RIESZ TRANSFORM CHARACTERIZATION OF HARDY SPACES ASSOCIATED WITH CERTAIN LAGUERRE EXPANSIONS

Jorge Betancor, Jacek Dziubański and Gustavo Garrigós

Abstract

In this paper we prove Riesz transform characterizations for Hardy spaces associated with certain systems of Laguerre functions.

1 Introduction and statement of the results

Denote the Laguerre polynomials of order $\alpha>-1$ by

$$
L_{n}^{\alpha}(x)=(n!)^{-1} e^{x} x^{-\alpha}\left(\frac{d}{d x}\right)^{n}\left(e^{-x} x^{n+\alpha}\right), n=0,1,2, \ldots
$$

In this paper we consider the following two systems of Laguerre functions on $(0, \infty)$

$$
\begin{gather*}
\varphi_{n}^{\alpha}(x)=\sqrt{2} c_{n, \alpha} e^{-x^{2} / 2} x^{\alpha+1 / 2} L_{n}^{\alpha}\left(x^{2}\right), \quad n=0,1,2 \ldots, \tag{1}\\
\mathfrak{L}_{n}^{\alpha}(x)=c_{n, \alpha} e^{-x / 2} x^{\alpha / 2} L_{n}^{\alpha}(x), \quad n=0,1,2, \ldots, \tag{2}
\end{gather*}
$$

where $c_{n, \alpha}=(\Gamma(n+1) / \Gamma(n+1+\alpha))^{1 / 2}$. It is well known that, for every $\alpha>-1$, each of the systems $\left\{\varphi_{n}^{\alpha}\right\}_{n=0}^{\infty}$ and $\left\{\mathfrak{L}_{n}^{\alpha}\right\}_{n=0}^{\infty}$ is complete and orthonormal on $L^{2}((0, \infty), d x)$. Moreover, these functions are eigenvectors, respectively, of the differential operators

$$
L_{\alpha}=\frac{1}{2}\left(-\frac{d^{2}}{d y^{2}}+y^{2}+\frac{1}{y^{2}}\left(\alpha^{2}-\frac{1}{4}\right)\right), \quad \mathfrak{L}_{\alpha}=-\left(x \frac{d^{2}}{d x^{2}}+\frac{d}{d x}-\left(\frac{x}{4}+\frac{\alpha^{2}}{4 x}\right)\right)
$$

[^0]satisfying
$$
L_{\alpha} \varphi_{n}^{\alpha}=(2 n+\alpha+1) \varphi_{n}^{\alpha} \quad \text { and } \quad \mathfrak{L}_{\alpha}\left(\mathfrak{L}_{n}^{\alpha}\right)=(n+(\alpha+1) / 2) \mathfrak{L}_{n}^{\alpha}
$$

As in $[6,7]$, the operators L_{α} and \mathfrak{L}_{α} can be factored as

$$
L_{\alpha}=\frac{1}{2} D_{\alpha}^{*} D_{\alpha}+\alpha+1 \quad \text { and } \quad \mathfrak{L}_{\alpha}=\delta_{\alpha}^{*} \delta_{\alpha}+\frac{\alpha+1}{2}
$$

where

$$
D_{\alpha}=\frac{d}{d x}+x-\frac{\alpha+1 / 2}{x} \quad \text { and } \quad \delta_{\alpha}=\sqrt{x} \frac{d}{d x}+\frac{1}{2}\left(\sqrt{x}-\frac{\alpha}{\sqrt{x}}\right),
$$

and where D_{α}^{*} and δ_{α}^{*} denote, respectively, the formal adjoint operators to D_{α} and δ_{α} in $L^{2}((0, \infty), d x)$. Corresponding Riesz transforms are defined in $L^{2}((0, \infty), d x)$ by

$$
R_{\alpha}=D_{\alpha} L_{\alpha}^{-1 / 2} \quad \text { and } \quad \mathfrak{R}_{\alpha}=\delta_{\alpha} \mathfrak{L}_{\alpha}^{-1 / 2}
$$

that is, they act on the basis elements by

$$
\begin{equation*}
R_{\alpha} \varphi_{n}^{\alpha}=-\frac{2 \sqrt{n}}{\sqrt{2 n+\alpha+1}} \varphi_{n-1}^{\alpha+1}, \quad \mathfrak{R}_{\alpha} \mathfrak{L}_{n}^{\alpha}=-\frac{\sqrt{n}}{\sqrt{n+(\alpha+1) / 2}} \mathfrak{L}_{n-1}^{\alpha+1} \tag{3}
\end{equation*}
$$

There exist kernels $R_{\alpha}(x, y)$ and $\mathfrak{R}_{\alpha}(x, y)$ such that

$$
R_{\alpha} f(x)=\lim _{\varepsilon \rightarrow 0} \int_{0,|x-y|>\varepsilon}^{\infty} R_{\alpha}(x, y) f(y) d y, \quad \Re_{\alpha} f(x)=\lim _{\varepsilon \rightarrow 0} \int_{0,|x-y|>\varepsilon}^{\infty} \Re_{\alpha}(x, y) f(y) d y .
$$

One can easily deduce from (1), (2) and (3) that these kernels are related by

$$
\begin{equation*}
\Re_{\alpha}(x, y)=2^{-3 / 2}(x y)^{-1 / 4} R_{\alpha}(\sqrt{x}, \sqrt{y}), \quad x, y \in(0, \infty) \tag{4}
\end{equation*}
$$

Riesz tranforms for Laguerre systems were defined and studied by Nowak and Stempak [7], and by Harboure, Torrea and Viviani [6], who proved that R_{α} for $\alpha \geq-1 / 2$ and \mathfrak{R}_{α} for $\alpha \geq 0$ extend as bounded linear operators on $L^{p}(0, \infty)$ when $1<p<\infty$ and are of weak type $(1,1)$. Our goal in the present paper is to characterize the spaces

$$
H_{\text {Riesz }}^{1}\left(L_{\alpha}\right)=\left\{f \in L^{1}(0, \infty) ;\left\|R_{\alpha} f\right\|_{L^{1}}<\infty\right\} \quad \text { for } \quad \alpha>-1 / 2
$$

and

$$
H_{\operatorname{Riesz}}^{1}\left(\mathfrak{L}_{\alpha}\right)=\left\{f \in L^{1}(0, \infty) ;\left\|\Re_{\alpha} f\right\|_{L^{1}}<\infty\right\} \quad \text { for } \quad \alpha>0 .
$$

In [3], the second-named author considered Hardy spaces $H_{\max }^{1}\left(L_{\alpha}\right)$ and $H_{\max }^{1}\left(\mathfrak{L}_{\alpha}\right)$ defined by means of the maximal functions associated with the semigroups generated by $-L_{\alpha}$ and $-\mathfrak{L}_{\alpha}$, respectively. To be more precise, if

$$
W_{t}^{\alpha}(x, y)=\sum_{n=0}^{\infty} e^{-(2 n+\alpha+1) t} \varphi_{n}^{\alpha}(x) \varphi_{n}^{\alpha}(y), \quad \mathfrak{W}_{t}^{\alpha}(x, y)=\sum_{n=0}^{\infty} e^{-t(n+(\alpha+1) / 2)} \mathfrak{L}_{n}^{\alpha}(x) \mathfrak{L}_{n}^{\alpha}(y)
$$

denote the integral kernels of the semigroups $\left\{e^{-t L_{\alpha}}\right\}_{t>0}$ and $\left\{e^{-t \mathfrak{L}_{\alpha}}\right\}_{t>0}$, we say that a function f in $(0, \infty)$ belongs to $H_{\max }^{1}\left(L_{\alpha}\right)$ when the maximal function

$$
W_{*}^{\alpha} f(x)=\sup _{t>0}\left|\int_{0}^{\infty} W_{t}^{\alpha}(x, y) f(y) d y\right|
$$

belongs to $L^{1}(0, \infty)$. Then we set $\|f\|_{H_{\max }^{1}\left(L_{\alpha}\right)}=\left\|W_{*}^{\alpha} f\right\|_{L^{1}}$. Analogously, we define the maximal function $\mathfrak{W}_{*}^{\alpha}$, the space $H_{\max }^{1}\left(\mathfrak{L}_{\alpha}\right)$ and the norm $\|\cdot\|_{H_{\max }^{1}\left(\mathfrak{L}_{\alpha}\right)}$. It was proved in [3] that the spaces $H_{\max }^{1}\left(L_{\alpha}\right), \alpha>-1 / 2$, and $H_{\max }^{1}\left(\mathfrak{L}_{\alpha}\right), \alpha>0$, admit atomic decompositions. The notion of atom for these spaces depends on the following auxiliary functions

$$
\rho_{L_{\alpha}}(x)=\frac{1}{8} \min (x, 1 / x) \text { and } \rho_{\mathfrak{L}_{\alpha}}(x)=\frac{1}{8} \min (x, 1) .
$$

A measurable function $b:(0, \infty) \rightarrow \mathbb{C}$ is said to be an $H^{1}\left(L_{\alpha}\right)$-atom if there exists a ball $B=B\left(y_{0}, R\right)=\left\{\left|y_{0}-y\right|<R\right\}$ with $R \leq \rho_{L_{\alpha}}\left(y_{0}\right)$ such that

$$
\begin{aligned}
& \operatorname{supp} b \subset B, \quad\|b\|_{\infty} \leq|B|^{-1} \quad \text { and } \\
& \text { if } R \leq \rho_{L_{\alpha}}\left(y_{0}\right) / 2 \quad \text { then } \quad \int b(y) d y=0
\end{aligned}
$$

