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Abstract

In this paper we prove Riesz transform characterizations for Hardy spaces asso-
ciated with certain systems of Laguerre functions.

1 Introduction and statement of the results

Denote the Laguerre polynomials of order α > −1 by

Lαn(x) = (n!)−1exx−α
( d
dx

)n
(e−xxn+α), n = 0, 1, 2, ...

In this paper we consider the following two systems of Laguerre functions on (0,∞)

(1) ϕαn(x) =
√

2 cn,α e
−x2/2xα+1/2Lαn(x2), n = 0, 1, 2 . . . ,

(2) Lα
n(x) = cn,α e

−x/2xα/2Lαn(x), n = 0, 1, 2, . . . ,

where cn,α = (Γ(n + 1)/Γ(n+ 1 + α))1/2. It is well known that, for every α > −1, each

of the systems {ϕαn}∞n=0 and {Lα
n}∞n=0 is complete and orthonormal on L2((0,∞), dx).

Moreover, these functions are eigenvectors, respectively, of the differential operators

Lα =
1

2

(
− d2

dy2
+ y2 +

1

y2

(
α2 − 1

4

))
, Lα = −

(
x
d2

dx2
+

d

dx
−
(x

4
+
α2

4x

))
,
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satisfying

Lαϕ
α
n = (2n+ α + 1)ϕαn and Lα(Lα

n) = (n+ (α + 1)/2) Lα
n .

As in [6, 7], the operators Lα and Lα can be factored as

Lα =
1

2
D∗αDα + α + 1 and Lα = δ∗αδα +

α + 1

2
,

where

Dα =
d

dx
+ x− α + 1/2

x
and δα =

√
x
d

dx
+

1

2

(√
x− α√

x

)
,

and where D∗α and δ∗α denote, respectively, the formal adjoint operators to Dα and δα in

L2((0,∞), dx). Corresponding Riesz transforms are defined in L2((0,∞), dx) by

Rα = DαL
−1/2
α and Rα = δαL

−1/2
α ,

that is, they act on the basis elements by

(3) Rαϕ
α
n = − 2

√
n√

2n+ α + 1
ϕα+1
n−1, RαL

α
n = −

√
n√

n+ (α + 1)/2
Lα+1
n−1 .

There exist kernels Rα(x, y) and Rα(x, y) such that

Rαf(x) = lim
ε→0

∫ ∞
0, |x−y|>ε

Rα(x, y)f(y) dy, Rαf(x) = lim
ε→0

∫ ∞
0, |x−y|>ε

Rα(x, y)f(y) dy.

One can easily deduce from (1), (2) and (3) that these kernels are related by

(4) Rα(x, y) = 2−3/2(xy)−1/4Rα(
√
x,
√
y), x, y ∈ (0,∞).

Riesz tranforms for Laguerre systems were defined and studied by Nowak and Stempak

[7], and by Harboure, Torrea and Viviani [6], who proved that Rα for α ≥ −1/2 and Rα

for α ≥ 0 extend as bounded linear operators on Lp(0,∞) when 1 < p < ∞ and are of

weak type (1,1). Our goal in the present paper is to characterize the spaces

H1
Riesz(Lα) =

{
f ∈ L1(0,∞) ; ‖Rαf‖L1 <∞

}
for α > −1/2,

and

H1
Riesz(Lα) =

{
f ∈ L1(0,∞) ; ‖Rαf‖L1 <∞

}
for α > 0.

In [3], the second-named author considered Hardy spaces H1
max(Lα) and H1

max(Lα) defined

by means of the maximal functions associated with the semigroups generated by −Lα and

−Lα, respectively. To be more precise, if

Wα
t (x, y) =

∞∑
n=0

e−(2n+α+1)tϕαn(x)ϕαn(y), Wα
t (x, y) =

∞∑
n=0

e−t(n+(α+1)/2)Lα
n(x)Lα

n(y)
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denote the integral kernels of the semigroups {e−tLα}t>0 and {e−tLα}t>0, we say that a

function f in (0,∞) belongs to H1
max(Lα) when the maximal function

Wα
∗ f(x) = sup

t>0

∣∣∣ ∫ ∞
0

Wα
t (x, y)f(y)dy

∣∣∣
belongs to L1(0,∞). Then we set ‖f‖H1

max(Lα) = ‖Wα
∗ f‖L1 . Analogously, we define the

maximal function Wα
∗ , the space H1

max(Lα) and the norm ‖ · ‖H1
max(Lα). It was proved in [3]

that the spaces H1
max(Lα), α > −1/2, and H1

max(Lα), α > 0, admit atomic decompositions.

The notion of atom for these spaces depends on the following auxiliary functions

ρLα(x) =
1

8
min(x, 1/x) and ρLα(x) =

1

8
min(x, 1).

A measurable function b : (0,∞)→ C is said to be an H1(Lα)-atom if there exists a ball

B = B(y0, R) = {|y0 − y| < R} with R ≤ ρLα(y0) such that

supp b ⊂ B, ‖b‖∞ ≤ |B|−1 and

if R ≤ ρLα(y0)/2 then

∫
b(y)dy = 0.

