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1 Introduction

Let D be an (irreducible) bounded symmetric domain of tube type in Cn. That is, D is

conformally equivalent to a tube domain TΩ = Rn + iΩ over a symmetric cone Ω in Rn.

Irreducible symmetric cones are completely classified (see eg [10]), being either light-cones

Λn =
{

(y1, y
′) ∈ Rn : y1 > |y′|

}
, n ≥ 3,

or cones of positive-definite symmetric or hermitian matrices, namely

Sym+(r,R), Her+(r,C), Her+(r,H), Her+(3,O). (1.1)

We write r for the rank of the cone (which in light-cones is r = 2), and ∆ for the associated

determinant function (which in light-cones is the Lorentz form ∆(y) = y2
1 − |y′|2).

An important open question in these domains, D and TΩ, concerns the Lp boundedness

of the associated Bergman projections, that is, the orthogonal projection P mapping L2

into the subspace of holomorphic functions A2. In contrast with Cauchy-Szegő projections

(which are not bounded in Lp for any p 6= 2, if n > 1), the Lp-boundedness of Bergman

projections has been conjectured in a small interval around p = 2, namely

1 +
n− r

2n
< p < 1 +

2n
n− r

.

At the moment, positive results are only known to hold in a proper subinterval

1 +
n− r
2n− r

< p < 1 +
2n− r
n− r

,

with a small improvement over this range in the case of light-cones. We refer to [3, 8, 6, 13,

12] for recent work in this topic.

2010 Math Subject Classification: 42B35, 32M15.

Keywords: Bergman space, bounded symmetric domain, symmetric cone, Jordan algebra.

Second author supported by Grant MTM2007-60952, Spain.

1



2

1/p

1/q

n−2
4n

n−2
3n−2

1/p

1/q

n−2
4n

n−2
2n

P+

Figure 1.1: Conjectured and known results for boundedness of P : Lp → Lq when r = 2.

In this paper we shall be interested in the boundedness of P from Lp into Lq. When

p 6= q, this question only makes sense in the bounded domain D. In this case, by Hölder’s

inequality, the Lp0-boundedness of P immediately implies Lp → Lq bounds for all 1 ≤
q ≤ p0 ≤ p ≤ ∞. What may seem surprising is that the conjectured range for Lp → Lq

boundedness of P is actually larger than what can be obtained from the diagonal case. For

instance, if r = 2 (ie, in the light-cone setting) then L∞ → Lq bounds may be conjectured

for all q < 4n/(n− 2); see Figure 1.1.

This problem was first investigated in [3] in the case r = 2. In that paper, L∞ → Lq

boundedness for P was proved when 1 ≤ q < 2n/(n − 2), and this range was shown to be

optimal for the positive operator P+, for which the Bergman kernel has been replaced by its

absolute value. By interpolation with diagonal results this range can be slightly extended

for P , but seems still far from the conjectured region (see Figure 1.1 above).

The main contribution of the present paper is to extend these results to the higher rank

setting r ≥ 3. That is, we find the optimal range of boundedness for P+ : L∞ → Lq, and

derive from here new Lp → Lq inequalities for P . Unfortunately this is not a simple task,

as the proof for r = 2 is mostly computational and does not easily generalize to the higher

rank situation. We are able to set an induction method on r, which allows us to prove a

crucial integral estimate (Theorem 3.3) from which most results are subsequently obtained.

Since our results are new only when r ≥ 3, we shall assume that Ω is one of the cones

of matrices mentioned in (1.1). We denote by d the dimension of the matrix entries (that

is, 1,2,4 or 8 if they are real, complex, quaternion or octonions, respectively), so that

n = r + r(r − 1)d/2. Our results remain valid when r = 2 (ie when Ω = Λn), in which case
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d = n− 2. Below, we denote by bsc and dse, respectively, the integer parts from below and

above of a real number s.

THEOREM 1.2 The operator P+ is bounded from L∞(D)→ Lq(D) if and only if

1 ≤ q < q+, where

q+ := min
{

2n
br/2c dr/2e d , 2 + 4

d

}
=

{
4 + 2

br/2c if d = 1

2 + 4
d if d ≥ 2.

(1.3)

Our second result slightly improves these indices for the original operator P , using an

interpolation argument with diagonal mixed-norm estimates (see section 6 below).

THEOREM 1.4 The Bergman projection P is bounded from L∞(D)→ Lq(D) when

1 ≤ q < q+ + 2
(
1− q+

q0

)
,

where q0 = 4 + 4
(r−1)d .

Observe that q0 > q+ (hence the improvement above is strict), except for the cones

Sym+(r,R) with r odd, for which q0 = q+. In this special case we do not know whether the

exponent q+ can be improved for the operator P .

Finally we state some necessary conditions for the boundedness of P : L∞ → Lq, which

are also new when r ≥ 3.

THEOREM 1.5 The Bergman projection P is unbounded from L∞(D)→ Lq(D) when

q > q̄ :=
4n

br/2c dr/2e d
.

Versions of these results also hold in the more general context of Bergman projections

Pν associated with weighted Bergman spaces Apν . In fact, this setting arises naturally in

our proofs, so we shall state and prove in the next sections the corresponding more general

results (see Corollaries 3.7 and 6.4). We also state in sections 6 and 7 the Lp → Lq estimates

which can be obtained by interpolation from the above results, as well the corresponding

necessary conditions.

Finally we remark that, as an application of these results, one obtains new embeddings

for the Bloch space B(D) (as defined in [1] or [11]) of the type

B(D) ↪→ Lq(D). (1.6)

Such an embedding is equivalent to the boundedness of P : L∞(D) → Lq(D) (see eg [7]),

so it holds at least in the range of Theorem 1.4. Finding the largest q so that (1.6) holds

seems then to be a difficult question when r > 1.
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2 The transference principle

As mentioned above, our results in this paper concern the bounded symmetric domain D.

We find easier to work in the unbounded domain TΩ = Rn + iΩ, where techniques of

symmetric cones are more directly applicable, so we shall use the transfer principle described

in [3]. Roughly speaking, this principle states that the Lp − Lq continuity of an operator

in D is equivalent to the “local continuity” of the transferred operator in the unbounded

domain TΩ. A general version of this principle is stated below in more detail.

Throughout this section Φ denotes the Cayley transform, mapping D conformally onto

TΩ, and explicitly given by

w 7−→ Φ(w) = i(e + w)(e− w)−1 ;

see eg [10, p. 190]. We write JΦ(w) for its complex jacobian determinant, which is an

analytic non-vanishing function in the open set Dom Φ = {w ∈ Cn : ∆(e− w) 6= 0}.

2.1 A general framework

The transference principle can be applied to general operators of the form

f 7−→ Tf(z) =
∫
D
T (z, w)f(w) dµ(w), z ∈ D,

say with continuous kernel T (z, w) and bounded in L2(D, dµ). We shall assume the following

rotation invariance

T (eiθz, eiθw) = T (z, w) and dµ(eiθw) = dµ(w), ∀ θ ∈ R. (2.1)

Given T and a set H ⊂ Cn we define a new operator TH , acting on functions in D by

f 7−→ THf(z) = χH(z)T
(
fχH

)
(z), z ∈ D.

The next proposition gives a first criterion for the boundedness of T .

PROPOSITION 2.2 Let 1 ≤ p, q ≤ ∞ and T and µ be as in (2.1). If TH ∈ B(Lp(µ), Lq(µ))

for all compact sets H ⊂ Dom Φ, then T ∈ B(Lp(µ), Lq(µ)).

This follows essentially from the arguments in [3, §3], but we sketch the proof below for

completeness. We shall use the following elementary lemmas.

LEMMA 2.3 For every (z, w) ∈ D̄ × D̄ there exists θ = θ(z, w) ∈ R such that eiθz, eiθw ∈
Dom Φ.
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PROOF: Define the polynomials

p(λ) = ∆(e− λz) and q(λ) = ∆(e− λw), λ ∈ C.

Arguing by contradiction, assume that p(λ)q(λ) = 0 for all |λ| = 1. Then necessarily pq ≡ 0,

which is not possible since p(0) = q(0) = 1.
2

LEMMA 2.4 There exist compact sets Hj ,Kj ⊂ D̄ and numbers θj ∈ R, j = 1, . . . , J such

that

(a) D̄ × D̄ = ∪Jj=1Hj ×Kj

(b) eiθjHj ∪ eiθjKj ⊂ Dom Φ, ∀ j = 1, . . . , J .

PROOF: For each (z, w) ∈ D̄×D̄ we can find, by the previous lemma, open neighborhoods

U(eiθ(z,w)z),V(eiθ(z,w)w) b Dom Φ. This gives a covering of the form

D̄ × D̄ ⊂
⋃

(z,w)∈D̄×D̄

e−iθ(z,w)
[
U(eiθ(z,w)z)× V(eiθ(z,w)w)

]
.

By compactness there is a subcovering indexed by a finite set Λ ⊂ D̄ × D̄. For each such

index λ = (z, w) ∈ Λ define

Hλ =
[
e−iθ(z,w)U(eiθ(z,w)z)

]
∩ D̄ and Kλ =

[
e−iθ(z,w)V(eiθ(z,w)w)

]
∩ D̄.

These sets clearly satisfy D̄ × D̄ = ∪λ∈ΛHλ ×Kλ and eiθ(λ)Hλ, e
iθ(λ)Kλ ⊂ Dom Φ.