The space $H_{\mathrm{at}}^{1}\left(L_{\alpha}\right)$ consists of all measurable functions f on $(0, \infty)$ of the form

$$
f=\sum_{j=1}^{\infty} \lambda_{j} b_{j}
$$

where b_{j} are $H^{1}\left(L_{\alpha}\right)$-atoms, $\lambda_{j} \in \mathbb{C}$ and $\sum_{j=1}^{\infty}\left|\lambda_{j}\right|<\infty$. The norm in $H_{\mathrm{at}}^{1}\left(L_{\alpha}\right)$ is defined by

$$
\|f\|_{H_{\mathrm{at}}^{1}\left(L_{\alpha}\right)}=\inf \sum_{j=1}^{\infty}\left|\lambda_{j}\right|,
$$

where the infimum is taken over all decompositions $f=\sum_{j=1}^{\infty} \lambda_{j} b_{j}$, where b_{j} are $H^{1}\left(L_{\alpha}\right)$ atoms and $\lambda_{j} \in \mathbb{C}$. Similarly we define the space $H_{\mathrm{at}}^{1}\left(\mathfrak{L}_{\alpha}\right)$ and the norm $\left\|\|_{H_{\mathrm{at}}^{1}\left(\mathfrak{L}_{\alpha}\right)}\right.$, the only difference being that the function $\rho_{\mathfrak{L}_{\alpha}}$ replaces the function $\rho_{L_{\alpha}}$ in the definition of $H^{1}\left(\mathfrak{L}_{\alpha}\right)$-atoms. The main result in [3] was to show that

$$
H_{\max }^{1}\left(L_{\alpha}\right)=H_{\mathrm{at}}^{1}\left(L_{\alpha}\right) \text { for } \alpha>-1 / 2 \quad \text { and } \quad H_{\max }^{1}\left(\mathfrak{L}_{\alpha}\right)=H_{\mathrm{at}}^{1}\left(\mathfrak{L}_{\alpha}\right) \text { for } \alpha>0
$$

with equivalence of the corresponding norms. Our goal in this paper is to characterize these spaces by means of the Riesz transforms R_{α} and \Re_{α}. More precisely, we shall prove the following theorems.

Theorem 1.1. If $\alpha>-1 / 2$, then $H_{\text {Riesz }}^{1}\left(L_{\alpha}\right)=H_{\mathrm{at}}^{1}\left(L_{\alpha}\right)$. Moreover, there exists $C>0$ such that

$$
\begin{equation*}
C^{-1}\|f\|_{H_{\mathrm{at}}^{1}\left(L_{\alpha}\right)} \leq\left\|R_{\alpha} f\right\|_{L^{1}}+\|f\|_{L^{1}} \leq C\|f\|_{H_{\mathrm{at}}^{1}\left(L_{\alpha}\right)} \tag{5}
\end{equation*}
$$

THEOREM 1.2. If $\alpha>0$, then $H_{\text {Riesz }}^{1}\left(\mathfrak{L}_{\alpha}\right)=H_{\mathrm{at}}^{1}\left(\mathfrak{L}_{\alpha}\right)$. Moreover, there exists $C>0$ such that

$$
\begin{equation*}
C^{-1}\|f\|_{H_{\mathrm{at}}^{1}\left(\mathfrak{L}_{\alpha}\right)} \leq\left\|\mathfrak{R}_{\alpha} f\right\|_{L^{1}}+\|f\|_{L^{1}} \leq C\|f\|_{H_{\mathrm{at}}^{1}\left(\mathfrak{L}_{\alpha}\right)} . \tag{6}
\end{equation*}
$$

2 Hardy spaces $H^{1}\left(L_{\alpha}\right)$ associated with Laguerre operators L_{α}

In the present section, we shall prove Theorem 1.1. To do this, we recall the equivalence between Riesz and atomic definitions for the Hardy space associated with the Hermite operator,

$$
H=\frac{1}{2}\left(-\frac{d^{2}}{d x^{2}}+x^{2}\right)
$$

which were established in [4]. First we let

$$
\begin{equation*}
\rho_{H}(y)=(1+|y|)^{-1} . \tag{7}
\end{equation*}
$$

It is easily seen that there exist constants $C, c>0$ such that

$$
\begin{equation*}
c \rho_{H}(x)\left(1+|x-y| / \rho_{H}(x)\right)^{-1} \leq \rho_{H}(y) \leq C \rho_{H}(x)\left(1+|x-y| / \rho_{H}(x)\right)^{1 / 2} \tag{8}
\end{equation*}
$$

A function $a: \mathbb{R} \rightarrow \mathbb{C}$ is an $H^{1}(H)$-atom if there exists a ball $B=B\left(y_{0}, R\right)=\{y \in$ $\left.\mathbb{R} ;\left|y-y_{0}\right|<R\right\}$ with $R \leq \rho_{H}\left(y_{0}\right)$ such that

$$
\begin{aligned}
& \operatorname{supp} a \subset B, \quad\|a\|_{L^{\infty}} \leq|B|^{-1} \quad \text { and } \\
& \text { if } R \leq \rho_{H}\left(y_{0}\right) / 2 \quad \text { then } \quad \int a(y) d y=0 .
\end{aligned}
$$

The atomic Hardy space $H_{\mathrm{at}}^{1}(H)$ and the norm $\left\|\|_{H_{\mathrm{at}}^{1}(H)}\right.$ are defined in the standard way. On the other hand, a Riesz transform R^{H} can be defined in $L^{2}(\mathbb{R})$ by

$$
R^{H}=\left(\frac{d}{d x}+x\right) H^{-1 / 2}
$$

motivated by the factorization of the Hermite operator

$$
H=-\frac{1}{4}\left[\left(\frac{d}{d x}+x\right)\left(\frac{d}{d x}-x\right)+\left(\frac{d}{d x}-x\right)\left(\frac{d}{d x}+x\right)\right] .
$$

To obtain a kernel expression for R^{H}, recall first the Mehler formula for Hermite functions (cf. [10, Lemma 1.1.1]), which asserts that the integral kernel $W_{t}^{H}(x, y)$ of the Hermite semigroup $\left\{e^{-t H}\right\}_{t>0}$ is given by

$$
\begin{equation*}
W_{t}^{H}(x, y)=\left[\frac{e^{-t}}{\pi\left(1-e^{-2 t}\right)}\right]^{1 / 2} \exp \left(-\frac{1}{2}\left(\frac{1+e^{-2 t}}{1-e^{-2 t}}\right)\left(x^{2}+y^{2}\right)+2 x y \frac{e^{-t}}{1-e^{-2 t}}\right) \tag{9}
\end{equation*}
$$

when $t>0$ and $x, y \in \mathbb{R}$. Using the formula $H^{-1 / 2}=\pi^{-1 / 2} \int_{0}^{\infty} e^{-t H} t^{-1 / 2} d t$, we can express the Riesz transform R^{H} as a principal value singular integral operator of the form

$$
R^{H}(f)(x)=\lim _{\varepsilon \rightarrow 0} \int_{y \in \mathbb{R}:|x-y|>\varepsilon} R^{H}(x, y) f(y) d y
$$

with the kernel given by

$$
\begin{align*}
R^{H}(x, y) & =\frac{1}{\sqrt{\pi}} \int_{0}^{\infty}\left(\frac{d}{d x}+x\right) W_{t}^{H}(x, y) \frac{d t}{\sqrt{t}} \\
& =\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{d}{d x} W_{t}^{H}(x, y) \frac{d t}{\sqrt{t}}+\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} x W_{t}^{H}(x, y) \frac{d t}{\sqrt{t}} \tag{10}\\
& =R_{1}^{H}(x, y)+R_{2}^{H}(x, y)
\end{align*}
$$

It is not difficult to prove using (9) and (10) that

$$
\begin{equation*}
\sup _{y \in \mathbb{R}} \int_{-\infty}^{\infty}\left|R_{2}^{H}(x, y)\right| d x<\infty, \quad \sup _{x \in \mathbb{R}} \int_{-\infty}^{\infty}\left|R_{2}^{H}(x, y)\right| d y<\infty \tag{11}
\end{equation*}
$$

(see Section 4). Therefore, denoting $R_{2}^{H}=x H^{-1 / 2}$, we have

$$
\begin{equation*}
\left\|R_{2}^{H} f\right\|_{L^{1}(\mathbb{R})} \leq C\|f\|_{L^{1}(\mathbb{R})} \tag{12}
\end{equation*}
$$

(see also [2, Theorem 4.5]). It was proved by Thangavelu [9] that the operator R^{H} is bounded on $L^{p}(\mathbb{R})$ for $1<p<\infty$. Moreover, Theorem 1.2 of Zhong [11] asserts that the operator $R_{1}^{H}=(d / d x) H^{-1 / 2}$ is a Calderón-Zygmund operator, hence it is of weak type $(1,1)$ (see also [8] for a proof based on analysis of the Melher kernel). The above facts could also be deduced from the following lemma.