The space H1
at(Lα) consists of all measurable functions f on (0,∞) of the form

f =
∞∑
j=1

λjbj,

where bj are H1(Lα)-atoms, λj ∈ C and
∑∞

j=1 |λj| <∞. The norm in H1
at(Lα) is defined

by

‖f‖H1
at(Lα) = inf

∞∑
j=1

|λj|,

where the infimum is taken over all decompositions f =
∑∞

j=1 λjbj, where bj are H1(Lα)-

atoms and λj ∈ C. Similarly we define the space H1
at(Lα) and the norm ‖ ‖H1

at(Lα), the

only difference being that the function ρLα replaces the function ρLα in the definition of

H1(Lα)-atoms. The main result in [3] was to show that

H1
max(Lα) = H1

at(Lα) for α > −1/2 and H1
max(Lα) = H1

at(Lα) for α > 0,

with equivalence of the corresponding norms. Our goal in this paper is to characterize

these spaces by means of the Riesz transforms Rα and Rα. More precisely, we shall prove

the following theorems.

Theorem 1.1. If α > −1/2, then H1
Riesz(Lα) = H1

at(Lα). Moreover, there exists C > 0

such that

(5) C−1‖f‖H1
at(Lα) ≤ ‖Rαf‖L1 + ‖f‖L1 ≤ C‖f‖H1

at(Lα).
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Theorem 1.2. If α > 0, then H1
Riesz(Lα) = H1

at(Lα). Moreover, there exists C > 0

such that

(6) C−1‖f‖H1
at(Lα) ≤ ‖Rαf‖L1 + ‖f‖L1 ≤ C‖f‖H1

at(Lα).

2 Hardy spaces H1(Lα) associated with Laguerre op-

erators Lα

In the present section, we shall prove Theorem 1.1. To do this, we recall the equivalence

between Riesz and atomic definitions for the Hardy space associated with the Hermite

operator,

H =
1

2
(− d2

dx2
+ x2),

which were established in [4]. First we let

(7) ρH(y) = (1 + |y|)−1.

It is easily seen that there exist constants C, c > 0 such that

(8) cρH(x)
(
1 + |x− y|/ρH(x)

)−1 ≤ ρH(y) ≤ CρH(x)
(
1 + |x− y|/ρH(x)

)1/2
.

A function a : R → C is an H1(H)-atom if there exists a ball B = B(y0, R) = {y ∈
R; |y − y0| < R} with R ≤ ρH(y0) such that

supp a ⊂ B, ‖a‖L∞ ≤ |B|−1 and

if R ≤ ρH(y0)/2 then

∫
a(y) dy = 0.

The atomic Hardy space H1
at(H) and the norm ‖ ‖H1

at(H) are defined in the standard way.

On the other hand, a Riesz transform RH can be defined in L2(R) by

RH =
( d
dx

+ x
)
H−1/2,

motivated by the factorization of the Hermite operator

H = −1

4

[( d
dx

+ x
)( d

dx
− x
)

+
( d
dx
− x
)( d

dx
+ x
)]
.

To obtain a kernel expression for RH , recall first the Mehler formula for Hermite functions

(cf. [10, Lemma 1.1.1]), which asserts that the integral kernel WH
t (x, y) of the Hermite

semigroup {e−tH}t>0 is given by

WH
t (x, y) =

[ e−t

π(1− e−2t)

]1/2
exp

(
− 1

2

(1 + e−2t

1− e−2t

)
(x2 + y2) + 2xy

e−t

1− e−2t

)
(9)
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when t > 0 and x, y ∈ R. Using the formula H−1/2 = π−1/2
∫∞

0
e−tHt−1/2dt, we can

express the Riesz transform RH as a principal value singular integral operator of the form

RH(f)(x) = lim
ε→0

∫
y∈R : |x−y|>ε

RH(x, y)f(y)dy ,

with the kernel given by

RH(x, y) =
1√
π

∫ ∞
0

( d
dx

+ x
)
WH
t (x, y)

dt√
t

=
1√
π

∫ ∞
0

d

dx
WH
t (x, y)

dt√
t

+
1√
π

∫ ∞
0

xWH
t (x, y)

dt√
t

= RH
1 (x, y) +RH

2 (x, y).

(10)

It is not difficult to prove using (9) and (10) that

(11) sup
y∈R

∫ ∞
−∞
|RH

2 (x, y)| dx <∞, sup
x∈R

∫ ∞
−∞
|RH

2 (x, y)| dy <∞

(see Section 4). Therefore, denoting RH
2 = xH−1/2, we have

(12) ‖RH
2 f‖L1(R) ≤ C‖f‖L1(R)

(see also [2, Theorem 4.5]). It was proved by Thangavelu [9] that the operator RH is

bounded on Lp(R) for 1 < p <∞. Moreover, Theorem 1.2 of Zhong [11] asserts that the

operator RH
1 = (d/dx)H−1/2 is a Calderón-Zygmund operator, hence it is of weak type

(1,1) (see also [8] for a proof based on analysis of the Melher kernel). The above facts

could also be deduced from the following lemma.

Lemma 2.1. Let ψ ∈ C∞c (−2−4, 2−4) be such that ψ(x) = 1 for |x| < 2−5. Then there

exists a constant c0 6= 0 and a kernel h(x, y) such that

(13) RH(x, y) =
c0

x− y
ψ
( x− y
ρH(x)

)
+ h(x, y),

(14) sup
y∈R

∫ ∞
−∞
|h(x, y)|dx+ sup

x∈R

∫ ∞
−∞
|h(x, y)|dy <∞.

