.4]) that 1ηB ∈ 2κS, where

S =
{ ∑

B′⊂B

θB′1B′ :
∑

B′⊂B

|θB′ | ≤ 1
}
,

so it suffices to show that

‖1B′ ‖ ≤ νN ‖1A‖, ∀ B ′ ⊂ B.

Now if we write

1B′ = 1B′\A + 1B′∩A =: z + x,

and observe that |B ′\A| ≤ |B\A| = |A\B| ≤ |A\B ′| ≤ N , we can apply the
convexity Lemma 2.8 to obtain

‖1B′ ‖ = ‖1B′\A + 1B′∩A‖ ≤ νN ‖1A\B′ + 1B′∩A‖ = νN‖1A‖.

��
Remark 4.1 We do not know whether νN ≥ μ̃N (or even LN ≥ μ̃N ) may hold in
general.
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5 Examples

5.1 The summing basis

Let X be the (real) Banach space of all sequences a = (an)n∈N with

‖a‖ := sup
M≥1

∣
∣
∣

M∑

n=1
an

∣
∣
∣ <∞. (5.1)

The standard canonical basis {en, e∗n} satisfies ‖em‖ ≡ 1, ‖e∗1‖ = 1 and ‖e∗n‖ = 2 if
n ≥ 2 (so K = 2, with the notation in Theorem 1.8). The terminology comes from
the fact that X is isometrically isomorphic2 to the span of the “summing system”
{sn :=∑

k≥n ek}∞n=1 in �∞; see [15, p. 20].

Proposition 5.1 For this example we have

• μN = 1 and μ̃N = N
• gN = g̃N = kN = 2N and gc

N = kc
N = 1+ 2N

• νN = L̃N = 1+ 4N and LN = 1+ 6N.

So, equalities hold everywhere in Theorem 1.8.

Proof It is clear that ‖1A‖ = |A|, so the basis is democratic andμN ≡ 1. On the other
hand, we trivially have

1 ≤ ‖1εA‖ ≤ N , ∀ |A| = N , ε ∈ ϒ.

The upper bound is attained if ε ≡ 1, and the lower bound is attained in the explicit
example ‖∑N

n=1(−1)nen‖ = 1. We conclude that μ̃N = N .
We know from (3.9) that gN ≤ g̃N ≤ kN ≤ 2N . To see the equality, pick the vector

a = (−1, 2,−2, . . . , 2,−2, 0, . . .), which has ‖a‖ = 1. Then � = {n : an = 2} ∈
G (a, N ) and

gN ≥ ‖P�a‖ = ‖(0, 2, 0, . . . , 2, 0, 0 . . .)‖ = 2N .

Similarly, gc
N ≤ kc

N ≤ 1+ 2N by (3.9), and setting �′ = {n : an = −2} ∈ G (a, N )

we conclude

gc
N ≥ ‖(I − P�′)a‖ = ‖(1, 2, 0, . . . , 2, 0, 0 . . .)‖ = 1+ 2N .

Next we have νN ≤ L̃N ≤ 1+4N , by Proposition 1.1 and Theorem 1.8. For the lower
bound we pick

x = ( ︷ ︸︸ ︷
1
2 , 0, 1

2 ; . . . ;
︷ ︸︸ ︷
1
2 , 0, 1

2 ; 1
2 , 0, 0, . . .

)
and 1B =

( ︷ ︸︸ ︷
0, 1, 0 ; . . . ;

︷ ︸︸ ︷
0, 1, 0 ; 0, . . . )

2 Via the map a ∈ X �→ T a = (
∑n

i=1 ai )n∈N ∈ �∞, since T en = sn .
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so that ‖x − 1B‖ = 1/2, while ‖x + 1A‖ = 1
2 + 2N for any |A| = N . So,

νN ≥ ‖x + 1A‖
‖x − 1B‖ = 1+ 4N .

