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Abstract

In this paper we prove Riesz transform characterizations for Hardy spaces asso-

ciated with certain systems of Laguerre functions.

1 Introduction and statement of the results
Denote the Laguerre polynomials of order o« > —1 by
d\n
L (x) = (n!) te"z ™ <%) (e 2™, n=0,1,2, ...

In this paper we consider the following two systems of Laguerre functions on (0, 00)

(1) 02 (1) = V2enae W Pat 202, n=0,1,2...,

(2) £2(2) = cpae a2 L2(x), n=0,1,2,...,

where ¢, = (['(n +1)/T(n + 1+ )2 Tt is well known that, for every a > —1, each
of the systems {p2}22, and {£2}%° is complete and orthonormal on L?((0,0),dx).

Moreover, these functions are eigenvectors, respectively, of the differential operators

1 d? 1 1 d? d r ol
oY ) s - (o)
2 dy? Ty y? ¢y T + dx 4 4x
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satisfying
Loot =02n+a+1)¢h and £,(£0)=mn+(a+1)/2)L

As in [6, 7], the operators L, and £, can be factored as

1 1
Lo = 5DiDa+a+1 and £, =08, Lo
where d +1/2 d 1
(6% (6%
L )
dx+x x an \/Ed:p+2\/5 NG

and where D7 and 9§} denote, respectively, the formal adjoint operators to D, and ¢, in

L?((0,00), dz). Corresponding Riesz transforms are defined in L?((0,00), dx) by
Ry = D,L;'? and R, =0,L,"2,

that is, they act on the basis elements by

i g0a+1 Mmoo — \/ﬁ potl
V2n a1 T nt(at+1)2 "

There exist kernels R, (z,y) and R, (z,y) such that

o0 o0

R, f(z) = lim Ro(z,y) f(y) dy, Rof(zx)=lim Ra(z,y) f(y) dy.

e—0 0, |z—y|>e e—0 0, |lz—y|>e

(3) Ra(pg - =

One can easily deduce from (1), (2) and (3) that these kernels are related by

(4) Rao(z,y) = 2_3/2(:13y)_1/4Ra(\/E, VYY), x,y € (0,00).

Riesz tranforms for Laguerre systems were defined and studied by Nowak and Stempak
[7], and by Harboure, Torrea and Viviani [6], who proved that R, for « > —1/2 and R,
for o > 0 extend as bounded linear operators on LP(0,00) when 1 < p < oo and are of

weak type (1,1). Our goal in the present paper is to characterize the spaces

Hpiesr(La) = {f € L'(0,00) ; |Rafllpr < o0} for a>—1/2,
and
H%hesz (L) = {f € Ll(O,oo) D RS < oo} for o> 0.

In [3], the second-named author considered Hardy spaces H!  (L,) and H! (£,) defined

max max
by means of the maximal functions associated with the semigroups generated by — L, and
— £, respectively. To be more precise, if

Wz, y) =Y e ol (m)gl(y), W(z,y) =Y e T2 g ()80 (y)



denote the integral kernels of the semigroups {e "t} o and {7 },.4, we say that a

function f in (0, 00) belongs to H.  (L,) when the maximal function

max

Wef(x —sup‘/ W (z,y) f(y)dy

t>0

belongs to L'(0,00). Then we set |||l (

max

(L) = [[W2fllrr. Analogously, we define the

maximal function 20¢, the space H, . (£,) and the norm || - ||z (g.). It was proved in [3]

max

that the spaces H! (L), « > —1/2,and H}__(£,), @ > 0, admit atomic decompositions.

max max

The notion of atom for these spaces depends on the following auxiliary functions
1 1
pL.(z) = gmin(x, 1/x) and pg, (z) = gmin(x, 1).

A measurable function b : (0,00) — C is said to be an H'(L,)-atom if there exists a ball
B = B(yo, R) = {|yo — y| < R} with R < pr_(yo) such that

suppb C B, bloe < |B|™" and

i R < p1(y0)/2 then / b(y)dy = 0.

