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Abstract. We study differentiability conditions on a complex measure ν at

a point x0 ∈ Rd, in relation with the boundary convergence at that point

of the Poisson-type integral Ptν = e−t
√
Lν, where L = −∆ + |x|2 is the

Hermite operator. In particular, we show that x0 is a Lebesgue point for ν iff

a slightly stronger notion than non-tangential convergence holds for Ptν at x0.

We also show non-tangential convergence when x0 is a σ-point of ν, a weaker
notion than Lebesgue point, which for d = 1 coincides with the classical Fatou

condition.

1. Introduction

Let ν be a locally finite complex measure in Rd, meaning that ν = ν1 + iν2 and
ν1, ν2 are signed Borel measures which are finite in compact sets.

We shall use the notion of Lebesgue point for ν as defined by Saeki in [14].
Namely, we say that x0 ∈ Rd is a Lebesgue point of ν, denoted x0 ∈ Lν , if there
exists ` ∈ C such that

lim
r→0

|ν − ` dy|
(
Br(x0)

)
|Br(x0)|

= 0. (1.1)

Here dy(E) = |E| denotes the standard Lebesgue measure of a set E ⊂ Rd and
Br(x0) = {x ∈ Rd : |x−x0| < r}. If we write ν in terms of the Lebesgue-Radon-
Nikodym decomposition, that is

ν = f dy + λ, with λ ⊥ dy (1.2)

(see e.g. [6, Thm 3.12]), then using the property that |µ + λ| = |µ| + |λ| when
µ ⊥ λ, we see that x0 ∈ Lν if and only if for some ` ∈ C it holds

lim
r→0
−
∫
Br(x0)

|f(y)− `| dy = 0 and lim
r→0

|λ|
(
Br(x0)

)
|Br(x0)|

= 0. (1.3)
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In particular, if ν = fdx, this is the usual notion of Lebesgue point for the function
f , while for a general ν as in (1.2) we have

Lν = Lf ∩ Lλ.

Observe also that, if x0 ∈ Lν , we can express the value of ` in (1.1) without
appealing to the Lebesgue-Radon-Nikodym decomposition, by letting

` = Dν(x0) := lim
r→0

ν
(
Br(x0)

)
|Br(x0)|

. (1.4)

Indeed, this identity follows from the elementary bound∣∣∣∣∣ν
(
Br(x0)

)
|Br(x0)|

− `

∣∣∣∣∣ =

∣∣∣∣∣ (ν − ` dy)
(
Br(x0)

)
|Br(x0)|

∣∣∣∣∣ ≤ |ν − ` dy|
(
Br(x0)

)
|Br(x0)|

−→ 0.

The quantity Dν(x0) in (1.4) is sometimes called the symmetric derivative of the
measure ν at x0; see e.g. [13, Def 7.2].

Consider now the Hermite operator

L = −∆ + |x|2, in Rd,

and its associated Poisson semigroup

Pt = e−t
√
L = t√

4π

∫ ∞
0

e−
t2

4τ e−τL
dτ

τ3/2
;

see e.g. [17, Ch 2.2]. This semigroup (and its close relative involving the Ornstein-
Uhlenbeck operator −∆ + 2x · ∇) have been widely studied in Harmonic Analysis;
see e.g. [11, 19, 18, 9, 20]. We wish to find mild differentiability conditions on a
measure ν at an individual point x0 ∈ Rd so that the Poisson integrals

Ptν(x) =

∫
Rd

Pt(x, y) dν(y), (t, x) ∈ (0,∞)× Rd, (1.5)

have a non-tangential limit when (t, x)→ (0, x0).
When L is the Hermite operator, the kernel Pt(x, y) is partially explicit (see

(2.1) below for a precise expression), and its growth (for fixed t and x) is well
determined by the function

Φ(y) :=
e−|y|

2/2

(1 + |y|) d2 [log(e+ |y|)] 3
2

, y ∈ Rd. (1.6)

Namely, it was shown in [8, Lemma 4.1] that for each t > 0 and x ∈ Rd there exist
cj(t, x) > 0, j = 1, 2, such that

c1(t, x) Φ(y) ≤ Pt(x, y) ≤ c2(t, x) Φ(y), y ∈ Rd. (1.7)

In particular, ifM(Φ) denotes the set of (locally finite) complex measures ν in Rd
such that ∫

Rd
Φ(y) d|ν|(y) <∞,
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then it follows from (1.7) that, if ν ∈ M(Φ), the function Ptν(x) in (1.5) is well-

defined for all t > 0 and x ∈ Rd. Moreover, u(t, x) = Ptν(x) is smooth in Rd+1
+ =

(0,∞)× Rd and satisfies the PDE

utt = −∆xu+ |x|2u,
see e.g. [5, Theorem 1.3].

