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Abstract. When L is the Hermite or the Ornstein-Uhlenbeck operator, we

find minimal integrability and smoothness conditions on a function f so that
the fractional power Lσf(x0) is well-defined at a given point x0. We illustrate

the optimality of the conditions with various examples. Finally, we obtain

similar results for the fractional operators (−∆ +R)σ , with R > 0.

1. Introduction

Let L be a positive self-adjoint differential operator densely defined in a Hilbert
space L2(Ω, dµ). Fractional powers Lσ, for σ > 0, can be defined in various (ab-
stract) equivalent ways, one of the most standard being via spectral theory:

〈Lσf, g〉 =

∫
σ(L)

λσ dEf,g, f ∈ Dom(Lσ), g ∈ L2(Ω, dµ), (1.1)

where E denotes a resolution of the identity associated with L; see e.g. [13, Ch 13].
When the spectrum is discrete σ(L) = {λn}∞n=0, and {ϕn}∞n=0 is an orthonormal
basis of eigenfunctions, then (1.1) takes the form

Lσf =

∞∑
n=0

λσn 〈f, ϕn〉ϕn,

say for f ∈ span {ϕn}. Alternatively, it is also possible to express Lσ in terms
of the contraction semigroup {e−tL}t>0. For instance, when σ ∈ (0, 1), via the
Bochner formula

Lσf = 1
Γ(−σ)

∫ ∞
0

(e−tLf − f)
dt

t1+σ
; (1.2)

see e.g. [17, Ch IX.11] and references therein.
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When L equals the classical Laplacian −∆ and f ∈ S(Rd), both (1.1) and (1.2)
lead to the explicit expression

(−∆)σf(x) = cd,σ PV

∫
Rd

f(x)− f(y)

|x− y|d+2σ
dy, x ∈ Rd, σ ∈ (0, 1), (1.3)

with a suitable constant cd,σ > 0; see e.g. [9]. This pointwise formula does actually
make sense for a larger class of functions, e.g. when f ∈ L1(dy/(1 + |y|)d+2σ) and
f is Hölder continuous of order 2σ + ε near the point x. For general operators
L, however, explicit expressions such as (1.3) are not common, and the definition
of Lσf as in (1.1)-(1.2) must necessarily be restricted to a suitable dense class of
functions f .

Based on work of Caffarelli and Silvestre [2], Stinga and Torrea proposed in [14]
to define Lσf as the Neumann boundary value associated with the elliptic PDE{

utt + 1−2σ
t ut = Lu, t > 0

u(0, x) = f(x).
(1.4)

More precisely, if σ ∈ (0, 1) and cσ = 22σ−1Γ(σ)/Γ(1− σ), they set

Lσf(x) = −cσ lim
t→0+

t1−2σ ∂tu(t, x), (1.5)

where u(t, x) is the solution of (1.4) given by the Poisson-like integral

u(t, x) = Pσt f(x) :=
(t/2)2σ

Γ(σ)

∫ ∞
0

e−
t2

4s e−sLf(x)
ds

s1+σ
; (1.6)

see [14, Theorem 1.1]. Then the authors specialize to the Hermite operator

L = −∆ + |x|2 in L2(Rd),

and prove that the pointwise limit in (1.5) exists at every x ∈ Rd, and coincides
with (1.2), whenever f ∈ C2(Rd) ∩ L1(dy/(1 + |y|)N ), for some N > 0; see [14,
Theorem 4.2], and [15, 12] for slightly less restrictive smoothness assumptions.

The purpose of this paper is to show the validity of (1.5) for a wider class of
functions f , with optimal integrability assumptions and very mild smoothness at a
given point x0 ∈ Rd. We also consider the slightly more general family of operators

L = −∆ + |x|2 +m, in L2(Rd), (1.7)

with a constant parameter m ≥ −d (so that L is positive). For m = 0 this is the
usual Hermite operator, while for m = −d it can be transformed (after a change of
variables) into the Ornstein-Uhlenbeck operator

O = −∆ + 2x · ∇, in L2(Rd, e−|x|
2

dx);

see §4 below.
To state our results, we now describe the integrability and smoothness conditions

we shall use below. Given a weight Φ(y) ≥ 0, we say that f ∈ L1(Φ) when∫
Rd
|f(y)|Φ(y) dy <∞. (1.8)
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Associated with L = −∆ + |x|2 +m in (1.7), and σ ∈ (0, 1) we define the weight

Φσ(y) =



e−|y|
2/2

(1 + |y|) d+m2 [ln(e+ |y|)]1+σ
if m > −d

e−|y|
2/2

[ln(e+ |y|)]σ
if m = −d.

(1.9)

Then, f ∈ L1(Φσ) ensures that the Poisson-like integral Pσt f(x) in (1.6) is a well-
defined (smooth) function when (t, x) ∈ (0,∞)×Rd, and this condition is actually
best possible for that property; see [6, Theorem 1.1] (or [8, 5]).

Next, when α ∈ (0, 2), we shall say that a (locally integrable) function f is
α-smooth at x0 ∈ Rd, denoted f ∈ Dα(x0), if it satisfies the Dini-type condition∫

|h|≤δ

|f(x0 + h) + f(x0 − h)− 2f(x0)|
|h|d+α

dh < ∞, for some δ > 0.

We say that f is strictly α-smooth at x0, denoted f ∈ Dαst(x0), if

f ∈ Dα(x0) and

∫
|h|≤δ

|f(x0 + h)− f(x0 − h)|
|h|d+α−3

dh < ∞.

Observe that this last condition is redundant if d+α−3 ≤ 0; in particular, if d = 1
and α ∈ (0, 2), or d = 2 and α ∈ (0, 1]. In other cases however, the classes are
different and we shall need this distinction to obtain our results. We refer to §6
below for several examples of these notions, and their relation with local Lipschitz
conditions at x0.