The space HL (L) consists of all measurable functions f on (0, 00) of the form

=Y b,
j=1

where b; are H'(L,)-atoms, \; € C and Y~ [\j| < 0o. The norm in Hy,(Ly) is defined
by

1, 2y = infz A5l

where the infimum is taken over all decomposfcmns f =272 \jby, where b; are H'(L,)-
atoms and )\; € C. Similarly we define the space Hx(£,) and the norm || ||z (g,), the
only difference being that the function pg_ replaces the function py_ in the definition of

H'(£,)-atoms. The main result in [3] was to show that

H! (L,) = HL(Ly) for a >—1/2 and H}, (£,) = H}(L,) for a >0,

max max

with equivalence of the corresponding norms. Our goal in this paper is to characterize
these spaces by means of the Riesz transforms R, and R,. More precisely, we shall prove

the following theorems.

THEOREM 1.1. If o > —1/2, then H,,(
such that

() CM iz zay < IR llee + 1 llee < CllF Ml -

L) = HL(L,). Moreover, there exists C > 0



THEOREM 1.2. If o > 0, then H}
such that

£,) = HL(L,). Moreover, there exists C > 0

iesz (

(6) CM iz eay < NRafllr + 1 Fllzr < Ol (o)

2 Hardy spaces H!(L,) associated with Laguerre op-

erators L,

In the present section, we shall prove Theorem 1.1. To do this, we recall the equivalence
between Riesz and atomic definitions for the Hardy space associated with the Hermite

operator,

which were established in [4]. First we let

(7) pr(y) =1 +1y)) ™"

It is easily seen that there exist constants C,c > 0 such that

8)  epul@)(1+|e —yl/ou(@) " < puly) < Cpu(x)(1+ |z — y|/pu(x)) .

A function a : R — C is an H'(H)-atom if there exists a ball B = B(yy, R) = {y €
R; |y — yo| < R} with R < py(yo) such that

suppa C B, lal|z=~ < |B|™" and

it R < pul)/2 then | aly)dy =0

The atomic Hardy space Hy (H) and the norm || ||z () are defined in the standard way.
On the other hand, a Riesz transform RY can be defined in L?(R) by

RH = <i —|—:1:>H_1/2
dx ’

motivated by the factorization of the Hermite operator

=) () o)
=—\—+z)(——2= ——z)—+2x)].
4 L\dx dx dx dx
To obtain a kernel expression for R, recall first the Mehler formula for Hermite functions
(cf. [10, Lemma 1.1.1]), which asserts that the integral kernel W/ (z,y) of the Hermite
semigroup {e *"},. is given by
—t

By =[] <_1@iﬁi)z ) 4 20— )
9) W, (x,y) = |:7T(1—€_2t) exp S\ - o (°+y°) + R

4



when t > 0 and z,y € R. Using the formula H~'/? = 7712 [*¢7H=1/2d¢ we can

express the Riesz transform R as a principal value singular integral operator of the form
RY(f)(x) = lim R (z,y)f(y)dy,
e—0 yeR @ |z—y|>e
with the kernel given by
dt

H _ 1 *rd H
R (%y)—ﬁ/o <@+$>Wt (x,y)%
(10) L T T )
ﬁ/o dl,Wt<7y)\/E+ﬁ/o Wt(vy)\/i
= Ri'(z,y) + Ry (2, y).

It is not difficult to prove using (9) and (10) that
(11) sup [ R (o)l do <00, sup [ R (o)l dy < oc
yER —00 z€ER J —0

(see Section 4). Therefore, denoting RY = 2 H~'/2, we have

(12) ||R12LIf||L1(R) < C|\ fllerm

(see also [2, Theorem 4.5]). It was proved by Thangavelu [9] that the operator R¥ is
bounded on LP(R) for 1 < p < co. Moreover, Theorem 1.2 of Zhong [11] asserts that the
operator R = (d/dx)H~'/? is a Calderén-Zygmund operator, hence it is of weak type
(1,1) (see also [8] for a proof based on analysis of the Melher kernel). The above facts

could also be deduced from the following lemma.