2

PROOF of Proposition 2.2: Let f, g ∈ Cc(D). By the previous lemma, a change of

variables and (2.1) we can write∫
D

∫
D
f(w)T (z, w)g(z) dµ(w)dµ(z) =

J∑
j=1

∫
Hj

∫
Kj

. . .

=
J∑
j=1

∫
H̃j

∫
K̃j

f(e−iθjη)T (ξ, η)g(e−iθjξ) dµ(η)dµ(ξ)

=
J∑
j=1

〈
χ
H̃j
T
[
χ
K̃j
f(e−iθj ·)

]
, g(e−iθj ·)

〉
dµ
,

where we have set H̃j = eiθjHj and K̃j = eiθjKj . Then

∣∣∣ ∫
D
Tf(z) g(z) dµ(z)

∣∣∣ ≤ J∑
j=1

∥∥∥T H̃j∪K̃j[χK̃jf(e−iθj ·)
]∥∥∥
Lq(µ)

∥∥g(e−iθj ·)
∥∥
Lq′ (µ)

≤ C
∥∥f∥∥

Lp(µ)

∥∥g∥∥
Lq′ (µ)
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where in the last step we have used the assumption TH ∈ B(Lp, Lq) when H ⊂ Dom Φ.

This proves that T ∈ B(Lp, Lq).
2

Next, we consider operators T , acting on functions in TΩ, of the form

g 7−→ T g(ζ) =
∫
TΩ

T (ζ, η)g(η) dλ(η), ζ ∈ TΩ.

We shall assume that T (ζ, η) and dλ are homogeneous, in the sense that for some α, β ∈ R

T (Rζ,Rη) = RαT (ζ, η) and dλ(Rη) = Rβdλ(η), ∀ R > 0. (2.5)

Finally we say that T ∼ T if the corresponding kernels and measures are related by

T
(
Φ(z),Φ(w)

)
= T (z, w)ψ1

(
JΦ(z)

)
ψ2

(
JΦ(w)

)
, z, w ∈ D, (2.6)

and

d
(
λ ◦ Φ

)
(w) = ψ3

(
JΦ(w)

)
dµ(w). (2.7)

for some continuous non-vanishing functions ψ1, ψ2, ψ3 in C \ (−∞, 0].

The transference principle is then summarized in the following proposition. As before,

for K ⊂ Cn, we denote by T K the operator acting on functions in TΩ by

g 7−→ T Kg(ζ) = χK(ζ)T
(
g χK

)
(ζ), ζ ∈ TΩ.

Also B denotes the closed unit ball of Cn, and BR the ball of radius R (centered at 0).

PROPOSITION 2.8 Let T and T be operators as above satisfying the properties (2.1),

(2.5), (2.6), (2.7). Then, for every p, q ∈ [1,∞] the following are equivalent

(a) T is bounded from Lp(D, dµ)→ Lq(D, dµ);

(b) TH is bounded from Lp(D, dµ)→ Lq(D, dµ), for all compact H ⊂ Dom Φ;

(c) T K is bounded from Lp(TΩ, dλ)→ Lq(TΩ, dλ), for all compact K ⊂ Cn;

(d) T B is bounded from Lp(TΩ, dλ)→ Lq(TΩ, dλ).

PROOF: We have already proved the equivalence “(a)⇔(b)” in Proposition 2.2. The

equivalence “(b)⇔(c)” is just a change of variables with the Cayley transform Φ, using the

assumptions (2.6) and (2.7), and the fact that if H b Dom Φ then

1
c
≤
∣∣ψj(JΦ(w)

)∣∣ ≤ c, ∀ w ∈ H ∩D, j = 1, 2, 3,
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for some constant c = c(H) > 0. Since “(c)⇒(d)” is trivial, it remains to show “(d)⇒(c)”.

PickR > 0 such thatK ⊂ BR. For each f ∈ Lp(TΩ) with Supp f ⊂ K define f̃(z) = f(z/R),

which is supported in B. By (d) we have[ ∫
TΩ∩B

∣∣∣ ∫
TΩ∩B

T (z, w)f̃(w) dλ(w)
∣∣∣q dλ(z)

] 1
q ≤ C

[ ∫
TΩ∩B

∣∣f̃(z)
∣∣p dλ(z)

] 1
p
.

Changing variables ζ = Rz and η = Rw and using the homogeneity in (2.5) we see that[ ∫
TΩ∩BR

∣∣∣ ∫
TΩ∩BR

T (ζ, η)f(η) dλ(η)
∣∣∣q dλ(ζ)

] 1
q ≤ C R

α+β(1+ 1
q
− 1
p

)
[ ∫

TΩ∩BR

∣∣f(ζ)
∣∣p dλ(ζ)

] 1
p
.

This gives ∥∥T Kf∥∥
Lq(λ)

≤
∥∥T BRf

∥∥
Lq(λ)

≤ CR
∥∥f∥∥

Lp(λ)
, (2.9)

as we wished to prove.
2

2.2 Bergman projections

We are interested in applying the transference principle to the family of weighted Bergman

projections in D and TΩ. Using the notation in the text [10, Chapter XIII], these operators

are defined for ν > 2n
r − 1 by

Pνf(z) =
∫
D
BD
ν (z, w) f(w) dµν(w), z ∈ D,

and

Pνg(ζ) =
∫
TΩ

BTΩ
ν (ζ, η) g(η) dλν(η), ζ ∈ TΩ,

where the Bergman kernels and their associated measures have the explicit expressions

BD
ν (z, w) = cν h(z, w)−ν , dµν(w) = h(w)ν−

2n
r dw

and

BTΩ
ν (ζ, η) = c′ν ∆(ζ − η̄)−ν , dλν(η) = ∆(=m η)ν−

2n
r dη

for certain constants cν , c′ν . Here h(z, w) denotes the unique polynomial (holomorphic in z

and antiholomorphic in w) such that h(z) := h(z, z) is U -invariant and h(x) = ∆(e − x2),

x ∈ Rn. The unweighted case discussed in the introduction corresponds to ν = 2n/r.

The Bergman kernels in these two domains are related by the formula

BD
ν (z, w) = c̃ν B

TΩ
ν (Φ(z),Φ(w)

) (
JΦ(z) JΦ(w)

) ν
2n/r



8

(see [10, p.264]), while the measures satisfy∗

d
(
λν ◦ Φ

)
(w) = 22n−rν ∣∣JΦ(w)

∣∣ ν
n/r dµν(w).

From here it is easily seen that the operators T = Pν and T = Pν satisfy the properties in

(2.1), (2.5), (2.6) and (2.7). Thus, from Proposition 2.8 we obtain the following.

COROLLARY 2.10 Let ν > 2n
r − 1 and p, q ∈ [1,∞]. Then, the following are equivalent

(a) Pν is bounded from Lp(D, dµν)→ Lq(D, dµν);

(b) PB
ν is bounded from Lp(TΩ, dλν)→ Lq(TΩ, dλν).

REMARK 2.11 The statements in the corollary can only hold if p ≥ q. Indeed, if we

assume (b), from (2.9) and the homogeneity of the Bergman kernel it follows that, for all

R ≥ 1 and f ∈ C∞c (TΩ)∥∥Pνf∥∥Lq(BR∩TΩ,dλν)
≤ C R

νr( 1
q
− 1
p

) ∥∥f∥∥
Lp(dλν)

.

Letting R → ∞ we see that this is not possible if p < q (unless f ≡ 0). When p = q

this argument also shows that the “local continuity” in (b) is actually equivalent to the

boundedness of Pν in Lp(TΩ, dλν).

2.3 Positive Bergman projections

The transference principle also applies to the positive operators

P+
ν f(z) =

∫
D
|BD

ν (z, w)| f(w) dµν(w) and P+
ν g(ζ) =

∫
TΩ

|BTΩ
ν (ζ, η)| g(η) dλν(η).

In this case we can even state a stronger result. We consider a new operator, acting on

functions in Ω by

f 7−→ Qνf(y) = χB(y)
∫

Ω∩B

f(u)
∆(y + u)ν−

n
r

dλν(u), y ∈ Ω.

Here, with a slight abuse of notation, we still write dλν for the measure ∆ν− 2n
r (u) du in Ω

and B for the closed unit ball in Rn. We write Lp̃,pν (TΩ) = Lpy(Ω, λν ;Lp̃x(Rn)), ie the space

with mixed norm given by∥∥F∥∥
Lp̃,pν

=
(∫

Ω

[ ∫
Rn
|F (x+ iy)|p̃ dx

]p/p̃
dλν(y)

) 1
p
.

∗This formula is not explicit in [10], but is easily derived from the identity ∆
(
=m Φ(w)

)
= |∆(e −

w)|−2 h(w) in [10, p. 263] and the fact JΦ(w) = (2i)n∆(e− w)−2n/r in [10, p. 202].
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PROPOSITION 2.12 Let ν > 2n
r − 1 and 1 ≤ q ≤ p ≤ ∞. The following are equivalent

(a) P+
ν is bounded from Lp(D, dµν)→ Lq(D, dµν);

(b) P+,B
ν is bounded from Lp(TΩ, dλν)→ Lq(TΩ, dλν);

(c) P+,B
ν is bounded from Lp̃,pν (TΩ)→ Lq̃,qν (TΩ) for all 1 ≤ q̃ ≤ p̃ ≤ ∞;

(d) Qν is bounded from Lp(Ω, dλν)→ Lq(Ω, dλν).