Our first result in this paper investigates the relation between the Lebesgue
point condition, x0 ∈ Lν , and the existence of the non-tangential limit

lim
|x−x0|<αt→0

Ptν(x),

for every α > 0. We shall prove the following

Theorem 1.1. Let ν ∈ M(Φ) and x0 ∈ Rd. Then, the following assertions are
equivalent

(i) x0 ∈ Lν ;

(ii) lim
t→0

Pt
(
|ν − ` dy|

)
(x0) = 0, for some ` ∈ C;

(iii) lim
|x−x0|<αt→0

Pt
(
|ν − ` dy|

)
(x) = 0, for some ` ∈ C and some (all) α > 0.

Morever, if these assertions hold we can take ` = Dν(x0), and for every α > 0 it
also holds

lim
|x−x0|<αt→0

Ptν(x) = Dν(x0). (1.8)

As a second result, we give a weaker condition than Lebesgue point which still
ensures non-tangential convergence. This is the notion of σ-point introduced by V.
Shapiro in [16]; see also [15]. We say that x0 ∈ Rd is a σ-point of a (locally finite)
complex measure ν, denoted x0 ∈ Sν , if there exists ` ∈ C such that

lim
|x−x0|+r→0

∣∣(ν − ` dy)(Br(x))
∣∣

(|x− x0|+ r)d
= 0. (1.9)

Note that, if x0 is a σ-point, then ν has a symmetric derivative at x0, and we can
take ` = Dν(x0) in (1.9). This follows by just restricting the above limit to x = x0.
Also, since Br(x) ⊂ Br+|x−x0|(x0), we have

Lν ⊂ Sν ,

and the inclusion can be strict in view of the examples in [16, §3]. Finally, when
d = 1 there is a simple characterization: write ν as a Lebesgue-Stieltjes measure
ν = dmF , with

ν
(
(a, b]

)
= F (b)− F (a);

see e.g. [6, Thm 1.16]. Then x0 ∈ Sν iff F is differentiable at x0, in which case

F ′(x0) = ` = Dν(x0).

The proof is elementary; see also [15, Proposition 3.4].
Our second result has the following statement.
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Theorem 1.2. Let ν ∈M(Φ) and x0 ∈ Rd a σ-point of ν. Let ` = Dν(x0).

(i) If d ∈ {1, 2, 3} then

lim
|x−x0|<αt→0

Ptν(x) = `, ∀α > 0. (1.10)

(ii) If d ≥ 4 then (1.10) holds if it is additionally assumed that

lim
r→0

|ν − ` dy|(Br(x0))

rd−3
= 0. (1.11)

As a corollary, when d = 1 we obtain the non-tangential convergence under the
classical Fatou condition, see [2] or [21, Thm III.7.9.ii]. This result seems to be
new for Poisson-Hermite integrals.

Corollary 1.3. Let d = 1 and ν = mF be a Lebesgue-Stieljes measure in M(Φ).
If F is differentiable in x0 then

lim
|x−x0|<αt→0

Ptν(x) = F ′(x0), ∀α > 0.

Finally, we remark that, when x0 = 0, one can slightly relax the condition (1.11)
(and even remove it, if d = 4), due to the special symmetry of the resulting kernel
Pt(0, y); see a precise statement in Theorem 3.3 below.

We comment on previous results on these matters for the Poisson-Hermite semi-
group. When the initial datum is a function, that is ν = f dy, generic results on
a.e. convergence of Ptf go back to [11], see also [18, 8]. These references contain
the main kernel estimates, but do not consider convergence at individual Lebesgue
points of f . A statement for these was recently given in [7] (for the related La-
guerre operator), and requires an argument that we elaborate further here in the
new Lemma 2.4. Concerning measures ν as initial data, we are only aware of the
a.e. results for Ptν in [5, Theorem 1.3], which again do not consider the behavior
at individual points.