Lemma 2.1. Let $\psi \in C_{c}^{\infty}\left(-2^{-4}, 2^{-4}\right)$ be such that $\psi(x)=1$ for $|x|<2^{-5}$. Then there exists a constant $c_{0} \neq 0$ and a kernel $h(x, y)$ such that

$$
\begin{gather*}
R^{H}(x, y)=\frac{c_{0}}{x-y} \psi\left(\frac{x-y}{\rho_{H}(x)}\right)+h(x, y), \tag{13}\\
\sup _{y \in \mathbb{R}} \int_{-\infty}^{\infty}|h(x, y)| d x+\sup _{x \in \mathbb{R}} \int_{-\infty}^{\infty}|h(x, y)| d y<\infty \tag{14}
\end{gather*}
$$

This lemma is known, but a self-contained proof based on analysis of the Mehler kernel will be presented in Section 4. We set

$$
H_{\operatorname{Riesz}}^{1}(H)=\left\{f \in L^{1}(\mathbb{R}) ;\left\|R^{H} f\right\|_{L^{1}(\mathbb{R})}<\infty\right\}
$$

In view of (12), an L^{1}-function f belongs to $H_{\text {Riesz }}^{1}(H)$ if and only if $(d / d x) H^{-1 / 2} f$ belongs to $L^{1}(\mathbb{R})$. From this remark and the results in [4], it follows that

$$
H_{\text {Riesz }}^{1}(H)=H_{\mathrm{at}}^{1}(H)
$$

and there exists a constant $C>0$ such that

$$
\begin{equation*}
C^{-1}\|f\|_{H_{\mathrm{at}}^{1}(H)} \leq\left\|R^{H} f\right\|_{L^{1}}+\|f\|_{L^{1}} \leq C\|f\|_{H_{\mathrm{at}}^{1}(H)} . \tag{15}
\end{equation*}
$$

Having established the Riesz and atomic characterizations of the Hardy space associated with the Hermite operator, we continue our preparation for the proof of Theorem 1.1.

For a function f defined on $(0, \infty)$, we denote $R_{\mathrm{loc}}^{H} f=R_{1, \mathrm{loc}}^{H} f+R_{2, \mathrm{loc}}^{H} f$, where

$$
R_{j, \mathrm{loc}}^{H} f(x)=\lim _{\varepsilon \rightarrow 0} \int_{x / 2,|x-y|>\varepsilon}^{2 x} R_{j}^{H}(x, y) f(y) d y, \quad x>0, j=1,2 .
$$

Proposition 2.2. For $f \in L^{1}(0, \infty)$, let f_{o} denote its odd extension. Then $R_{1}^{H} f_{o} \in$ $L^{1}(\mathbb{R})$ if and only if $R_{1, \mathrm{loc}}^{H} f$ is in $L^{1}(0, \infty)$. Moreover, there exists $C>0$ such that

$$
\left\|R_{1}^{H} f_{o}-R_{1, \mathrm{loc}}^{H} f\right\|_{L^{1}(0, \infty)} \leq C\|f\|_{L^{1}(0, \infty)} .
$$

Proof. Set $r=r(t)=e^{-t} \in(0,1)$. According to (9) and (10), we have

$$
\begin{equation*}
R_{1}^{H}(x, y)=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{\sqrt{r}\left(2 r y-\left(1+r^{2}\right) x\right)}{\left(1-r^{2}\right)^{3 / 2}} \exp \left(-\frac{1+r^{2}}{2\left(1-r^{2}\right)}\left(x^{2}+y^{2}\right)+\frac{2 r}{1-r^{2}} x y\right) \frac{d t}{\sqrt{t}} \tag{16}
\end{equation*}
$$

Note that $\left\|R_{1}^{H} f_{o}\right\|_{L^{1}(\mathbb{R})}=2\left\|R_{1}^{H} f_{o}\right\|_{L^{1}(0, \infty)}$, because $R_{1}^{H} f_{o}$ is an even function. Moreover,

$$
R_{1}^{H} f_{o}(x)=\lim _{\varepsilon \rightarrow 0} \int_{0,|x-y|>\varepsilon}^{\infty}\left(R_{1}^{H}(x, y)-R_{1}^{H}(x,-y)\right) f(y) d y, \quad \text { a.e. } x \in(0, \infty)
$$

Further,

$$
\begin{align*}
R_{1}^{H} f_{o}(x)-R_{1, \mathrm{loc}}^{H} f(x)= & \int_{0}^{x / 2}\left(R_{1}^{H}(x, y)-R_{1}^{H}(x,-y)\right) f(y) d y \\
& +\int_{2 x}^{\infty}\left(R_{1}^{H}(x, y)-R_{1}^{H}(x,-y)\right) f(y) d y \\
& -\int_{x / 2}^{2 x} R_{1}^{H}(x,-y) f(y) d y \tag{17}\\
= & \sum_{j=1}^{3} T_{j}(f)(x), \text { a.e. } x \in(0, \infty)
\end{align*}
$$

It suffices to show that the operators $T_{j}, j=1,2,3$, are bounded on $L^{1}((0, \infty), d x)$. To deal with T_{1} and T_{2}, we estimate the difference $D^{H}(x, y)=\left|R_{1}^{H}(x, y)-R_{1}^{H}(x,-y)\right|$ for $x, y>0$. By (16)

$$
\begin{align*}
D^{H}(x, y) \leq & C \int_{0}^{\infty} \frac{\sqrt{r} x}{\left(1-r^{2}\right)^{3 / 2}}\left(\exp \left(\frac{2 r}{1-r^{2}} x y\right)-\exp \left(-\frac{2 r}{1-r^{2}} x y\right)\right) \\
& \times \exp \left(-\frac{1+r^{2}}{2\left(1-r^{2}\right)}\left(x^{2}+y^{2}\right)\right) \frac{d t}{\sqrt{t}} \tag{18}\\
+ & C \int_{0}^{\infty} \frac{\sqrt{r} y}{\left(1-r^{2}\right)^{3 / 2}} \exp \left(-\frac{1+r^{2}}{2\left(1-r^{2}\right)}\left(x^{2}+y^{2}\right)\right) \exp \left(\frac{2 r}{1-r^{2}} x y\right) \frac{d t}{\sqrt{t}} .
\end{align*}
$$

Applying the mean value theorem in the first integral, we can assert that

$$
\begin{align*}
& D^{H}(x, y) \tag{19}\\
& \leq C \int_{0}^{\infty} \frac{\sqrt{r}}{\left(1-r^{2}\right)^{3 / 2}}\left(\frac{r x^{2} y}{1-r^{2}}+y\right) \exp \left(-\frac{1+r^{2}}{2\left(1-r^{2}\right)}\left(x^{2}+y^{2}\right)\right) \exp \left(\frac{2 r}{1-r^{2}} x y\right) \frac{d t}{\sqrt{t}} \\
& =C \int_{0}^{\infty} \frac{\sqrt{r}}{\left(1-r^{2}\right)^{3 / 2}}\left(\frac{r x^{2} y}{1-r^{2}}+y\right) \exp \left(-\frac{1+r^{2}}{2\left(1-r^{2}\right)}(x-y)^{2}\right) \exp \left(-\frac{1-r}{1+r} x y\right) \frac{d t}{\sqrt{t}}
\end{align*}
$$

It is now not difficult to verify using (19) that

$$
D^{H}(x, y) \leq \begin{cases}C y x^{-2} & \text { for } x>2 y \tag{20}\\ C y^{-1} & \text { for } 2 x<y\end{cases}
$$

The estimate (20) easily implies $\left\|T_{1} f\right\|_{L^{1}(0, \infty)}+\left\|T_{2} f\right\|_{L^{1}(0, \infty)} \leq C\|f\|_{L^{1}(0, \infty)}$. Moreover, from (16), we conclude

$$
\left|R_{1}^{H}(x,-y)\right| \leq C\left(x e^{-c x^{2}} \int_{1}^{\infty} e^{-t} d t+x \int_{0}^{1} \frac{1}{t^{2}} e^{-c x^{2} / t} d t\right) \leq \frac{C}{y} \quad \text { for } x / 2<y<2 x
$$

Hence T_{3} is a bounded operator from $L^{1}(0, \infty)$ into itself.
Proposition 2.3. Let $\alpha>-1 / 2, f \in L^{1}(0, \infty)$ and f_{o} be the odd extension of f to \mathbb{R}. Then $R_{\alpha} f$ is in $L^{1}(0, \infty)$ if and only if $R^{H} f_{o}$ is in $L^{1}(\mathbb{R})$. Moreover, there exists $C>0$ such that

$$
\begin{aligned}
C^{-1}\left(\left\|f_{o}\right\|_{L^{1}(\mathbb{R})}+\left\|R^{H} f_{o}\right\|_{L^{1}(\mathbb{R})}\right) & \leq\|f\|_{L^{1}(0, \infty)}+\left\|R_{\alpha} f\right\|_{L^{1}(0, \infty)} \quad \text { and } \\
\|f\|_{L^{1}(0, \infty)}+\left\|R_{\alpha} f\right\|_{L^{1}(0, \infty)} & \leq C\left(\left\|f_{o}\right\|_{L^{1}(\mathbb{R})}+\left\|R^{H} f_{o}\right\|_{L^{1}(\mathbb{R})}\right)
\end{aligned}
$$