In the proof we shall use the following fact (see [6, Lemma 2.18]): if α > 2n
r − 1 then∫

Rn

dx

|∆(x+ iy)|α
=

cα

∆(y)α−
n
r

, ∀ y ∈ Ω . (2.13)

We also need a local converse (see eg [5, Lemma 4.11]).

LEMMA 2.14 Let α ∈ R and γ > 0. Then there is a constant Cα,γ > 0 such that∫
Rn∩B

dx

|∆(x+ iy)|α
≥ Cα,γ

∆(y)α−
n
r

, ∀ y ∈ Ω with |y| ≤ γ. (2.15)

PROOF: We sketch the proof for completeness. Since y ∈ Ω has |y| ≤ γ it must hold that

the invariant ball B1(cy/γ) ⊂ B, for a sufficiently small constant c > 0 (depending only on

Ω; see eg [6, Lemma 2.9]). Writing y = ge with g ∈ G, and changing variables x = gu we

see that∫
Rn∩B

dx

|∆(x+ iy)|α
≥
∫
B1(cy/γ)

dx

|∆(x+ iy)|α
= ∆(y)

n
r
−α
∫
B1(ce/γ)

du

|∆(u+ ie)|α
,

and the integral on the right is a positive constant Cα,γ .
2

PROOF of Proposition 2.12: We already know “(a)⇔(b)”, while “(c)⇒(b)” is trivial.

To prove “(b)⇒(d)” it is enough to test with F (u+ iv) = χB(u) |f(v)|. Indeed, Lemma 2.14

then easily gives

P+,B
ν F (x+ iy) ≥

∫
Ω∩B
|f(v)|

∫
B1/2

c′ν du

|∆(u+ i(y + v))|ν
∆ν− 2n

r (v) dv ≥ c′Qν |f |(y),

for |x| ≤ 1/2 and y ∈ Ω ∩ B. Therefore, averaging in x and using (b)

‖Qνf ‖Lq(Ω,λν) . ‖P+,B
ν F‖Lq(Ω,λν ;Lqx(B)) . ‖χB(x)f(y)‖Lpy(λν ;Lpx) = c ‖f ‖Lp(Ω,λν).
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It remains to show that “(d)⇒(c)”. We write fv = f(· + iv). Then, for every fixed y ∈ Ω

Minkowski’s integral inequality gives∥∥P+,B
ν f(·+ iy)

∥∥
Lq̃(Rn)

≤
∫

Ω∩B

∫
Rn

c′ν ‖fvχB‖Lq̃(Rn)

|∆(u+ i(y + v))|ν
du dλν(v)

= c′′
∫

Ω∩B

‖fv‖Lq̃(B)

∆(y + v)ν−
n
r

dλν(v) = c′′Qν
(
‖fv‖Lq̃(B)

)
(y),

where in the second step we have used (2.13). Thus, since q̃ ≤ p̃ we conclude that∥∥P+,B
ν f

∥∥
Lq̃,qν (TΩ)

.
∥∥Qν(‖fv‖Lp̃(B)

)∥∥
Lq(Ω,λν)

.
∥∥ ‖fv‖Lp̃ ∥∥Lp(Ω,λν)

= ‖f‖
Lp̃,pν

.
2

Finally, in the special case p =∞ we can state the following.

COROLLARY 2.16 Let ν > 2n
r −1 and q ∈ [1,∞]. Then P+

ν is bounded from L∞(D, dµν)→
Lq(D, dµν) if and only if∫

Ω∩B

∣∣∣ ∫
Ω∩B

dλν(u)
∆(y + u)ν−

n
r

∣∣∣q dλν(y) < ∞. (2.17)

PROOF: SinceQν has a positive kernel, part (d) in Proposition 2.12 for p =∞ is equivalent

to Qν1 ∈ Lq(Ω, λν). This last condition is the same as (2.17).
2

3 The boundedness of P +
ν : L∞ → Lq

ν

3.1 The key integral estimate

By Corollary 2.16 we have reduced matters to show the integral estimate (2.17). For fixed

γ > n
r − 1 we shall write:

Iγ(t) :=
∫

Ω∩B
∆−γ(y + t) ∆γ−n

r (y) dy, t ∈ Ω ∩ B, (3.1)

where B denotes the closed unit ball of Rn. Our goal is to find precise estimates for this

integral so that we can determine for what q’s we have∫
Ω∩B

∣∣Iγ(t)
∣∣q ∆γ−n

r (t) dt < ∞. (3.2)

Setting γ = ν − n
r we shall then deduce results about P+

ν .

Unfortunately, (3.1) does not seem easily computable, but we can estimate it quite

precisely modulo logarithmic factors of t ∈ Ω ∩ B. We shall use the notation

A / B if A ≤ c
(
1 + log+

1
∆(t)

)c′
B, ∀ t ∈ Ω ∩ B,



11

with constants c, c′ which may depend on γ, r, n but are independent of t. As usual, A . B

means A ≤ cB, with c a constant as before, while A ≈ B means 1
cB ≤ A ≤ cB. We shall

also use the notation

A l B if B . A / B.

Finally, and following the notation in the text [10], since the function in (3.1) is K-invariant,

we may assume that t is a diagonal element of Ω, that is

t = t1c1 + · · ·+ trcr

where {c1, . . . , cr} is a fixed Jordan frame, and say 0 < t1 ≤ t2 ≤ . . . ≤ tr ≤ 1. Our two main

results can then be stated as follows.

THEOREM 3.3 Let γ > n
r − 1. Then, for all t = t1c1 + · · · + trcr ∈ Ω ∩ B with 0 < t1 ≤

t2 ≤ . . . ≤ tr ≤ 1 we have

Iγ(t) l


(

1
t2t3

) d
2
(

1
t4t5

)2 d
2 · · ·

(
1

tr−1tr

) r−1
2

d
2
, if r is odd(

1
t2t3

) d
2
(

1
t4t5

)2 d
2 · · ·

(
1

tr−2tr−1

) r−2
2

d
2
(

1
tr

) r
2
d
2
, if r is even.

(3.4)

For another expression of (3.4) in terms of symmetric polynomials, see Remark 4.9 below.

THEOREM 3.5 Let γ > n
r − 1. Then, the integral in (3.2) is finite if and only if q < Qγ,

where

Qγ :=



2 + 4
d(γ − n

r + 1) if (r−1)d
2 < γ ≤ rd

2

8(γ − d
2)/[(r − 1)d] if rd

2 < γ < d r2ed

2rγ/
(
br/2c dr/2e d

)
if γ ≥ d r2ed.

(3.6)

As a consequence we obtain the following generalization of Theorem 1.2. We denote

q+, ν = Qν−n/r.

COROLLARY 3.7 Let ν > 2n
r − 1. Then P+

ν is bounded from L∞(D)→ Lq(D, dµν) if and

only if 1 ≤ q < q+, ν .

REMARK 3.8 The unweighted case ν = 2n
r corresponds to γ = n

r = 1 + (r − 1)d2 in (3.6).

That is, q+,2n/r = q+ as defined in (1.3), hence establishing Theorem 1.2.
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3.2 A more general integral estimate

To prove Theorem 3.3 we shall use an induction process in the rank which requires com-

puting the following more general integrals:

Iµ,γr (t) =
∫

Ω∩B
∆−µ(y + t) ∆γ−n

r (y) dy, t ∈ Ω ∩ B, (3.9)

where as before γ > n
r − 1 is fixed, and the parameter µ can be any real number (although

we shall focus below in the case µ ≥ γ). Since Iµ,γr (t) is K-invariant, we shall assume

throughout that

t = t1c1 + . . .+ trcr with 0 < t1 ≤ t2 ≤ . . . ≤ tr ≤ 1. (3.10)

Optimal bounds for these integrals can be easily obtained when µ is sufficiently large (or

small) compared to γ; namely

Iµ,γr (t) ≈


(

1
∆(t)

)µ−γ
, when µ > γ + n

r − 1

1 , when µ < γ − (nr − 1).
(3.11)

Indeed, each of the inequalities “.” follow easily from the trivial majorizations

Iµ,γr (t) ≤
∫

Ω
∆−µ(y + t) ∆γ−n

r (y) dy and Iµ,γr (t) ≤ Iµ,γr (0).

Conversely, the inequalities “&” can be obtained restricting the respective domains of inte-

gration to the invariant balls B1(t) and B1(e/r). We leave details to the reader.

We are interested in obtaining optimal estimates (modulos log’s) for Iµ,γr (t) in the re-

maining cases, that is when

γ − (r−1)d
2 ≤ µ ≤ γ + (r−1)d

2 ,

and more specifically, when µ = γ. As we shall see, the behavior of the integral changes as

the parameter µ belongs to each of the subintervals[
γ + (`− 1)d2 , γ + `d2

)
, ` = −(r − 2), . . . , r − 1.

For instance, when r = 2 an explicit computation in the lines of [3] gives the following

(which is also a particular instance of Theorem 3.12 below):

Iµ,γ2 (t) l



(
1
t1t2

)µ−γ
, if µ ≥ γ + d

2(
1
t1

)µ−γ (
1
t2

)d/2
, if γ ≤ µ < γ + d

2(
1
t2

)µ−γ+ d
2

, if γ − d
2 ≤ µ < γ

1 , if µ < γ − d
2 .
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µ

d/2

γ − d
2

γ + d
2

γ

α1

α2

µ

d/2

d

γ − d γ − d
2

γ γ + d
2

γ + d

α2

α3

α1

Figure 3.1: Graph of the powers αi(µ) as µ varies, for the cases r = 2 and r = 3.