This lemma is known, but a self-contained proof based on analysis of the Mehler kernel

will be presented in Section 4. We set

H1
Riesz(H) =

{
f ∈ L1(R) ; ‖RHf‖L1(R) <∞

}
.

In view of (12), an L1-function f belongs to H1
Riesz(H) if and only if (d/dx)H−1/2f belongs

to L1(R). From this remark and the results in [4], it follows that

H1
Riesz(H) = H1

at(H)
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and there exists a constant C > 0 such that

(15) C−1‖f‖H1
at(H) ≤ ‖RHf‖L1 + ‖f‖L1 ≤ C‖f‖H1

at(H).

Having established the Riesz and atomic characterizations of the Hardy space associated

with the Hermite operator, we continue our preparation for the proof of Theorem 1.1.

For a function f defined on (0,∞), we denote RH
locf = RH

1,locf +RH
2,locf , where

RH
j,locf(x) = lim

ε→0

∫ 2x

x/2, |x−y|>ε
RH
j (x, y)f(y) dy, x > 0, j = 1, 2.

Proposition 2.2. For f ∈ L1(0,∞), let fo denote its odd extension. Then RH
1 fo ∈

L1(R) if and only if RH
1,locf is in L1(0,∞). Moreover, there exists C > 0 such that

‖RH
1 fo −RH

1,locf‖L1(0,∞) ≤ C‖f‖L1(0,∞).

Proof. Set r = r(t) = e−t∈ (0, 1). According to (9) and (10), we have

(16)

RH
1 (x, y) =

1√
π

∫ ∞
0

√
r
(
2ry − (1 + r2)x

)
(1− r2)3/2

exp
(
− 1 + r2

2(1− r2)
(x2 + y2) +

2r

1− r2
xy
) dt√

t
.

Note that ‖RH
1 fo‖L1(R) = 2‖RH

1 fo‖L1(0,∞), because RH
1 fo is an even function. Moreover,

RH
1 fo(x) = lim

ε→0

∫ ∞
0, |x−y|>ε

(
RH

1 (x, y)−RH
1 (x,−y)

)
f(y)dy, a.e. x ∈ (0,∞).

Further,

RH
1 fo(x)−RH

1,locf(x) =

∫ x/2

0

(
RH

1 (x, y)−RH
1 (x,−y)

)
f(y)dy

+

∫ ∞
2x

(
RH

1 (x, y)−RH
1 (x,−y)

)
f(y)dy

−
∫ 2x

x/2

RH
1 (x,−y)f(y)dy

=
3∑
j=1

Tj(f)(x), a.e. x ∈ (0,∞).

(17)

It suffices to show that the operators Tj, j = 1, 2, 3, are bounded on L1((0,∞), dx). To

deal with T1 and T2, we estimate the difference DH(x, y) = |RH
1 (x, y) − RH

1 (x,−y)| for

x, y > 0. By (16)

DH(x, y) ≤ C

∫ ∞
0

√
r x

(1− r2)3/2

(
exp

( 2r

1− r2
xy
)
− exp

(
− 2r

1− r2
xy
))

× exp
(
− 1 + r2

2(1− r2)
(x2 + y2)

) dt√
t

+ C

∫ ∞
0

√
r y

(1− r2)3/2
exp

(
− 1 + r2

2(1− r2)
(x2 + y2)

)
exp

( 2r

1− r2
xy
) dt√

t
.

(18)
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Applying the mean value theorem in the first integral, we can assert that

DH(x, y)

≤ C

∫ ∞
0

√
r

(1− r2)3/2

( rx2y

1− r2
+ y
)

exp
(
− 1 + r2

2(1− r2)
(x2 + y2)

)
exp

( 2r

1− r2
xy
) dt√

t

= C

∫ ∞
0

√
r

(1− r2)3/2

( rx2y

1− r2
+ y
)

exp
(
− 1 + r2

2(1− r2)
(x− y)2

)
exp

(
− 1− r

1 + r
xy
) dt√

t
.

(19)

It is now not difficult to verify using (19) that

(20) DH(x, y) ≤

Cyx−2 for x > 2y,

Cy−1 for 2x < y.

The estimate (20) easily implies ‖T1f‖L1(0,∞) + ‖T2f‖L1(0,∞) ≤ C‖f‖L1(0,∞). Moreover,

from (16), we conclude

|RH
1 (x,−y)| ≤ C

(
xe−cx

2

∫ ∞
1

e−tdt+ x

∫ 1

0

1

t2
e−cx

2/tdt
)
≤ C

y
for x/2 < y < 2x.

Hence T3 is a bounded operator from L1(0,∞) into itself.

Proposition 2.3. Let α > −1/2, f ∈ L1(0,∞) and fo be the odd extension of f to R.

Then Rαf is in L1(0,∞) if and only if RHfo is in L1(R). Moreover, there exists C > 0

such that

C−1(‖fo‖L1(R) + ‖RHfo‖L1(R)) ≤ ‖f‖L1(0,∞) + ‖Rαf‖L1(0,∞) and

‖f‖L1(0,∞) + ‖Rαf‖L1(0,∞) ≤ C(‖fo‖L1(R) + ‖RHfo‖L1(R)).