Proof. According to [1, Lemma 2.13], we have

$$
\begin{align*}
\left|R_{\alpha}(x, y)\right| & \leq C x^{\alpha+3 / 2} y^{-(\alpha+5 / 2)} \\
\left|R_{\alpha}(x, y)\right| & \text { for } 0<2 x<y<\infty \tag{21}\\
\mid R_{\alpha}(x, y)-R^{H+1 / 2} x^{-(\alpha+3 / 2)} & \text { for } 0<y<x / 2, \text { and } \\
\leq \frac{C}{y}\left(1+\frac{(x y)^{1 / 4}}{|x-y|^{1 / 2}}\right) & \text { for } 0<x / 2<y<2 x
\end{align*}
$$

Each of the Hardy operators

$$
H_{\alpha}(g)(x)=x^{-\alpha-3 / 2} \int_{0}^{x} y^{\alpha+1 / 2} g(y) d y, \quad x>0
$$

and

$$
H^{\alpha}(g)(x)=x^{\alpha+1 / 2} \int_{x}^{\infty} y^{-\alpha-3 / 2} g(y) d y, \quad x>0
$$

are bounded on $L^{1}(0, \infty)$ when $\alpha>-1 / 2$. Moreover, the operator N defined by

$$
N f(x)=\int_{x / 2}^{2 x} \frac{1}{y}\left(1+\frac{(x y)^{1 / 4}}{|x-y|^{1 / 2}}\right) f(y) d y
$$

is also bounded in $L^{1}(0, \infty)$. Hence, by (21), (11) and Proposition 2.2, we obtain

$$
\begin{aligned}
\left\|R_{\alpha} f-R^{H} f_{o}\right\|_{L^{1}(0, \infty)} \leq & \left\|R_{\alpha} f-R_{\mathrm{loc}}^{H} f\right\|_{L^{1}(0, \infty)}+\left\|R_{\mathrm{loc}}^{H} f-R^{H} f_{o}\right\|_{L^{1}(0, \infty)} \\
& \leq C\left(\|N|f|\|_{L^{1}(0, \infty)}+\left\|H^{\alpha+1}|f|\right\|_{L^{1}(0, \infty)}+\left\|H_{\alpha}|f|\right\|_{L^{1}(0, \infty)}\right) \\
& +\left\|R_{1, \mathrm{loc}}^{H} f-R_{1}^{H} f_{o}\right\|_{L^{1}(0, \infty)}+\left\|R_{2, \mathrm{loc}}^{H} f\right\|_{L^{1}(0, \infty)}+\left\|R_{2}^{H} f_{o}\right\|_{L^{1}(0, \infty)} \\
& \leq C\|f\|_{L^{1}(0, \infty)} .
\end{aligned}
$$

The next elementary lemma will be used below.
Lemma 2.4. Let $b:(0, \infty) \rightarrow \mathbb{C}$ be an $H^{1}\left(L_{\alpha}\right)$-atom. Then, its odd extension b_{o} satisfies

$$
\left\|b_{o}\right\|_{H_{\mathrm{at}}^{1}(H)} \leq 36
$$

Proof. Let $B=B(y, R) \subset(0, \infty)$ be a ball associated with b, that is, $R \leq \rho_{L_{\alpha}}(y)$, $\operatorname{supp} b \subset B$ and $\|b\|_{\infty} \leq|B|^{-1}$. Moreover, $\int b(y) d y=0$ if $R \leq \rho_{L_{\alpha}}(y) / 2$. In this last case, since $\rho_{L_{\alpha}}(y) \leq \rho_{H}(y) / 2$, the function $b(x)$ (extended as 0 when $x \leq 0$) is an $H^{1}(H)$-atom, and hence so is $-b(-x)$. Thus $\left\|b_{o}\right\|_{H_{\mathrm{at}}^{1}(H)} \leq 2$.

Suppose now that $\rho_{L_{\alpha}}(y) / 2<R \leq \rho_{L_{\alpha}}(y)$. We distinguish two cases. If $y \in(0,8 / 9)$ then

$$
\text { supp } b_{o} \subset B(0, y+R) \subset B(0,9 y / 8) \equiv B_{o}
$$

Since $\int_{\mathbb{R}} b_{o}=0$ and $\left\|b_{o}\right\|_{\infty} \leq \rho_{L_{\alpha}}(y)^{-1}=18 /\left|B_{o}\right|$, it follows that $b_{o} / 18$ is an $H^{1}(H)$-atom associated with the ball B_{o}, and hence $\left\|b_{o}\right\|_{H_{\mathrm{at}}^{1}(H)} \leq 18$. In the second case, i.e. $y>8 / 9$, we may regard $b / 18$ as an $H^{1}(H)$-atom associated with the ball $B\left(y, \rho_{H}(y)\right)$, since

$$
\operatorname{supp} b \subset B\left(y, \rho_{H}(y)\right) \quad \text { and } \quad\|b\|_{\infty} \leq(2 R)^{-1} \leq 18\left|B\left(y, \rho_{H}(y)\right)\right|^{-1}
$$

Similarly, $b(-x) / 18$ is an $H^{1}(H)$-atom associated with the ball $B\left(-y, \rho_{H}(-y)\right)$. We conclude that $\left\|b_{o}\right\|_{H_{\mathrm{at}}^{1}(H)} \leq 36$, establishing the lemma.

Proof of Theorem 1.1. Assume that f is in $H_{\mathrm{at}}^{1}\left(L_{\alpha}\right)$. Then f can be written as $\sum_{j} c_{j} b_{j}$, where b_{j} are $H^{1}\left(L_{\alpha}\right)$-atoms and $\sum_{j}\left|c_{j}\right| \sim\|f\|_{H_{\mathrm{at}}^{1}\left(L_{\alpha}\right)}$. By the previous lemma, the odd extension f_{o} of f belongs to $H_{\mathrm{at}}^{1}(H)$ and $\left\|f_{o}\right\|_{H_{\mathrm{at}}^{1}(H)} \leq 36\|f\|_{H_{\mathrm{at}}^{1}\left(L_{\alpha}\right)}$. Applying Proposition 2.3 and using (15), we obtain

$$
\left\|R_{\alpha} f\right\|_{L^{1}(0, \infty)} \leq C\left(\left\|f_{o}\right\|_{L^{1}(\mathbb{R})}+\left\|R^{H} f_{o}\right\|_{L^{1}(\mathbb{R})}\right) \leq C^{\prime}\left\|f_{o}\right\|_{H_{\mathrm{at}}^{1}(H)} \leq C^{\prime \prime}\|f\|_{H_{\mathrm{at}}^{1}\left(L_{\alpha}\right)}
$$

To prove the converse, assume that f is in $H_{\text {Riesz }}^{1}\left(L_{\alpha}\right)$. Again, using Proposition 2.3 combined with (15), we obtain $f_{o} \in H_{\text {Riesz }}^{1}(H)=H_{\mathrm{at}}^{1}(H)$ and

$$
\left\|f_{o}\right\|_{H_{\mathrm{at}}^{1}(H)} \leq C\left(\left\|f_{o}\right\|_{L^{1}(\mathbb{R})}+\left\|R^{H} f_{o}\right\|_{L^{1}(\mathbb{R})}\right) \leq C\left(\|f\|_{L^{1}(0, \infty)}+\left\|R_{\alpha} f\right\|_{L^{1}(0, \infty)}\right) .
$$

Hence $f_{o}(x)=\sum_{j} c_{j} a_{j}(x)$, where a_{j} are $H^{1}(H)$-atoms and $\sum_{j}\left|c_{j}\right| \sim\left\|f_{o}\right\|_{H_{\mathrm{at}}^{1}(H)}$. Letting $b_{j}=\left.a_{j}\right|_{(0, \infty)}$, one easily verifies the inequality $\left\|b_{j}\right\|_{H_{\mathrm{at}}^{1}\left(L_{\alpha}\right)} \leq C$. Thus f is in $H_{\mathrm{at}}^{1}\left(L_{\alpha}\right)$ and $\|f\|_{H_{\mathrm{at}}^{1}\left(L_{\alpha}\right)} \leq C^{\prime}\left(\|f\|_{L^{1}(0, \infty)}+\left\|R_{\alpha} f\right\|_{L^{1}(0, \infty)}\right)$.

REMARK 2.5. Using a similar analysis based on a comparison of the kernels $W_{t}^{\alpha}(x, y)$ and $W_{t}^{H}(x, y)$ (see [1, Lemma 2.11]), one can prove that $W_{*}^{H} f_{o}$ belongs to $L^{1}(\mathbb{R})$ if and only if $W_{*}^{\alpha} f$ belongs to $L^{1}(0, \infty)$ and $\left\|f_{o}\right\|_{L^{1}(\mathbb{R})}+\left\|W_{*}^{H} f_{o}\right\|_{L^{1}(\mathbb{R})} \sim\|f\|_{L^{1}(0, \infty)}+\left\|W_{*}^{\alpha} f\right\|_{L^{1}(0, \infty)}$.

3 Hardy spaces $H^{1}\left(\mathfrak{L}_{\alpha}\right)$ associated with Laguerre operators \mathfrak{L}_{α}.

In this section we prove Theorem 1.2. The proof is based on the following estimates for the kernel $\mathfrak{R}_{\alpha}(x, y)$.