It is possible (but quite tedious) to carry out similar explicit computations when r = 3. If

we write Iµ,γr (t) l
∏r
i=1(1/ti)αi , then Figure 2.1 shows the graph of the powers αi = αi(µ)

as the parameter µ varies, when r = 2, 3. Our next theorem will prove that the pattern

that one can see in these examples continues to hold in higher ranks (at least when µ ≥ γ).

THEOREM 3.12 Let γ > (r − 1)d/2. Assume that

µ ∈
[
γ + (`− 1)d2 , γ + `d2

)
, for some ` = 1, 2, . . . , r.

Then, the following holds for all t = t1c1 + · · ·+ trcr with 0 < t1 ≤ t2 ≤ . . . ≤ tr ≤ 1 :

(a) If r − ` is even, then

Iµ,γr (t) l

(
1

t1 · · · t`

)µ−γ r−`
2∏
i=1

[(
1

t`+2i−1

)(`+i−1) d
2
(

1
t`+2i

)µ−γ+i d
2

]
. (3.13)

(b) If r − ` is odd, then

Iµ,γr (t) l

(
1

t1 · · · t`

)µ−γ b r−`2
c∏

i=1

[(
1

t`+2i−1

)(`+i−1) d
2
(

1
t`+2i

)µ−γ+i d
2

] (
1
tr

)(`+b r−`
2
c) d

2

.

(3.14)

REMARK 3.15 Theorem 3.3 corresponds to the special case µ = γ of the above theorem.

It is possible to find similar expressions for Iµ,γr (t) when ` = 0,−1,−2, . . ., in accordance

with Figure 3.1, but we shall not make use of these cases here.
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4 Proof of Theorem 3.12

The theorem will be proved by induction in the rank. With our scheme we shall establish

the result for the `-th interval in cones of rank r, from the hypothesis in the (` + 1)-th

interval in cones of rank r − 1. This explains why we must consider the full range of µ to

get to the case µ = γ, and also the distinction between the cases (a) and (b).

We also observe that for ` = r the result is already known, since then µ ≥ γ+(r−1)d/2

and the identity (3.13) is just one of the easy cases described in (3.11). The only comment

concerns the endpoint µ = γ + (r − 1)d/2, but it is not difficult to see that (3.11) remains

valid also in this case if we replace “≈” by “l” (see eg [6, Lemma 2.20]).

4.1 The recursive lemma

We follow the notation in the text [10]. The ambient space V = Rn is endowed with the

structure of Euclidean Jordan algebra induced by the symmetric cone Ω, and {c1, c2, . . . , cr}
is a fixed Jordan frame in V . Consider the Peirce decomposition with respect to cr (see [10,

Ch. IV]), that is

V = Rcr ⊕ V (cr, 1
2)⊕ V (cr, 0).

We shall write V ′ = V (cr, 0), which is a Jordan algebra of rank r − 1, and denote by Ω′

the associated symmetric cone (the interior of the cone of squares; see [10, Ch. 3]). In

general, if x ∈ V we write x′ for the orthogonal projection of x onto V ′. In particular, if

t = t1c1 + . . .+ trcr ∈ Ω, then t′ = t1c1 + . . .+ tr−1cr−1 ∈ Ω′. Finally recall that V (cr, 1/2)

is a vector space of dimension (r − 1)d, which we sometimes identify with R(r−1)d.

The next lemma establishes the iteration procedure which will be used in the proof of

Theorem 3.12.

LEMMA 4.1 For all µ, γ ∈ R and t as in (3.10) we have

Iµ,γr (t) ≈ 1
tµ−γr

∫ 1/tr

0

sγ

(1 + s)µ

∫
v∈V (cr,

1
2

) : |v|≤1
I
µ,γ− d

2
r−1

(
t′ + (v2)′

1+s

)
dv

ds

s
. (4.2)

PROOF: The proof follows from a change of variables as in [10, p. 139], which we reproduce

here for completeness. Using the Peirce decomposition of an element y ∈ Ω,

y = u cr + y1/2 + y′ ∈ R+cr ⊕ V (cr, 1/2)⊕ V ′, (4.3)

the determinant ∆ can be factored as follows:

∆(y) = u∆′
(
y′ − 1

u(y2
1/2)
′) ,
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where ∆′ denotes the determinant associated with the algebra V ′ (see [10, pp. 107,114]).

In particular we can also write

∆(t + y) = (tr + u) ∆′
(
t′ + y′ − 1

tr+u
(y2

1/2)
′
)
.

As shown in [10, Prop. VI.3.2], the element w = y′ − 1
u(y2

1/2)
′ belongs to the cone Ω′ if and

only if y ∈ Ω. Now we perform the following change of variables

y1/2 =
√
u v, y′ = w + (v2)′, (4.4)

where v ∈ V (cr, 1/2) and w ∈ Ω′. This leads to

Iµ,γr (t) =
∫

Ω∩B
∆−µ(t + y) ∆γ−n

r (y) dy (4.5)

=
∫
R

uγ−
n
r

(u+ tr)µ
∆′
(
t′ + w + tr

u+tr
(v2)′

)−µ
∆′(w)γ−

n
r
√
u

(r−1)d
du dv dw,

where the region of integration R ⊂ Ω is specified below. Recall first that |ξ| ≈ (ξ|e) when

ξ ∈ Ω (see eg [6, Lemma 2.9]), and observe from (4.4) that

(y′|e) = (w|e) + (v|ve′) = (w|e) + 1
2 |v|

2.

Since y ∈ Ω ∩ B, then necessarily the region R is contained in{
(u,v,w) ∈ R+ × V (cr, 1

2)× Ω′ : 0 < u ≤ γ1, |v| ≤ γ2, |w| ≤ γ3

}
, (4.6)

for some constants γ1, γ2, γ3 > 0. Conversely, we claim that if γ1, γ2, γ3 are chosen suffi-

ciently small, then the set in (4.6) must also be contained in R. Indeed, for each (u,v,w)

in that set the corresponding vector y (defined by (4.3) and (4.4)) belongs to Ω and has

norm

|y| ≤ |u|+ |y1/2|+ |y′| ≤ u+
√
u |v|+ |w|+ 1

2 |v|
2.

So if γ1, γ2, γ3 are sufficiently small then |y| ≤ 1, and hence (u,v,w) ∈ R. Going back to

(4.5), and using n
r = 1 + (r − 1)d2 we see that

Iµ,γr (t) ≈
∫

0<u.1

uγ

(u+ tr)µ

∫
v∈V (cr,

1
2

) : |v|.1
I
µ,γ− d

2
r−1

(
t′ + tr

u+tr
(v2)′

)
dv

du

u
.

From here, the change of variables u = trs (incorporating constants if necessary) easily

leads to the expression stated in the lemma.
2
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4.2 Facts about determinants

We denote by ai(x), i = 0, 1, . . . , r, the symmetric polynomials in V , defined by

∆(λe− x) =
r∑
i=0

ai(x)(−1)iλr−i

(see [10, p. 28]). The above expression is K-invariant (in x), so the polynomials ai(x) only

depend on the eigenvalues of x, say t1, . . . , tr, and are symmetric in these variables. Observe

that ai(t1, . . . , tr) are also given by the formula

r∏
j=1

(λ− tj) =
r∑
i=0

ai(t1, . . . , tr)(−1)iλr−i ,

from which we obtain the usual expressions

a1 = t1 + . . .+ tr, a2 = t1t2 + . . .+ tr−1tr, ... , ar = t1 · · · tr.

In fact, we have the following

LEMMA 4.7 If t ∈ Ω has eigenvalues {t1, . . . , tr} with 0 < t1 ≤ t2 ≤ . . . ≤ tr, then

aj(t) ≈ tr−j+1 · · · tr, j = 1, 2, . . . , r.

Using symmetric polynomials we can rewrite the outcomes in Theorem 3.12 as follows.

PROPOSITION 4.8 Let µ, γ ∈ R and ` ∈ {1, 2, . . . , r}. Define

α ≡ γ + (`− 1) d2 and β ≡ γ + ` d2 .

For t as in (3.10) we have the following:

(i) If r − ` = 2j, then the right hand side of (3.13) is ≈ to(
1

ar(t)

)µ−γ(
1

a2j(t)

)β−µ(
1

a2j−1(t)

)µ−α
· · ·

(
1

a2(t)

)β−µ (
1

a1(t)

)µ−α
.

(ii) If r − ` = 2j − 1, then the right hand side of (3.14) is ≈ to(
1

ar(t)

)µ−γ(
1

a2j−1(t)

)β−µ(
1

a2j−2(t)

)µ−α
· · ·

(
1

a3(t)

)β−µ(
1

a2(t)

)µ−α (
1

a1(t)

)β−µ
.

REMARK 4.9 Similarly, the expression for Iγ(t) in (3.4) takes the simpler form

Iγ(t) l

{ [
a2(t)a4(t) · · · ar−1(t)

]−d/2 if r is odd[
a1(t)a3(t) · · · ar−1(t)

]−d/2 if r is even.
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In view of formula (4.2), we need to find estimates for the expressions a′i(t
′ + (v2)′),

where a′i denotes the symmetric polynomial with respect to the algebra V ′. This is done in

the next lemma.

