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ABSTRACT. The paper investigates the special role of the origin in the theory of orthonor-
mal wavelets.

§1. Introduction and Presentation of the Results.

Each of the four authors has been involved in the construction of certain wavelets in
order to exhibit particular properties of these functions. Standing by itself, each example
is not sufficiently important to warrant its publication; however, the collection of these
results has a unity that provides us with an understanding of the role played by the
origin for the Fourier transform of wavelets. We will also see that the values %7‘[‘ and 47
have special significance for these Fourier transforms. Since these values also depend (in
a trivial way) on the choice of the Fourier transform we make, let us agree that

(1.1) f(6) = /R f(x)e i du

are values of the Fourier transform, f (¢), when f € LY(R).
An (orthonormal) wavelet is a function ¢ such that the family {4;x: j,k € Z} =

{22¢)(272 — k): j,k € Z} is an orthonormal basis for L?(R). All wavelets can be charac-
terized by two simple equations

(1.2) o lE@OP =1,

JEZ

(1.3) tg(€) =D (2E)P(29 (& +2qm)) =0, for ge2Z+1
j=0

and the condition ||¢||2 > 1. In reality these equations are true almost everywhere; but
here and in the sequel, in order to avoid repeating “for a.e. £ almost everywhere, we
omit stating this explicitly. We refer the reader to Chapter 7 of [HW] for a proof of this
fact.
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We assume that the reader is familiar with the concept of a multiresolution analysis
MRA and what is meant by the statement “¢ is an MRA wavelet”. We also remind the
reader that v is an MRA wavelet if and only if

oo

(1.4) Dy(&) =3 S 12 (€ + 2km) 2 =1

J=1k€eZ

(see Chapter 7 of [HW] for a proof of this fact).

A simple consequence of equation (1.2) is that ¢)(0) = 0 when ¢ is continuous at 0. A
deeper result asserts that for a band-limited wavelet 1 with |1ﬂ| continuous at the origin,
we have 1(€) = 0 for all £ in a neighborhood of the origin (see [HW] page 108). We see,
therefore, that the origin does, indeed, play a special role in the domain of the Fourier
transform of wavelets; for many such v, in fact, we encounter this property that the
support of @@ has “a hole in the middle” (a term that we shall use often to describe the
fact that this support has an empty intersection with an open interval about 0).

If we do not assume that |1/A)| is continuous at the origin the result we just announced is

no longer true. In fact, we will construct band-limited wavelets such that (supp ﬁ)ﬂ(—e, €)
has a positive measure for all ¢ > 0. There is, however, the following probably well-known
result, that gives further credence to the principle that ¢(0) “should have value 0”:

Theorem (1.5). If ¢ is a wavelet then

lim
e+e'—0 € + e

[ =0

—¢€!

In other words, this result asserts that if we set 7,&(0) = 0 then the origin is a Lebesgue
point of the function ¢). The proof of (1.5) is an easy application of equality (1.2) and
shall be presented in the following sections. This theorem should be compared with a
result of D. Speegle [S] which shows that the origin is the only point in R that plays such
a special role for the Fourier transform of a wavelet:

Theorem (1.6). (Speegle). Suppose & # 0 then there exists a neighborhood U of &,
that does not contain the origin, with the property that if b is any measurable function

on U with |b| < 1, then we can find a wavelet 1) such that 7,5(5) =b(&) forall €U.

This interesting extension property generalizes some parts of the results we shall
present. We shall make appropriate comments about this when we announce the rel-
evant results.

Some of the facts we shall announce can be stated more simply for minimally supported
frequency (MSF) wavelets. These are those wavelets 1) such that [¢)| is the characteristic
function, xw, of a set W C R whose measure, |W/|, is 2m. As explained in the second
section of Chapter 7 in [HW] all such sets, which we call wavelet sets, can be constructed
from the Shannon set [—2m, —m) U [m, 2m), though such constructions can be somewhat
intricate.

When 1) is an MSF wavelet corresponding to the wavelet set W, Theorem (1.5) asserts
that

(1.7) lim wal-rr _

r—0t r

0.
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This is a statement about the density of W around the origin. It is natural to inquire
whether this measure of density (or sparseness) is “best possible”. We will provide the
following result that gives us an answer to this question:

Theorem (1.8). If § > 0 there exist constants c1,co > 0 and an MSF, MRA wavelet
Vs such that |1s| = xw, and

|I/V(sﬂ [_T7T]|
c1 < ST < ¢2,

™
Jor0<r < 3.