Our first main result can now be stated as follows.

Theorem 1.1. Let L be the Hermite operator in (1.7), σ ∈ (0, 1) and Φσ(y) as in
(1.9). Suppose that

f ∈ L1(Φσ), and f ∈ D2σ
st (x0) for some x0 ∈ Rd.

Then, the number Lσf(x0) exists both, in the limiting sense of (1.5) and as the
absolutely convergent integral in (1.2), and both definitions agree.

The optimality of the smoothness condition is discussed in §6 below. The cor-
responding version for the Ornstein-Uhlenbeck operator takes the following form.

Theorem 1.2. Let L = O = −∆ + 2x · ∇ and σ ∈ (0, 1). Suppose that

f ∈ L1(e−|y|
2

/[log(e+ y)]σ), and f ∈ D2σ
st (x0) for some x0 ∈ Rd.

Then, the number Oσf(x0) exists both, in the limiting sense of (1.5) and as the
absolutely convergent integral in (1.2), and both definitions agree.

Below, we have attempted to present our results in sufficient generality so that
many of the arguments can be applied to general operators L, while only a few
steps require explicit estimates on the kernels. We illustrate this fact in §5, where
with a minimal effort we obtain a version of the above theorems for the operator
L = −∆ +R, with R > 0; see Theorem 5.2 below.
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2. Preliminary results for general operators L

In this section we shall assume that L is the infinitesimal generator of a semi-
group of operators {e−tL}t>0 in L2(Rd), and that these are described by the inte-
grals

e−tLf(x) =

∫
Rd
ht(x, y)f(y) dy, (2.1)

for a suitable positive kernel ht(x, y). For each σ ∈ (0, 1) we then consider the

family of subordinated operators {Pσt = Pσ,Lt }t>0, formally given by

Pσt f := (t/2)2σ

Γ(σ)

∫ ∞
0

e−
t2

4s e−sL(f)
ds

s1+σ
.

More precisely, we let

Pσt f(x) =

∫
Rd
pσt (x, y)f(y) dy, (2.2)

where the corresponding kernels pσt (x, y) = pσ,Lt (x, y) are defined by

pσt (x, y) = (t/2)2σ

Γ(σ)

∫ ∞
0

e−
t2

4s hs(x, y)
ds

s1+σ
. (2.3)

Observe that a crude estimate such as 0 < hs(x, y) . s−d/2 (which will be satisfied
by all the operators L we shall use) guarantees that the integral in (2.3) is absolutely
convergent, and moreover

∂t
[
pσt (x, y)

]
= aσ t

2σ−1

∫ ∞
0

(
2σ − t2

2s

)
e−

t2

4shs(x, y)
ds

s1+σ
, (2.4)

with aσ = 1/(4σΓ(σ)). It is also not hard to show that

t
∣∣∣∂t[pσt (x, y)

]∣∣∣ . pσt (x, y) + pσ
t/
√

2
(x, y), (2.5)

using the fact that supv>0 ve
−v < ∞. However, in order to handle derivatives of

the expression Pσt f(x) in (2.2) we shall need more information on the decay of the
kernel pσt (x, y).

In the case that L is a Hermite operator the decay is given by the following
result from [6, Lemma 3.1], which also clarifies the optimal role of the functions
Φσ(y) in (1.9).

Lemma 2.1. Let L be the Hermite operator in (1.7), σ ∈ (0, 1) and Φσ(y) as in
(1.9). Then, for every t > 0 and x ∈ Rd, there exist finite numbers c1(t, x) > 0
and c2(t, x) > 0 such that

c1(t, x) Φσ(y) ≤ pσt (x, y) ≤ c2(t, x) Φσ(y) , ∀ y ∈ Rd. (2.6)

In this section we wish to keep the general setting for the operator L described
above, but we shall additionally assume that, for each given σ ∈ (0, 1), the kernel
pσt (x, y) satisfies

pσt (x, y) ≤ c2(t, x) Φ(y) , ∀ y ∈ Rd. (2.7)
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for some function Φ(y) and some c2(t, x) > 0. In all the results in this section we
shall not need the explicit expression of Φ(y).

Our first result will establish a relation between the two pointwise definitions of
Lσf(x) presented in (1.2) and (1.5) above. We first consider the following general
definition.

Definition 2.2. Let σ ∈ (0, 1) and L be an operator such that (2.7) holds for
some Φ(y). Given f ∈ L1(Φ), we say that a point x0 ∈ Rd is Lσ-admissible for f ,
denoted x0 ∈ Af (Lσ), if∫ ∞

0

∣∣e−sLf(x0)− f(x0)
∣∣ ds
s1+σ

<∞. (2.8)

In that case we let

Lσf(x0) := 1
Γ(−σ)

∫ ∞
0

(
e−sLf(x0)− f(x0)

) ds

s1+σ
, (2.9)

where Γ(−σ) = Γ(1− σ)/(−σ).

The following result is partially based on the proof of [14, (4.6)].

Proposition 2.3. Let σ ∈ (0, 1) and L be an operator such that (2.7) holds for
some Φ(y). If f ∈ L1(Φ) and x ∈ Af (Lσ) then

lim
t→0+

−cσ t1−2σ ∂t

[
Pσt f(x)

]
= Lσf(x) , (2.10)

with cσ = 22σ−1Γ(σ)/Γ(1− σ).

Proof. Using (2.2), (2.4), (2.5) and f ∈ L1(Φ) one can justify that

t1−2σ ∂t

[
Pσt f(x)

]
= aσ

∫
Rd

∫ ∞
0

(
2σ − t2

2s

)
e−

t2

4shs(x, y)
ds

s1+σ
f(y) dy,

with aσ = 1/(4σΓ(σ)). We claim that

I =

∫ ∞
0

(
2σ − t2

2s

)
e−

t2

4s
ds

s1+σ
= 0.