Proof. According to [1, Lemma 2.13], we have

|Rα(x, y)| ≤ Cxα+3/2y−(α+5/2) for 0 < 2x < y <∞,
|Rα(x, y)| ≤ Cyα+1/2x−(α+3/2) for 0 < y < x/2, and(21)

|Rα(x, y)−RH(x, y)| ≤ C

y

(
1 +

(xy)1/4

|x− y|1/2
)

for 0 < x/2 < y < 2x.

Each of the Hardy operators

Hα(g)(x) = x−α−3/2

∫ x

0

yα+1/2g(y)dy, x > 0

and

Hα(g)(x) = xα+1/2

∫ ∞
x

y−α−3/2g(y)dy, x > 0
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are bounded on L1(0,∞) when α > −1/2. Moreover, the operator N defined by

Nf(x) =

∫ 2x

x/2

1

y

(
1 +

(xy)1/4

|x− y|1/2
)
f(y)dy

is also bounded in L1(0,∞). Hence, by (21), (11) and Proposition 2.2, we obtain

‖Rαf −RHfo‖L1(0,∞) ≤ ‖Rαf −RH
locf‖L1(0,∞) + ‖RH

locf −RHfo‖L1(0,∞)

≤ C
(
‖N |f | ‖L1(0,∞) + ‖Hα+1|f | ‖L1(0,∞) + ‖Hα|f | ‖L1(0,∞)

)
+ ‖RH

1,locf −RH
1 fo‖L1(0,∞) + ‖RH

2,locf‖L1(0,∞) + ‖RH
2 fo‖L1(0,∞)

≤ C‖f‖L1(0,∞).

The next elementary lemma will be used below.

Lemma 2.4. Let b : (0,∞) → C be an H1(Lα)-atom. Then, its odd extension bo

satisfies

‖bo‖H1
at(H) ≤ 36.

Proof. Let B = B(y,R) ⊂ (0,∞) be a ball associated with b, that is, R ≤ ρLα(y),

supp b ⊂ B and ‖b‖∞ ≤ |B|−1. Moreover,
∫
b(y)dy = 0 if R ≤ ρLα(y)/2. In this last case,

since ρLα(y) ≤ ρH(y)/2, the function b(x) (extended as 0 when x ≤ 0) is an H1(H)-atom,

and hence so is −b(−x). Thus ‖bo‖H1
at(H) ≤ 2.

Suppose now that ρLα(y)/2 < R ≤ ρLα(y). We distinguish two cases. If y ∈ (0, 8/9)

then

supp bo ⊂ B(0, y +R) ⊂ B(0, 9y/8) ≡ Bo.

Since
∫

R bo = 0 and ‖bo‖∞ ≤ ρLα(y)−1 = 18/|Bo|, it follows that bo/18 is an H1(H)-atom

associated with the ball Bo, and hence ‖bo‖H1
at(H) ≤ 18. In the second case, i.e. y > 8/9,

we may regard b/18 as an H1(H)-atom associated with the ball B(y, ρH(y)), since

supp b ⊂ B(y, ρH(y)) and ‖b‖∞ ≤ (2R)−1 ≤ 18|B(y, ρH(y))|−1.

Similarly, b(−x)/18 is an H1(H)-atom associated with the ball B(−y, ρH(−y)). We con-

clude that ‖bo‖H1
at(H) ≤ 36, establishing the lemma.

Proof of Theorem 1.1. Assume that f is in H1
at(Lα). Then f can be written as

∑
j cjbj,

where bj are H1(Lα)-atoms and
∑

j |cj| ∼ ‖f‖H1
at(Lα). By the previous lemma, the odd

extension fo of f belongs to H1
at(H) and ‖fo‖H1

at(H) ≤ 36‖f‖H1
at(Lα). Applying Proposition

2.3 and using (15), we obtain

‖Rαf‖L1(0,∞) ≤ C(‖fo‖L1(R) + ‖RHfo‖L1(R)) ≤ C ′‖fo‖H1
at(H) ≤ C ′′‖f‖H1

at(Lα).
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To prove the converse, assume that f is in H1
Riesz(Lα). Again, using Proposition 2.3

combined with (15), we obtain fo ∈ H1
Riesz(H) = H1

at(H) and

‖fo‖H1
at(H) ≤ C(‖fo‖L1(R) + ‖RHfo‖L1(R)) ≤ C(‖f‖L1(0,∞) + ‖Rαf‖L1(0,∞)).

Hence fo(x) =
∑

j cjaj(x), where aj are H1(H)-atoms and
∑

j |cj| ∼ ‖fo‖H1
at(H). Letting

bj = aj
∣∣
(0,∞)

, one easily verifies the inequality ‖bj‖H1
at(Lα) ≤ C. Thus f is in H1

at(Lα) and

‖f‖H1
at(Lα) ≤ C ′(‖f‖L1(0,∞) + ‖Rαf‖L1(0,∞)).

Remark 2.5. Using a similar analysis based on a comparison of the kernels Wα
t (x, y)

andWH
t (x, y) (see [1, Lemma 2.11]), one can prove thatWH

∗ fo belongs to L1(R) if and only

if Wα
∗ f belongs to L1(0,∞) and ‖fo‖L1(R) + ‖WH

∗ fo‖L1(R) ∼ ‖f‖L1(0,∞) + ‖Wα
∗ f‖L1(0,∞).