As we shall see, it is of particular interest to us that the wavelet set W5 we construct
in Theorem (1.8) is contained in the interval [—4m, 47]. We shall show that this interval
is a “sort of limiting” case for MRA wavelets. In fact, the following result shows that if
supplﬁ is contained in any smaller interval, then there is “a hole in the middle”. More
precisely:

Theorem (1.9). Suppose ¢ is an MRA wavelet and supp ¢ C [—4m + 2b, 47 — 2a] where
a,b>0,0<a+b<2m, then (&) =0 for £ € (—a,b).

Among other things, this result tells us that the length of the interval about the origin
on which 1) is 0 can be as large as 2w. We show that for all orthonormal wavelets there
is a natural boundary for the size of such intervals (a,b):

Theorem (1.10). If ¢ is an orthonormal wavelet such that 7,5(5) =0 for§ € (—m, )
then || = xs, where S is the Shannon wavelet set |[—2m, —m) U [r, 27).

These facts show that in the MRA case the number 47 plays a special role. If we
assume a yet smaller band for the support of @B then the MRA property is automatic.
We cite two results that give a precise formulation of our assertion. The first one is
Theorem (4.1) in the third chapter of [HW] that illustrates the important features of this
theorem. A brief accounting of these features is the following: Suppose 9 is a wavelet
such that supp) C [—%ﬂ', %71']. Then 1&(5) =0 for € € (—%ﬂ',% ). Furthermore, the
values of |1 (€)] for € € [27, 27) completely determine all the values 4h(€)| on R; in fact,

on [2m, ) the function 4| can be chosen to be any measurable function b with range in

[0,1]. Furthermore, v must be an MRA wavelet. The reader should compare this with
the extension property obtained by Speegle in Theorem (1.6). A precise statement that
includes a complete description of the phase of 9 is

Theorem (1.11). Suppose ¢ € L%(R) and b = |¢)| has support contained in [—8x, 87
Then v is an orthonormal wavelet if and only if it is an MRA wavelet and

i) b& =0 for&e[-3m 5]

(i) (&) +b*(5) =1 for&e[im, 3n]

(iii) b2+ b2 (E+2m)=1 foréc [—%ﬂ', —%7‘[‘]

(iv) (&) =b(5+2m) forée -5, 3n]

(v) (&) = Ob(e),
where « satisfies a(§) + a(2(§ — 27)) — a(28) — (& — 2m) = (2m(§) + 1) for some
m(§) € Z, for € € [2m, 57| Nsupp b (5 suppb).
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This result was extended in [HWW] to the case where @@ has support contained in
[—%a,47r — %a], 0 < a < 7 (see Theorem 2.1 and the accompanying Figure 2 on page

333). We see, therefore , that, again, 47 plays a special role in the domain of 1&; but we
also encounter the number g’ﬂ' and its significance with respect to the MRA property.
This leads us to wonder if there are non-MRA wavelets with Fourier transform supported
in bands that lie strictly between the intervals [—$m, 87] and [—4m, 47]. We show that
by enlarging the band ever so slightly more than this first interval we lose the MRA

property:

Theorem (1.12). If0 < ¢ < 2x, there exists a wavelet set W = W, C [-37, 37 + ¢
such that |W N (=04,9)| > 0 for each d > 0.

Observe that if such a wavelet were MRA, then, by (1.9), with b = 27 and a =

we must have @5(5) =0if &€ (——7r + 35, §7r) and this is inconsistent with (1.12). We
also remark that this last theorem provides us with examples of non-MRA wavelets
having a Fourier transform supported in bands that are “significantly” smaller than those
associated with examples found in the existing literature such as the Journé wavelet which
is an MSF wavelet corresponding to the wavelet set [— 32, —4n] U [—m, — 27| U [2m, 7] U
[4m, 327] (see page 64 in [HW]).