Proposition 3.1. Let ψ be as in Lemma 2.1. Then, for every $\alpha>0$, there exists a kernel $K(x, y)$ such that

$$
\begin{gather*}
\mathfrak{R}_{\alpha}(x, y)=\frac{c_{0}}{\sqrt{2}(x-y)} \psi\left(\frac{x-y}{\rho_{\mathfrak{R}_{\alpha}}(x)}\right)+K(x, y), \quad x, y \in(0, \infty), \tag{22}\\
\sup _{y>0} \int_{0}^{\infty}|K(x, y)| d x<\infty,
\end{gather*}
$$

where c_{0} is the constant from (13).
Proof. Set

$$
\begin{equation*}
K(x, y)=\mathfrak{R}_{\alpha}(x, y)-\frac{c_{0}}{\sqrt{2}(x-y)} \psi\left(\frac{x-y}{\rho_{\mathfrak{L}_{\alpha}}(x)}\right) . \tag{24}
\end{equation*}
$$

If $x<y / 4$ or $y<x / 4$, then $K(x, y)=\mathfrak{R}_{\alpha}(x, y)$. From (4) and (21), we conclude

$$
|K(x, y)| \leq \begin{cases}C x^{(\alpha+1) / 2} y^{-(\alpha+3) / 2} & \text { if } 4 x<y<\infty \tag{25}\\ C y^{\alpha / 2} x^{-(\alpha+2) / 2} & \text { if } 0<y<x / 4\end{cases}
$$

Hence

$$
\begin{equation*}
\sup _{y>0}\left(\int_{0}^{y / 4}|K(x, y)| d x+\int_{4 y}^{\infty}|K(x, y)| d x\right)<\infty \tag{26}
\end{equation*}
$$

In order to deal with the kernel $K(x, y)$ in the local part $y / 4 \leq x \leq 4 y$, we set

$$
\begin{gathered}
E(x, y)=\Re_{\alpha}(x, y)-2^{-3 / 2}(x y)^{-1 / 4} R^{H}(\sqrt{x}, \sqrt{y}) \\
G(x, y)=2^{-3 / 2}\left((x y)^{-1 / 4} \frac{c_{0}}{\sqrt{x}-\sqrt{y}} \psi\left(\frac{\sqrt{x}-\sqrt{y}}{\rho_{H}(\sqrt{x})}\right)-\frac{2 c_{0}}{x-y} \psi\left(\frac{x-y}{\rho_{\mathfrak{L}_{\alpha}}(x)}\right)\right) .
\end{gathered}
$$

Then, by (4) and Lemma 2.1, we have

$$
\begin{equation*}
K(x, y)=E(x, y)+2^{-3 / 2}(x y)^{-1 / 4} h(\sqrt{x}, \sqrt{y})+G(x, y) . \tag{27}
\end{equation*}
$$

According to (21), we get

$$
\begin{equation*}
|E(x, y)| \leq C \frac{(x y)^{-1 / 4}}{\sqrt{y}}\left(1+\frac{(x y)^{1 / 8}}{|\sqrt{x}-\sqrt{y}|^{1 / 2}}\right) \leq C \frac{1}{y}\left(1+\frac{\sqrt{x}}{|x-y|^{1 / 2}}\right) \tag{28}
\end{equation*}
$$

for $y / 4 \leq x \leq 4 y$. Trivially, using (28) and (14), we obtain

$$
\begin{equation*}
\int_{y / 4}^{4 y}\left(|E(x, y)|+(x y)^{-1 / 4}|h(\sqrt{x}, \sqrt{y})|\right) d x \leq C \tag{29}
\end{equation*}
$$

The proof will be complete if we show the inequality

$$
\begin{equation*}
\int_{y / 4}^{4 y}|G(x, y)| d x \leq C \tag{30}
\end{equation*}
$$

Let us note that

$$
\begin{equation*}
G(x, y)=\frac{2^{-3 / 2} c_{0}}{x-y}\left[\frac{\sqrt{x}+\sqrt{y}}{(x y)^{1 / 4}} \psi\left(\frac{x-y}{(\sqrt{x}+\sqrt{y}) \rho_{H}(\sqrt{x})}\right)-2 \psi\left(\frac{x-y}{\rho_{\mathfrak{L}_{a}}(x)}\right)\right] . \tag{31}
\end{equation*}
$$

If $y>10, y / 4 \leq x \leq 4 y$ and $|x-y|>1$, then $G(x, y)=0$. If $y>10, y / 4<x<4 y$ and $|x-y| \leq 1$, then, by the mean value theorem, $|G(x, y)| \leq C$. Thus (30) is satisfied for $y>10$. If $0<y \leq 10$ and $y / 4 \leq x \leq 4 y$, then applying the mean value theorem we deduce $|G(x, y)| \leq C y^{-1}$ and, consequently, (30) holds.

Before we turn to the proof of Theorem 1.2, we state some results from the theory of local Hardy spaces [5]. Fix $l>0$. We say that a function b is an atom for the local Hardy space $\mathbf{h}_{l}^{1}(\mathbb{R})$ if there exists a ball $B\left(y_{0}, R\right)$ with $R<l$ such that $\operatorname{supp} b \subset$ $B\left(y_{0}, R\right), \quad\|b\|_{\infty} \leq(2 R)^{-1}$, and if $R \leq l / \mathcal{Z}$, then $\int b(y) d y=0$. A function f belongs to the space \mathbf{h}_{l}^{1} if there exist a sequence b_{j} of \mathbf{h}_{l}^{1}-atoms and $\lambda_{j} \in \mathbb{C}$ with $\sum_{j}\left|\lambda_{j}\right|<\infty$ such that

$$
\begin{equation*}
f=\sum_{j} \lambda_{j} b_{j} . \tag{32}
\end{equation*}
$$

The atomic norm in \mathbf{h}_{l}^{1} is defined in a standard way, that is, $\|f\|_{\mathbf{h}_{l}^{1}}=\inf \sum_{j}\left|\lambda_{j}\right|$, where the infimum is taken over all decompositions (32). Moreover, if $f \in \mathbf{h}_{l}^{1}$ and $\operatorname{supp} f \subset$ $B\left(y_{0}, l\right)$, then there exists decomposition (32) of f such that supp $b_{j} \subset B\left(y_{0}, 10 l / 9\right)$ and $\sum_{j}\left|\lambda_{j}\right| \leq C\|f\|_{\mathbf{h}_{l}^{1}}$. We define a local Hilbert transform

$$
\mathcal{H}_{l} f(x)=\lim _{\varepsilon \rightarrow 0} \int_{|x-y|>\varepsilon} \frac{c_{0}}{\sqrt{2}(x-y)} \psi\left(\frac{x-y}{l}\right) f(y) d y
$$

where c_{0} and ψ are as in Lemma 2.1. The following result was actually proved in [5]. There exists a constant $C>0$ independent of l such that

$$
\begin{equation*}
C^{-1}\|f\|_{\mathbf{h}_{l}^{1}} \leq\left\|\mathcal{H}_{l} f\right\|_{L^{1}}+\|f\|_{L^{1}} \leq C\|f\|_{\mathbf{h}_{l}^{1}} . \tag{33}
\end{equation*}
$$

Proof of Theorem 1.2. Since \mathfrak{R}_{α} maps continuously $L^{1}(0, \infty)$ into the space of distributions, to prove the second inequality in (6), it suffices to verify that there exists a constant $C>0$ such that, for every $H^{1}\left(\mathfrak{L}_{\alpha}\right)$-atom b, one has

$$
\begin{equation*}
\left\|\Re_{\alpha} b\right\|_{L^{1}} \leq C . \tag{34}
\end{equation*}
$$

Let b be an $H^{1}\left(\mathfrak{L}_{\alpha}\right)$-atom with associated ball $B\left(y_{0}, R\right)$. Clearly, letting $l=\rho_{\mathfrak{L}_{\alpha}}\left(y_{0}\right)$, we see that b is also an \mathbf{h}_{l}^{1}-atom. By Proposition 3.1,

$$
\begin{align*}
\mathfrak{R}_{\alpha} b(x)= & \int K(x, y) b(y) d y+\mathcal{H}_{l} b(x) \\
& +\lim _{\varepsilon \rightarrow 0} \int_{|x-y|>\varepsilon} \frac{c_{0}}{\sqrt{2}(x-y)}\left(\psi\left(\frac{x-y}{\rho_{\mathfrak{L}_{\alpha}}(x)}\right)-\psi\left(\frac{x-y}{l}\right)\right) \chi_{B\left(y_{0}, l\right)}(y) b(y) d y . \tag{35}
\end{align*}
$$

The kernel

$$
U(x, y)=\frac{c_{0}}{\sqrt{2}(x-y)}\left(\psi\left(\frac{x-y}{\rho_{\mathfrak{L}_{\alpha}}(x)}\right)-\psi\left(\frac{x-y}{l}\right)\right) \chi_{B\left(y_{0}, l\right)}(y),
$$

as a function of (x, y), is supported by $B\left(y_{0}, 3 l\right) \times B\left(y_{0}, l\right)$. Moreover, $|U(x, y)| \leq C l^{-1}$, which implies $\sup _{y>0} \int|U(x, y)| d x<\infty$. Therefore, (34) holds by applying (23) and (33).