3 Hardy spaces H1(Lα) associated with Laguerre op-

erators Lα.

In this section we prove Theorem 1.2. The proof is based on the following estimates for

the kernel Rα(x, y).

Proposition 3.1. Let ψ be as in Lemma 2.1. Then, for every α > 0, there exists a

kernel K(x, y) such that

(22) Rα(x, y) =
c0√

2(x− y)
ψ
( x− y
ρLα(x)

)
+K(x, y), x, y ∈ (0,∞),

(23) sup
y>0

∫ ∞
0

|K(x, y)|dx <∞,

where c0 is the constant from (13).

Proof. Set

(24) K(x, y) = Rα(x, y)− c0√
2(x− y)

ψ
( x− y
ρLα(x)

)
.

If x < y/4 or y < x/4, then K(x, y) = Rα(x, y). From (4) and (21), we conclude

(25) |K(x, y)| ≤

{
Cx(α+1)/2y−(α+3)/2 if 4x < y <∞
Cyα/2x−(α+2)/2 if 0 < y < x/4.

Hence

(26) sup
y>0

(∫ y/4

0

|K(x, y)| dx+

∫ ∞
4y

|K(x, y)| dx
)
<∞.
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In order to deal with the kernel K(x, y) in the local part y/4 ≤ x ≤ 4y, we set

E(x, y) = Rα(x, y)− 2−3/2(xy)−1/4RH(
√
x,
√
y),

G(x, y) = 2−3/2
(

(xy)−1/4 c0√
x−√y

ψ
(√x−√y
ρH(
√
x)

)
− 2c0
x− y

ψ
( x− y
ρLα(x)

))
.

Then, by (4) and Lemma 2.1, we have

K(x, y) = E(x, y) + 2−3/2(xy)−1/4h(
√
x,
√
y) +G(x, y).(27)

According to (21), we get

(28) |E(x, y)| ≤ C
(xy)−1/4

√
y

(
1 +

(xy)1/8

|
√
x−√y|1/2

)
≤ C

1

y

(
1 +

√
x

|x− y|1/2
)

for y/4 ≤ x ≤ 4y. Trivially, using (28) and (14), we obtain

(29)

∫ 4y

y/4

(
|E(x, y)|+ (xy)−1/4|h(

√
x,
√
y)|
)
dx ≤ C.

The proof will be complete if we show the inequality

(30)

∫ 4y

y/4

|G(x, y)| dx ≤ C.

Let us note that

G(x, y) =
2−3/2c0
x− y

[√x+
√
y

(xy)1/4
ψ
( x− y

(
√
x+
√
y)ρH(

√
x)

)
− 2ψ

( x− y
ρLa(x)

)]
.(31)

If y > 10, y/4 ≤ x ≤ 4y and |x − y| > 1, then G(x, y) = 0. If y > 10, y/4 < x < 4y

and |x − y| ≤ 1, then, by the mean value theorem, |G(x, y)| ≤ C. Thus (30) is satisfied

for y > 10. If 0 < y ≤ 10 and y/4 ≤ x ≤ 4y, then applying the mean value theorem we

deduce |G(x, y)| ≤ Cy−1 and, consequently, (30) holds.

Before we turn to the proof of Theorem 1.2, we state some results from the theory

of local Hardy spaces [5]. Fix l > 0 . We say that a function b is an atom for the

local Hardy space h1
l (R) if there exists a ball B(y0, R) with R < l such that supp b ⊂

B(y0, R), ‖b‖∞ ≤ (2R)−1, and if R ≤ l/2 , then
∫
b(y) dy = 0. A function f belongs to

the space h1
l if there exist a sequence bj of h1

l -atoms and λj ∈ C with
∑

j |λj| <∞ such

that

(32) f =
∑
j

λjbj.

10



The atomic norm in h1
l is defined in a standard way, that is, ‖f‖h1

l
= inf

∑
j |λj|, where

the infimum is taken over all decompositions (32). Moreover, if f ∈ h1
l and supp f ⊂

B(y0, l), then there exists decomposition (32) of f such that supp bj ⊂ B(y0, 10l/9 ) and∑
j |λj| ≤ C‖f‖h1

l
. We define a local Hilbert transform

Hlf(x) = lim
ε→0

∫
|x−y|>ε

c0√
2(x− y)

ψ
(x− y

l

)
f(y) dy,

where c0 and ψ are as in Lemma 2.1. The following result was actually proved in [5].

There exists a constant C > 0 independent of l such that

(33) C−1‖f‖h1
l
≤ ‖Hlf‖L1 + ‖f‖L1 ≤ C‖f‖h1

l
.

Proof of Theorem 1.2. Since Rα maps continuously L1(0,∞) into the space of distribu-

tions, to prove the second inequality in (6), it suffices to verify that there exists a constant

C > 0 such that, for every H1(Lα)-atom b, one has

(34) ‖Rαb‖L1 ≤ C.

Let b be an H1(Lα)-atom with associated ball B(y0, R). Clearly, letting l = ρLα(y0 ), we

see that b is also an h1
l -atom. By Proposition 3.1,

Rαb(x) =

∫
K(x, y)b(y) dy +Hlb(x)

+ lim
ε→0

∫
|x−y|>ε

c0√
2(x− y)

(
ψ
( x− y
ρLα(x)

)
− ψ

(x− y
l

))
χB(y0,l)(y)b(y) dy.