LEMMA 2.1. Let ¢ € C(—=274274) be such that )(x) = 1 for |z| < 275. Then there

exists a constant co # 0 and a kernel h(x,y) such that

H _ ©Co r—Y
(14) ?elﬂg/_oo Ih(x,y)ldx+ilelg/_oo |h(z,y)|dy < oo.

This lemma is known, but a self-contained proof based on analysis of the Mehler kernel

will be presented in Section 4. We set
Hlliiesz<H) = {f € LI(R) ; ||RHf||L1(R) < OO}

In view of (12), an L'-function f belongs to Hy;..,(H) if and only if (d/dz)H~'/?f belongs
to L'(R). From this remark and the results in [4], it follows that

Hl

Riesz

(H) = HalLt(H)

5



and there exists a constant C' > 0 such that

(15) CM ity < MR Fllze + 1 lee < ClUS ez, can

Having established the Riesz and atomic characterizations of the Hardy space associated

with the Hermite operator, we continue our preparation for the proof of Theorem 1.1.

For a function f defined on (0,00), we denote R{! f = R{', .f + R%,,.f, where

2z

R} 1ch(x) = lim Rf(m,y)f(y) dy, >0, 7=1,2.

€20 o2, |z—y|>e
PROPOSITION 2.2. For f € L'(0,00), let f, denote its odd extension. Then REf, €
L'(R) if and only if R{\.f is in L'(0,00). Moreover, there exists C' > 0 such that

IR fo = Ritoe IL1000) < Cllf 000

PROOF. Set r =7r(t) =e ‘e (0,1). According to (9) and (10), we have

(16)
- Vr(2ry — (14 r?)z) 1+r% 5 2r dt
Ry (z,y) = \/_/ 0= 127 exp(—m(x +y)+1_r2xy>%.

Note that || R foll 1) = 2||RY foll 12(0,00), Decause R f, is an even function. Moreover,

Ry fo(x) = lim :_ | (R{(z,y) — R (z,—y)) f(y)dy, ae. x € (0,00).
Further,
x/2
RYf,(x) — R f(z) = / (RE (z,y) — R (2, —)) f(4)dy
T / (R a.y) — R (2, —y)) (y)dy
(17) .

x), a.e. x € (0,00).

-/ /: RY (e, —y) f(y)dy
2

It suffices to show that the operators Tj, j = 1,2, 3, are bounded on L'((0,00),dz). To
deal with Ty and T5, we estimate the difference D (z,y) = |R¥(z,y) — R¥(z, —y)| for
z,y > 0. By (16)

D (x,y) < C/Oooul/_%(exp (%xy) —eXp(— ] _r2:vy)>

(18) X exp ( — %(ﬁ + yﬂ)ﬂ

+C/ e < LA 2y 2))e ( 2r x)dt
X —_ =/ X —.
1—7“ 3/2 P 2(1—12) 4 P\ 2" Vit

6




Applying the mean value theorem in the first integral, we can assert that

(19)
D" (x,y)
= \/F T£E2y 1 +T’2 9 9 2r dt
< T 571 o\ _— _
_C/O (1_r2)3/2<1_r2 +y>eXp< 2(1—’/"2)(1‘ +y)>exp<1_r2xy>ﬂ
_o [T (e L+ 77 ) 1—r \dt
_i?A U—WWW<1—W+ﬂ>wP<_2u—r%@_ﬂ)>“p(_1+r“037

It is now not difficult to verify using (19) that

Cyx—2 for x > 2y,
(20) DUCRNES S i
Cy=t for 2z < y.