In fact, using the change z = t2/4s we see that

I =
2 · 4σ

t2σ

∫ ∞
0

(σ − z)e−zzσ−1 dz =
2 · 4σ

t2σ
(
σΓ(σ)− Γ(σ + 1)

)
= 0.

Then

t1−2σ ∂t

[
Pσt f(x)

]
= aσ

∫ ∞
0

(
2σ − t2

2s

)
e−

t2

4s

[ ∫
Rd
hs(x, y)f(y) dy − f(x)

] ds

s1+σ

= aσ

∫ ∞
0

(
2σ − t2

2s

)
e−

t2

4s

[
e−sLf(x)− f(x)

] ds

s1+σ
.

Since we assume that x ∈ Af (Lσ), by the Lebesgue dominated convergence theorem
we can take limits as t→ 0+, and after adjusting the constants one easily obtains
the result. �
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In view of Proposition 2.3, we are interested in finding conditions on a function
f which guarantee that a given point x ∈ Af (Lσ). Our next observation shows
that only one part of the integral in (2.8) must be checked.

Lemma 2.4. Let σ ∈ (0, 1) and L be an operator such that (2.7) holds for some
Φ(y). Then, for every A > 0 and every x ∈ Rd there exists c(x,A) > 0 such that∫ ∞

A

hs(x, y)
ds

s1+σ
≤ c(x,A) Φ(y), y ∈ Rd. (2.11)

Moreover, if f ∈ L1(Φ) and |f(x)| <∞ then∫ ∞
A

|e−sLf(x)− f(x)| ds

s1+σ
<∞.

Proof. To prove (2.11), note that∫ ∞
A

hs(x, y)
ds

s1+σ
≤ e 1

4A

∫ ∞
0

e−
1
4s hs(x, y)

ds

s1+σ
= c pσ1 (x, y) ≤ c(x,A) Φ(y).

For the last statement,∫ ∞
A

|e−sLf(x)− f(x)| ds
s1+σ

≤
∫
Rd
|f(y)|

∫ ∞
A

hs(x, y)
ds

s1+σ
dy + |f(x)|

∫ ∞
A

ds

s1+σ

by (2.11) . c(x,A)

∫
Rd
|f(y)|Φ(y) dy + |f(x)| <∞.

�

In order to show that x0 ∈ Af (Lσ) we expect that some smoothness of f at the
point x0 must be required. Actually, the smoothness of f will only play a local role
in the integrals defining the property Af (Lσ). This motivates to consider a local
notion of Lσ-admissibility.

Definition 2.5. Let σ ∈ (0, 1), and L an operator as above. Given a locally
integrable function f , we say that a point x0 ∈ Rd is locally Lσ-admissible for f ,
denoted x0 ∈ Aloc

f (Lσ), if there exists δ > 0 and A > 0 such that the integrals

Iδf(x0, s) =

∫
|x0−y|<δ

hs(x0, y)
[
f(y)− f(x0)

]
dy, s ∈ (0, A) (2.12)

satisfy the property ∫ A

0

∣∣Iδf(x0, s)
∣∣ ds

s1+σ
< ∞. (2.13)

The next lemma gives decay conditions on the kernel and smoothness of f at x0

that guarantee the validity of the previous property.

Proposition 2.6. Let σ ∈ (0, 1), and L an operator as above. Let x0 ∈ Rd be
fixed, and assume that the kernel hs(x0, ·) in (2.1) satisfies, for some δ > 0 and
A ∈ (0,∞], the estimates∫ A

0

hs(x0, x0 + y)
ds

s1+σ
≤ c(x0)

|y|d+2σ
, when |y| ≤ δ (2.14)
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and∫ A

0

∣∣∣hs(x0, x0 +y)−hs(x0, x0−y)
∣∣∣ ds
s1+σ

≤ c(x0)

|y|(d+2σ−3)+
, when |y| ≤ δ. (2.15)

Then, for every locally integrable f it holds

f ∈ D2σ
st (x0) =⇒ x0 ∈ Aloc

f (Lσ). (2.16)

Moreover, (2.13) holds with the same A and δ as in (2.14) and (2.15).

Before proving the result, recall the standard notation

feven(x) =
f(x) + f(−x)

2
and fodd(x) =

f(x)− f(−x)

2
.

We shall use the following elementary lemma.

Lemma 2.7. Let F and G be locally integrable in Rd, and B a ball centered at the
origin. Then∫

B

F (x)G(x) dx =

∫
B

Feven(x)Geven(x) dx+

∫
B

Fodd(x)Godd(x) dx. (2.17)

We also introduce the notation

41
zf(x) = f(x+ z)− f(x− z), and 42

zf(x) = f(x+ z) + f(x− z)− 2f(x).

Observe that, after dividing by 2, these expressions are respectively the odd and
even parts of the function z 7→ f(x+ z)− f(x).

PROOF of Proposition 2.6: Changing variables y = x0 + z in (2.12), we can
write

Iδf(x0, s) =

∫
|z|<δ

hs(x0, x0 + z)
[
f(x0 + z)− f(x0)

]
dz.