(35)

The kernel

U(x, y) =
c0√

2(x− y)

(
ψ
( x− y
ρLα(x)

)
− ψ

(x− y
l

))
χB(y0,l)(y),

as a function of (x, y), is supported by B(y0, 3l)× B(y0 , l). Moreover, |U(x, y)| ≤ Cl−1 ,

which implies supy>0

∫
|U(x, y)|dx <∞. Therefore, (34) holds by applying (23) and (33).

We now turn to prove the first inequality in (6). We define the intervals {Ij}j∈Z,

Ij = (βj, βj+1), βj = (9/8)j for j ≤ 1, and βj = 1 + j/8 for j ≥ 1. Set lj = ρLα(βj ). Let

ηj be a family of smooth functions such that

(36) 0 ≤ ηj ≤ 1, supp ηj ⊂ I∗j ,
∣∣∣ d
dx
ηj(x)

∣∣∣ ≤ Cl−1
j ,

∑
j

ηj (x ) = 1 for x > 0 ,

where I∗j = [βj−1, βj+2]. Set I∗∗j = [βj−2, βj+3]. Then
∑

j χI∗∗j ≤ 5. Fix f ∈ L1(0,∞) such

that ‖Rαf‖L1 <∞. We shall verify that

(37)
∑
j

‖Hlj(ηjf)‖L1 ≤ C(‖Rαf‖L1 + ‖f‖L1)

11



with a constant C > 0 independent of f . To this end, note that

Hlj (ηjf)(x) = lim
ε→0

∫
|x−y|>ε

(
ηj(y)− ηj(x)

) c0√
2(x− y)

ψ
(x− y

lj

)
f(y) dy + ηj(x)Hlj f(x)

= Ξjf(x) + ηj(x)Hlj f(x).

(38)

Observe that the kernel ∣∣∣(ηj(y)− ηj(x)
) c0√

2(x− y)
ψ
(x− y

lj

)∣∣∣,
as a function of (x, y), is supported by I∗∗j × I∗∗j and bounded by Cl−1

j . Since each y > 0

belongs to at most 5 intervals I∗∗j , and |I∗∗j | ∼ lj , we can easily obtain

(39)
∑
j

∫
|Ξjf(x)| dx ≤ C‖f‖L1 .

Now we shall deal with ηj(x)Hljf(x), defined by

ηj(x)Hlj f(x) =

∫
ηj(x)

[
ψ
(x− y

lj

)
− ψ

(x− y
ρLα(x)

)] c0√
2(x− y)

f(y) dy

+ ηj(x)Rαf(x)− ηj(x)

∫
K(x, y)f(y) dy.

(40)

The integral kernel ∣∣∣ηj(x)
[
ψ
(x− y

lj

)
− ψ

( x− y
ρLα(x)

)] c0√
2(x− y)

∣∣∣,
as a function of (x, y), is supported by I∗j × I∗∗j and bounded by Cl−1

j . Hence

(41) sup
y>0

∫ ∞
0

∑
j

∣∣∣ηj(x)
(
ψ
(x− y

lj

)
− ψ

( x− y
ρLα(x)

)) c0√
2(x− y)

∣∣∣dx <∞.
Using (40), (41), we obtain

(42)
∑
j

‖ηjHlj f‖L1 ≤ C(‖f‖L1 + ‖Rαf‖L1),

which combined with (38), (39) and (36) gives (37). Having (37) already proved, we are

in a position to complete the proof of the first inequality in (6). Applying (37) together

with the results from the theory of local Hardy spaces stated in this section, we have

(43) f =
∑
j

(ηjf) =
∑
j

(∑
i

λijaij

)
,

12



where aij are h1
lj
-atoms supported by I∗∗j , and

∑
ij |λij| ≤ C(‖Rαf‖L1 +‖f‖L1). The proof

will be complete once we observe that each of these atoms is either an H1(Lα)-atom, or

can be written as a sum of at most 20 such atoms. Indeed, fix an h1
lj
-atom a supported

in I∗∗j . Then, for some 0 < R0 < lj and y0 ∈ I∗∗j we have supp a ⊂ B(y0, R0) ⊂ I∗∗j ,

‖a‖∞ ≤ (2R0)
−1, and if R0 ≤ lj/2 then also

∫
a(x)dx = 0. Notice that, by construction,

ρLα(y) ≤ 2ρLα(y′), for all y, y′ ∈ I∗∗j = [βj−2, βj+3].

If R0 ≤ lj/2 = ρLα(βj)/2 then
∫
a = 0 and R0 ≤ ρLα(y0), and therefore a is also an

H1(Lα)-atom. If R0 > lj/2, then

I∗∗j =
4⋃

k=0

Ij−2+k with |Ij−2+k| = ρLα(βj−2+k) ,

and using again ρLα(βj+2) ≤ 2ρLα(βj) we see that

‖aχIj−2+k
‖∞ ≤ (2R0)

−1 ≤ ρLα(βj)
−1 ≤ 2|Ij−2+k|−1.

Hence, each piece aχIj−2+k
/4 is an H1(Lα)-atom for the ball B(βj−2+k, ρLα(βj−2+k)) and,

consequently, ‖a‖H1
at(Lα) ≤ 20.