The estimate (20) easily implies |71 f||11(0,00) + [|T2f]|21(0,00) < CllfllL1(0,00)- Moreover,

from (16), we conclude

oo 1 1 C
| R (2, —y)| < C(xecaﬂ/ e tdt + x/ _efczz/tdt) < — forx/2 <y <2z
1 0

t2
Hence T3 is a bounded operator from L'(0, c0) into itself. [

PROPOSITION 2.3. Let a > —1/2, f € L'(0,00) and f, be the odd extension of f to R.
Then Rof is in L*(0,00) if and only if R f, is in L*(R). Moreover, there exists C > 0
such that

CH (ol + IR foll®y) < I f1lEr(0,00) + [ Raf |21 (0,00) and
1flz1000) + 1 Raf 000y < CUlfollzrmy + IR folliqw))-

PROOF. According to [1, Lemma 2.13], we have

|Ro(z,y)| < Caot3/2y~(a+5/2) for 0 <2z <y < oo,

(21) |Ro(z,y)| < Cyott/2p=(a+3/2) for 0 <y < /2, and
1/4

[Ro(z,y) — R (2,y)| < €(1 + ‘(L

for 0 <z/2 <y <2x.
y w—mUQ

Each of the Hardy operators

Ho(g)(z) =z~ / Yy 29(y)dy, x>0
0

and -
H%(g)(z) = 2*T/? / y 3 g(y)dy, x>0

7



are bounded on L'(0,00) when o > —1/2. Moreover, the operator N defined by

Nf(a:):/::q(H (zy)

oY |z — y|1/?

1/4

) Fw)dy

is also bounded in L'(0,00). Hence, by (21), (11) and Proposition 2.2, we obtain

[Raf = R foll Lt (0.00) < | Raf = Rise |1t (0.00) + | Rinef = R foll 11(0.00)
S CO(IN [f1 .00y + IH T L1 0,00) + 1 Hal 1 1|1 (0,00))
+ [ RioeS = BY foll210.00) + RS 0 Nl 21 0.00) + RS foll L10.00)
< Cllfll10,00)-

The next elementary lemma will be used below.

LEMMA 24. Let b : (0,00) — C be an H'(L,)-atom. Then, its odd extension b,
satisfies
10ol| f11, (1) < 36.

PRroOF. Let B = B(y, R) C (0,00) be a ball associated with b, that is, R < pr_(y),
suppb C B and ||b]| < |B|™. Moreover, [ b(y)dy =0if R < py, (y)/2. In this last case,
since pr, (y) < pr(y)/2, the function b(z) (extended as 0 when z < 0) is an H'(H)-atom,
and hence so is —b(—xz). Thus |[bo| g1, () < 2.

Suppose now that pr_(y)/2 < R < pr.(y). We distinguish two cases. If y € (0,8/9)
then

supp b, C B(0,y + R) C B(0,9y/8) = B,.

Since [ bo = 0 and ||b, oo < pr.(y)~" = 18/|B,|, it follows that b,/18 is an H'(H )-atom
associated with the ball B,, and hence ||b, | 51 7y < 18. In the second case, i.e. y > 8/9,
we may regard b/18 as an H'(H)-atom associated with the ball B(y, px(y)), since

suppb C B(y, pr(y)) and bl < (2R)™ < 18|B(y, pu(y))| ™"

Similarly, b(—z)/18 is an H'(H)-atom associated with the ball B(—y, pg(—y)). We con-
clude that [bo|| s, sy < 36, establishing the lemma. O

Proof of Theorem 1.1. Assume that f is in H)(L,). Then f can be written as > by,
where b; are H'(Ly)-atoms and Y |c;| ~ || fllm1, (r,)- By the previous lemma, the odd
extension f, of f belongs to Hy, (H) and || foll g1, iy < 36]|f|| 112, (£.)- Applying Proposition
2.3 and using (15), we obtain

[Rafllzt000) < CUlfoll iy + IR follovmy) < C'll follm,ry < CUNF i, (-

8



To prove the converse, assume that f is in Hp,.,(La). Again, using Proposition 2.3
combined with (15), we obtain f, € Hg,..,(H) = HL(H) and

foll ez, ey < CUl ol + 1R folli®) < CUIF L1000 + 1 Bafllzr0.00)-

Hence fo(z) = Y. cja;(x), where a; are H'(H)-atoms and 3~ |c;| ~ || foll g1, (). Letting
b; = aj‘(o ~oy» One easily verifies the inequality 1011111, (1) < C. Thus f is in H}(La) and
£l a2 0y < C' N2 0,00) + [ Baf (|21 (0,00))- O

REMARK 2.5. Using a similar analysis based on a comparison of the kernels W (x, y)
and WH (x,y) (see [1, Lemma 2.11]), one can prove that W f, belongs to L'(R) if and only
if W f belongs to L'(0,00) and || follr@) + W foll ) ~ [l 0,00) + W2 fll L2 0,00)-

3 Hardy spaces H'(£,) associated with Laguerre op-

erators £,.