LEMMA 4.10 Let v ∈ V (cr, 1/2), which we write as v =
∑r−1

i=1 vi with vi ∈ Vir. Let

s = s1c1 + . . .+ sr−1cr−1 ∈ Ω′. Then

∆′
(
s + (v2)′

)
= s1 · · · sr−1

(
1 +

r−1∑
i=1

|vi|2

si

)
. (4.11)

Moreover, when t is as in (3.10) and j = 1, 2, . . . , r − 1 we have

a′j
(
t′ + (v2)′

)
=

∑
1≤`1<...<`j≤r−1

t`1 · · · t`j
(

1 +
∑

k∈{`1,...,`j}

|vk|2

tk

)
. (4.12)

PROOF: Observe first that by definition of the a′j ’s

∆′
(

(v2)′ + t′ − λe′
)

=
r−1∑
i=0

a′i
(
t′ + (v2)′

)
(−λ)r−1−i

Thus, using (4.11) (with s = t′ − λe′) one can easily compute the left hand side to obtain

the formula stated in (4.12). Therefore, we must only prove the formula in (4.11).

At the moment we do not know a direct proof of (4.11), so we shall establish the

formula separately for each type of Jordan algebra. Assume first that V = Her(r,C). Then

v ∈ V (cr, 1/2) can be identified with the hermitian matrix

v =


v1

0 ...

vr−1

v̄1 · · · v̄r−1 0

 , (4.13)

where −→v = (v1, . . . , vr−1) ∈ Cr−1, and therefore

(v2)′ = row (v̄1
−→v , . . . , v̄r−1

−→v ). (4.14)

Since ∆′ coincides with the usual determinant of complex matrices, we can use multilinearity

to obtain

∆′
(
s + (v2)′

)
= Det

(
s1
−→e 1 + v̄1

−→v , . . . , sr−1
−→e r−1 + v̄r−1

−→v
)

= s1 · · · sr−1 +
r−1∑
j=1

Det
(
s1
−→e 1, . . . , v̄j

−→v , . . . , sr−1
−→e r−1

)
+ 0

= s1 · · · sr−1 +
r−1∑
j=1

s1 · · · |vj |2 · · · sr−1, (4.15)
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which is the same as (4.11). This proof can also be applied when V = Sym(r,R) (replacing

the complex entries in v by real numbers) and even when V = Her(r,H). In this last case

some care is needed with quaternionic determinants (which in general are not multilinear),

so we describe the argument in some more detail in the appendix.

We now prove (4.11) when V = Rn is a Jordan algebra of rank 2 (ie it is associated with

a light-cone). In this case we let c1 = (1
2 ,

1
2 ,0) and c2 = (1

2 ,−
1
2 ,0), so that V (c2, 1/2) =

V12 = {v = (0, 0,−→v ) : −→v ∈ Rn−2}. An easy computation using the Jordan product in V

(see [10, Ch. II]) shows that

(v2)′ = |−→v |2 c1.

Thus,

∆′
(
s1c1 + (v2)′

)
= s1 + |−→v |2 (4.16)

as we wished to prove.

Finally we verify the exceptional Jordan algebra V = Her(3,O), which has rank 3. In

this case, v ∈ V (c3, 1/2) can also be identified with a matrix as in (4.13) (with r = 3),

where v1, v2 are octonions. Then (4.14) remains valid, and we have

∆′
(
s + (v2)′

)
= detV ′

(
s1 + |v1|2 v̄1v2

v̄2v1 s2 + |v2|2

)
= (s1 + |v1|2)(s2 + |v2|2)− |v1v2|2 = s1s2

(
1 + |v1|2

s1
+ |v2|2

s2

)
,

where in the second line we use the determinant of the 2-rank algebra V ′, and the property

of octonions |v1v2| = |v1||v2|.
2

An immediate consequence of (4.12) is the following.

COROLLARY 4.17 Let v =
∑r−1

i=1 vi ∈ V (cr, 1/2) = ⊕1≤i<rVir, and let t be as in (3.10).

Then, if j = 1, 2, . . . , r − 1 we have

a′j
(
t′ + (v2)′

)
≥ tr−j · · · tr−1

(
1 + |vr−j |2

tr−j
+ . . .+ |vr−1|2

tr−1

)
. (4.18)

Conversely, if |v| ≤ 1, and |vi| ≥ 1/2 for r − j ≤ i ≤ r − 1, then

a′j
(
t′ + (v2)′

)
. tr−j · · · tr−1

(
1 + |vr−j |2

tr−j
+ . . .+ |vr−1|2

tr−1

)
. (4.19)
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4.3 Proof of Theorem 3.12, part (a)

When r = 2 there is nothing to prove, since then ` = 2 and we are in one of easy cases

described in (3.11).

Assume by induction that part (a) of the theorem holds with r replaced by r−1, and let

us show how to obtain from here the case of rank r. Since ` = r is already known, we choose

` ∈ {1, . . . , r− 2} as in (a), and for simplicity write r− ` = 2j for some j ∈
{

1, . . . , b r−1
2 c
}

.

For such fixed ` (and j), and for µ in the interval

γ + (`− 1) d2 ≤ µ < γ + ` d2 , (4.20)

we must evaluate Iµ,γr (t). By the recursive lemma 4.1 we have

Iµ,γr (t) ≈ 1
tµ−γr

∫ 1/tr

0

sγ

(1 + s)µ

∫
v∈V (cr,

1
2

) : |v|≤1
I
µ,γ− d

2
r−1

(
t′ + (v2)′

1+s

)
dv

ds

s
. (4.21)

We shall use the induction hypothesis to estimate the factor I
µ,γ− d

2
r−1 . To do so, observe that

(4.20) is the same as (
γ − d

2

)
+ ` d2 ≤ µ <

(
γ − d

2

)
+
(
`+ 1

)
d
2 , (4.22)

with ` + 1 ∈ {2, . . . , r − 1} , so we are indeed in the situation of part (a) of the theorem

for the cone Ω′ of rank r − 1. Call y = t′ + (v2)′/(1 + s). Then the induction hypothesis,

formulated as in Proposition 4.8, gives

I
µ,γ− d

2
r−1 (y) l

(
1

a′r−1(y)

)µ−(γ−d/2)(
1

a′2j−2(y)

)β−µ(
1

a′2j−3(y)

)µ−α
· · ·

(
1

a′2(y)

)β−µ (
1

a′1(y)

)µ−α
(4.23)

where α and β denote respectively the left and right endpoints in (4.22) (which coincide

with the left and right endpoints in (4.20)). Observe that the logarithmic terms hidden in

“l” of (4.23) are actually controlled by (1 + log 1/∆(t))c, independently of s and v, since

∆′(y) ≥ ∆′(t′) ≥ ∆(t) if tr ≤ 1.

To deal with the expression in (4.23) we need to use the estimates in (4.18). For simplic-

ity, we change variables vi =
√
ti(1 + s) zi, i = 1, . . . , r − 1, and identify z = (z1, . . . , zr−1)

with an element in Rd(r−1). Then (4.23) and (4.18) give

I
µ,γ− d

2
r−1 (y) / A(t) × B(z), (4.24)

where

A(t) =
(

1
t1··· tr−1

)µ−(γ− d
2

)(
1

t`+2··· tr−1

)β−µ(
1

t`+3··· tr−1

)µ−α
· · ·

(
1

tr−2tr−1

)β−µ(
1

tr−1

)µ−α
,

(4.25)
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and

B(z) =
(

(1 + |z|2)µ−γ+ d
2

r−1∏
k=`+2

(1 + |zk|2 + . . .+ |zr−1|2)γk

)−1
, (4.26)

where for simplicity we have written

γk =

{
β − µ if `− k is even

µ− α if `− k is odd.
(4.27)

Inserting the resulting expression in (4.21) (with the corresponding jacobian of change of

variables in place of dv) we obtain

Iµ,γr (t) /
(

1
tr

)µ−γ
A(t) (t1 · · · tr−1)

d
2

∫ 1/tr

0

sγ (1 + s)(r−1) d
2

(1 + s)µ

∫
z∈Rd(r−1)

|zi|≤
1√

(1+s)ti

B(z) dz ds
s .

(4.28)

To compute the integral in dz we shall need the following elementary lemma.

LEMMA 4.29 Let R ≥ A ≥ 1, then

∫
z∈Rd : |z|≤R

(A+ |z|)−α dz ≈


Rd−α if 0 ≤ α < d

1 + log(R/A) if α = d

A−(α−d) if α > d

(4.30)

PROOF: Changing variables z = Au, the result is a simple calculation.
2

Going back to (4.28), we shall compute the first part of the integral in dz. We write

Ri = 1/
√

(1 + s)ti, so that R1 ≥ R2 ≥ . . . ≥ Rr−1. Applying (` + 1)-times the previous

lemma we obtain∫
|z`+1|≤R`+1

. . .

∫
|z1|≤R1

dz1 · · · dz`+1

(1 + |z1|+ . . .+ |zr−1|)2(µ−γ)+d
l R

`d−2(µ−γ)
`+1 = R

2(β−µ)
`+1 , (4.31)

since by (4.20) we know that `d ≤ 2(µ− γ) + d < (`+ 1)d. Thus∫
B(z) dz l R

2(β−µ)
`+1

∫
|zr−1|≤Rr−1

. . .