Regarding Theorem 1.2, no results involving weaker notions than Lebesgue
points seem to appear in the literature for Poisson-Hermite integrals, even when ν
equals f or d = 1. However, there is an extensive literature in the classical setting
of harmonic functions regarding optimal conditions for non-tangential convergence;
see e.g. [10, 12, 1], or the more recent [14, 16, 15] and references therein. The lat-
ter papers consider a general setting of approximations of the identity, but always
associated with convolution kernels with a dilation structure, that is,

Kt(x, y) = t−dφ((x− y)/t), t > 0,

and most often with a radially decreasing φ.
One novelty here regards the fact that one must consider kernels Pt(x, y) without

this convolution structure, so different arguments are necessary to carry out the
proofs. Our arguments will be based on a suitable kernel decomposition into radial
and non-radial parts, and very precise estimates on the kernel which are optimal
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for dimensions d ≤ 3, but require the additional condition (1.11) when d ≥ 4. We
do not know whether Theorem 1.2 may hold without this hypothesis (if x0 6= 0),
although it seems unlikely in view of examples in [4], where a similar condition in
relation with the normal convergence of Ptν(x0) appears for dimensions d ≥ 4, and
cannot be removed in that setting. We nevertheless remark that (1.11) is quite
mild (certainly weaker than the Lebesgue point condition), due to the factor rd−3

in the denominator.

The paper is structured as follows. In section 2 we compile the notation and
the required kernel estimates, and present the proof of Theorem 1.1. We establish
in §2.3 a general Lemma 2.4, which may have an independent interest. Finally, in
section 3 we give a detailed proof of Theorem 1.2.

2. Proof of Theorem 1.1

It is clear that (iii) implies (ii). We shall show in separate subsections the other
implications. Below we use the notation

pt(z) =
t

(t2 + |z|2)
d+1
2

,

which except for a multiplicative constant is the standard Poisson kernel. Recall
also that the Poisson kernel Pt(x, y) associated with the Hermite operator can be
explicitly given by

Pt(x, y) = cd t

∫ 1

0

e−
t2

`(s) (1− s2)
d
2−1 e−

1
4 (
|x−y|2
s +s|x+y|2)

s
d
2

(
`(s)

)3/2 ds, (2.1)

where `(s) = 2 ln 1+s
1−s and cd > 0; see e.g. [8, (4.1)]. Note that `(s) ≈ s when

s ∈ (0, 1/2), a fact that we shall use often below.

2.1. Proof of (ii) =⇒ (i). We quote the following estimate from below for the
kernel Pt(x, y).

Lemma 2.1. Given R ≥ 1, there exists a constant δR > 0 such that

Pt(x, y) ≥ δR pt(x− y), when |x|, |y|, t ≤ R. (2.2)

Proof. If we restrict the range of integration in (2.1) to s ∈ (0, 1/2), so that `(s) ≈ s,
after disregarding inessential terms we have

Pt(x, y) & t

∫ 1/2

0

e−
c t2

4s e−
1
4 (
|x−y|2
s +s|x+y|2)

s
d+3
2

ds

≥ e−
R2

2 t

∫ 1/4

0

e−
c t2+|x−y|2

4s

s
d+1
2

ds

s

=
cR t

(ct2 + |x− y|2)
d+1
2

∫ ∞
ct2+|x−y|2

e−uu
d+1
2
du

u
,
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performing in the last step the change of variables u = (c t2 + |x− y|2)/(4s). Using
again the assumption |x|, |y|, t ≤ R, the last integral is bounded below by∫ ∞

(4+c)R2

e−uu
d+1
2
du

u
= c′R.

Combining these expressions one obtains (2.2). �

Going back to the proof of Theorem 1.1, assume that (ii) holds, and denote
|ν − `dx| = µ. Pick R ≥ |x0|+ 1 and t ≤ 1. Then the previous lemma gives

Pt
(
µ
)
(x0) & δR

∫
|y−x0|≤t

pt(x0 − y) dµ(y).

Since pt(x0 − y) ≈ t−d when |x0 − y| ≤ t, this implies

Pt
(
µ
)
(x0) &

µ
(
Bt(x0)

)
|Bt(x0)|

.

By (ii), the left-hand side goes to 0 as t → 0, hence so does the right hand side.
Since µ = |ν − ` dx|, this implies that x0 is a Lebesgue point of ν (and therefore,
also that ` = Dν(x0)).

2.2. Proof of (i) =⇒ (iii). We shall use the following upper bound for Pt(x, y),
which can be found in [8, Lemma 4.2].

Lemma 2.2. There exists a constant γ ≥ 2 and a continuous function C(x) such
that

Pt(x, y) ≤ C(x)
[
pt(x− y)1|y|≤γmax{|x|,1} + tΦ(y)

]
,

for all t > 0 and x, y ∈ Rd.