Finally, LN ≤ 1+ 6N by Theorem 1.8. To show equality, let

x = ( ︷ ︸︸ ︷
1
2 , 1,

1
2 ; . . . ;

︷ ︸︸ ︷
1
2 , 1,

1
2 ; 1

2 ;
︷ ︸︸ ︷
−1, 1, . . . ,

︷ ︸︸ ︷
−1, 1 , 0, 0, . . .

)
,

and pick � = {n : xn = −1} ∈ G (x, N ). Then

‖x − P�x‖ = 3N + 1
2 ,

while

σN (x) ≤ ∥
∥x − 2

( ︷ ︸︸ ︷
0, 1, 0 ; . . . ;

︷ ︸︸ ︷
0, 1, 0 ; 0, 0, . . . )∥∥ = 1

2
.

Thus, LN ≥ ‖x − P�x‖/σN (x) ≥ 6N + 1. ��
Remark 5.2 In this example one can also show that γN = �N/2�. In particular, the
factor 2κ in (3.12) cannot be removed (at least when K = R).

5.2 Canonical basis in �1 ⊕ c0

Consider the space formed by pairs of sequences (x, y) ∈ �1 × c0, endowed
with the norm ‖(x, y)‖ = ‖x‖1 + ‖y‖∞. Write the canonical basis as B =
{(em, 0), (0, fn)}∞m,n=1.

Proposition 5.3 The canonical basis in �1 ⊕ c0 satisfies

• μN = μ̃N = N
• gN = g̃N = kN = gc

N = kc
N = 1

• νN = L̃N = LN = 1+ μ̃N = 1+ N.

So, equalities hold everywhere in Theorems 1.2 and 1.3.

Proof The second point is clear, since the canonical basis is 1-unconditional. For the
first point just notice that

1 ≤ ‖1A‖ = ‖1εA‖ ≤ |A|,

with the lower bound attained when 1A ∈ c0, and the upper bound when 1A ∈ �1.
Finally, in view of Theorem 1.3 and the previous equalities, in the last point we only

123

Author's personal copy



386 P. M. Berná et al.

need to show that νN ≥ N + 1. Let 1A = ∑N
n=1 en , 1B = ∑N

n=1 fn , and x = fN+1,
then

νN ≥ ‖1A + x‖
‖1B + x‖ = N + 1.

��

5.3 Canonical basis in �1 ⊕ �q , 1 ≤ q < ∞

This variant of the previous example also admits explicit Lebesgue constants, but
equality fails in (1.6).

Proposition 5.4 The canonical basis in �1 ⊕ �q , 1 ≤ q <∞ satisfies

• μN = μ̃N = N 1/q ′

• gN = g̃N = kN = gc
N = kc

N = 1

• νN = L̃N = LN = (N + 1)1/q ′ .

So equality holds in Theorem 1.2, but not in Theorem 1.3.

Proof We only prove the last part, the other two being easy. By Corollary 1.4, we only
need to estimate νN . Frombelow,we choose as before 1A =∑N

n=1 en , 1B =∑N+1
n=2 fn ,

and x = f1, so that

νN ≥ ‖1A + f1‖
‖1B + f1‖ =

N + 1

(N + 1)
1
q

= (N + 1)1/q ′ .

From above, let |A| = |B| = N and (x, y) have disjoint support with A ∪ B. Then

‖(x, y)+ 1εA‖ ≤ ‖x‖1 + ‖y‖q + N ,

while if k = | supp P�1(1B)|, then

‖(x, y)+ 1ηB‖ = ‖x‖1 + k + (‖y‖q
q + N − k)

1
q ≥ ‖x‖1 + (‖y‖q

q + N )
1
q .

So,

‖(x, y)+ 1εA‖
‖(x, y)+ 1ηB‖ ≤

‖x‖1 + ‖y‖q + N

‖x‖1 + (‖y‖q
q + N )

1
q

≤ ‖y‖q + N

(‖y‖q
q + N )

1
q

,

and the latter is easily seen to be maximized at ‖y‖q = 1. So νN ≤ (1 + N )
1
q′ , as

asserted. ��
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Remark 5.5 With similar (but slightly more tedious) computations one can show that,
for �p ⊕ c0, 1 < p <∞, one has

νN = L̃N = LN = 1+ N
1
p ,

while μ̃N = μN = 1+ (N − 1)
1
p , so again equality fails in (1.6).