∫
|z`+2|≤R`+2

dz`+2 · · · dzr−1∏r−1
k=`+2 (1 + |zk|+ . . .+ |zr−1|)2γk

l R
2(β−µ)
`+1

r−1∏
k=`+2

Rd−2γk
k (4.32)

=
(

1
1+s

)β−µ+ r−`−2
2

d
2
(

1
t`+1

)β−µ(
1

t`+2

)µ−α(
1

t`+3

)β−µ
· · ·
(

1
tr−2

)µ−α(
1

tr−1

)β−µ
,

where the second step follows from (4.30) since all the exponents 2γk ∈ [0, d], and the last

equality is a straightforward computation from the definition of the exponents.
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Inserting this estimate into (4.28) we obtain

Iµ,γr (t) / A1(t) ×
∫ 1/tr

0

sγ (1 + s)(r−1) d
2

(1 + s)β+(r−`−2) d
4

ds

s
, (4.33)

where

A1(t) =
(

1
tr

)µ−γ(
1

t`+1

)β−µ (
1

t`+2

)µ−α
· · ·
(

1
tr−2

)µ−α(
1

tr−1

)β−µ
(t1 · · · tr−1)

d
2 A(t)

=
(

1
tr

)µ−γ(
1

t1··· t`

)µ−γ(
1

t`+1

)β−γ(
1

t`+2

)µ−γ+ d
2 · · ·

(
1

tr−2

)µ−γ+ r−`−2
2

d
2
(

1
tr−1

)β−γ+ r−`−2
2

d
2
,

using in the last equality the definition of A(t) in (4.25), and straightforward computations

with the exponents. The integral on the right of (4.33) is easily calculated∫ 1/tr

0

sγ (1 + s)(r−1) d
2

(1 + s)γ+` d
2

+(r−`−2) d
4

ds

s
≈
(

1
tr

)(r−`) d
4
.

Putting together in (4.33) the two expressions calculated above one obtains precisely the

inequality “/” of (3.13) that we wished to prove.

We now turn to the converse inequality “&” of (3.13). The only difference with respect

to the previous reasoning is that in (4.21) we shall restrict the range of integration to
1
2 ≤ |vi| ≤ 1 when i = ` + 2, . . . , r − 1. In this way, by Lemma 4.17, we can reverse the

estimates of a′1(y), . . . , a′2j−2(y) that we used to pass from (4.23) to (4.24). Observe that

for the remaining factor we have an equality

a′r−1(y) = t1 · · · tr−1

(
1 + |z|2

)
(by Lemma 4.10), so no restriction is needed in the variables v1, . . . ,v`+1 (this will be

important below). Thus we have shown that

I
µ,γ− d

2
r−1 (y) & A(t) × B(z),

with A(t) and B(z) defined exactly as before (see (4.25) and (4.26)). This gives a converse

inequality to (4.28), namely

Iµ,γr (t) &
(

1
tr

)µ−γ
A(t) (t1 · · · tr−1)

d
2

∫ 1/tr

0

sγ (1 + s)(r−1) d
2

(1 + s)µ

∫
B(z) dz ds

s ,

where B(z) is integrated over the set of all z = (z1, . . . , zr−1) ∈ Rd(r−1) such that

|zi| ≤ Ri if i = 1, . . . , `+ 1, and Ri
2 ≤ |zi| ≤ Ri if i = `+ 2, . . . , r − 1,
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with the notation Ri = 1/
√

(1 + s)ti as before. The crucial point is that in this smaller

range of integration the estimates for
∫
B(z) dz we did before continue to be valid. Indeed,

(4.31) does not change, since we did not impose new restrictions on z1, . . . , z`+1, while (4.32)

holds even if we only integrate over |zi| ≈ Ri when i = `+ 2, . . . , r − 1. Thus the inequality

in (4.33) can be reversed to “&”, and therefore the same steps as before lead to a complete

proof of the case (a) in Theorem 3.12.

4.4 Proof of part (b)

We first establish the case r = 2, which necessarily implies ` = 1. By the recursion lemma

4.1 (and the explicit expression in (4.16)) we see that

Iµ,γ2 (t) ≈ 1
tµ−γ2

∫ 1/t2

0

sγ

(1 + s)µ

∫
v∈Rd : |v|≤1

dv(
t1 + |v|2

1+s

)µ−γ+ d
2

ds

s
.

Changing variables v =
√
t1(1 + s) z and using that d ≤ 2(µ− γ) + d < 2d, the integral in

dv becomes ∫
. . . dv l

(1 + s)d/2

tµ−γ1

.

Inserting this expression in the above formula we obtain

Iµ,γ2 (t) l

(
1
t1t2

)µ−γ∫ 1/t2

0

sγ(1 + s)
d
2

(1 + s)µ
ds

s
≈
(

1
t1

)µ−γ( 1
t2

) d
2

,

since µ < γ + d/2. This proves (3.14) when r = 2 and ` = 1.

The general case will be obtained with an entirely similar proof as in the previous

subsection. Suppose by induction that part (b) of Theorem 3.9 holds with r replaced by

r − 1, and assume we are given a cone Ω of rank r and an integer ` ∈ {1, . . . , r − 1} as in

(b), that is, r − ` = 2j − 1 for some j ∈ {1, . . . , b r2c}. For µ in the interval

γ + (`− 1) d2 ≤ µ < γ + ` d2 ,

we must evaluate Iµ,γr (t), for which we shall use the recursion formula in (4.23). As before,

we are then led to estimate the factor I
µ,γ− d

2
r−1 (y), noticing that γ − d

2 > (r − 2)d2 and(
γ − d

2

)
+ ` d2 ≤ µ <

(
γ − d

2

)
+
(
`+ 1

)
d
2 .

The induction hypothesis, formulated as in Proposition 4.8, then gives

I
µ,γ− d

2
r−1 (y) l

(
1

a′r−1(y)

)µ−(γ−d/2)(
1

a′2j−3(y)

)β−µ(
1

a′2j−4(y)

)µ−α
· · ·

(
1

a′2(y)

)µ−α (
1

a′1(y)

)β−µ
(4.34)
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with the caution that when ` = r − 1 (ie j = 1) the right hand side only involves the

first factor (this is one of the easy cases described in (3.11)). We then estimate the a′i(y)’s

using Corollary 4.17. As before, changing variables vi =
√
ti(1 + s) zi, i = 1, . . . , r − 1, the

inequalities in (4.18) give

I
µ,γ− d

2
r−1 (y) / A(t) × B(z), (4.35)

where now

A(t) =
(

1
t1··· tr−1

)µ−(γ− d
2

)(
1

t`+2··· tr−1

)β−µ(
1

t`+3··· tr−1

)µ−α
· · ·

(
1

tr−2tr−1

)µ−α(
1

tr−1

)β−µ
,

(4.36)

and B(z) is the same as in (4.26). From here the rest of the proof is exactly the same as

before. In particular, the same reasonings as in (4.31) and (4.32) allow to compute∫
B(z) dz l

(
1

1+s

) r−`−1
2

d
2
(

1
t`+1

)β−µ(
1

t`+2

)µ−α
· · ·
(

1
tr−2

)β−µ(
1

tr−1

)µ−α
,

the result being slightly different only because of the parity. Thus we obtain

Iµ,γr (t) / A1(t) ×
∫ 1/tr

0

sγ (1 + s)(r−1) d
2

(1 + s)µ+(r−`−1) d
4

ds

s
, (4.37)

with

A1(t) =
(

1
tr

)µ−γ(
1

t1··· t`

)µ−γ(
1

t`+1

)β−γ(
1

t`+2

)µ−γ+ d
2 · · ·

(
1

tr−2

)β−γ+ r−`−3
2

d
2
(

1
tr−1

)µ−γ+ r−`−1
2

d
2
.

The integral on the right of (4.37) now gives∫ 1/tr

0

sγ (1 + s)(r−1) d
2

(1 + s)µ+(r−`−1) d
4

ds

s
≈
(

1
tr

)γ−µ+(r+`−1) d
4
,

since the exponent γ − µ + (r + ` − 1)d4 > 0 . Putting together in (4.37) the previous two

expressions one obtains the inequality “/” of (3.14) that we wished to prove. The converse

inequality is proved with the same argument we used for part (a), namely, restricting the

integration in dv in equation (4.21) to the smaller range 1
2 ≤ |vi| ≤ 1 when i = `+2, . . . , r−1,

so that the inequality (4.35) can be reverted. This completes the proof of part (b), and

hence establishes Theorem 3.12.
2

5 The proof of Theorem 3.5

We must compute

Iq ≡
∫

Ω∩B

∣∣Iγ(t)
∣∣q ∆γ−n

r (t) dt.
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To do so we shall use polar coordinates in Ω, that is, if f is K-invariant then∫
Ω
f(t) dt

∆(t)
n
r

= c

∫
· · ·
∫
−∞<sr<...<s1<∞

f
(
e−s1c1 + . . .+ e−srcr

) ∏
1≤j<k≤r

[
sh
( sj−sk

2

)]d
ds1 . . . dsr

(see [10, Corollary VI.2.4]). Observe that sh u ≤ eu implies

∏
1≤j<k≤r

[
sh
( sj−sk

2

)]d
≤ exp

(
d
2

∑
1≤j<k≤r

[sj − sk]
)

=
r∏
j=1

e(r−2j+1) d
2
sj .