Then, using the identity in (2.17) and simple manipulations, we can rewrite this
expression as

Iδf(x0, s) = 1
2

∫
|z|<δ

hs(x0, x0 + z)42
zf(x0)dz

+ 1
4

∫
|z|<δ

(
hs(x0, x0 + z)− hs(x0, x0 − z)

)
41
zf(x0)dz (2.18)

Thus, using the kernel assumptions in (2.14) and (2.15), we clearly have∫ A

0

|Iδf(x0, s)|
ds

s1+σ
≤ 1

2

∫
|z|<δ

|42
zf(x0)|

(∫ A

0

hs(x0, x0 + z)
ds

s1+σ

)
dz

+ 1
4

∫
|z|<δ

|41
zf(x0)|

∫ A

0

|hs(x0, x0 + z)− hs(x0, x0 − z)|
ds

s1+σ
dz

.
∫
|z|<δ

|42
zf(x0)|
|z|d+2σ

dz +

∫
|z|<δ

|41
zf(x0)|

|z|(d+2σ−3)+
dz

which is a finite quantity when f ∈ D2σ
st (x0). 2
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Remark 2.8. When the heat kernel at a given x0 satisfies

hs(x0, y) = ρs,x0
(|x0 − y|),

for some function ρs,x0
(for instance, if hs is of convolution type and radial), then

the condition (2.15) is automatically satisfied (since the integrand is 0). Moreover,
in the proof of the proposition the integral in (2.18) vanishes, so no bound is needed
involving 41

zf(x0). Thus, in that setting, the conclusion (2.16) of the proposition
holds with the weaker smoothness assumption f ∈ D2σ(x0).

3. The Hermite operator L = −∆ + |x|2 +m, with m ≥ −d

In this section we specialize to the case when

L = −∆ + |x|2 +m, with m ≥ −d.

We recall the kernel expressions in this setting. For the heat kernel ht(x, y), asso-
ciated with e−tL, we have the Mehler formula

ht(x, y) = e−tm
e−
|x−y|2
2th 2t −th t x·y

[2πsh 2t]
d
2

, t > 0, x, y ∈ Rd;

see e.g. [16, (4.3.14)]. Changing variables to t = t(s) = 1
2 ln( 1+s

1−s ) (or equivalently,

s = th (t)), the kernel takes the form

ht(s)(x, y) =
(1− s)m+d

2

(1 + s)
m−d

2

e−
1
4 (
|x−y|2
s +s|x+y|2)

(4πs)
d
2

. (3.1)

In the next subsection we shall collect the decay and smoothness estimates of this
kernel that will be needed in the proof of Theorem 1.1.

3.1. Kernel estimates. Throughout this section we denote

K(x, y) :=

∫ A

0

ht(x, y)
dt

t1+σ
, x, y ∈ Rd, (3.2)

where we select A > 0 so that thA = 1/2 (any other A > 0 would also be fine).
Performing the change of variables in (3.1) (so that dt = ds

1−s2 ) we obtain

K(x, y) =

∫ 1/2

0

(1− s)m+d
2 −1 e−

1
4 (
|x−y|2
s +s|x+y|2)

(1 + s)
m−d

2 +1 (4πs)
d
2

(
1
2 ln 1+s

1−s
)1+σ ds. (3.3)

Observe that in this range of integration we have ln 1+s
1−s ≈ s, and 1 ± s ≈ 1, so

K(x, y) becomes comparable to

K1(x, y) =

∫ 1/2

0

e−
1
4 (
|x−y|2
s +s|x+y|2)

s1+σ+ d
2

ds. (3.4)

The first lemma shows the decay condition in (2.14). The argument in the proof
is similar to the one used in [8, (4.13)] (where a better estimate is obtained).
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Lemma 3.1. With the notation in (3.3), for every σ > 0 there exists c = c(σ) > 0
such that

K(x, y) ≤ c

|x− y|d+2σ
, ∀ x, y ∈ Rd.

Proof. Changing variables u = |x−y|2
4s in (3.4) we see that

K(x, y) ≈ K1(x, y) =
( 4

|x− y|2
)σ+ d

2

∫ ∞
|x−y|2

2

e−u e−
|x+y|2 |x−y|2

16u uσ+ d
2
du

u

≤ 4σ+ d
2

|x− y|d+2σ

∫ ∞
0

e−u uσ+ d
2
du

u
=

c

|x− y|d+2σ
.

�

Remark 3.2. This lemma may also be proved directly from (3.2) using the prop-
erty

ht(x, y) . t−d/2e−c
|x−y|2

t , 0 < t . 1.

This property is known to hold for many other operators L.

We now show the smoothness condition in (2.15).

Lemma 3.3. For every σ > 0, there exists c = c(σ) > 0 such that∫ A

0

|ht(x, x+ y)− ht(x, x− y)| dt

t1+σ
≤ c |x|
|y|(d+2σ−3)+

, ∀ x ∈ Rd, |y| ≤ 1. (3.5)

In the proof of (3.5) we shall use the following elementary inequality.

Lemma 3.4. If x, y ∈ Rd then∣∣∣e−|x+y|2 − e−|x−y|
2
∣∣∣ ≤ 4|x| |y| e−min |x±y|2 .

Proof. Using |x± y|2 = |x|2 + |y|2 ± 2x · y we can write∣∣∣e−|x+y|2 − e−|x−y|
2
∣∣∣ = e−|x|

2−|y|2
∣∣∣e2x·y − e−2x·y

∣∣∣.
Now, letting t = 2|x · y|, and using the inequality

et − e−t =

∫ t

−t
es ds ≤ 2tet,

we obtain∣∣∣e−|x+y|2 − e−|x−y|
2
∣∣∣ ≤ 4|x| |y| e2|x·y| e−|x|

2−|y|2 = 4|x| |y| e−min |x±y|2 .

�



10 FLORES, GARRIGÓS, SIGNES, VIVIANI

PROOF of Lemma 3.3: Denote by K′(x, y) the left hand side of (3.5). Then,
performing the change of variables in (3.1), and disregarding the inessential terms
(as discussed before (3.4)) we obtain

K′(x, y) ≈
∫ 1/2

0

e−
|y|2
4s

∣∣e− s4 |2x+y|2 − e− s4 |2x−y|2
∣∣

s1+σ+ d
2

ds

(by Lemma 3.4) .
∫ 1/2

0

e−
|y|2
4s s |2x| |y|
s1+σ+ d

2

ds . |x| |y|
∫ 1/2

0

e−
|y|2
4s

sσ+ d
2

ds

(u = |y|2/(4s)) =
c |x| |y|
|y|d+2σ−2

∫ ∞
|y|2/2

e−u uσ+ d
2−1 du

u
≤ c′ |x|
|y|d+2σ−3

,

the last bound being valid when σ + d/2 − 1 > 0. This is always the case when
d ≥ 2 and σ > 0, and also if d = 1 and σ > 1/2.

