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1. Introduct ion 
An orthonormal wavelet is a function qz 6 L2(~)  such that { ~rj. k [ J 6 Z, k ~ Z } is an 

orthonormal basis for L2(R), where 

 j,k(x) -- 2J/2  (2Jx --k), j,k Z. 

In this case we have the equality 

f = Z ( f '  l~rj'k)~j'k (I.1) 
j,k~Z 

for each f q L2(R), where the series converges in the L2(R)-norm and (g, h) = fR gh"  There are 
several extensions of  these notions that have commanded considerable interest during the past decade. 
I f  R is replaced by R",  n-dimensional Euclidean space, the definition of  the family { ~Pj,k I J 
Z, k ~ Z  n } is 

 j.k(x) - 2J°/2  (2 x - k), (1.2) 
where j ~ Z and k = (kl . . . . .  kn) ~ Z n. This is clearly a natural extension of the 1-dimensional 
case since the dilations in (1.2) preserve the Lx(Rn)-norm of ~p and the translations must involve 

2 n points in ~n.  The function ~p is then said to be an orthonormal wavelet in L ( R )  if the family defined 
by (1.2) is an orthonormal basis for this space. It is well-known that many different kinds of  wavelets 
exist in L2(R). In the higher dimensional case, however, the situation is more complicated. I f  one 
imposes some "relatively mild" conditions of  smoothness and decrease at infinity on the Fourier 
transform 

~(~)  = /R,  lp(x)e -ix'~ dx ~ ~ Rn , (1.3) 

it can be shown that a single function ~ ~ L2(R n) cannot generate an orthonormal basis by forming 
the family defined in (1.2) when n _> 2. In this case one needs at least L = 2 n - 1 such generating 
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functions ~pl, ~p2 . . . . .  ~L E L2(R n) (see [1, p. 215], [7, p. 339], [9, p. 93]). We encounter, 
therefore, orthonormal bases of the form {~fk}, where e = 1, 2 . . . . .  L ,  j 6 Z ,  k e Z n with 
L > 1. Such bases produce expansions of the "form 

L 

:--EE E 
£=1 j ~ Z  k~Z" 

(1.4) 

for any f ~ L2(]~n), where the multiple series converges in the norm of L2(Rn). Recently, however, 
several investigators have constructed examples of (single) wavelets in L2(R n) (see [3, 11]). Thus, 
the case L = 1 in (1.4) is realized in some cases. In general, when {~k} is an orthonormal basis, 

we call the family g, = {~pl . . . . .  lp L } a family oforthonormal wavelets. 
More general representations of functions in L2(Rn), sharing the same dyadic dilation and 

translation structure with these expansions, have been studied and effectively applied. Frazier and 
Yawerth (see [4] and [5]) introduced expansions of the form 

f = ~ ~ (f, ~bj,k)~j,k (1.5) 
j ~ Z  k~Z n 

where ~j,k, ~/j,k are defined by equality (1.2) and q~ and ~p is an appropriate pair of functions in 
L 2 (Rn). The convergence of the series in (1.5) is, again, in the L 2 (~n).norm. More general function 
spaces and different types of convergence are of great interest; however, in this article we limit our 
attention to the L2(R n) case. 

A feature of expansions of the form given by (1.5) is that one of the functions, ~b, provides a 
system of"analyzing" functions; that is,'the needed information about f is obtained by calculating the 
inner products (f,  ~j,k ). The other function, ~ ,  provides a "synthesizing" system which enables us 
to reconstruct f from this information via the series in (1.5). We observe that this situation has much 
in common with expansions involving frames and those associated with bi-orthogonal wavelets. 

The purpose of this work is to characterize those pair of families qb = {~b 1 . . . . .  q~L} and 
q~ = {ft.1 . . . . .  ~t.} in L2(~ n) having the property that for each f ~ LE(R n) 

L 

 --EE E 
£=1 j ~ Z  kEZ n 

(1.6) 

where the convergence of the series on the right is in the norm of L2(R n) or in the weak sense. We 
will show that equality (1.6) (or a variant of this representation of f )  is, in a sense, equivalent to the 
fact that the Fourier transforms {~1 . . . . .  ~L}, {~1 . . . . .  ~t L } satisfy the following two equations: L j 

(i) ~ ff'~ q~' (2J~) ~e (2J~) = 1 , a . e . ~ R  n 

e=l j~Z (1.7) L cx~ 

(i i) t,(~)=--~"~'(2J~)~'(2J(~+2~'rq))=O, a.e.~ E R  n, Y q E O  n 

~=1 j='O 

where O n = Z n \ (2Z) n = {k = (kl . . . . .  k,) ~ Z n : at least one component 19 is odd}. 
We do encounter the problem of determining the meaning of the series in these two equations. 