5.4 The trigonometric system

Consider B = {einx }n∈Z in L p(T), 1 ≤ p ≤ ∞. In this case, neither (1.5) nor (1.6)
give good estimates, even asymptotically. By a more direct approach, Temlyakov [19]
showed the following

cp N

∣
∣
∣ 1p− 1

2

∣
∣
∣ ≤ LN ≤ 1+ 3N

∣
∣
∣ 1p− 1

2

∣
∣
∣
,

for some cp > 0. More precisely, the following inequalities hold (if p > 1)

cp N

∣
∣
∣ 1p− 1

2

∣
∣
∣ ≤ γN ≤ gc

N ≤ kc
N ≤ 1+ N

∣
∣
∣ 1p− 1

2

∣
∣
∣
, (5.2)

and

cp N

∣
∣
∣ 1p− 1

2

∣
∣
∣ ≤ μN ≤ μ̃N = μ̃d

N ≤ νN ≤ L̃N ≤ LN ≤ 1+ 3N

∣
∣
∣ 1p− 1

2

∣
∣
∣
. (5.3)

So all the involved constants have the same order of magnitude N

∣
∣
∣ 1p− 1

2

∣
∣
∣
. For the upper

bounds in (5.2) and (5.3), see [19, Lemma 2.1 and Theorem 2.1]. The lower bounds
are implicit in [19, Remark 2]; for instance if 1 < p ≤ 2 and N ∈ 2N then

μN+1 ≥
‖1{1,2,...,2N }‖p

‖1{−N/2,...,N/2}‖p
≥ cp

√
N

N 1− 1
p

= cp N
1
p− 1

2 , (5.4)

since the Dirichlet kernel has norm ‖DN/2‖p ≈ N 1− 1
p . Likewise, by (3.12)

γN+1 ≥ 1
4

‖1ε{−N/2,...,N/2}‖p

‖1{−N/2,...,N/2}‖p
≥ c′p

√
N

N 1− 1
p

= c′p N
1
p− 1

2 , (5.5)

choosing in ε the signs of the corresponding Rudin–Shapiro polynomial. The case
p ≥ 2 is similar, replacing the roles of numerator and denominator.

We state separately the case p = 1, for which not all constants have the same order
of magnitude.

Proposition 5.6 The trigonometric system B = {einx }n∈Z in L1(T) satisfies

• LN ≈ L̃N ≈ kN ≈ gN ≈
√

N .
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• γN ≈ μN ≈ μ̃N ≈
√

N
log N .

• νN ≈
√

N

Proof For the first point, the arguments in [19] are valid when p = 1, so we do
not write them here. In the second point, the lower bound for each of the constants
follows as in (5.4) and (5.5), using ‖DN/2‖1 ≈ log N . The upper bound relies on

‖1ηB‖1 ≤ ‖1ηB‖2 = |B| 12 , and on the deeper result infε,|A|=N ‖1εA‖1 ≥ c log N , a
famous problem posed by Littlewood and solved by Konyagin [13] and McGeehee–
Pigno–Smith [16].

We now establish the third point. Since νN ≤ LN �
√

N , we only need to show
the lower bound. For N ∈ N we pick B = {−N , . . . , N } and an element x ∈ L1(T)

so that

1{−N ,...,N } + x = VN ,

where VN denotes the de la Vallée-Poussin kernel (as in [18, p. 114]). Then |x |∞ ≤ 1,
supp x ⊂ {N < |k| < 2N } and we have

‖1B + x‖1 = ‖VN‖1 ≤ 3.

Next we pick A = {2 j : j0 ≤ j ≤ j0 + 2N } where we choose 2 j0 ≥ 4N . We also
notice that the operatorV2N : f �→ V2N∗ f , allowsus towrite (I−V2N )(1A+x) = 1A.
Since the operator norm ‖I − V2N‖ ≤ 1+ ‖V2N‖1 ≤ 4, we obtain

c1
√

N ≤ ‖1A‖1 ≤ ‖I − V2N‖ ‖1A + x‖1 ≤ 4 ‖1A + x‖1.