We also quote the following elementary lemma.

Lemma 2.3. Let α > 0. Then, there exists Cα > 0 such that

1

Cα

(
|x0 − y|+ t

)
≤ |x− y|+ t ≤ Cα

(
|x0 − y|+ t

)
, (2.3)

whenever |x− x0| ≤ αt and y ∈ Rd.

Proof. The proof is elementary using the condition |x− x0| ≤ αt and the triangle
inequality. Indeed, on the one hand

|x− y|+ t ≤ |x− x0|+ |x0 − y|+ t ≤ |x0 − y|+ (α+ 1)t,

which implies the upper bound in (2.3) with Cα = α+ 1. The lower bound follows
from the upper one after interchanging the roles of x and x0. �

We turn to the proof of (iii) in Theorem 1.1. Since we are interested in non-
tangential limits at x0, we fix α > 0 and consider only points (t, x) such that
|x− x0| ≤ αt ≤ 1. For such points, Lemmas 2.2 and 2.3 imply that

Pt(x, y) . Cx0

[
pt(x0 − y)1|y|≤γ(|x0|+2) + tΦ(y)

]
, ∀ y ∈ Rd,
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for some constant Cx0 > 0 (which we could take max|x|≤|x0|+1 C(x)). For simplicity,
we write

K =
{
y ∈ Rd : |y| ≤ γ(|x0|+ 2)

}
,

and as before we denote µ = |ν − `dx|. The previous inequalities then imply

Ptµ(x) . Cx0

[ ∫
K

pt(x0 − y) dµ(y) + t

∫
Rd

Φ(y) dµ(y)
]
. (2.4)

The assumption that ν ∈ M(Φ) implies that the last summand is O(t) as t → 0,
so we must only estimate the first term∫

K

pt(x0 − y) dµ(y).

Here one could use the known results about the standard Poisson kernel to conclude
that

lim
t→0

∫
K

pt(x0 − y) dµ(y) = 0, (2.5)

under the assumption x0 ∈ Lν . We briefly sketch the argument for completeness.
Given ε > 0, we choose δ > 0 such that

µ
(
Br(x0)

)
rd

< ε, r ∈ (0, 2δ]. (2.6)

When |y − x0| ≥ δ we have pt(x0 − y) ≤ t/δd+1, and hence∫
y∈K\Bδ(x0)

pt(x0 − y) dµ(y) ≤ t µ(K)

δd+1
< ε, (2.7)

if t < t0 := min{ε δd+1/µ(K), δ}. On the other hand, given any such t, we can find
an integer J ∈ N such that

δ < 2J t ≤ 2δ.

So letting Sj := B2jt(x0) \ B2j−1t(x0) and using that pt(x0 − y) . t−d2−j(d+1) in
Sj we have∫

Bδ(x0)

pt(x0 − y) dµ(y) .
∫
Bt(x0)

t−d dµ(y) +

J∑
j=1

∫
Sj

(2jt)−d2−j dµ(y)

≤ µ(Bt(x0))

td
+

J∑
j=1

2−j
µ(B2jt(x0))

(2jt)d

≤ 2ε,

using (2.6) in the last step. This shows (2.5).
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2.3. Last assertion in Theorem 1.1. It remains to prove that, under the as-
sumption (iii), it also holds

lim
|x−x0|<αt→0

Ptν(x) = `.

This will be a consequence of the following lemma.

Lemma 2.4. Let ν ∈M(Φ) and ` ∈ C. Then the function

E(t, x) :=
(
Ptν(x)− `

)
− Pt(ν − ` dy)(x)

satisfies
lim

(t,x)→(0,x0)
E(t, x) = 0, ∀x0 ∈ Rd.

Indeed, assuming the lemma and using (iii) we have∣∣Ptν(x)− `
∣∣ ≤ Pt|ν − ` dy|(x) + |E(t, x)| −→ 0,

when |x− x0| < αt→ 0.

We now prove Lemma 2.4. We remark that this is not completely straightforward
since for the Hermite operator we do not have Pt(1) = 1 (since λ = 0 is not an
eigenvalue of L). We shall use instead an argument, borrowed from [3, §3.2] (see
also [7, §6]), which can be adapted to more general positive self-adjoint operators
L. The only tool is the existence of a regular positive eigenvector of L, that is
ψ ∈ Dom(L) such that

(a) ψ ∈ C∞(Rd)
(b) ψ(x) > 0, ∀x ∈ Rd
(c) L(ψ) = λψ, for some λ ≥ 0.