We now turn to prove the first inequality in (6). We define the intervals $\left\{I_{j}\right\}_{j \in \mathbb{Z}}$, $I_{j}=\left(\beta_{j}, \beta_{j+1}\right), \beta_{j}=(9 / 8)^{j}$ for $j \leq 1$, and $\beta_{j}=1+j / 8$ for $j \geq 1$. Set $l_{j}=\rho_{\mathfrak{L}_{\alpha}}\left(\beta_{j}\right)$. Let η_{j} be a family of smooth functions such that

$$
\begin{equation*}
0 \leq \eta_{j} \leq 1, \quad \operatorname{supp} \eta_{j} \subset I_{j}^{*}, \quad\left|\frac{d}{d x} \eta_{j}(x)\right| \leq C l_{j}^{-1}, \quad \sum_{j} \eta_{j}(x)=1 \text { for } x>0 \tag{36}
\end{equation*}
$$

where $I_{j}^{*}=\left[\beta_{j-1}, \beta_{j+2}\right]$. Set $I_{j}^{* *}=\left[\beta_{j-2}, \beta_{j+3}\right]$. Then $\sum_{j} \chi_{I_{j}^{* *}} \leq 5$. Fix $f \in L^{1}(0, \infty)$ such that $\left\|\Re_{\alpha} f\right\|_{L^{1}}<\infty$. We shall verify that

$$
\begin{equation*}
\sum_{j}\left\|\mathcal{H}_{l_{j}}\left(\eta_{j} f\right)\right\|_{L^{1}} \leq C\left(\left\|\Re_{\alpha} f\right\|_{L^{1}}+\|f\|_{L^{1}}\right) \tag{37}
\end{equation*}
$$

with a constant $C>0$ independent of f. To this end, note that

$$
\begin{align*}
\mathcal{H}_{l_{j}}\left(\eta_{j} f\right)(x) & =\lim _{\varepsilon \rightarrow 0} \int_{|x-y|>\varepsilon}\left(\eta_{j}(y)-\eta_{j}(x)\right) \frac{c_{0}}{\sqrt{2}(x-y)} \psi\left(\frac{x-y}{l_{j}}\right) f(y) d y+\eta_{j}(x) \mathcal{H}_{l_{j}} f(x) \tag{38}\\
& =\Xi_{j} f(x)+\eta_{j}(x) \mathcal{H}_{l_{j}} f(x) .
\end{align*}
$$

Observe that the kernel

$$
\left|\left(\eta_{j}(y)-\eta_{j}(x)\right) \frac{c_{0}}{\sqrt{2}(x-y)} \psi\left(\frac{x-y}{l_{j}}\right)\right|,
$$

as a function of (x, y), is supported by $I_{j}^{* *} \times I_{j}^{* *}$ and bounded by $C l_{j}^{-1}$. Since each $y>0$ belongs to at most 5 intervals $I_{j}^{* *}$, and $\left|I_{j}^{* *}\right| \sim l_{j}$, we can easily obtain

$$
\begin{equation*}
\sum_{j} \int\left|\Xi_{j} f(x)\right| d x \leq C\|f\|_{L^{1}} \tag{39}
\end{equation*}
$$

Now we shall deal with $\eta_{j}(x) \mathcal{H}_{l_{j}} f(x)$, defined by

$$
\begin{align*}
\eta_{j}(x) \mathcal{H}_{l_{j}} f(x)= & \int \eta_{j}(x)\left[\psi\left(\frac{x-y}{l_{j}}\right)-\psi\left(\frac{x-y}{\rho_{\mathfrak{L}_{\alpha}(x)}}\right)\right] \frac{c_{0}}{\sqrt{2}(x-y)} f(y) d y \tag{40}\\
& +\eta_{j}(x) \Re_{\alpha} f(x)-\eta_{j}(x) \int K(x, y) f(y) d y
\end{align*}
$$

The integral kernel

$$
\left|\eta_{j}(x)\left[\psi\left(\frac{x-y}{l_{j}}\right)-\psi\left(\frac{x-y}{\rho_{\mathfrak{L}_{\alpha}}(x)}\right)\right] \frac{c_{0}}{\sqrt{2}(x-y)}\right|,
$$

as a function of (x, y), is supported by $I_{j}^{*} \times I_{j}^{* *}$ and bounded by $C l_{j}^{-1}$. Hence

$$
\begin{equation*}
\sup _{y>0} \int_{0}^{\infty} \sum_{j}\left|\eta_{j}(x)\left(\psi\left(\frac{x-y}{l_{j}}\right)-\psi\left(\frac{x-y}{\rho_{\mathfrak{R}_{\alpha}}(x)}\right)\right) \frac{c_{0}}{\sqrt{2}(x-y)}\right| d x<\infty . \tag{41}
\end{equation*}
$$

Using (40), (41), we obtain

$$
\begin{equation*}
\sum_{j}\left\|\eta_{j} \mathcal{H}_{l_{j}} f\right\|_{L^{1}} \leq C\left(\|f\|_{L^{1}}+\left\|\Re_{\alpha} f\right\|_{L^{1}}\right) \tag{42}
\end{equation*}
$$

which combined with (38), (39) and (36) gives (37). Having (37) already proved, we are in a position to complete the proof of the first inequality in (6). Applying (37) together with the results from the theory of local Hardy spaces stated in this section, we have

$$
\begin{equation*}
f=\sum_{j}\left(\eta_{j} f\right)=\sum_{j}\left(\sum_{i} \lambda_{i j} a_{i j}\right) \tag{43}
\end{equation*}
$$

where $a_{i j}$ are $\mathbf{h}_{l_{j}}^{1}$-atoms supported by $I_{j}^{* *}$, and $\sum_{i j}\left|\lambda_{i j}\right| \leq C\left(\left\|\Re_{\alpha} f\right\|_{L^{1}}+\|f\|_{L^{1}}\right)$. The proof will be complete once we observe that each of these atoms is either an $H^{1}\left(\mathfrak{L}_{\alpha}\right)$-atom, or can be written as a sum of at most 20 such atoms. Indeed, fix an $h_{l_{j}}^{1}$-atom a supported in $I_{j}^{* *}$. Then, for some $0<R_{0}<l_{j}$ and $y_{0} \in I_{j}^{* *}$ we have $\operatorname{supp} a \subset B\left(y_{0}, R_{0}\right) \subset I_{j}^{* *}$, $\|a\|_{\infty} \leq\left(2 R_{0}\right)^{-1}$, and if $R_{0} \leq l_{j} / 2$ then also $\int a(x) d x=0$. Notice that, by construction,

$$
\rho_{\mathfrak{L}_{\alpha}}(y) \leq 2 \rho_{\mathfrak{L}_{\alpha}}\left(y^{\prime}\right), \quad \text { for all } y, y^{\prime} \in I_{j}^{* *}=\left[\beta_{j-2}, \beta_{j+3}\right]
$$

If $R_{0} \leq l_{j} / 2=\rho_{\mathfrak{L}_{\alpha}}\left(\beta_{j}\right) / 2$ then $\int a=0$ and $R_{0} \leq \rho_{\mathfrak{L}_{\alpha}}\left(y_{0}\right)$, and therefore a is also an $H^{1}\left(\mathfrak{L}_{\alpha}\right)$-atom. If $R_{0}>l_{j} / 2$, then

$$
I_{j}^{* *}=\bigcup_{k=0}^{4} I_{j-2+k} \quad \text { with } \quad\left|I_{j-2+k}\right|=\rho_{\mathfrak{L}_{\alpha}}\left(\beta_{j-2+k}\right)
$$

and using again $\rho_{\mathfrak{L}_{\alpha}}\left(\beta_{j+2}\right) \leq 2 \rho_{\mathfrak{L}_{\alpha}}\left(\beta_{j}\right)$ we see that

$$
\left\|a \chi_{I_{j-2+k}}\right\|_{\infty} \leq\left(2 R_{0}\right)^{-1} \leq \rho_{\mathfrak{L}_{\alpha}}\left(\beta_{j}\right)^{-1} \leq 2\left|I_{j-2+k}\right|^{-1}
$$

Hence, each piece $a \chi_{I_{j-2+k}} / 4$ is an $H^{1}\left(\mathfrak{L}_{\alpha}\right)$-atom for the ball $B\left(\beta_{j-2+k}, \rho_{\mathfrak{L}_{\alpha}}\left(\beta_{j-2+k}\right)\right)$ and, consequently, $\|a\|_{H_{\mathrm{at}}^{1}\left(\mathfrak{L}_{\alpha}\right)} \leq 20$.