Overall we conclude that

ν2N+1 ≥ ‖1A + x‖1
‖1B + x‖1 ≥

c1
12

√
N .

��

5.5 A superdemocratic and not quasi-greedy basis

Theorem 1.3 becomes asymptotically optimal when μ̃N ≈ 1, as in this case LN ≈ kN

and L̃N ≈ gN . We give a non-trivial example of this situation, which is a small
variation of [3, Example 4.8]. This example has the additional interesting property of
being unconditional with constant coefficients but not quasi-greedy.

Proposition 5.7 For every 1 ≤ q ≤ ∞, there exists (X,B) such that

• νN ≈ μ̃N ≈ γN ≈ 1
• gN ≈ g̃N ≈ kN ≈ (log N )1/q ′

• LN ≈ L̃N ≈ (log N )1/q ′

So, in this case Theorems 1.2, 1.3 and Remark 3.6 are asymptotically optimal.
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Proof Let Dk denote the set of all dyadic intervals I ⊂ [0, 1] with length |I | = 2−k ,
and D = ∪k≥0Dk . Consider the space f

q
1 of all (real) sequences a = (aI )I∈D such

that

‖a‖fq
1
=

∥
∥
∥
[ ∑

I

|aI χ
(1)
I |q

] 1
q

∥
∥
∥

L1
<∞,

where χ
(1)
I = |I |−1χI . It is well known that {eI }I∈D, the canonical basis, is uncondi-

tional and democratic in f
q
1 ; see e.g. [8,12]. In particular, for some cq ≥ 1 we have

1
cq
|A| ≤ ‖1εA‖fq

1
≤ |A|, ∀ A ⊂ D, ε ∈ ϒ.

From the definition we also have

∥
∥
∥

∑

k

bk2
−k1Dk

∥
∥
∥
f

q
1

= (∑

k

|bk |q
) 1

q ,

since 2−k ∑
I∈Dk

χ
(1)
I = χ[0,1]. For every N ≥ 1 we shall pick a subset {k1, . . . kN } ⊂

N0, and look at the finite dimensional space FN consisting of sequences supported in
∪N

j=1Dk j . We order the canonical basis by ∪N
j=1{eI }I∈Dk j

, so we may as well write

their elements as a = (a j )
dim FN
j=1 . We also consider in FN the James norm

‖(a j )‖Jq = sup
m0=0<m1<...

[ ∑

k≥0

∣
∣

∑

mk< j≤mk+1
a j

∣
∣q

] 1
q
.

Note that‖a‖Jq ≤ ‖a‖�1 ,with equality iff all thea j ’s have the same sign.3 In particular,

‖1A‖Jq = |A|.

Now set in FN a new norm

|||a||| = max
{
‖a‖fq

1
, ‖a‖Jq

}
,

and observe that 1/cq |A| ≤ |||1εA||| ≤ |A|, with cq independent of N and k j . Also, the
vector x =∑N

j=1(−1) j+12−k j 1Dk j
has

‖x‖fq
1
= ‖x‖Jq = |||x ||| = N

1
q .

3 Note that |a − b| < (aq + bq )
1
q if a, b > 0, so consecutive elements with different signs should be in

different blocks of the James norm.
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At this point we write N = 2n and choose our k j ’s as

k2 j+1 = j and k2 j+2 = n + j, j = 0, . . . , n − 1.

Then if P =∑
j odd 2

k j = 2n − 1 we have G P x =∑
j odd 2

−k j 1Dk j
, which implies

‖G P x‖fq
1
= n

1
q , ‖G P x‖Jq = n, and |||G P x ||| = n.

Therefore

g2n ≥ |||G P x |||/|||x ||| ≥ n1− 1
q .