When L = −∆ + |x|2, it is elementary to check that

ψ(x) = e−|x|
2/2 (2.8)

satisfies these properties with λ = d.

PROOF of Lemma 2.4: Let ψ(x) be as in (2.8). Since Pt = e−t
√
L, we also

have
Ptψ = e−t

√
λψ.

Then
Ptν(x)− ` =

(
Ptν(x)− ` e−t

√
λ
)

+
(
e−t
√
λ − 1

)
`. (2.9)

The last summand goes to 0 as t → 0, so we look at the first summand. Since
ψ(x0) > 0, we may as well consider

A(t, x) := ψ(x0)
(
Ptν(x)− ` e−t

√
λ
)
,

which using that Ptψ = e−t
√
λψ we can write as

A(t, x) =
[
ψ(x0)Ptν(x)− `Ptψ(x)

]
+ `

[
Ptψ(x)− Ptψ(x0)

]
= A1(t, x) +A2(t, x).

Now,

|A2(t, x)| = |`| e−t
√
λ|ψ(x)− ψ(x0)| −→ 0, if |x− x0| → 0,
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by the continuity of ψ. Finally,

A1(t, x) = ψ(x0)Pt(ν − ` dy)(x) − `Pt
(
ψ − ψ(x0)

)
(x)

= A1,1(t, x) +A1,2(t, x).

Since the function g = ψ − ψ(x0) is continuous everywhere (and vanishes at x0),
using Lemma 2.2 and standard results on approximations of the identity one can
show that

|A1,2(t, x)| ≤ |`|Pt|g|(x) .
(
pt ∗ |g|

)
(x) + t

∫
|g|Φ −→ 0,

as |x− x0|+ t→ 0. Thus,

A(t, x) = A1,1(t, x) +O(1).

Dividing this expression by ψ(x0), and going back to (2.9), one obtains

Ptν(x)− ` = Pt(ν − ` dy)(x) +O(1).

This proves Lemma 2.4, and hence it concludes the proof of Theorem 1.1. 2

3. Proof of Theorem 1.2

It will suffice to consider the case when ` = 0; otherwise, one would apply the
reasoning to the measure µ = ν− ` dy together with Lemma 2.4. We fix α > 0 and
must show that

lim
|x−x0|<αt→0

Ptν(x) = 0. (3.1)

By the condition x0 ∈ Sν (with ` = 0), for any fixed ε > 0 there exists δ ∈ (0, 1)
such that ∣∣ν(Br(x)

)∣∣ ≤ ε (|x− x0|+ r)d, whenever |x− x0|+ r < 2δ. (3.2)

If the dimension d ≥ 4, we also assume that δ is chosen such that

|ν|
(
Br(x0)

)
< ε rd−3, when r < 2δ, (3.3)

in view of the hypothesis in (1.11).
The first part of the proof is similar to the proof of Theorem 1.1: we consider

only points (t, x) such that |x − x0| ≤ αt ≤ 1; in particular |x| ≤ |x0| + 1. By
Lemma 2.2 we have

Pt(x, y) . Cx0

[
pt(x− y)1|y|≤γ(|x0|+2) + tΦ(y)

]
, ∀ y ∈ Rd,

for some constant Cx0
> 0. In the region |x− y| ≥ δ, we have pt(x− y) . t/δd+1,

so the above bound gives∫
|x−y|≥δ

Pt(x, y) d |ν|(y) . C ′x0

(
δ−d−1 +

∫
Φ d|ν|

)
· t

= c(x0, δ) · t < ε, (3.4)
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provided we assume t < t0 := min{ε/c(x0, δ), δ}. So, in the remainder of the proof
we shall aim to show ∣∣∣ ∫

|x−y|<δ
Pt(x, y) d ν(y)

∣∣∣ = O(ε),

when |x− x0| ≤ αt and t is sufficiently small. Since |x| ≤ |x0|+ 1 we have

Bδ(x) ⊂ {y ∈ Rd : |y| ≤ |x0|+ 2} =: K,

so in the sequel we may assume ν to be supported in the compact set K.
We next remove another inessential term: we define the “local” part of the

Poisson kernel by

P0
t (x, y) := cd t

∫ 1/2

0

e−
t2

`(s) (1− s2)
d
2−1 e−

1
4 (
|x−y|2
s +s|x+y|2)

s
d
2

(
`(s)