In the special case that d = 1 and σ ∈ (0, 1/2], one observes that the integral

I(y) :=

∫ ∞
|y|2/2

e−u uσ−
1
2
du

u
≈
{

log(e/|y|), if σ = 1/2
|y|2σ−1, if σ ∈ (0, 1/2),

when |y| ≤ 1. Inserting this into the above estimates, it leads to

K′(x, y) .

{
|x| |y| log(e/|y|), if σ = 1/2
|x| |y|, if σ ∈ (0, 1/2),

which implies
K′(x, y) . |x|, ∀ |y| ≤ 1.

Note that this matches (3.5) in the special case d = 1 and σ ≤ 1/2. 2

Our last result is a strengthening of the decay estimate in Lemma 3.1 when
|y| � |x|. The proof follows a similar reasoning as in [8, Lemma 4.2].

Lemma 3.5. Let σ > 0. Then there exist c = c(σ) > 0 and γ > 0 such that

K(x, y) ≤ c e−( 1
2 +γ)|y|2 , when |y| ≥ 10 max{|x|, 1}.

Proof. For simplicity denote a = |x+ y| and b = |x− y|. Note that, the condition
|y| ≥ 10|x| implies

a2, b2 ≥
(

9
10

)2 |y|2.
Given a small η ∈ (0, 1) (to be determined) we have, for all s ∈ (0, 1/2)

e−
1
4 (sa2+ b2

s ) = e−
ηb2

4s e−
1
4 (sa2+(1−η) b

2

s )

≤ e−
ηb2

4s e−
1
4

(
9
10

)2
|y|2
(
s+(1−η) 1

s

)
≤ e−

ηb2

4s e−
1
4

(
9
10

)2
|y|2 (1−η) 5

2 ,

using that s+ 1
s ≥ 5/2 when s ∈ (0, 1/2). Note that, if η > 0 is chosen sufficiently

small, we can find some γ > 0 such that

1
4

(
9
10

)2
(1− η) 5

2 > 1
2 + γ.

So we have

e−
1
4 (sa2+ b2

s ) ≤ e−
ηb2

4s e−( 1
2 +γ) |y|2 , s ∈ (0, 1/2).
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Thus, inserting these estimates into (3.4), we obtain

K(x, y) ≈ K1(x, y) ≤ e−( 1
2 +γ) |y|2

∫ 1/2

0

e−
η|x−y|2

4s
ds

s1+σ+ d
2

.

Finally, in the last integral we perform the change of variables u = η|x−y|2
4s and

obtain

K(x, y) .
e−( 1

2 +γ) |y|2

|x− y|2σ+d

∫ ∞
0

e−u uσ+ d
2 du
u . e

−( 1
2 +γ) |y|2 ,

using in the last step that |x− y| ≈ |y| ≥ 1, under the conditions in the statement.
�

3.2. Regular positive eigenvectors.

Definition 3.6. We say that ψ(x) ∈ Dom(L) is a regular positive eigenvector of
L if

(a) ψ ∈ C∞(Rd)
(b) ψ(x) > 0, ∀x ∈ Rd
(c) L(ψ) = λψ, for some λ ≥ 0.

When L = −∆ + |x|2 + m, it is elementary to find an explicit regular positive
eigenvector, namely

ψ(x) = e−|x|
2/2.

Indeed, it is easily verified that L(ψ) = λψ with λ = m+ d ≥ 0.

We have the following simple lemma, which is valid for general operators L.

Lemma 3.7. Let ψ be a regular positive eigenvector of L. Then, for all σ ∈ (0, 1)
and all x ∈ Rd it holds ∫ ∞

0

∣∣∣e−tLψ(x)− ψ(x)
∣∣∣ dt

t1+σ
< ∞.

That is, x ∈ Aψ(Lσ), for all x ∈ Rd.

Proof. Since e−tLψ = e−tλψ, the result is clear if λ = 0. If λ > 0, then we have∫ ∞
0

∣∣∣e−tLψ(x)− ψ(x)
∣∣∣ dt

t1+σ
= ψ(x)

∫ ∞
0

|e−tλ − 1| dt

t1+σ
. (3.6)

Now, from the elementary estimate

|e−tλ − 1| =
∣∣∣ ∫ t

0

λ e−sλ ds
∣∣∣ ≤ min{λ t, 2}.

one deduces that (3.6) is a finite expression when σ ∈ (0, 1). �

Remark 3.8. In this paper we shall not pursue this notion with other operators
L, but it is well-known that such eigenvectors exist when L = −∆ + V (x), under
very general conditions on V (x); see e.g. [11, Theorem 11.8].
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3.3. Proof of Theorem 1.1. In this section we prove Theorem 1.1 for the Hermite
operator

L = −∆ + |x|2 +m.