It is easy to see that t~ is a well-defined function in L l (Rn): 

L oo 
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£=1 j-----O =0 

On the other hand, the convergence of the series in (1.7)(i) requires a further assumption about 
the two families • and qJ. In order to explain this matter better, we first consider the case when 

= qJ. In this case, the two equations (1.7)(i) and (ii) have the form 

L 

e=l j~Z ,,a L oo.- 

(ii) tq(~) - E E 4 /  (2J~) ~:' (2J(~ + 2Jrq)) = O, 
g=l j=0 

a.e. ~ ~ R n 

a . e . ~ e R  n, V q ~ O  n 
(1.8) 

Since all the summands are non-negative, the convergence of the series in equation (i) is well- 
defined ( if we include the possibility that the sum is infinity for some of the ~ ). Thus, in this case 
the meaning of the series appearing in the two equations is clear. 

These equations are very useful for the construction of wavelets as well as explicit, more 
general solutions that lead to expansions of the form (1.1), (1.4), or (1.5) (see [8]). We shall also 
see in the development below that a considerable amount of information is contained in these two 
equations. 

The following simple example of a function that satisfies the two equations illustrates some 
important features of the general solution. Let us first consider the one-dimensional case for (1.8) 
with L = 1. We choose a non-negative even function b supported in [-Jr ,  - -~]  U [~, Jr] such that 

b 2 ( ~ ) + b 2 ( ~ )  = 1 ,  . 9 ,  

It is easy to see that there exist C °o functions b with these properties. We let ~ be chosen so that 
I~1 = b. Equation (1.8)(i) in this case is )'-~j~z I~e(2J/J)[ 2 = 1. Because of the assumption we 
made about the support of b, this sum contains at most two non-zero terms and equality (1.9) shows 
that (1.8)(i) is satisfied by ~.  The second equation, (1.8)(ii), is also clearly satisfied since the two 
points, 2J~ and 2J(~ q- 2zrq), at which the products are evaluated, are at distance from each other 
that is at least 2zr (since j > 0 and q is odd) which is the diameter of the support of ~ .  

Thus, it follows from the results that we shall prove that equality (1.1) is true for all f ~ L 2 (R) 
when ~ is chosen so that l~l = b. The family {~kj.k}, however, is not an orthonormal basis for 
L2(R). First of all, 

I fR  I~(~) 2 d~ < = 

( 3 meas supp 
- "  < - < 1 

2zr - 4 

since, as is the case for any function ~ satisfying (1.8)(i), I~(~)1 ~ I a.e.; moreover, a simple 
re-normalization cannot convert this system to an orthonormal basis. The discussion in the next 
section will clarify this matter. It is also clear that a radial version of this example provides us with 
a similar example in R n, n > 1. 

Let us now pass to the precise statement and proof of our principal result when the families 
and • coincide. 
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2. The First Theorem 

We begin by making some observations about expansions of  the type we are considering in a 
general Hilbert space 7-/endowed with an inner product (., .). Let ~" = {ej } be a family of vectors in 
7-/. For the sake of  simplicity, we let j range through the natural numbers, N; however, our statements 
apply when the indexing set is Z × Z n or { 1 . . . . .  L } × Z × Z n. 

L e m m a  1. 
Let ~ = {ej} C 7-[, j ~ N, then the following two properties are equivalent: 
(/) Ilfll 2 = ( f ,  f )  = Y']~--1 I(f, ej)[ 2 holdsforaU f E 7-[ 

(ii) f = Y]~--l(f, ej)ej, with convergence in 7"(, for all f ~ ~ .  
Moreover, if  Ilej II > 1,for all j ~ N, (i) or ( ii) is equivalent to the fact that C is an orthonormal 

basis of T-L 

The proof of  this lemma is elementary and can be found in Chapter 7 of  [8] (Theorems (1.7) 
and (1.8)). A more general version of this result, involving two sets g = {ej} and .Y" = {j~} in 7-/, 
is stated and proved in Section 4 (see Lemma 8). The following result is also proved in Chapter 7 
of  [8] (see Lemma (1.10)): 

Lemma 2. 
Suppose g = { ej } C 7"[ , j ~ I~t, is a family for which equality ( i ) of Lemma 1 holds for aU f 

belonging to a dense subset 79 C 7-[, then this equality holds for all f ~ 7-[. 