)3/2 ds. (3.5)

Then we have

P1
t (x, y) := Pt(x, y)− P0

t (x, y) ≤ C t

∫ 1

1/2

(1− s2)
d
2−1ds = C ′ t,

for some C ′ > 0 (depending only on d), and therefore∫
K

P1
t (x, y) d|ν|(y) ≤ C ′ |ν|(K) · t = C ′′ t < ε, (3.6)

if t < t1 = min{t0, ε/C ′′}. So it suffices to show that

A(t, x) :=

∫
|x−y|<δ

P0
t (x, y) d ν(y) = O(ε)

when |x − x0| ≤ αt and t is sufficiently small. We fix x in what follows, and
changing variables y = x+ h, we rewrite the above expression as

A(t, x) =

∫
|h|<δ

P0
t,x(h) d νx(h),

where for simplicity we denote

P0
t,x(h) := P0

t (x, x+ h) and νx(E) := ν(x+ E), E ⊂ Rd.
The kernel now takes the form

P0
t,x(h) = cd t

∫ 1/2

0

e−
t2

`(s) (1− s2)
d
2−1

s
d
2

(
`(s)

)3/2 e−
|h|2
4s e−

s|2x+h|2
4 ds.

This is not a radial function in h, so we shall split it into a radial part and a
remainder. To do so, we write

e−
s|2x+h|2

4 = e−s|x|
2

e−
s|h|2

4 e−s x·h

= e−s|x|
2

e−
s|h|2

4

(
1 +R(s x · h)

)
,

where letting u = s x · h, we have

|R(u)| = |e−u − 1| =
∣∣∣ ∫ u

0

e−v dv
∣∣∣ ≤ |u| e|u| ≤ cx0

s |x| |h|, (3.7)
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since s ∈ (0, 1/2), |h| ≤ 1 and |x| ≤ |x0|+ 1. We now split

P0
t,x(h) = Kt,x(h) +Rt,x(h), (3.8)

with the “radial part” of P0
t,x (in the variable h) given by

Kt,x(h) = cd t

∫ 1/2

0

e−
t2

`(s) (1− s2)
d
2−1

s
d
2

(
`(s)

)3/2 e−
|h|2
4 (s+ 1

s ) e−s|x|
2

ds. (3.9)

The kernel Rt,x(h) has a similar expression with an additional (non-radial) factor
R(s x · h) inside the integral. Disregarding inessential terms, we can estimate it by

Rt,x(h) . t

∫ 1/2

0

e−
c t2

4s e−
|h|2
4s s |x| |h|

s
d+3
2

ds (3.10)

=
t |x| |h|

(ct2 + |h|2)
d−1
2

∫ ∞
ct2+|h|2

2

e−v v
d−1
2 dv

v ,

where in the last step we have changed variables v = (ct2 + |h|2)/(4s). At this
point we distinguish two cases, if d > 1, the above integral is bounded by a finite
constant, so we have ∣∣Rt,x(h)

∣∣ . t |x| |h|
(ct2 + |h|2)

d−1
2

. (3.11)

If d = 1, using that t, |h| � 1 we have∣∣Rt,x(h)
∣∣ . t |x| |h| log 1

ct2+|h|2 . (3.12)

Note that in both cases the involved constants depend only on x0 (and the dimen-
sion d), but not on x or δ. Note further that

|x| ≤ |x− x0|+ |x0| ≤ αt+ |x0| ≤ 1 + |x0|,

so below we shall absorb the factor |x| in (3.11) and (3.12) into the constants;
however, in the special case that x0 = 0 this factor is O(t) and will lead to a
slightly better result; see Remark 3.2 below.

We will now show that

A1(t, x) :=

∫
|h|<δ

Rt,x(h) d νx(h) = O(1), as |x− x0| < αt↘ 0. (3.13)

The argument is different depending on the dimension.

Case d = 1. In this case we simply have

|A1(t, x)| ≤
∫
|h|<δ

|Rt,x(h)| d|νx|(h)

. t log(1/t)

∫
|h|<δ

|h| d|νx|(h)

≤ t log(1/t) |ν|(K),

which vanishes as t↘ 0.



12 FLORES, GARRIGÓS, VIVIANI

For higher dimensions d > 1, the bound in (3.11) gives

|A1(t, x)| ≤
∫
|h|<δ

|Rt,x(h)| d|νx|(h)

. t

∫
|h|<δ

|h|
(t+ |h|)d−1

d|νx|(h)

≤ t

∫
|h|<δ

d|νx|(h)

(t+ |h|)d−2
. (3.14)

We again distinguish cases.