Finally, we see that if ¢ is an MRA wavelet and the support of 1/3 extends all the way
to 4w, the most we can hope is a “one sided hole ” for the values 1&(5):

Wi

m—

No|m

Theorem (1.13). Suppose 1 € L2(R) and b = || has support contained in [—a,4x],
where 0 < a < w. Then ¥ is an MRA wavelet if and only if the function b, whose values
lie in [0,1] satisfies

() b(E&)=0 forgelo,2m—2)

(i) (¢ =1 f0r£ € [2m, 41 — a)

(iii)  b%(&) + bz( )=1 for& € [4m — a,4r)

(iv) b)) =0b(5+21) forée[—a,—9)

(v) b2(£)+bz(£+2ﬂ)—bz( +2m)  for&€[-5,0)

(vi)  limjseeb(2796+2m) =1  for<0

(vii) bz(f)(l—bz(%+7r)):0 for & € 2 — §,27]
and 7,5(5) = e!©)p(¢), where the measurable function o satisfies

a(§) + a2(§ +2m)) — a(28) — a(§ +2m) = (2m(§) + 1)m

for some measurable m(§) € Z and £ € [-5,0) N supp |4b| N (supp |¢)| — 27).

Observe that the values of b on the interval [27 — ¢, 27) determine the remaining values

of b. Furthermore, condition (v) requires that b?(5 + 2m) — b2 (E+2m) > 0if € € [—%,0).
Observe that from (vii) we have, if n = £ 4 2, that b*(n)(1 — b*(Z + 7)) = 0; thus this
requirement is fulfilled because either b*(n) = 0 or 1 —b*(2+7) =0 and this is consistent
with (v).

We present the proofs of these results in the following sections. The reader can amuse
himself by deriving other consequences of this material. For example, Theorem (1.10) can
be considered to be a characterization of the Shannon wavelet set. An easier characteri-
zation that follows from (1.9) and (1.11) is that all wavelets 1) with supp ) C [—2m, 27]
are such that (&) = n(¢)xs(€), where n unimodular and § is the Shannon set.



1Nk brEAAVIOUR AL 10K ORIGIN OF A UCLABSS UOF BAND-LINMITED WAVELELS 9]

§2. The Proof of Theorem (1.5). By (1.2) we obtain

(2.1) 1og2—/Z|zzjzf£|2dé Z/ HOPE = /0°°|zz3<£>|2§

9i+1

On the other hand by the Schwarz inequality we have

[ tense < ([ 'I‘A’(@'Z%f ([ dﬁf <(/ |1/3<§>|2%)% ;
s [ < ([ |¢(5)l2%)%

lim / |1/3<s>|2%=o,

e—0 0

thus,

But (2.1) implies that

and, therefore,

1 [€ .
lim — dé =0
i /0 19 (&)|dE

e—0 €

as well. To end our proof it is enough to notice that we can do the same calculations for
—¢’ using

0
A d
(2.2) /_ |¢(£)|2g6 ~ log2,

instead of (2.1).

§3. The Proof of Theorem (1.8). Let us start our construction of Wy by proving
two lemmas

Lemma A. Let S = (| 2E, where E C R satisfies

j=1

(3.1) E+7m=E°
and

(3.2) En|[—m,7m] C2E.

Then S =2 (EN[—n,7]) and |S| = 27. Moreover ) , ., xs({+2kw) =1 a.e.
Proof. From (3.2) follows that F N [—m, 7] C 2/F for every j > 0. Hence

S=(YE=2(2E22(En|[-m7]).
j=1 =0
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By (3.1) xg is 2m-periodic and xg(z — 7) =1 — xg(z). Since

|Eﬂ[—7r,7r]|:/7r XE(:c)dx:/O%XE(x—W)dx:

—T

/0 "1 = ()] do = 27 — /W xe(@)dz = 27 — |EQ [—m, 7]

—T

we have |E N [—m, w]| = m and therefore |S| > 2.
Let now k € Z, k # 0, k = 2"q with ¢ odd. Observe that

S=2EN2S=2EN4EnN...N2""'ENn2rtlg

and so S + 2km = (2E + 2kn) N ...N2"T(E + qm) N 2"+1(S + ¢gn). Since E + qm = E°
we deduce that S 4 2kw NS = () and therefore that », -, xs(§ + 2k7) < 1. Hence

2#2/ ZXS(§+2k7r)d§:/RXS:|S|.

Y=Y/

This implies |S| =27, S =2 (EN[—n,7]) and

Y xs(E+2%km) =1 m

kEZ

Lemma B. Let E and S be as in Lemma A. Assume that for a.e. & € R and for j
sufficiently large 277¢ € S. Define p = xs. Then ¢ is a scaling function for an MRA
and x g 1s the associated low pass filter.