4 Proof of (11) and Lemma 2.1

During the proof we set $r=e^{-t} \in(0,1)$. We can rewrite (9) as

$$
\begin{equation*}
W_{t}^{H}(x, y)=\frac{\sqrt{r}}{\sqrt{\pi\left(1-r^{2}\right)}} \exp \left(-\frac{1}{2}\left(\frac{1+r^{2}}{1-r^{2}}\right)|x-y|^{2}\right) \exp \left(-\frac{1-r}{1+r} x y\right) \tag{44}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$. A simple computation using (44) or (9) gives

$$
\begin{equation*}
W_{t}^{H}(x, y) \leq \frac{\sqrt{r}}{\sqrt{\pi\left(1-r^{2}\right)}} \exp \left(-\frac{1}{4}\left(\frac{1+r^{2}}{1-r^{2}}\right)|x-y|^{2}\right) \tag{45}
\end{equation*}
$$

Let us note that, for every $N>0$, there exists a constant C_{N} such that

$$
\begin{equation*}
W_{t}^{H}(x, y) \leq C_{N} \frac{e^{-t / 3}}{\sqrt{\left(1-r^{2}\right)}}\left(1+\frac{t}{\rho_{H}(x)^{2}}\right)^{-N} \tag{46}
\end{equation*}
$$

Indeed, if $|x-y|>|x| / 2$, then

$$
\begin{equation*}
W_{t}^{H}(x, y) \leq \frac{e^{-t / 2}}{\sqrt{\pi\left(1-r^{2}\right)}} \exp \left(-\frac{1}{8}\left(\frac{1+r^{2}}{1-r^{2}}\right) x^{2}\right) \leq C_{N} \frac{e^{-t / 3}}{\sqrt{\left(1-r^{2}\right)}}\left(1+\frac{t}{\rho_{H}(x)^{2}}\right)^{-N} \tag{47}
\end{equation*}
$$

If $|x-y| \leq|x| / 2$, then $x y \sim x^{2}$ and, using (44), we get

$$
\begin{equation*}
W_{t}^{H}(x, y) \leq C \frac{e^{-t / 2}}{\sqrt{1-r^{2}}} \exp \left(-c(1-r) x^{2}\right) \leq C_{N} \frac{e^{-t / 3}}{\sqrt{1-r^{2}}}\left(1+\frac{t}{\rho_{H}(x)^{2}}\right)^{-N} \tag{48}
\end{equation*}
$$

Applying (45) and (46) combined with the fact that $W_{t}^{H}(x, y)=W_{t}^{H}(y, x)$, we obtain

$$
\begin{equation*}
W_{t}^{H}(x, y) \leq C_{N} \frac{e^{-t / 3}}{\sqrt{1-e^{-2 t}}} \exp \left(-\frac{|x-y|^{2}}{12\left(1-e^{-2 t}\right)}\right)\left(1+\frac{t}{\rho(x)^{2}}\right)^{-N}\left(1+\frac{t}{\rho(y)^{2}}\right)^{-N} \tag{49}
\end{equation*}
$$

We are now in a position to prove (11). If $|x-y| \leq C \rho_{H}(y)$, then by (10) and (49) we have

$$
\begin{align*}
\left|R_{2}^{H}(x, y)\right| & \leq C_{N}\left(\int_{0}^{|x-y|^{2}}|x|\left(\frac{t}{|x-y|^{2}}\right)^{N} \frac{d t}{t}+\int_{|x-y|^{2}}^{C^{2} \rho_{H}(y)^{2}}|x| \frac{d t}{t}+\int_{C^{2} \rho_{H}(y)^{2}}^{\infty}|x|\left(\frac{\rho_{H}(y)^{2}}{t}\right)^{N} \frac{d t}{t}\right) \tag{50}\\
& \leq C_{N}\left(|x|+|x| \ln \left(\frac{C \rho_{H}(y)}{|x-y|}\right)\right)
\end{align*}
$$

If $|x-y| \geq C \rho_{H}(y)$, then we use again (49) and get

$$
\begin{align*}
\left|R_{2}^{H}(x, y)\right| \leq & C_{N}\left(\int_{0}^{C^{2} \rho_{H}(y)^{2}}|x|\left(\frac{t}{|x-y|^{2}}\right)^{N} \frac{d t}{t}+\int_{C^{2} \rho_{H}(y)^{2}}^{|x-y|^{2}}|x|\left(\frac{t}{|x-y|^{2}}\right)^{N}\left(\frac{t}{\rho_{H}(y)^{2}}\right)^{-2 N} \frac{d t}{t}\right. \tag{51}\\
& \left.+\int_{|x-y|^{2}}^{\infty}|x|\left(\frac{\rho_{H}(y)^{2}}{t}\right)^{N} \frac{d t}{t}\right) \\
\leq & C_{N} \frac{|x| \rho_{H}(y)^{2 N}}{|x-y|^{2 N}} \\
\leq & C_{N}\left(\frac{|x-y| \rho_{H}(y)^{2 N}}{|x-y|^{2 N}}+\frac{|y| \rho_{H}(y)^{2 N}}{|x-y|^{2 N}}\right)
\end{align*}
$$

Now the first inequality in (11) is a consequence of (50) and (51). Similarly to (50) and (51), we also conclude that

$$
\left|R_{2}^{H}(x, y)\right| \leq \begin{cases}C\left(|x|+|x| \ln \left(C \rho_{H}(x) /|x-y|\right)\right) & \text { for }|x-y| \leq C \rho_{H}(x) \tag{52}\\ C_{N}|x| \rho_{H}(x)^{N} /|x-y|^{N} & \text { for }|x-y|>C \rho_{H}(x)\end{cases}
$$

from which we easily obtain the second inequality in (11).
Having (11) already established, we now turn to prove Lemma 2.1. By (44),

$$
\begin{align*}
\frac{\partial}{\partial x} W_{t}^{H}(x, y)= & -\frac{\sqrt{r}}{\sqrt{\pi\left(1-r^{2}\right)}} \frac{1+r^{2}}{1-r^{2}}(x-y) \exp \left(-\frac{1}{2}\left(\frac{1+r^{2}}{1-r^{2}}\right)|x-y|^{2}\right) \exp \left(-\frac{1-r}{1+r} x y\right) \tag{53}\\
& -y \frac{1-r}{1+r} \frac{\sqrt{r}}{\sqrt{\pi\left(1-r^{2}\right)}} \exp \left(-\frac{1}{2}\left(\frac{1+r^{2}}{1-r^{2}}\right)|x-y|^{2}\right) \exp \left(-\frac{1-r}{1+r} x y\right) .
\end{align*}
$$

From (53) we deduce that, for $|x-y|>C \rho_{H}(y)$, we have

$$
\begin{equation*}
\left|\frac{\partial}{\partial x} W_{t}^{H}(x, y)\right| \leq C_{N}\left(\frac{1}{|x-y|}+|y|(1-r)\right) \frac{e^{-t / 3}}{\sqrt{1-r^{2}}} \exp \left(-\frac{|x-y|^{2}}{12\left(1-r^{2}\right)}\right)\left(1+\frac{t}{\rho_{H}(y)^{2}}\right)^{-N} \tag{54}
\end{equation*}
$$

Proceeding as in (51), we obtain

$$
\begin{equation*}
\left|\int_{0}^{\infty} \frac{\partial}{\partial x} W_{t}^{H}(x, y) \frac{d t}{\sqrt{t}}\right| \leq C_{N}\left(\frac{1}{|x-y|}+|y|\right) \frac{\rho_{H}(y)^{2 N}}{|x-y|^{2 N}} \text { for }|x-y|>C \rho_{H}(y) \tag{55}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
\sup _{y \in \mathbb{R}} \int_{|x-y|>C \rho_{H}(y)}\left|R_{1}^{H}(x, y)\right| d x \leq C . \tag{56}
\end{equation*}
$$

Our next step is to estimate $R_{1}^{H}(x, y)$ for $|x-y| \leq C \rho_{H}(y)$. Note that (53) implies

$$
\begin{align*}
\left|\frac{\partial}{\partial x} W_{t}(x, y)\right| \leq & C_{N} \frac{e^{-t / 3}}{\sqrt{1-r^{2}}}\left(\frac{1+r^{2}}{1-r^{2}}\right)|x-y| \exp \left(-\frac{|x-y|^{2}}{12\left(1-r^{2}\right)}\right)\left(1+\frac{t}{\rho_{H}(y)^{2}}\right)^{-N-1} \tag{57}\\
& +C_{N} \frac{e^{-t / 3}}{\sqrt{1-r^{2}}}|y|(1-r) \exp \left(-\frac{|x-y|^{2}}{12\left(1-r^{2}\right)}\right)\left(1+\frac{t}{\rho_{H}(y)^{2}}\right)^{-N-1} \\
\leq & C_{N} \frac{e^{-t / 4}}{1-r^{2}}\left(1+\frac{t}{\rho_{H}(y)^{2}}\right)^{-N} .
\end{align*}
$$

Consequently, using (57) we get

$$
\begin{equation*}
\int_{\rho_{H}(y)^{2}}^{\infty}\left|\frac{\partial}{\partial x} W_{t}(x, y)\right| \frac{d t}{\sqrt{t}} \leq C \rho_{H}(y)^{-1} \tag{58}
\end{equation*}
$$

In order to investigate the integral

$$
\int_{0}^{\rho_{H}(y)^{2}} \frac{\partial}{\partial x} W_{t}(x, y) \frac{d t}{\sqrt{t}}
$$

we study first the difference

$$
Q(x, y)=\int_{0}^{\rho_{H}(y)^{2}} \frac{\partial}{\partial x}\left(W_{t}^{H}(x, y)-P_{t}(x-y)\right) \frac{d t}{\sqrt{t}}
$$

where $P_{t}(x)=(2 \pi t)^{-1 / 2} \exp \left(-x^{2} / 2 t\right)$ is the classical Gauss-Weierstrass kernel. The perturbation formula asserts that

$$
Q(x, y)=-\frac{1}{2} \int_{0}^{\rho_{H}(y)^{2}} \int_{0}^{t} \int_{-\infty}^{\infty} \frac{\partial}{\partial x} P_{t-s}(x-z) z^{2} W_{s}^{H}(z, y) d z d s \frac{d t}{\sqrt{t}}
$$