In this section we prove Theorem 1.2. The proof is based on the following estimates for

the kernel R, (z,y).

PROPOSITION 3.1. Let ¢ be as in Lemma 2.1. Then, for every a > 0, there exists a
kernel K(x,y) such that

_ Co r—Y
(22 Ral9) = v (L) + K@),z € (0.00),

(23) sup / K (2, )|dz < oo,
0

y>0

where ¢ 1s the constant from (13).

PRrROOF. Set

(24) K(ay) = Ralwy) = o5t —5 )

If  <y/4 ory<ax/4, then K(x,y) = Ra(z,y). From (4) and (21), we conclude

(25) Kog) < | GOy 9 i dr <y < oo
x? —_ .
Y Cyo/2p=(a+2)/2 if 0<y<ax/4.

Hence

(26) sup (/Oy/4 |K(x,y)| dz + /400 |K(x,y)| dx) < 00.

y>0 y

9



In order to deal with the kernel K (z,y) in the local part y/4 < z < 4y, we set
E(z,y) = Ralz,y) — 27 (ay) VR (Vz, Vy),

~3/2 —1/4___ Co VT~ <o T
Glz,y) =277 <(my) / vz — \/gd)< pH(\/_;’/)y> B :)32— y¢<02a(5)>>

Then, by (4) and Lemma 2.1, we have

(27) K(xz,y) = E(x,y) + 2_3/2(:Ey)_1/4h(\/5, V) + Gz, y).

According to (21), we get

(zy) " (zy)"/® Ty _vV*
(28) B < 0 <1+|ﬁ_ﬂ|m)goy(u‘x_y‘m)

for y/4 <z < 4y. Trivially, using (28) and (14), we obtain

4y
(20) | (B0l + v i) e < ¢
y/4
The proof will be complete if we show the inequality
4y
(30) | Gaylds<c.
y/4

Let us note that

B)  Glay) = SOV (oY) gy (P

z—y L (ay)V (Ve +/Y)pr(Vr) Pz, ()
Ify > 10, y/4 < x < 4y and |x — y| > 1, then G(z,y) = 0. If y > 10, y/4 < x < 4y
and |x — y| < 1, then, by the mean value theorem, |G(z,y)| < C. Thus (30) is satisfied
fory > 10. If 0 < y < 10 and y/4 < x < 4y, then applying the mean value theorem we
deduce |G(z,y)| < Cy~' and, consequently, (30) holds. ]

Before we turn to the proof of Theorem 1.2, we state some results from the theory
of local Hardy spaces [5]. Fix [ > 0. We say that a function b is an atom for the
local Hardy space hj(R) if there exists a ball B(yp, R) with R < [ such that suppb C
B(yo, R), |Ib]loc < (2R)™!, and if R < /2, then [b(y)dy = 0. A function f belongs to
the space h; if there exist a sequence b; of hj-atoms and \; € C with }_. [);| < oo such
that

(32) F=2 b

10



The atomic norm in hj is defined in a standard way, that is, || f|ls: = inf 3, ||, where
the infimum is taken over all decompositions (32). Moreover, if f € hj and supp f C
B(yo, 1), then there exists decomposition (32) of f such that suppb; C B(yo,10!/9) and
> 1A < C|l fllnr. We define a local Hilbert transform

. Co
H,f(x) = lim
! ( ) e—0 |Z‘—y‘>6 \/§(x —_

where ¢y and 1 are as in Lemma 2.1. The following result was actually proved in [5].