Case d = 2. In this case, (3.14) clearly becomes O(t) as t ↘ 0 (with a bound
independent of x since |ν|(K) <∞).

Case d = 3. We now have

|A1(t, x)| .
∫
|h|<δ

t

t+ |h|
d|νx|(h) =

∫
Bδ(x)

t

t+ |y − x|
d|ν|(y)

(by Lemma 2.3) .
∫
K

t

t+ |y − x0|
d|ν|(y)

and the right hand side vanishes as t ↘ 0 by the dominated convergence theorem
(independently of x).

Case d ≥ 4. In this case, rather than (3.13), we show that

lim sup
|x−x0|≤αt→0+

|A1(t, x)| ≤ C ε.

To do so, we shall need the additional hypothesis in (1.11), in the form (3.3). We
break the integral in (3.14) into pieces. Assuming t� δ/2, we can find J ∈ N such
that 2J t < δ ≤ 2J+1t. We then write∫

|h|<δ

t d|νx|(h)

(t+ |h|)d−2
dh ≤

∫
|h|<t

· · · +

J∑
j=0

∫
2jt≤|h|<2j+1t

· · · =: I0 + I1.

Then, using (3.3) one finds that

I0 ≤
1

td−3

∫
|h|<t

d|νx| =
|ν|
(
Bt(x)

)
td−3

< ε,

and

I1 ≤
J∑
j=0

∫
|h|<2j+1t

t d|νx|
(2jt)d−2

=

J∑
j=0

2−j

(2jt)d−3
|ν|
(
B2j+1t(x)

)
≤ C ε,

with C = 2d−2. Combining these estimates with (3.14) we obtain

lim sup
|x−x0|≤αt→0

|A1(t, x)| ≤ cx0
ε. (3.15)

This finishes the estimate involving the remainder partRt,x(h) of the kernel P0
t,x(h);

see (3.8). We remark that the hypothesis (1.10) has not been used in this part.
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We now turn to estimate the piece involving the radially decreasing part Kt,x(h),
which makes a crucial use of this hypothesis (in the form (3.2)). We shall need a
lemma from measure theory, whose proof is similar to [6, Proposition 6.23], but
that we sketch for completeness. This gives a formula of polar coordinates (3.18)
for a general measure µ.

Lemma 3.1. Given a (locally finite) complex measure µ in Rd, let

%(r) := µ
(
Br(0)

)
= µ

({
|x| ≤ r

})
, r ≥ 0, (3.16)

and denote by m% the associated Lebesgue-Stieltjes measure in [0,∞), that is

m%

(
(a, b]

)
= %(b)− %(a), and mρ

(
{0}
)

= %(0). (3.17)

Then, for every radial f(x) = f0(|x|) ∈ L1(Rd; |µ|), it holds∫
Rd
f(x) dµ(x) =

∫
[0,∞)

f0(r) dm%(r). (3.18)

Proof. We may assume that the measure µ is positive. Consider the new measure
µ0 defined on Borel sets A ⊂ [0,∞) by

µ0(A) := µ
({
x : |x| ∈ A

})
=

∫
Rd
1A(|x|)dµ(x).

When A is an interval (a, b] ⊂ (0,∞) (or A = {0}), it is clear by definition that

µ0(A) = m%(A).

Since these elementary sets generate the σ-algebra of all Borel sets in [0,∞), by
uniqueness, the two measures µ0 and m% will coincide over all such sets; see e.g.
[6, Theorem 1.14]. Thus, for every function of the form f(x) = 1A(|x|) with A a
Borel set, it will hold∫

Rd
f(x) dµ(x) =

∫
[0,∞)

f0(r) dµ0(r) =

∫
[0,∞)

f0(r) dm%(r).