That is, if σ ∈ (0, 1) and Φσ is given as in (1.9), we must show that, for x = x0,∫ ∞
0

∣∣∣e−tLf(x)− f(x)
∣∣∣ dt

t1+σ
< ∞,

under the conditions f ∈ L1(Φσ) and f ∈ D2σ
st (x). In that case, the assertions in

the theorem will follow directly from Proposition 2.3. In view of Lemma 2.4, it
suffices to show that ∫ A

0

∣∣∣e−tLf(x)− f(x)
∣∣∣ dt

t1+σ
< ∞, (3.7)

where A > 0 can be chosen as in §3.1.
Let ψ be a regular positive eigenvector for L, as described in §3.2. Since ψ(x) >

0, a multiplication by this number does not affect the finiteness of (3.7). Now we
have

J := ψ(x)

∫ A

0

∣∣∣e−tLf(x)− f(x)
∣∣∣ dt

t1+σ
(3.8)

=

∫ A

0

∣∣∣(e−tLf)(x)ψ(x)− f(x)ψ(x)
∣∣∣ dt

t1+σ

≤
∫ A

0

∣∣∣(e−tLf)(x)ψ(x)−
(
e−tLψ

)
(x)f(x)

∣∣∣ dt

t1+σ

+|f(x)|
∫ A

0

∣∣∣(e−tLψ)(x)− ψ(x)
∣∣∣ dt

t1+σ
= J1 + J2.

Note that J2 < ∞ by Lemma 3.7, so we must only prove the finiteness of J1. For
that term, we have the following inequalities

J1 =

∫ A

0

∣∣∣ ∫
Rd
ht(x, y)

[
f(y)ψ(x)− f(x)ψ(y)

]
dy
∣∣∣ dt

t1+σ

≤ ψ(x)

∫ A

0

∣∣∣ ∫
Rd
ht(x, y)

[
f(y)− f(x)

]
dy
∣∣∣ dt

t1+σ

+|f(x)|
∫ A

0

∣∣∣ ∫
Rd
ht(x, y)

[
ψ(x)− ψ(y)

]
dy
∣∣∣ dt

t1+σ
= J11 + J12.

The two summands, J11 and J12, can be treated similarly, since both functions f
and ψ belong to L1(Φσ) ∩ D2σ

st (x), by assumption∗. So in the sequel we will just
prove that J11 <∞ and this will be enough to conclude the theorem. In fact, since
ψ(x) > 0, it will suffice to show that

J11 :=

∫ A

0

∣∣∣ ∫
Rd
ht(x, y)

[
f(y)− f(x)

]
dy
∣∣∣ dt

t1+σ
< ∞.

∗Actually, ψ is much smoother than just D2σ
st (x), so J12 is formally easier.
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At this point we let δ = 11 max{|x|, 1}, and split the inner integral into the two
regions {|y − x| < δ} and {|y − x| ≥ δ} ⊂

{
|y| ≥ 10 max{|x|, 1}

}
. So recalling the

notation for Iδf(x, t) in (2.12) we have

J11 ≤
∫ A

0

∣∣Iδf(x, t)
∣∣ dt

t1+σ
+ J ∗11, (3.9)

where

J ∗11 =

∫ A

0

∫
|y|≥10 max{|x|,1}

ht(x, y)
∣∣f(y)− f(x)

∣∣ dy dt

t1+σ

=

∫
|y|≥10 max{|x|,1}

∣∣f(y)− f(x)
∣∣K(x, y) dy,

using this time the notation for K(x, y) in (3.2). By Lemma 3.5, this last kernel
has a gaussian decay, which leads to

J ∗11 .
∫
Rd

(
|f(x)|+ |f(y)|

)
e−( 1

2 +γ)|y|2 dy . |f(x)|+
∫
Rd
|f(y)|Φσ(y) dy,

since, from the definition in (1.9), one has e−( 1
2 +γ)|y|2 . Φσ(y) (actually, for all

σ > 0). Thus, the assumption f ∈ L1(Φσ) gives J ∗11 < ∞, and hence, in view of
(3.9), we have reduced matters to verify that∫ A

0

∣∣Iδf(x, t)
∣∣ dt

t1+σ
<∞.

But this is precisely the condition x ∈ Aloc
f (Lσ) in Definition 2.5. Now, in view of

Proposition 2.6, this property is a consequence of the smoothness assumption f ∈
D2σ

st (x), since the heat kernel ht(x, y) satisfies the two hypotheses in the proposition,
(2.14) and (2.15), due to Lemmas 3.1 and 3.3. This completes the proof of Theorem
1.1. 2

Remark 3.9. When x0 = 0, Theorem 1.1 holds with the weaker smoothness
condition f ∈ D2σ(x0). This is because of the observation in Remark 2.8, since the
heat kernel for the Hermite operator, ht(0, y), only depends on |y|; see (3.1).

4. The Ornstein-Uhlenbeck operator O = −∆ + 2x · ∇

4.1. Proof of Theorem 1.2. We now turn to the proof of Theorem 1.2 for the
operator

O = −∆ + 2x · ∇,
which is positive and self-adjoint in L2(e−|y|

2

dy). In this case, there is a well-known
transference principle, see e.g. [1, Prop 3.3], that reduces matters to the Hermite
operator with m = −d, that is

L = −∆ + |x|2 − d, in L2(Rd). (4.1)

Indeed, if we set f̃(x) = e−
|x|2
2 f(x) then it is easily seen that Of(x) = e

|x|2
2 [Lf̃ ](x).

Thus,

e−tOf(x) = e
|x|2
2 e−tLf̃(x) and Pσ,Ot f(x) = e

|x|2
2 Pσ,Lt f̃(x),
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so that the convergence properties of O and L in (4.1) are linked by the mapping

f 7→ f̃ . Indeed, just observe that, if

ΦOσ (y) =
e−|y|

2

[ln(e+ |y|)]σ
,

then

(i) f ∈ L1(ΦOσ ) iff f̃ ∈ L1(ΦLσ )

(ii) Oσ(f)(x) = e|x|
2/2 Lσ(f̃)(x), as defined in (2.9)

(iii) lim
t→0+

t1−2σ ∂t
[
Pσ,Ot f(x)

]
= e

|x|2
2 lim

t→0+
t1−2σ ∂t

[
Pσ,Lt f̃(x)

]
.