We turn to estimate the unconditionality constant km of the space FN . Given |A| = m,
we first claim that

‖PAx‖�1 ≤ c′q (log |A|)1/q ′ ‖x‖fq
1
. (5.6)

This is clear when q = 1 (since f11 = �1). When q = ∞, it is a consequence e.g. of [8,
Remark 5.6] (since f∞1 is a 1-space, in the terminology of [8, (2.8)]). Thus one derives
(5.6) by complex interpolation. From here

|||PAx ||| ≤ ‖PAx‖�1 ≤ c′q (log |A|)1/q ′ |||x |||,

which implies the bound km ≤ c′q(logm)1/q ′ .
Finally, we consider the space X = ⊕�1 FN with B the consecutive union of the

natural bases in FN . Then

1
cq
|A| ≤ |||1εA||| =

∑

N

|||1εAN ||| ≤ |A|,

so B is superdemocratic. We claim further that νN = O(1). Let |A| = |B| = N and
x ∈ X have disjoint support with A ·∪ B. Assuming first that |||x ||| ≥ 2N , we have

|||1εA + x |||
|||1ηB + x ||| ≤

|||1εA||| + |||x |||
|||x ||| − |||1ηB ||| ≤

3/2|||x |||
1/2|||x ||| = 3,

since |||1εA|||, |||1ηB ||| ≤ N ≤ |||x |||/2. Otherwise we have |||x ||| < 2N , which implies

|||1εA + x |||
|||1ηB + x ||| ≤

|||1εA||| + |||x |||
∑

N ‖1ηBN + xN‖fq
1

≤ 3N
∑

N ‖1ηBN ‖fq
1

≤ 3cq ,

since
∑

N ‖1ηBN ‖fq
1
≥ cq

∑
N |BN | = N . Thus νN � 1 as asserted. A similar argu-

ment shows that

γN ≤ |||1εA|||
|||1ηB ||| ≤

N
∑

N ‖1ηBN ‖fq
1

≤ cq .
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Finally, observe that kXm ≤ maxN k FN
m ≤ c′q(logm)1/q ′ , while if N = 2n we have

gX

2n ≥ gFN
2n ≥ n1/q ′ .

This completes the proof of Proposition 5.7. ��

Remark 5.8 The above construction enjoys the following remarkable property:
∃ c1, c2 > 0 such that

c1 min
n∈A
|an| |||1A||| ≤ |||

∑

A

anen||| ≤ c2 max
n∈A

|an| |||1A|||, (5.7)

for all finite sets A and all scalars an . Indeed, the right hand side is a consequence of
γN ≈ 1, (3.12) and convexity (as in Sect. 2.3). The left hand inequality is true for the
norm ‖ · ‖fq

1
, and since ‖1A‖fq

1
≈ |A| ≈ |||1A|||, it will also hold for the norm ||| · |||.

The fact that a non quasi-greedy basis may satisfy (5.7) seems to have been unnoticed
before.

6 Further questions

As shown in Example 5.4, the multiplicative bounds in Theorems 1.2 and 1.3 are not
so good when both gN and μ̃N go to infinity.

Q1: Find bounds for LN and L̃N which depend additively on kN , μ̃N or νN . More
precisely, determine in what cases it can be true that

LN � kN + νN or LN � kN + μ̃N .

This is for instance the case for the trigonometric system, and the other examples
in Sect. 5. In this respect, we can mention the results of Oswald [17], who obtains
additive estimates of the form LN ≈ kN + BN , but with constants BN of a more
complicated nature.

Related to the previous one can ask

Q2: Find examples such that kN and νN grow independently to infinity.
Example 5.5 shows that one can have νN ≈ 1 and LN ≈ kN →∞. We do not know
whether it is possible to have νN ≈ Nα and kN ≈ Nβ for arbitrary 0 < α, β ≤ 1.
A similar question, posed as Problem 4.4 in [1], asks whether it could be possible to
have νN ≡ 1 and kN →∞.

The new constant γN in (3.11) is a natural replacement for gN in some situations.
Example 5.5 (and also Example 5.4 with p = 1) show that this improvement may be
strict and the ratio gN /γN as large as log N .

Q3: Find examples with γN ≈ 1 and gN as large as possible.
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