Se(7) 1w dy

There exists a constant C' > 0 independent of [ such that

(33) CHUI My < IHufllee + [ fllzr < ClLf -

Proof of Theorem 1.2. Since R, maps continuously L!(0,00) into the space of distribu-
tions, to prove the second inequality in (6), it suffices to verify that there exists a constant
C > 0 such that, for every H'(£,)-atom b, one has

(34) [Rab|r < C.

Let b be an H'(£,)-atom with associated ball B(yy, R). Clearly, letting [ = pg_(ys), we

see that b is also an hj-atom. By Proposition 3.1,
Roble) = [ Ko )by) dy + Hib(o)
)

" }Tli% lz—y|>e \/5(;0— Y) <¢<,:£a_($y)> ks <$ ; y>>XB(y°’l) (y)b(y) dy.

(35

The kernel

Ulzr,y) = ﬁ(;o_ » (1#(;2;5)) - w<¥)>><3(yo,z) (y),

as a function of (z,y), is supported by B(yo,3l) x B(yg, ). Moreover, |U(z,y)| < CI71,
which implies sup,~, [ |U(z, y)|dz < co. Therefore, (34) holds by applying (23) and (33).
We now turn to prove the first inequality in (6). We define the intervals {I;};ez,

I; = (B, Bj+1), B; = (9/8) for j < 1, and 3; = 1+ j/8 for j > 1. Set ; = pe,(5;). Let
n; be a family of smooth functions such that

* d —
(36) 0<mn <1, suppn; C I}, ‘%m(fv)‘é%ﬂ > ni(z)=1 forz>0,
J

where [J* = [/ijluﬁj#»?]' Set []** = [ﬁj,g,ﬁjqrg]. Then Z] X[;f* < 5. Fix f € LI(O, OO) such
that [|[Raf|lLr < co. We shall verify that

(37) Z [Hy, (i Nl < CURS[er + £ 1)

11



with a constant C' > 0 independent of f. To this end, note that

(38)
. . —n:x <o =y i\x) i J (@
Hy )@ =t | ()~ (@) g () F) dy o+ (o) S 9)
= 5,/(x) + m(x)H, ().

Observe that the kernel

)

() = i) 5 =0 (=

as a function of (x,y), is supported by I;* x I7* and bounded by C’lj_l. Since each y > 0

belongs to at most 5 intervals I5*, and |[7*| ~ [;, we can easily obtain
39) > [Es@lds <l

J
Now we shall deal with n;(x)H;, f(x), defined by

we i@ = [a@ () ()] s

()R () — () / K (e.9) 1 (y) dy.

f(y)dy
(40)

The integral kernel

) (5) 4 Gom) e

as a function of (z,y), is supported by I¥ X I7* and bounded by C lj_z. Hence

(41) sup /Oooz]: nj(x) (ﬁ}(xl—:y) - 1/}(/1:(5))) \/5(;0_ » ‘daz < 0.

y>0
Using (40), (41), we obtain

(42) Z InHy fllee < CUf e + 1Ra o),

which combined with (38), (39) and (36) gives (37). Having (37) already proved, we are
in a position to complete the proof of the first inequality in (6). Applying (37) together

with the results from the theory of local Hardy spaces stated in this section, we have

(43) f= Z(mf) = Z <Z)\ijaij>u

J

12



where a;; are hllj—atoms supported by I7*, and 3, [Ai;| < C(|Rafllrr+| fllz1). The proof
will be complete once we observe that each of these atoms is either an H'(£,)-atom, or
can be written as a sum of at most 20 such atoms. Indeed, fix an h}j-atom a supported
in I7*. Then, for some 0 < Ry < [; and yo € I;* we have suppa C B(yo, Ry) C I,
lallo < (2Ro)™!, and if Ry < [;/2 then also [ a(x)dx = 0. Notice that, by construction,

pe.(y) < 2pe. (y), forall y,yf € [J’.** = [B;_2, Bj13)-

If Ry < 1;/2 = pe.(B;)/2 then [a = 0 and Ry < pe.(yo), and therefore a is also an
H'(L,)-atom. If Ry > ;/2, then

4
]j** = U [j—2+k with ‘[j72+k’ = PgLa <6j*2+k) )
=0

and using again pge, (Bj42) < 2pg, (5;) we see that

laxz, s lloo < (2R0) ™" < pe, (8;) " < 20 Lj—aa]

Hence, each piece axy, ,,,/4 is an H'(£,)-atom for the ball B(8; a4, pe, (Bj—2+k)) and,

consequently, |[a| g1 (g,) < 20.