Proof. By Theorem 5.2, Chapter 7 of [HW] we only need to show that

(3.3) lim |p(277¢)| =1 ae (€R”
J—00

and that

(3.4) xs(28) = xe(€)xs(§)

Since 277¢ € S for j sufficiently large (3.3) is obvious while (3.4) is equivalent to S =
2FE N 28 which follows from the definition of S. m

We shall try to construct a low pass filter by means of the previous two lemmas. Let
m, be the filter associated with the Shannon wavelet; that is,

mo(§) = X, (§)

and E, = | [k -5, k+ %) The idea is to modify the set F, without violating condi-
kEZ
tions (3.1) and (3.2) in Lemma A. Since the low pass filter is a periodic function we shall

work on the torus that we identify with the interval [—m, ).
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We start with the set

T
b [5]
° 272
and we choose a real number 7 < a; < 3. We consider the subinterval [ al] where
T <ap < % (the reason for the cond1t1on a1 < § will became clear later) and we translate

1t left by 7r (this does not violate condition (3.1)); we also translate the subinterval
—a1, —%] right by 7. In this way we obtain the set

A — 3 U[W :|U|:W7T:|U|: W]U 3
1 — 471—7(1'1 ™ 27 al 474 (1,1,2 T (1,1,47T

Observe that by the assumption a; < % 1f§ € A; then £/2 € A;. We now iterate this
%aj_l and translate the interval
[zj%, aj] left by 7 and the interval [—aj, —#] right by 7. In this way we obtain the

set

A= G[a” ]Ufj[ A 2J+1]UG[ ]Ufj[zﬁl_ AT

Jj=1 Jj=1 Jj=1 Jj=1

If we define

procedure choosing aj, j > 2, sat1sfy1ng s < aj <

E = U (2km + A)
kEZ
we obtain a set satisfying condition (3.1) and (3.2). To apply Lemma B we have to check
that the set
S=2(En[—m,n]) =24

is such that for almost every ¢ € R and for j sufficiently large & € 2/S. Since S is
symmetric with respect to the origin we can assume ¢ > 0. By condition (3.2) we obtain
that S C 2S5; therefore, we can also assume & € (m,2m). Since [2aj, ZJ%] C S we have
[27F1a;,2n] C 27S. If we assume that 2/t 'a; — 7 as j — co we have £ € 27 for j
sufficiently large.

We have proved the following
Proposition C. Let {aj};il be a sequence of real numbers satisfying the following con-
ditions

(i) F<a1 <%

(ii) 5t < a; < 3051

(i) limj o0 27a; = 5

and let m be a 2w periodic function defined by

= Z X[a;, =] (&) + Z X[r—aj,m— =] (€)

on the interval [0, w] and by m(&) = m(—¢&) on the interval [—m,0]. Then m is a low pass
filter associated to an MRA whose scaling function is an even function defined by

@(é) - ZX[ZGJ;L](E) + ZX[QW_QQJ’QW——]( )

271
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on [0, 00).

We can now construct a wavelet associated to the MRA. By Proposition 2.13 Chapter
2 of [HW]

$(26) = e m(€ + m)P(¢)
defines such a wavelet. Therefore we obtain

~

(&) = e xw (€)

where
W=2((F+m)NS)=2(E°NS)=2(S\(ENS))=25\5=4A4\2A.

Hence, W is symmetric with respect to the origin and

oo

(3.5) anmp:Uu%H@%y

As a concrete example we choose, for any > 0, the sequence

o 1 1
% = 51 \' 3 )

Since the conditions in Proposition C are satisfied we are able to construct a wavelet 5
such that |¢5| = xw,, where W; satisfies (3.5). We there exist positive constants ¢y, co
such that

< |W5 N [_Ta T]| S

(36) 1 > 7"1+6

Indeed for r < %

oo
U [4aj41,2a;] C WsN[0,7] C U [4aj41,2a,]
j=Nr Jj=Nr—1

where N, is the smallest integer so that 2any, < r. A simple computation then shows

that
c

<Wsn 0,71l < s =79

c
N (146)

and since log, - < N,. < log, 47” this shows that
At < W [0,r]| < chr't?

for suitable positive constants ¢j and c¢}. Since Wy is symmetric with respect to the
origin we obtain that (3.6) is satisfied and this ends the proof of Theorem (1.8).

§4. The Proof of Theorem (1.9). If ¢ is an MRA wavelet then its dimension
function Dy, defined in (1.4) must be equal to 1 almost everywhere. By the assumption
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on the support of 1) we have ¢(27(¢ + 2kr)) = 0 for € € [—a,b] and j > 1, k € Z.
Therefore, using (1.2) we see that for £ € [—a, b]

oo

1=Dy(€) =Y [@e)P=1- 3 [§2¢)]

7j=1 j=—o00
and this implies that ¢)(¢) = 0 on [—a, b].