Since we also have f ∈ D2σ
st (x) iff f̃ ∈ D2σ

st (x), then Theorem 1.2 is an immediate
consequence of Theorem 1.1. 2

5. Results for other operators L

One can ask whether Theorem 1.1 continues to hold for other positive self-
adjoint operators L. If one aims at optimal integrability conditions on f , the first
step would be to find a suitable function ΦLσ (y) such that

c1(t, x) ΦLσ (y) ≤ pσ,Lt (x, y) ≤ c2(t, x) ΦLσ (y) , ∀ y ∈ Rd, (5.1)

as stated in Lemma 2.1. Such optimal estimates, for certain families of operators
L, have already been investigated by the authors (and their collaborators) in earlier
papers. For instance, besides the already mentioned reference [8] for Hermite type
operators, we have also considered a large class of Laguerre type operators L in [7],
while the Bessel operators (in the case σ = 1/2) were treated by I. Cardoso in [3].

In this paper we have tried to state our results in sufficient generality, so that one
part of the arguments can be applied to general operators L (such as in §2), while
the other parts concern with specific estimates of the kernels ht(x, y) associated
with L (such as in §3.1). We remark that, following this line of reasoning, one
can derive versions of Theorem 1.1 when L is any the aforementioned Laguerre or
Bessel operators; we expect to take up these matters in [4].

In this section we illustrate this fact in just one specific but particularly simple
case. For a fixed† parameter R > 0, we consider the perturbed Laplacian

L = −∆ +R.

In this case, e−tL has a well-known convolution kernel

ht(x, y) = e−tRWt(x− y), where Wt(x) = (4πt)−d/2 e−
|x|2
4t . (5.2)

It was also proved in [8, §5.2] that (5.1) does hold with

ΦL
σ(y) :=

e−
√
R(1+|y|2)

(1 + |y|) d+1
2 +σ

. (5.3)

†In the sequel we shall not track the dependence of the constants on R > 0.
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We now define a similar kernel as in (3.2) (this time letting A =∞)

K(x, y) :=

∫ ∞
0

ht(x, y)
dt

t1+σ
. (5.4)

Lemma 5.1. With the notation in (5.2), (5.3) and (5.4), if x ∈ Rd, there exists
c(x) > 0 such that

K(x, y) ≤ c(x) ΦL
σ(y), for all |y| ≥ 2 max{|x|, 1}.

Proof. Note from (5.2) and (5.4) that

K(x, y) = (4π)−d/2
∫ ∞

0

e−tRe−
|x−y|2

4t
dt

t1+σ+ d
2

. (5.5)

For ν > 0, consider the special function

Fν(z) :=

∫ ∞
0

e−se−
z2

4s sν−1 ds . (1 + z)ν−
1
2 e−z, z > 0,

where the inequality follows from the asymptotics of the integral; see e.g. [10, p.
136]. If we change variables s = |x− y|2/(4t) in (5.5) we obtain that

K(x, y) = c
Fσ+d/2

(√
R |x− y|

)
|x− y|2σ+d

.

(
1 +
√
R |x− y|

)σ+ d−1
2

|x− y|2σ+d
e−
√
R |x−y|.

If we now assume that |y| ≥ 2 max{|x|, 1}, the right side is easily seen to be
controlled by c(x) ΦL

σ(y); see e.g. [8, (5.6)] and subsequent lines for a detailed
argument. �

We can now state the corresponding theorem for the operator L = −∆ +R.

Theorem 5.2. Let L = −∆ +R with R > 0 fixed. Let σ ∈ (0, 1) and ΦL
σ(y) be as

in (5.3). Suppose that

f ∈ L1(ΦL
σ) and f ∈ D2σ(x0) at some x0 ∈ Rd.

Then (−∆ + R)σ(x0) is well defined in the limiting sense of (2.10), and as the
absolutely convergent integral in (2.9), and both definitions agree.

Proof. By Proposition 2.3 we must show that x = x0 ∈ Af (Lσ). Observe that
ψ(y) ≡ 1 is a regular positive eigenvector for L, according to Definition 3.6. So, by
Lemma 3.7 and the inequalities following (3.8) (applied with A =∞), if suffices to
show that

J1 =

∫ ∞
0

∣∣∣(e−tLf)(x)− f(x)
(
e−tLψ

)
(x)
∣∣∣ dt

t1+σ

=

∫ ∞
0

∣∣∣ ∫
Rd
ht(x, y)

[
f(y)− f(x)

]
dy
∣∣∣ dt

t1+σ
<∞.

We let δ = 3 max{|x|, 1}, and as before, split the inner integral into the regions
{|y − x| < δ} and {|y − x| ≥ δ}. So, using the notation for Iδf(x, t) in (2.12) we
have

J1 ≤
∫ ∞

0

∣∣Iδf(x, t)
∣∣ dt

t1+σ
+ J∗1
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where

J∗1 =

∫ ∞
0

∫
|y−x|≥δ

ht(x, y)
∣∣f(y)− f(x)

∣∣ dy dt
t1+σ

≤
∫
|y|≥max{|x|,1}

∣∣f(y)− f(x)
∣∣K(x, y) dy,

with K(x, y) as in (5.4). By Lemma 5.1,

J∗1 ≤ c(x)

∫
Rd

(
|f(x)|+ |f(y)|

)
ΦL
σ(y) dy,

which is a finite expression. So we have reduced matters to show that∫ ∞
0

∣∣Iδf(x, t)
∣∣ dt

t1+σ
<∞.