Conversely, since sh u ≥ eu/4 when u ≥ 1, if we restrict the integration in the variables

s1, . . . , sr−1 to the range

sr ≤ sr−1 − 2 ≤ sr−2 − 4 ≤ . . . ≤ s1 − 2(r − 1) (5.1)

we see that (sj − sk)/2 ≥ 1, ∀k > j, and therefore

∏
1≤j<k≤r

[
sh
( sj−sk

2

)]d
≈
[
e(r−1)s1 e(r−3)s2 · · · e−(r−1)sr

] d
2
. (5.2)

5.1 Case r = odd

Let t = e−s1c1 + . . .+ e−srcr with 0 ≤ sr < . . . < s1. Using the upper bound in (3.4) we have

Iγ(t) . (1 + s1)c
[
es2+s3 e2(s4+s5) · · · e

r−1
2

(sr−1+sr)
] d

2
. (5.3)

Denote by A(s) and B(s), respectively, the expressions on the right hand side of (5.3) and

(5.2), where s refers to the r-tuple (s1, . . . , sr). We also write

C(s) = ∆(t)γ = e−γ(s1+...+sr).

Then, the formula of polar coordinates gives

Iq .
∫ ∞

0

∫ ∞
sr

· · ·
∫ ∞
s2

A(s)q B(s)C(s) ds1 . . . dsr−1 dsr. (5.4)

The integral in ds1 is always finite; in fact, since γ > (r − 1)d/2,∫ ∞
s2

(1 + s1)cq e(r−1) d
2
s1 e−γs1 ds1 ≈ (1 + s2)cq e(r−1) d

2
s2 e−γs2 .

Thus, inserting this expression into (5.4) we obtain

Iq .
∫ ∞

0

∫ ∞
sr

· · ·
∫ ∞
s3

A(s2)q B(s2)C(s2) ds2 . . . dsr−1 dsr,
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where we write

s` = (s`, . . . , s`, s`+1, . . . , sr), if ` = 2, 3, . . . , r.

The remaining integrals can be computed by iteration; at the `-th step we start with

Iq .
∫ ∞

0

∫ ∞
sr

· · ·
∫ ∞
s`+1

A(s`)q B(s`)C(s`) ds` . . . dsr−1 dsr.

The integral in ds` will be finite if and only if the integrand factor eα`s` , comprising all the

products of exponentials in the s`-variable within A(s`)qB(s`)C(s`), has α` < 0. Now, a

simple computation from the explicit expressions of A(s), B(s), C(s) shows that

α` =


j2 q d2 + 2j

[
(r − 2j)d2 − γ

]
if ` = 2j

j(j + 1) q d2 + (2j + 1)
[

(r − 2j − 1)d2 − γ
]

if ` = 2j + 1.

Performing all the integrations we see that Iq <∞ if

q < min
1≤j≤ r−1

2

{
4
jd

[
γ − (r − 2j)d2

]
,

2(2j + 1)
dj(j + 1)

[
γ − (r − 2j − 1)d2

]}
. (5.5)

Conversely, using the reverse inequality in (5.3) with c = 0 (which follows from the lower

bound in (3.4)), and restricting the integration to the range in (5.1), all the above com-

putations can be carried out similarly with “&” in place of “.”. Hence we conclude that

Iq <∞ if and only if (5.5) holds.

Finally, to establish (3.6) we must minimize the expression on the right hand side of

(5.5). This can be written as

Qγ ≡ min
{
f(2), f(4), . . . , f(r − 1); g(3), g(5), . . . , g(r)

}
,

where

f(x) =
4(a+ x)

x
and g(x) =

4x(a+ x)
x2 − 1

, (5.6)

and we have set a = (γ − r d2)/(d2), so that a > −1. The following properties are then easy

to verify

(i) f(x) ≤ g(x), ∀ x > 1;

(ii) If a < 0, then f is increasing, and thus Qγ = f(2);

(iii) If a ≥ 0, then both f and g are non-increasing, and thus Qγ = min{f(r − 1), g(r)}.

Thus we have shown that

Qγ = min
{
f(2), f(r − 1), g(r)

}
,

which is the same as (3.6) when r is odd.
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5.2 Case r = even

The proof is entirely analogous to the previous case, except that (5.3) must be replaced by

Iγ(t) . (1 + s1)c
[
es2+s3 e2(s4+s5) · · · e

r−2
2

(sr−2+sr−1) e
r
2
sr
] d

2
, (5.7)

which follows from Theorem 3.3 when r is even. Thus, the integrals in (5.4) are computed

iteratively as before, leading to Iq <∞ if and only if

q < min
1≤j≤ r−2

2

{
4
jd

[
γ − (r − 2j)d2

]
,

8γ
rd

,
2(2j + 1)
dj(j + 1)

[
γ − (r − 2j − 1)d2

]}
(5.8)

(the middle term now corresponds to the last integration in dsr). Using the same functions

f(x) and g(x) as in (5.6) one easily sees that (5.8) is equivalent to

q < min
{
f(2), f(r)

}
(the term g(r − 1) is not necessary since it is in between these two). The right hand side

coincides with the desired expression in (3.6) for r even, hence establishing Corollary 3.5.
2

6 The boundedness of Pν : L∞ → Lq
ν

We shall interpolate between the following two estimates

PB
ν : L∞(TΩ)→ L∞, qν (TΩ) when 1 ≤ q < q+,ν (6.1)

and

PB
ν : L∞(TΩ)→ L2, q

ν (TΩ) when 1 ≤ q < q0,ν . (6.2)

The boundedness of (6.1) follows from Corollary 3.7 and Proposition 2.12. The boundedness

of the local operator in (6.2) is a consequence of Hölder’s inequality and the following result

about the global operator.

THEOREM 6.3 : see [4]. Let ν > 2n
r − 1. Then Pν is bounded from L2,q

ν (TΩ)→ L2,q
ν (TΩ)

if and only if q′0,ν < q < q0,ν , where

q0, ν := 2(ν−1)
n
r
−1 = 4 + 4(ν− 2n

r
+1)

(r−1)d .

Interpolating (6.1) and (6.2) one easily obtains the following.
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1/p

1/q

1/q̄ν

1/q+,ν

P+
ν

1/p

1/q

1/q̄ν

1/q+,ν

1/p̄ν

P+
ν

Figure 6.1: Regions of boundedness of Pν : Lpν → Lqν , for ν small and ν large, respectively.

COROLLARY 6.4 Let ν > 2n
r − 1. Then PB

ν is bounded from L∞(TΩ)→ Lqν(TΩ) when

1 ≤ q < q+,ν + 2
(

1− q+,ν

q0,ν

)
+
. (6.5)

In particular, Pν maps L∞(D)→ Lq(D,µν) in this same range.

REMARK 6.6 Specializing to the unweighted case ν = 2n
r , one obtains Theorem 1.4.

REMARK 6.7 Corollary 6.4 only produces new results (compared to Corollary 3.7) when

q+,ν < q0,ν . An elementary computation shows that this happens precisely when

ν < 2n
r − 1 +

n
r − 1
d r2e − 1

.

This is always the case when r = 2, and also when r ≥ 3 and ν is sufficiently small. In

particular, it holds in the unweighted situation ν = 2n
r , except when d = 1 and r odd.

Observe also that, for ν large, the index q+,ν is bigger than p̄ν = 1 + ν/(nr − 1) (the

conjectured index in the diagonal situation). Thus the region of boundedness takes the

form in Figure 6.1.

REMARK 6.8 When r = 2 it is easily checked that (6.5) takes the form

1 ≤ q < q+,ν +
n− 2
ν − 1

, (6.9)
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with q+,ν = 4(ν − n
2 )/(n− 2). We remark that this exponent can be slightly improved for

certain ν’s using the stronger boundedness results which are known for Pν in this case. For

instance, using [13, Corol 2.5] and [6, Prop 5.5] we could replace (6.2) by

PB
ν : L∞(TΩ)→ Lp̂, q̂ν (TΩ)

for p̂ = 2(n + 2)/n and a suitable q̂ ∈ (q+,ν , q0,ν). Interpolation now gives the validity of

Corollary 6.4 when

1 ≤ q < q+,ν + p̂
(

1− q+,ν

q̂

)
+
,

which produces a small improvement over (6.9), at least for ν = n.

7 Necessary conditions

7.1 Necessary conditions for Pν : L∞ → Lq
ν

Assume that Pν : Lp(D,µν)→ Lq(D,µν). Corollary 2.10 and duality implies that∥∥PB
ν f
∥∥
Lp
′
ν (TΩ)

≤ C
∥∥f∥∥

Lq
′
ν (TΩ)

. (7.1)

We test with f(z) = ∆(=m z)
2n
r
−ν χDδ(z), where Dδ denotes the polydisk centered at iδe

of radius cδ, with δ � 1 and c > 0 a small universal constant such that Dδ b TΩ ∩ B. By

the mean value property,

PB
ν f(z) = c′ δ2nBTΩ

ν (z, iδe), z ∈ TΩ ∩ B.

Thus, Lemma 2.14 gives∥∥PB
ν f
∥∥p′
Lp
′
ν (TΩ)

& δ2np′
∫

Ω∩B

dλν(y)
∆(y + δe)νp′−

n
r

= δ2np′ Ip
′ν−n

r
, ν−n

r (δe),

with the notation in (3.9). On the other hand, an easy computation gives∥∥f∥∥
Lq
′
ν (TΩ)

≈ δ
2n− rν

q .