§5. The Proof of Theorem (1.10). Let E = [r,27]. By (2.1) and (2.2) we have

de
2log2 = 2 2
os2= [ el keZ/@U_EHM' O =

it
k k
kez/w“h ] 2 e P

kez’ —
If £ € E then

1 1
but since ¢ = 0 on [, 7] we have [, [¢(& — 27r)|2|£ 57 = 0. By Proposition 1.11 of

Chapter 2 [HW] we have |4 (€ + 2km)|? = 1; therefore,
Z/WH%W _Z/wu%|2 E o2,
ke € + 2] 2k | €l Je Il

Using a similar reasoning for £ € —F; that is,

1 1

and [ |9(€ + 2m)[? |£+27r| = 0, we obtain

2 €
Z/ (€ + 2kn) £+2k7r| kz:Z/_ (€ + 2km)|? ] = log 2.

kez” —

Therefore, we proved that

d¢ 5 d€
QIOgQ—Z/ (€ + 2km))|? T 2k7T|_Z/EuE (& + 2km )|m—2log2

so the inequality in the above expression is just an equality. Looking back at (5.1) and
(5.2) we discover that for k£ # 0 and £ € EU —FE we must have 9(§ + 2kw) = 0, because
(5.1) and (5.2) become equalities only for k¥ = 0. This proves that supp C xgu—g, SO
|1/A)| = XEU-E-:
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§6. The Proof of Theorem (1.12). Let L = [-3F, —2%] and R = [2F, %F]. We can
use Corollary 2.4 of Chapter 7 [HW] to check that L U R is a wavelet set. Now let

5T € 5T € 1
Ag=|— 4+ -, — + = By=-A
0 |: 3 + 87 3 + 2:| ) 0 4 0
A, = B,_1 — 2, B, =2"(+24

Then the wavelet set W defined by
> > T € T € 2w 4 8w 87
W= (L Ap) U Bnu[— - —]U e —|U|=—, =
(\nL_JO ) nL:JO 378373 [3“3] {3 3“]

gives us an MSF wavelet with the desired properties.
First let us prove that W is in fact a wavelet set. It is enough to show that W is
dilation and translation equivalent to the wavelet set L U R. For 0 < ¢ < 2% we have

3
2[7T+6 7T+6]U27T+ 47TU1 81 87r+ _p
’ 3 93| 1|33 T

Moreover, by induction, A,, C L for all n € NU {0}; therefore,

(L\ DAn)u D2“+2Bn: (L\ DAn)U DAn:L.

Since the sets A,,, n € NU{0} are disjoint and the same is true for the sets B,,, n € NU{0},
we proved that W is dilation equivalent to L U R. To check the translation equivalence

let us observe that
2m 47 8t 87
) il °or o —9r | =
S (55 -m)-x

and
(z\U 4n)u (Bn—27r)U([§ + é, g + g] — 27r> = (L\|J 4n)uJ Any1u4 = L.
n=0 n=0 n=0 n=0

To prove that there is no “hole in the middle” let us notice that since A,, C L for all
n € NU{0} we get

B, = 2_(n+2)An C 9—(n+2)7 _ 9—n [_2_7T _j]
37 3

so the wavelet set W intersects with every neighborhood of the origin in a set of positive
measure.

§7. The Proof of Theorem (1.13). Let us first assume that ¢ is an MRA wavelet
with supp ¢ C [—a, 4r]. By Theorem (1.9) we obtain ¢(£) = 0 for £ € [0, 27 — ], which is
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consistent with (i), moreover it implies together with the equation ), lp(E+2km)|2 =1
(see Proposition 1.11 of Chapter 2 [HW]) that () = 1 for £ € [27, 47 — a], which proves

(ii).

For ¢ € [4m — a, 47| we have by (1.2) that

1= |ip(27¢))? = |@L(§)|2 + ()%,

jez

le. 1= bz(%) b(€)?, which agrees with (iii).
For £ € [—a,—%) we have

L= YOI+ 2km)* = [P + (€ +4m),

kEZ

and using (iii) we obtain b(£)? = bz(% + 2m), what is consistent with (iv).
For { € [-§,0) we have

1= (€ +2km) > = [(&)1 + [ (€ + 2m)| + [ (& + 4)|%,

kEZ

so using (iii) again, we get b(£)% + b%(€ + 27) = bz(g ) what gives us (v).