4 Proof of (11) and Lemma 2.1

During the proof we set r = e~*€ (0,1). We can rewrite (9) as

1) W) = e (- L) o) e (L),

for all z,y € R. A simple computation using (44) or (9) gives

T 171472
o e (D))
(45) i (2,y) < e A i Gy |z =y
Let us note that, for every N > 0, there exists a constant Cy such that
o—t/3

¢ N
T )

(46) W/ (z,y) < Cn

Indeed, if |z — y| > |z|/2, then

—t/2 1/1 2 —t/3 t _N

O WL (R
(1 —1r?) 8\l —r (1—1r?2) pu ()

If |z — y| < |z]/2, then zy ~ x* and, using (44), we get

(47) W' (z,y) <

—t/2 e~t/3 t -
4 H < € —c(]l — 2 < 1 .
4s)  Wiew) <O (—dl-ne’) < On s (1 -55)

13



Applying (45) and (46) combined with the fact that W (z,y) = W/ (y, z), we obtain
o t/3

TV?TiiieXp<"Ef%gégﬁﬁ><l+/xiw>_N(1+yxZV)_N'

We are now in a position to prove (11). If |x — y| < Cpg(y), then by (10) and (49) we

(49) W(z,y) < Cy

have

(50)

lo=yl” to\Ndt (W gy o (y)2\ N dt
H < I T at Pa\Y at
Rl <on( [ () T [ el [ (2 )

z—y|?
< C’N<|x| + |z|In (%(yyﬁ))

If |z —y| > Cpu(y), then we use again (49) and get

(51)

i ) £ \Ndt [P b \N_t NN
R (z,y SO</ x( )_+/ x( >( ) t
| 2 ( )| N 0 | | |x—y|2 t C )2‘ | |-’L‘_y|2 PH(ZU)Z t

) 2pu(y
*° N dt
IC O

[l ()™
< Oy
T Y
<C (Ix —ylpn(y)*" IylpH(y)2N>
N R

Now the first inequality in (11) is a consequence of (50) and (51). Similarly to (50) and
(51), we also conclude that

¢ (jol+ lol 1 (Cou@/lo —yl))  for |z —y] < Cpu(a)
o < |l B )

Cnlzlpn(x)™/|z -yl for |z —y|> Cpu(x),

from which we easily obtain the second inequality in (11).

Having (11) already established, we now turn to prove Lemma 2.1. By (44),

(53)
0 .n B NG 1+ 72 1/1+47? 5 1—r
Ot = e (4 s~

1—17r T 171472 1—17r
—y vr exp(——( )Ix—yl2>exp(— rcy)'

L+7r/n(1—r2) 2\1 —r2 1+7r

From (53) we deduce that, for |z — y| > Cpg(y), we have
(54)
0

52V )| < On

o t/3

+ |y|(1 — 7’)) mexp ( — %) <1 + ﬁ)d\f.

14
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Proceeding as in (51), we obtain

dt 1 pu(y)™™
) | [ Wit G < ox( ) 22y forle =yl > Conlo),
which leads to
(56) sup | IR (2, )| dv < C.

YER Jz—y|>Cpy ()

Our next step is to estimate R{(x,y) for |« — y| < Cpu(y). Note that (53) implies

(57)
o t/3 2 —ul? _N—1
‘%Wt('x’y)’ = CN\/fG . 7’2)|x —ylexp ( N 1|2(1 —yL)) <1 * pHEy)2)
_t/g T — 2 —N-1
n bl e (= gy y) (14 )

e t/4 (1 t -N
)
1 —r? pr(y)?