By linearity, this identity extends to all simple functions, and by monotone con-
vergence to all non-negative f(x) = f0(|x|). A further extension by linearity to
complex functions in L1(d|µ|) establishes the result. �

We shall apply the previous lemma to the measure µ = νx, so that

A2(t, x) :=

∫
|h|<δ

Kt,x(h) d νx(h) =

∫
[0,δ)

K0
t,x(r) dm%x(r),

with Kt,x(h) = K0
t,x(|h|) and

%x(r) := νx
(
Br(0)

)
= ν

(
Br(x)

)
. (3.19)

Notice that condition (3.2) implies∣∣%x(r)
∣∣ ≤ ε (|x− x0|+ r)d, if |x− x0|+ r < 2δ. (3.20)
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Then, integrating by parts (see e.g. [6, Theorem 3.36]) we have

A2(t, x) = K0
t,x(0)%x(0) +

∫
(0,δ)

K0
t,x(r) dm%x(r)

= K0
t,x(0)%x(0) +

[
K0
t,x(r)%x(r)

]r=δ−
r=0

−
∫ δ

0

%x(r)
dK0

t,x

dr
(r) dr

= K0
t,x(δ)%x(δ−) +

∫ δ

0

%x(r)
∣∣∣dK0

t,x

dr
(r)
∣∣∣ dr, (3.21)

using in the last line that (for each fixed t and x) the function

r 7−→ K0
t,x(r)

is decreasing in [0,∞); see (3.9). Note also that

Kt,x(h) .
t

(t+ |h|)d+1
, (3.22)

which can be proved with a similar argument as we did in (3.10) for the kernel
Rt,x(h) (removing the factor s |x| |h| that appears in that kernel due to (3.7)). So,
using this and (3.20), the boundary term in (3.21) satisfies

K0
t,x(δ)

∣∣%x(δ−)
∣∣ = K0

t,x(δ)
∣∣ν(Bδ(x)

)∣∣ . t

δd+1
(|x− x0|+ δ)d · ε . ε,

since |x− x0| ≤ αt < δ (and also t < δ). To estimate the integral in (3.21) we split

it as
∫ t

0
+
∫ δ
t

. In the first range we use that∣∣%x(r)
∣∣ ≤ (|x− x0|+ r)d ε . ε td,

since |x− x0| ≤ αt and r ≤ t. So,∫ t

0

|%x(r)|
∣∣∣dK0

t,x

dr
(r)
∣∣∣ dr . ε td

∫ t

0

∣∣∣dK0
t,x

dr
(r)
∣∣∣ dr

= ε td
[
K0
t,x(0)−K0

t,x(t)
]

≤ ε tdK0
t,x(0) . ε,

with the last bound due to (3.22). Finally, if r ∈ (t, δ) we have∣∣%x(r)
∣∣ ≤ (|x− x0|+ r)d ε ≤ (αt+ r)d ε . ε rd.

Hence∫ δ

t

|%x(r)|
∣∣∣dK0

t,x

dr
(r)
∣∣∣ dr . ε

∫ δ

0

∣∣∣dK0
t,x

dr
(r)
∣∣∣ rd dr

(parts) = ε
(
−
[
rdK0

t,x(r)
]δ

0
+ d

∫ δ

0

Kt,x(r) rd−1 dr
)

(by (3.22)) . ε

∫ ∞
0

t rd−1 dr

(t+ r)d+1
= c ε.

This shows that, if |x− x0| ≤ αt and t < t2 = min{δ, δ/α} then

|A2(t, x)| ≤ C ε.
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Combining this with the previous estimates (3.4), (3.6) and (3.15), we conclude
that, given ε > 0 there exists τ0 = τ0(ε) > 0 such that, if |x − x0| < αt and
t ∈ (0, τ0) then ∣∣Ptν(x)

∣∣ < ε.

Thus, (3.1) holds and we have completed the proof of Theorem 1.2. 2

Remark 3.2. As observed above, in the special case that x0 = 0, the estimate
of the remainder term Rt,x can be slightly improved, due to the factor |x| = O(t)
appearing in (3.11). Indeed, this will give a better factor t2 in the estimate (3.14),
which in turn implies that

A1(t, x) = O(1), as t↘ 0

for all dimensions d ≤ 4. Moreover, in order to have, for dimensions d ≥ 5, the
estimate

lim sup
|x−x0|<αt→0

|A1(t, x)| ≤ C ε,

one only needs the assumption

lim
r→0

|ν − ` dy|(Br(0))

rd−4
= 0, (3.23)

which at the point x0 = 0 is weaker than (1.11). So, overall, we can formulate this
special case as a separate theorem.

Theorem 3.3. Let ν ∈M(Φ) and assume that 0 is a σ-point of ν with value `.

(i) If d ∈ {1, 2, 3, 4} then

lim
|x|<αt→0

Ptν(x) = `, ∀α > 0. (3.24)

(ii) If d ≥ 5 then (3.24) holds under the additional assumption (3.23).
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