But under the smoothness assumption that f ∈ D2σ(x), this is a consequence of
Proposition 2.6 (setting A = ∞), since the kernel ht(x, y) trivially satisfies (2.14)
(by Remark 3.2) and (2.15) (whose left hand side is identically 0; see Remark 2.8).
Finally observe, also by Remark 2.8, that only the weaker smoothness condition
f ∈ D2σ(x) is used, due to the convolution structure of the kernel ht(x, y). �

6. Smoothness conditions

In this section we give some examples to illustrate the smoothness conditions
from §1. Recall that, for α ∈ (0, 2), a locally integrable function f ∈ Dα(x0) if∫

|h|≤δ

|f(x0 + h) + f(x0 − h)− 2f(x0)|
|h|d+α

dh < ∞,

for some δ > 0 (hence for all δ > 0). Also, f ∈ Dαst(x0) if

f ∈ Dα(x0) and

∫
|h|≤δ

|f(x0 + h)− f(x0 − h)|
|h|d+α−3

dh < ∞.

Observe that if f is bounded near x0, this last condition is redundant, so α-smooth
and strictly α-smooth agree in this case. The two classes also coincide if d+α−3 ≤
0, that is

Dα(x0) = Dαst(x0), if d = 1, or d = 2 and α ∈ (0, 1]. (6.1)

In other cases, the classes are different, as shown by the example in (6.4) below.
Finally, note that strict α-smoothness can also be characterized as follows.

Lemma 6.1. Let α ∈ (0, 2). Then f ∈ Dαst(x0) if and only if

f ∈ Dα(x0) and

∫
|h|≤δ

|f(x0 + h)− f(x0)|
|h|d+α−3

dh < ∞. (6.2)

Proof. The implication “⇐” is obvious since

|f(x0 + h)− f(x0 − h)| ≤ |f(x0 + h)− f(x0)|+ |f(x0 − h)− f(x0)|.
For the converse implication “⇒” note that

2
(
f(x0 +h)− f(x0)

)
=
[
f(x0 +h)− f(x0−h)

]
+
[
f(x0 +h) + f(x0−h)− 2f(x0)

]
.
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�

We next collect a few further elementary observations.

(1) If f is odd about x0 and f(x0) = 0, then f ∈ Dα(x0), for all α ∈ (0, 2).
For instance, if γ ∈ [0, d) then

f(x) = sign (x · e1)/|x|γ if x 6= 0, f(0) = 0, (6.3)

belongs to Dα(0) for all 0 < α < 2, even though it is discontinuous there.
However, by (6.2), f ∈ Dαst(0) only if additionally α ∈ (0, 3 − γ). In
particular, the function

g(x) =
sign ((x− x0) · e1)

|x− x0|3−α
if x 6= x0, g(x0) = 0, (6.4)

which is locally integrable if d + α − 3 > 0, shows that Dαst(x0) ( Dα(x0)
in the complementary range of (6.1).

(2) There exists a function f ∈ Dαst(x0), for all α ∈ (0, 2), but which is discon-
tinuous and unbounded at x0. Indeed, if d ≥ 2 (and x0 = 0), the function
f defined in (6.3) with parameter γ = 1 has this property. If d = 1, one
may take any (locally integrable) odd function unbounded near x0.

(3) If f ∈ Lipβ(x0) for some β ∈ (0, 2] then f ∈ Dαst(x0) for all α < β. Here,
f ∈ Lipβ(x0), if β ∈ (0, 1], means that

|f(x0 + h)− f(x0)| ≤ c |h|β , ∀ |h| ≤ δ,

for some c, δ > 0. If β ∈ (1, 2], it means that f is differentiable at x0 and∣∣f(x0 + h)− f(x0)−∇f(x0) · h
∣∣ ≤ c |h|β , ∀ |h| ≤ δ.

Indeed, in either case it is clear that f ∈ Lipβ(x0) implies

|42
hf(x0)| =

∣∣f(x0 + h)− 2f(x0) + f(x0 − h)
∣∣ ≤ 2c |h|β ,

and

|41
hf(x0)| =

∣∣f(x0 + h)− f(x0 − h)
∣∣ ≤ c′ |h|min{β,1},

which in turn implies f ∈ Dαst(x0), for all α < β.
(4) The following examples relate Lipβ(x0) and Dα(x0) when β = α:

f(x) = |x− x0|α ∈ Lipα(x0) \ Dα(x0), ∀α ∈ (0, 2)

g(x) = sign
(
(x− x0) · e1

)
|x− x0|α ∈ Lipα(x0) ∩ Dαst(x0), ∀ α ∈ (0, 2).

(5) We mention an example relating the above smoothness conditions at a point
x0 and the existence of (−∆)

α
2 f(x0), as defined in (1.3). Consider the two

functions f, g, defined as in point (4) above but additionally multiplied by
a smooth cut-off ϕ(|x − x0|), where ϕ ∈ C∞c (R) with ϕ ≡ 1 in [−1, 1].
Then, it is easily seen that

(−∆)
α
2 f(x0) = −∞ but (−∆)

α
2 g(x0) = 0.
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So in general, f ∈ Lipα(x0) is not enough to define pointwise fractional
powers, L

α
2 f(x0), justifying the search for a different condition such as

f ∈ Dα(x0) or f ∈ Dαst(x0).
(6) When L is the Hermite operator in (1.7), one can show that the function

g(x) defined in (6.4), when additionally multiplied by a smooth cut-off
ϕ(|x− x0|) supported near the point x0 = e1, has the property

L
α
2 g(x0) =∞.

Thus, when x0 6= 0, in Theorem 1.1 one cannot replace the assumption
f ∈ D2σ

st (x0) by the weaker condition f ∈ D2σ(x0) (except of course when
the two classes coincide; see (6.1)). This example also shows that there are
compactly supported g such that

(−∆)
α
2 g(x0) = 0 but L

α
2 g(x0) =∞

(the latter in the sense of Definition 2.2).

Acknowledgements. We wish to thank the referee for useful comments which
have led to an improved version of this paper.
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