Consequently, using (57) we get

(58) / OOW

In order to investigate the integral

rr()? 9 dt
_W 5 )

<(Cy——

0

=< -1
P < Cpu(y)

we study first the difference

dt
\/¥7
where P;(z) = (27t)"'/2 exp(—x?/2t) is the classical Gauss-Weierstrass kernel. The per-

turbation formula asserts that

Q( )__l/pH(y)Q/t/ooﬁp (x — )2WH( Ydzd ﬁ
x,y—20 ofoo&ft_sm 2)z sz,yzs\/%.

Q)= [ "2 () - e - )

Therefore,
(59)
J = |Q(z, y)|dx

lz—y|<Cpmu(y)

pr(y)® pt poo |z — 2| ) A dt
<C P_s(x —2)(|]z — x| + 2°)W/ (2,y) dz ds — dx.
o=y <Cpr(y) Jo 0 Jooo 15 Vi

15




Observe that 2% < Cpy(y)~2 for |z —y| < Cpy(y). Substituting this inequality inside the

above integral and then integrating with respect to dr and dz, we conclude

pr (y)? 1/2 1
< — < <C.
(60) J C/ / (t_8)1/2pH()>ds\/_ Cpu(y)' +C <C

Proceeding as in (55), we also get

N
_1 pulz
R (2,0)] < Corpu() 2205 for o =] > Cpla),
and consequently,
(61) sup | R (2,y)|dy < oo.
2€R J)z—y[>Cpu (z)

A similar procedure to that employed to estimate J gives

(62) sup / Qay)ldy < C.
|z—y|<Cpm(x)

zeR

Finally, our analysis of the kernel R (x,y) is reduced to the integral

ru(®)® § dt W)’ gy 1 dt
—Pi(r—y)—& = — exp(—|z — y|*/2t)—
[ gerte—n G- [T el -
_ _#GXP(_ \Jf—yP)
V2 (x —y) 20m(y)?
Taking into account (10), (55), (58), (60), (61), (62) and (63), we get

(63)

V2 |z —y/?
64 R(z,y) = ——""—exp | — + hy(x
(64) M) == ew (= g i) + ey
with
(65) sup/ |hi(z,y)|dx + sup/ |hi(x,y)|dy < 0.
yeR J -0 z€R J -

To complete the proof, take any ¢ € C°(R) as in the statement of Lemma 2.1. Define a
function hs(x,y) by

V2 (:v—y>_ V2 Xp(_Iﬂ«"—yl2
m(x—y) \pu(r)/  w(r—y) 20u(y)”
By (10), (64), (65) and (11), the lemma will be established once we show that, for some
C > 0 we have

ho(z,y) = ), z,y € R.

(66) sup [ (e g)ldy <€ and - sup [ lha(o.y)]de < C

z€R yER
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Set A= {(z,y) € R* |z —y| > pu(2)}, B ={(z,y) € R*% [z —y| < pu(z)}. Then

exp(——'x_y'2 ! |x_y|)><3(:r y)
201 (y)? pu(r)  puly)® o

where the last summand is obtained by applying the mean value theorem. Using (8), we

see that p(y)? < cp(x)|x — y| when (z,y) € A, and therefore

(67)  |ha(z,y)| <

)XA($7Q)+C<

[ —yl*

e . —
lz —y] 2p1(y)?

s [ Hyia

du
< / exp(—c|u|)— <C.
u|>1 |ul
On the other hand, pg(z) ~ pu(y) when (z,y) € B (again by (8)), so we have

|G i|§<;>y|>>‘3(m vyay =G,

which together with (68) implies the first inequality in (66). From (8) we also see that
ACA={(z,y) eR%|x —y| > epu(y)} and B C B = {(x,y) € R |x — y| < pu(y)/e}
for some € > 0. Using this fact, the second inequality in (66) follows by similar arguments.

This completes the proof of Lemma 2.1.
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