Inserting these two estimates in (7.1) and simplifying a bit, we see that it must hold

Ip
′ν−n

r
, ν−n

r (δe) . δ−p
′rν/q (7.2)

for all δ � 1. When p =∞ this reduces to

δ
− rν

q & Iν−
n
r
, ν−n

r (δe) &

{
δ−(1+2+...+ r−1

2
)d if r is odd

δ−(1+2+...+ r−2
2

)d− r
2
d
2 if r is even
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where in the last step we have used Theorem 3.3. Elementary algebra then shows that,

necessarily

q ≤ q̄ν :=
2rν

b r2c d
r
2e d

.

Thus, we have shown the following, which for ν = 2n/r gives Theorem 1.5.

PROPOSITION 7.3 Let ν > 2n
r − 1. Then Pν is not bounded from L∞(D)→ Lqν(D) when

q > q̄ν .

7.2 Necessary conditions for Pν : Lp
ν → Lq

ν with p <∞

When p < ∞ we can estimate the left hand side of (7.2) with Theorem 3.12, letting µ =

p′ν− n
r and γ = ν− n

r . We must distinguish cases depending on the value of µ−γ = ν/(p−1),

which will lead to different necessary conditions. Namely, we obtain

δ−p
′rν/q & δ

−(r−j)( ν
p−1

+j d
2

)
, if

ν

p− 1
∈
(

[r − 2j − 1]d2 , [r − 2j + 1]d2
)
, (7.4)

for j = 1, 2, . . . , b r2c, with the agreement that if r is even and j = r
2 the interval on the right

reduces to (0, d2). The right hand side of (7.4) can also be read as

1 + 2ν
(r−2j+1)d < p < 1 + 2ν

(r−2j−1)d , (7.5)

which as j varies gives a partition for the region p̄ν < p < ∞. We denote the separating

points in this partition by

pj = 1 + 2ν
(r−2j−1)d , j = 0, 1, . . . , b r2c,

noticing that p0 = p̄ν and pbr/2c = ∞. According to (7.4) when p ∈ (pj−1, pj) the index q

must necessarily satisfy
1
q
≥ r − j

rp
+

(r − j)jd/2
rνp′

. (7.6)

We write qj for the point paired with pj according to this rule, that is setting ν
p−1 =

(r − 2j − 1)d/2 in (7.6)

qj = r(r−2j−1)
(r−j)(r−j−1) pj , j = 0, 1, . . . , b r2c,

with the agreement that q0 = p0 = p̄ν and qbr/2c = q̄ν . Finally, let

Aj =
(

1
pj
, 1
qj

)
and A′j =

(
1
q′j
, 1
p′j

)
, j = 0, 1, . . . , b r2c,

and consider the closed convex region

Kν = co
{
A0, . . . , Abr/2c, (0, 1), A′br/2c, . . . , A

′
0

}
;

see Figure 7.1. Then we have shown the following.
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1/p

1/q

A2 A1

(0, 1)
A′2

A0

A′0

A′1

1/p

1/q

A3 A2

A1

(0, 1)
A′3

A′2

A0

A′0

A′1

Figure 7.1: Regions of possible boundedness for Pν when r ∈ {4, 5} and r ∈ {6, 7}.

PROPOSITION 7.7 Let ν > 2n
r − 1. If Pν is bounded from Lpν(D) → Lqν(D), then neces-

sarily (1
p ,

1
q ) ∈ Kν .

When r ∈ {2, 3} the region Kν has the shape of a pentagon, like on the left of Figure

1.1. For higher ranks, however, Kν is a more complicated N -gon, with N = 2b r2c + 1, like

those drawn in Figure 7.1. We do not know whether this region could be reduced to the

smaller pentagon co {A0, Abr/2c, (0, 1), Abr/2c, A0} with additional examples.

7.3 Necessary conditions for P +
ν : Lp

ν → Lq
ν with p <∞

PROPOSITION 7.8 Let ν > 2n
r − 1. If P+

ν is bounded from Lpν(D) → Lqν(D), then neces-

sarily q < q+,ν and (1
p ,

1
q ) ∈ Kν−n

r
.

PROOF: The first condition is clear by Corollary 3.7, since L∞ ↪→ Lpν(D). For the second

condition, by Proposition 2.12, the assertion about P+
ν is equivalent to the boundedness of

Qν : Lq
′
ν (Ω) → Lp

′
ν (Ω). We test with f = χB(δe), where B(δe) is an invariant ball centered

at δe and δ is sufficiently small so that B(δe) b Ω ∩ B. Then

Qνf(y) =
∫
B(δe)

∆(v)ν−
2n
r dv

∆(y + v)ν−
n
r

≈ δrν−n

∆(y + δe)ν−
n
r

(see eg [8, Cor 2.3]). This implies that∥∥Qνf∥∥p′
Lp
′
ν (Ω)

≈ δp
′(rν−n) Ip

′(ν−n
r

), ν−n
r (δe) . ‖f‖p

′

Lq
′
ν

≈ δ(rν−n)p′/q′ ,
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which writing γ = ν − n
r and rearranging takes the form

Ip
′γ, γ(δe) . δ−p

′rγ/q. (7.9)

Now, by Theorem 3.12 the left hand side only depends on p′γ − γ = γ/(p − 1), so (7.9)

coincides exactly with (7.2) with ν there replaced by γ. So the reasoning in the previous

subsection gives that, necessarily (1
p ,

1
q ) ∈ Kγ , as we wished to prove.

2

REMARK 7.10 Interpolating Corollary 3.7 with the known diagonal results for P+
ν (ie

p ∈ (p′+, ν , p+, ν) with p+, ν = (ν − 1)/(nr − 1) = p̄ν−n/r; see eg [5, Th. 4.3]), we see that

Lpν → Lqν boundedness holds in the interior of the pentagon

K+,ν = co
{

( 1
p+,ν

, 1
p+,ν

), (0, 1
q+,ν

), (0, 1), ( 1
q′+,ν

, 1), ( 1
p′+,ν

, 1
p′+,ν

)
}
.

When r = 2 we have K+,ν = Kν−n
r
, so the region of Lpν → Lqν boundedness for P+

ν is optimal

(except perhaps for the endpoints). This continues to hold when r = 3, at least for large ν;

namely ν ≥ n
r + d r2ed = 1 + 3d, so that q+,ν = q̄ν−n

r
. In other situations, however, there is

a gap between necessary and sufficient conditions for P+
ν ; see eg Figure 7.2.

1/p

1/q

K+,ν

Kν−n
r

1/q̄ν−n/r

1/q+,ν

1/p+,ν

(0, 1)

1/p

1/q

K+,ν

Kν−n
r

1/q̄ν−n/r

1/p+,ν

(0, 1)

Figure 7.2: Regions of boundedness for P+
ν when r = 3 and ν small and r = 4 and ν large.
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8 Appendix

8.1 A remark on quaternionic determinants

As pointed out in the proof of Lemma 4.10, the determinant of a matrix of quaternions

(for which actually there are various definitions) is in general not multilinear; see eg [2, 9].

Thus, we briefly explain here what definition must be used in order to justify (4.15) in the

case V = Her(r,H).

A matrix of quaternions A = (aij)ni,j=1 ∈ Mn×n(H) is called almost-hermitian if there

exists (at most) one index k ∈ {1, . . . , n} so that

aij = āji, ∀ i, j ∈ {1, . . . , n} \ {k}.

For such matrices the Moore determinant is defined by

Mdet (A) =
n∑
`=1

εk` ak` Mdet(A[k, `]),

where k is the index in the definition of almost hermitian, A[k, `] is the matrix obtained from

A by first interchanging the `-th and k-th columns, and then deleting both the k-th row

and k-th column, and εk` = −1 if ` 6= k and εkk = 1. We refer to [9, 14] for the consistency

of this definition and various properties of such determinants. It is easy to verify from

the definition that, if A,B,C are almost hermitian matrices with the same index k, and

satisfying the linear relation

ckj = akj + bkj ∀ j, and cij = aij = bij ∀ i 6= k, ∀ j,

then

Mdet(C) = Mdet(A) + Mdet(B)

(see eg [9, Thm.2]). Using this property and the definition of Mdet, it is straightforward to

justify the analogue of (4.15) for quaternionic matrices, ie

Mdet
(
s + (v2)′

)
= s1 · · · sr−1 +

r−1∑
j=1

s1 · · · |vj |2 · · · sr−1,

when sj > 0 and vj ∈ H.

Finally, we remark that the Jordan algebra determinant ∆(x) of x ∈ Her(r,H) (defined

as the independent coefficient of the minimal polynomial of x; see [10, Ch II]) coincides

with the Moore determinant Mdet(x) defined above. This follows for instance from the

formulation of each of these determinants as pfaffians of matrices in Skew(2r,C) (see [10,

p. 40] and [9, (4.7)]).
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[8] D. Békollé, A. Bonami, M. Peloso and F. Ricci. “Boundedness of weighted Bergman
projections on tube domains over light cones”. Math. Z. 237 (2001), 31-59.

[9] F. J. Dyson, “Quaternion determinants”. Helvetica Phys. Acta 45 (1972), 279–302.
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