To prove condition (vi) let us note that for £ € 2"[—a, —5], n € Z we have

1=l Zw (27 + 2m) ¢

JEZ

+ ) (PPN 2m) —bP(277E + 2m)) = lim B7(277€ + 2m).
jent1 J—00

The last condition and the equation for the phase follow from considering the function
ty from (1.3) with ¢ = 1. In fact, for £ € [2m — §, 27| we have

(T E)P(29 (€ + 2m)) = P(€)h(€ + 27),

Mg

0=1t:(§) =

S,
I
=

and that is how we get (vii). On the other hand if £ € [-§,0) we obtain

0= t1(€) = P(EVP(E + 2m) + B(26)D(2(€ + 2)),
i.e.
(7.1) e (O~ 4y () (€ + 2m) | = —eH@EO=2REF2N) 1) (2€) ) (2(€ + 2m)),

in this way we obtain the needed equation for «, what ends the first part of the proof.
In the second part we assume the above condition about the function ¢ and we want
to conclude that ¢ is an MRA wavelet. First it is easy to check that (i)-(iii) together with



LAOUA BRANDOLINL, GUSTAVO GARRIGOS, 4A1EMOWILIL RABESZOTNIK AND GUIDO WEHEISS

(vi) imply >, 7 4(27€)|? = 1. Similarly (i)-(ii) and (iv)-(v) give us > oker |h(E+2km)|? =
1, which implies ||1||2 = 1. Therefore,“ to see that ¢ is a wavelet all we have to prove is

Zw (27€)p(27 (€ 4 2qm)) = 0,

for ¢ € 2Z + 1. It is obvious that it is enough to consider only positive q. Moreover, since

diam(supp ’l[)) < 5w, we obtain t, = 0 for ¢ > 3. To see that ¢; = 0 as well we can restrict

ourselves to { € [—5,0)U[2nr—5,27) by (i). For £ € [2n—5,27) we have t1(£) = 0 by (vii).

The case £ € [-§,0) will be proved if we show that |[LHS| and |[RHS| of (7.1) are equal,

since we already assumed that a(§) + a(2(£ + 27)) — a(28) — a(& + 27) = (2m(§) + 1)7.
If £ € [-5,—%] then

ILHS| = \/b2(£/2 + 21) — b2(€ + 2m) b(€ + 27),
|IRHS| = b(¢ + 2m)\/1 — b2(€ + 27).
Now if b(§ + 2m) = 0, then everything is clear. But if this is not the case then, by (vii),

we have b({/2 +2n) =1, s0 |[LHS| = |RHS| as well.
If ¢ € 277 [—a,—%) for j > 2, then
|ILHS| = \/b2(£/2 + 21) — b2(& + 2m) b(€ + 27),
IRHS| = /b2 (€ + 21) — b2(2€ + 2m)\/1 — b2(£ + 27).

Now b(¢ + 27) = 0 implies, by (vii), that b(2§ 4+ 2mw) = 0, so we have zeros on both
sides. But if b(& + 27) # 0 then, by (vii), again we have b({/2 + 2m) = 1, which also
gives us |[LHS| = |RHS]|; since it is clear if b(§ 4+ 27) = 1 and for b(§ + 27) # 1 we have
b(2¢ + 2m) = 0 by (vii).

We will end our proof by showmg that 1 is an MRA wavelet; that is, we will prove

that Dy (&) == 32721 Y res |4h(27 (€ 4+ 2k))|? is equal to 1 almost everywhere (see (1.4)).
If £ € [0,27m — a) then by (i)-(iii)

(i) =1,

>
=
N

I
<

For { € [~a,—%) it follows from (ii) and (iv) that

(
Dy (¢) = [$(2(6 +2m)* = 1.
Finally for £ € 27/ [—a, —%), where [ > 1 we have

Z )2+ [9(2(¢ + 2m)) %

Therefore, for [ = 1 we obtain
Dy(&) =b*(E+2m) +1-b*(¢+2m) =1

and for [ > 2
!
Dy(€) = D (PP +2m) — BP(IE+2m)} +1 - B¢+ 2m) = 1,
j=1
i.e. Dy(§) =1 on [—a,2m — a) and since Dy, is 2m-periodic we obtain Dy, () = 1 almost
everywhere.
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