Therefore,

$$
\begin{align*}
& J=\int_{|x-y|<C \rho_{H}(y)}|Q(x, y)| d x \tag{59}\\
& \leq C \int_{|x-y| \leq C \rho_{H}(y)} \int_{0}^{\rho_{H}(y)^{2}} \int_{0}^{t} \int_{-\infty}^{\infty} \frac{|x-z|}{t-s} P_{t-s}(x-z)\left(|z-x|^{2}+x^{2}\right) W_{s}^{H}(z, y) d z d s \frac{d t}{\sqrt{t}} d x
\end{align*}
$$

Observe that $x^{2} \leq C \rho_{H}(y)^{-2}$ for $|x-y| \leq C \rho_{H}(y)$. Substituting this inequality inside the above integral and then integrating with respect to $d x$ and $d z$, we conclude

$$
\begin{equation*}
J \leq C \int_{0}^{\rho_{H}(y)^{2}} \int_{0}^{t}\left((t-s)^{1 / 2}+\frac{1}{(t-s)^{1 / 2} \rho_{H}(y)^{2}}\right) d s \frac{d t}{\sqrt{t}} \leq C \rho_{H}(y)^{4}+C \leq C \tag{60}
\end{equation*}
$$

Proceeding as in (55), we also get

$$
\left|R_{1}^{H}(x, y)\right| \leq C_{N} \rho_{H}(x)^{-1} \frac{\rho_{H}(x)^{N}}{|x-y|^{N}} \text { for }|x-y|>C \rho_{H}(x)
$$

and consequently,

$$
\begin{equation*}
\sup _{x \in \mathbb{R}} \int_{|x-y|>C \rho_{H}(x)}\left|R_{1}^{H}(x, y)\right| d y<\infty . \tag{61}
\end{equation*}
$$

A similar procedure to that employed to estimate J gives

$$
\begin{equation*}
\sup _{x \in \mathbb{R}} \int_{|x-y| \leq C \rho_{H}(x)}|Q(x, y)| d y \leq C . \tag{62}
\end{equation*}
$$

Finally, our analysis of the kernel $R_{1}^{H}(x, y)$ is reduced to the integral

$$
\begin{align*}
\int_{0}^{\rho_{H}(y)^{2}} \frac{\partial}{\partial x} P_{t}(x-y) \frac{d t}{\sqrt{t}} & =-\int_{0}^{\rho_{H}(y)^{2}} \frac{x-y}{t} \frac{1}{\sqrt{2 \pi t}} \exp \left(-|x-y|^{2} / 2 t\right) \frac{d t}{\sqrt{t}} \\
& =-\frac{2}{\sqrt{2 \pi}(x-y)} \exp \left(-\frac{|x-y|^{2}}{2 \rho_{H}(y)^{2}}\right) . \tag{63}
\end{align*}
$$

Taking into account (10), (55), (58), (60), (61), (62) and (63), we get

$$
\begin{equation*}
R_{1}^{H}(x, y)=-\frac{\sqrt{2}}{\pi(x-y)} \exp \left(-\frac{|x-y|^{2}}{2 \rho_{H}(y)^{2}}\right)+h_{1}(x, y) \tag{64}
\end{equation*}
$$

with

$$
\begin{equation*}
\sup _{y \in \mathbb{R}} \int_{-\infty}^{\infty}\left|h_{1}(x, y)\right| d x+\sup _{x \in \mathbb{R}} \int_{-\infty}^{\infty}\left|h_{1}(x, y)\right| d y<\infty . \tag{65}
\end{equation*}
$$

To complete the proof, take any $\psi \in C_{c}^{\infty}(\mathbb{R})$ as in the statement of Lemma 2.1. Define a function $h_{2}(x, y)$ by

$$
h_{2}(x, y)=\frac{\sqrt{2}}{\pi(x-y)} \psi\left(\frac{x-y}{\rho_{H}(x)}\right)-\frac{\sqrt{2}}{\pi(x-y)} \exp \left(-\frac{|x-y|^{2}}{2 \rho_{H}(y)^{2}}\right), \quad x, y \in \mathbb{R} .
$$

By (10), (64), (65) and (11), the lemma will be established once we show that, for some $C>0$ we have

$$
\begin{equation*}
\sup _{x \in \mathbb{R}} \int\left|h_{2}(x, y)\right| d y \leq C \quad \text { and } \quad \sup _{y \in \mathbb{R}} \int\left|h_{2}(x, y)\right| d x \leq C . \tag{66}
\end{equation*}
$$

Set $A=\left\{(x, y) \in \mathbb{R}^{2} ;|x-y|>\rho_{H}(x)\right\}, B=\left\{(x, y) \in \mathbb{R}^{2} ;|x-y| \leq \rho_{H}(x)\right\}$. Then

$$
\begin{equation*}
\left|h_{2}(x, y)\right| \leq \frac{C}{|x-y|} \exp \left(-\frac{|x-y|^{2}}{2 \rho_{H}(y)^{2}}\right) \chi_{A}(x, y)+C\left(\frac{1}{\rho_{H}(x)}+\frac{|x-y|}{\rho_{H}(y)^{2}}\right) \chi_{B}(x, y) \tag{67}
\end{equation*}
$$

where the last summand is obtained by applying the mean value theorem. Using (8), we see that $\rho(y)^{2} \leq c \rho(x)|x-y|$ when $(x, y) \in A$, and therefore

$$
\begin{align*}
\int \frac{C}{|x-y|} \exp \left(-\frac{|x-y|^{2}}{2 \rho_{H}(y)^{2}}\right) \chi_{A}(x, y) d y & \leq \int \frac{C}{|x-y|} \exp \left(-c \frac{|x-y|}{\rho_{H}(x)}\right) \chi_{A}(x, y) d y \tag{68}\\
& \leq \int_{|u|>1} \exp (-c|u|) \frac{d u}{|u|} \leq C
\end{align*}
$$

On the other hand, $\rho_{H}(x) \sim \rho_{H}(y)$ when $(x, y) \in B$ (again by (8)), so we have

$$
\int\left(\frac{C}{\rho_{H}(x)}+\frac{C|x-y|}{\rho_{H}(y)^{2}}\right) \chi_{B}(x, y) d y \leq C
$$

which together with (68) implies the first inequality in (66). From (8) we also see that $A \subset \widetilde{A}=\left\{(x, y) \in \mathbb{R}^{2} ;|x-y|>\varepsilon \rho_{H}(y)\right\}$ and $B \subset \widetilde{B}=\left\{(x, y) \in \mathbb{R}^{2} ;|x-y| \leq \rho_{H}(y) / \varepsilon\right\}$ for some $\varepsilon>0$. Using this fact, the second inequality in (66) follows by similar arguments. This completes the proof of Lemma 2.1.

References

[1] J. J. Betancor, J. C. Fariña, L. Rodríguez-Mesa, A. Sanabria and J. L. Torrea, Transference between Laguerre and Hermite settings, J. Funct. Anal. 254 (2008), 826-850.
[2] J. Dziubański, A note on Schrödinger operators with polynomial potentials, Colloq. Math. 78 (1998), 149-161.
[3] J. Dziubański, Hardy spaces for Laguerre expansions, Constr. Approx. 27 (2008), 269-287.
[4] J. Dziubański and J. Zienkiewicz, Hardy spaces associated with some Schrödinger operators, Studia Math. 126 (2) (1997), 149-160.
[5] D. Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), 27-42.
[6] E. Harboure, J. L. Torrea and B. Viviani, Riesz transforms for Laguerre expansions, Indiana Univ. Math. J. 55 (2006), 999-1014.
[7] A. Nowak and K. Stempak, Riesz transforms and conjugacy for Laguerre function expansions of Hermite type, J. Funct. Anal. 244 (2007), 399-443.
[8] K. Stempak and J. L. Torrea, Poisson integrals and Riesz transforms for Hermite function expansions with weights, J. Funct. Anal. 202 (2003), 443-472.
[9] S. Thangavelu, Riesz transforms and wave equation for the Hermite operator, Comm. Partial Differential Equations 15(8) (1990), 1199-1215.
[10] S. Thangavelu, Lectures on Hermite and Laguerre expansions, Mathematical Notes, 42, Princeton University Press, Princeton, NJ, 1993.
[11] J. Zhong, Harmonic analysis for some Schrödinger operators, Ph. D. Thesis, Princeton Univ., 1993.
J. Betancor

Departamento de Análisis Matemático
Universidad de la Laguna
Campus de Anchieta, Avda. Astrofísico
Francisco SÁnchez, s/n
38271 La Laguna (Sta. Cruz de Tener-
IFE)
Spain
E-mail address: jbetanco@ull.es
J. Dziubański

Instytut Matematyczny
Uniwersytet Wroceawski
50-384 Wroc£aw, PL. Grunwaldzki 2/4
Poland
E-mail address: jdziuban@math.uni.wroc.pl
G. Garrigós

Departamento de Matemáticas
Facultad de Ciencias
Universidad Autónoma de Madrid
28049 Madrid
Spain
E-mail address: gustavo.garrigos@uam.es

[^0]: 2000 Mathematics Subject Classification. Primary 42B30; Secondary 42C10.
 Key words and phrases. Hardy space, Laguerre system, Riesz transform.
 First author partially supported by MTM2004-05878 and MTM2007-65609. Second author partially supported by the European Commission Marie Curie Host Fellowship for the Transfer of Knowledge "Harmonic Analysis, Nonlinear Analysis and Probability" MTKD-CT-2004-013389 and by Polish Government funds for science - grant N N201 397137, MNiSW. Third author partially supported by MTM2007-60952.