4 Proof of (11) and Lemma 2.1

During the proof we set r = e−t∈ (0, 1). We can rewrite (9) as

(44) WH
t (x, y) =

√
r√

π(1− r2)
exp

(
− 1

2

(1 + r2

1− r2

)
|x− y|2

)
exp

(
− 1− r

1 + r
xy
)
,

for all x, y ∈ R. A simple computation using (44) or (9) gives

(45) WH
t (x, y) ≤

√
r√

π(1− r2)
exp

(
− 1

4

(1 + r2

1− r2

)
|x− y|2

)
.

Let us note that, for every N > 0, there exists a constant CN such that

(46) WH
t (x, y) ≤ CN

e−t/3√
(1− r2)

(
1 +

t

ρH(x)2

)−N
.

Indeed, if |x− y| > |x|/2, then

(47) WH
t (x, y) ≤ e−t/2√

π(1− r2)
exp

(
− 1

8

(1 + r2

1− r2

)
x2
)
≤ CN

e−t/3√
(1− r2)

(
1 +

t

ρH(x)2

)−N
.

If |x− y| ≤ |x|/2, then xy ∼ x2 and, using (44), we get

(48) WH
t (x, y) ≤ C

e−t/2√
1− r2

exp
(
− c(1− r)x2

)
≤ CN

e−t/3√
1− r2

(
1 +

t

ρH(x)2

)−N
.

13



Applying (45) and (46) combined with the fact that WH
t (x, y) = WH

t (y, x), we obtain

(49) WH
t (x, y) ≤ CN

e−t/3√
1− e−2t

exp
(
− |x− y|2

12(1− e−2t)

)(
1 +

t

ρ(x)2

)−N(
1 +

t

ρ(y)2

)−N
.

We are now in a position to prove (11). If |x − y| ≤ CρH(y), then by (10) and (49) we

have

|RH
2 (x, y)| ≤ CN

(∫ |x−y|2
0

|x|
( t

|x− y|2
)N dt

t
+

∫ C2ρH(y)2

|x−y|2
|x|dt

t
+

∫ ∞
C2ρH(y)2

|x|
(ρH(y)2

t

)N dt
t

)
≤ CN

(
|x|+ |x| ln

(CρH(y)

|x− y|

))
.

(50)

If |x− y| ≥ CρH(y), then we use again (49) and get

|RH
2 (x, y)| ≤ CN

(∫ C2ρH(y)2

0

|x|
( t

|x− y|2
)N dt

t
+

∫ |x−y|2
C2ρH(y)2

|x|
( t

|x− y|2
)N( t

ρH(y)2

)−2N dt

t

+

∫ ∞
|x−y|2

|x|
(ρH(y)2

t

)N dt
t

)
≤ CN

|x|ρH(y)2N

|x− y|2N

≤ CN

( |x− y|ρH(y)2N

|x− y|2N
+
|y|ρH(y)2N

|x− y|2N
)
.

(51)

Now the first inequality in (11) is a consequence of (50) and (51). Similarly to (50) and

(51), we also conclude that

(52) |RH
2 (x, y)| ≤

C
(
|x|+ |x| ln

(
CρH(x)/|x− y|

))
for |x− y| ≤ CρH(x)

CN |x|ρH(x)N/|x− y|N for |x− y| > CρH(x),

from which we easily obtain the second inequality in (11).

Having (11) already established, we now turn to prove Lemma 2.1. By (44),

∂

∂x
WH
t (x, y) = −

√
r√

π(1− r2)

1 + r2

1− r2
(x− y) exp

(
− 1

2

(1 + r2

1− r2

)
|x− y|2

)
exp

(
− 1− r

1 + r
xy
)

− y1− r
1 + r

√
r√

π(1− r2)
exp

(
− 1

2

(1 + r2

1− r2

)
|x− y|2

)
exp

(
− 1− r

1 + r
xy
)
.

(53)

From (53) we deduce that, for |x− y| > CρH(y), we have

∣∣∣ ∂
∂x
WH
t (x, y)

∣∣∣ ≤ CN

( 1

|x− y|
+ |y|(1− r)

) e−t/3√
1− r2

exp
(
− |x− y|2

12(1− r2)

)(
1 +

t

ρH(y)2

)−N
.

(54)
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Proceeding as in (51), we obtain

(55)
∣∣∣ ∫ ∞

0

∂

∂x
WH
t (x, y)

dt√
t

∣∣∣ ≤ CN

( 1

|x− y|
+ |y|

) ρH(y)2N

|x− y|2N
for |x− y| > CρH(y),

which leads to

(56) sup
y∈R

∫
|x−y|>CρH(y)

|RH
1 (x, y)| dx ≤ C.

Our next step is to estimate RH
1 (x, y) for |x− y| ≤ CρH(y). Note that (53) implies

∣∣∣ ∂
∂x
Wt(x, y)

∣∣∣ ≤ CN
e−t/3√
1− r2

(1 + r2

1− r2

)
|x− y| exp

(
− |x− y|2

12(1− r2)

)(
1 +

t

ρH(y)2

)−N−1

+ CN
e−t/3√
1− r2

|y|(1− r) exp
(
− |x− y|2

12(1− r2)

)(
1 +

t

ρH(y)2

)−N−1

≤ CN
e−t/4

1− r2

(
1 +

t

ρH(y)2

)−N
.

(57)

Consequently, using (57) we get

(58)

∫ ∞
ρH(y)2

∣∣∣ ∂
∂x
Wt(x, y)

∣∣∣ dt√
t
≤ CρH(y)−1.

In order to investigate the integral∫ ρH(y)2

0

∂

∂x
Wt(x, y)

dt√
t
,

we study first the difference

Q(x, y) =

∫ ρH(y)2

0

∂

∂x

(
WH
t (x, y)− Pt(x− y)

) dt√
t
,

where Pt(x) = (2πt)−1/2 exp(−x2/2t) is the classical Gauss-Weierstrass kernel. The per-

turbation formula asserts that

Q(x, y) = −1

2

∫ ρH(y)2

0

∫ t

0

∫ ∞
−∞

∂

∂x
Pt−s(x− z)z2WH

s (z, y)dz ds
dt√
t
.

Therefore,

J =

∫
|x−y|<CρH(y)

|Q(x, y)|dx

≤ C

∫
|x−y|≤CρH(y)

∫ ρH(y)2

0

∫ t

0

∫ ∞
−∞

|x− z|
t− s

Pt−s(x− z)(|z − x|2 + x2)WH
s (z, y) dz ds

dt√
t
dx.

(59)
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Observe that x2 ≤ CρH(y)−2 for |x−y| ≤ CρH(y). Substituting this inequality inside the

above integral and then integrating with respect to dx and dz, we conclude

(60) J ≤ C

∫ ρH(y)2

0

∫ t

0

(
(t− s)1/2 +

1

(t− s)1/2ρH(y)2

)
ds

dt√
t
≤ CρH(y)4 + C ≤ C.

Proceeding as in (55), we also get

|RH
1 (x, y)| ≤ CNρH(x)−1 ρH(x)N

|x− y|N
for |x− y| > CρH(x),

and consequently,

(61) sup
x∈R

∫
|x−y|>CρH(x)

|RH
1 (x, y)| dy <∞.

A similar procedure to that employed to estimate J gives

(62) sup
x∈R

∫
|x−y|≤CρH(x)

|Q(x, y)|dy ≤ C.

Finally, our analysis of the kernel RH
1 (x, y) is reduced to the integral∫ ρH(y)2

0

∂

∂x
Pt(x− y)

dt√
t

= −
∫ ρH(y)2

0

x− y
t

1√
2πt

exp(−|x− y|2/2t) dt√
t

= − 2√
2π(x− y)

exp
(
− |x− y|

2

2ρH(y)2

)
.

(63)

Taking into account (10), (55), (58), (60), (61), (62) and (63), we get

(64) RH
1 (x, y) = −

√
2

π(x− y)
exp

(
− |x− y|

2

2ρH(y)2

)
+ h1(x, y)

with

(65) sup
y∈R

∫ ∞
−∞
|h1(x, y)|dx + sup

x∈R

∫ ∞
−∞
|h1(x, y)|dy <∞.

To complete the proof, take any ψ ∈ C∞c (R) as in the statement of Lemma 2.1. Define a

function h2(x, y) by

h2(x, y) =

√
2

π(x− y)
ψ
( x− y
ρH(x)

)
−

√
2

π(x− y)
exp

(
− |x− y|

2

2ρH(y)2

)
, x, y ∈ R.

By (10), (64), (65) and (11), the lemma will be established once we show that, for some

C > 0 we have

(66) sup
x∈R

∫
|h2(x, y)| dy ≤ C and sup

y∈R

∫
|h2(x, y)| dx ≤ C.
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Set A = {(x, y) ∈ R2; |x− y| > ρH(x)}, B = {(x, y) ∈ R2; |x− y| ≤ ρH(x)}. Then

(67) |h2(x, y)| ≤ C

|x− y|
exp

(
− |x− y|

2

2ρH(y)2

)
χA(x, y) + C

( 1

ρH(x)
+
|x− y|
ρH(y)2

)
χB(x, y),

where the last summand is obtained by applying the mean value theorem. Using (8), we

see that ρ(y)2 ≤ cρ(x)|x− y| when (x, y) ∈ A, and therefore∫
C

|x− y|
exp

(
− |x− y|

2

2ρH(y)2

)
χA(x, y) dy ≤

∫
C

|x− y|
exp

(
− c |x− y|

ρH(x)

)
χA(x, y) dy

≤
∫
|u|>1

exp(−c|u|)du
|u|
≤ C.

(68)

On the other hand, ρH(x) ∼ ρH(y) when (x, y) ∈ B (again by (8)), so we have∫ ( C

ρH(x)
+
C|x− y|
ρH(y)2

)
χB(x, y) dy ≤ C,

which together with (68) implies the first inequality in (66). From (8) we also see that

A ⊂ Ã = {(x, y) ∈ R2; |x − y| > ερH(y)} and B ⊂ B̃ = {(x, y) ∈ R2; |x − y| ≤ ρH(y)/ε}
for some ε > 0. Using this fact, the second inequality in (66) follows by similar arguments.

This completes the proof of Lemma 2.1.
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Universidad de la Laguna

Campus de Anchieta, Avda. Astrof́ısico

Francisco Sánchez, s/n

38271 La Laguna (Sta. Cruz de Tener-

ife)

Spain

E-mail address: jbetanco@ull.es

J. Dziubański
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