Again, a more general version of  Lemma 2, involving two systems C and .,~', is stated and 
proved in Section 4 (see Lemma 7). The following is our main result in case ~p = ~P: 

Theorem 1. 
Suppose qJ = {~1, ~p2 . . . . .  ~L} C L2(Rn), then 

L 

= E E Z I(f'*f.)l 
e=l  jEZ RE~. n 

(2.1) 

for all f E L2(R n) i f  and only if  the functions in • satisfy (1.8)(0 and (ii). 

P r o o f .  Let us make a few observations before embarking on the proof of this theorem: 

Remark  1. 
Because of Lemma 1 we see that equality (2.1)for all f E L 2 (~n) is equivalent to equality (1.4) 

for all f ~ L2(Rn). Thus, Theorem 1 gives us the desired characterization of those families 
qj = { ~ I , ~t2 . . . . .  ~ L } C L 2 (~,n) for which (1.4) holds for all f ~ L 2 (IRn). 

Remark  2. 
The last sentence in Lemma 1 leads us to the characterization of all orthonormal wavelets 

in LZ(Rn): qJ = {~1, ~p2 . . . . .  ~Z} is a family of orthonormal wavelets in Lz(R n) if  and only 
/ f  ]]~lll 2 . . . . .  II~LII2 = I and this family satisfies (1.8)(i) and (ii) (since, in this case, 
II ~Pek 1]2 = J[ ~e 112 > I for all e = 1 . . . . .  L, j ~ Z and k ~ Zn). This characterization has been 
obtained independently by Gripenberg [61 and Wang [12], in the case n = 1 (see [81for an historical 
account of this matter). 

Remark  3. 
Because of Lemma 2, it suffices to show that (1.8)(i) and (ii) imply that (2.1) holds for all f 

belonging to a dense subset, 79, of  L 2(Rn). The dense subset we will choose in our proof is 

D =  { f E L2 (Nn) l f 6 L ~  (Nn)and supp f is a compact subset of~n \ {o} } • (2.2) 
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Unless stated otherwise, therefore, from now on, all functions f that we shall consider will belong 
to79. 

A basic step in the proof of Theorem 1 is to decompose the series I on the right in (2. I) into 
two sums so that 

(2yr) n I = I0 + I1, (2.3) 

where 

and 

L 
I0 ~--" £=IZ~fR  n I f (~)  2 ~'(2J~) 2 d~ 

1"_. f (~)  Z Z f (/] + 2zr2Pq) tq (2-P~) d/~ I1 
p~Z q~O n 

This is done by first applying the Plancherel theorem to the inner products (f,  ~P~k)' which allows 
us to obtain 

• 2 

(2yr)2n (f, l~,k) 2 : ( f ,  ~,k)  2 = 2_Jn fR n f(~)~(2_J~)ei2_Jk.~ d~ 

= 2Jnl£/(2J )Ce'( )e'k' d l 

We used the fact that the Fourier transform of ~'~k is }fk(~)  = 2-Jn/2~e(2--Jl]) e-i2-~k'~' when 
j ~ Z ,  k ~ g  n, e = l  ..... L. Thus, 

t. d/~ 2 
( 2 ~ ) 2 n l = Z Z  Z 2 J n J f R  f(2J~)~g(~)eik'~ • 

~=1 jEZ kET, n 

The decomposition (2.3) will be obtained by first using a pefiodization argument that provides us 
with the identity 

k~Zn f R . f  (2J~) (pe(l~)eik'~dl~ 2 

Multiplying both sides by 2 jn and then summing over j ~ Z and e = 1 . . . . .  L we obtain a new 
expression for I. In this last expression, we separate the terms with m = 0, obtaining I0, and the 
remaining terms, obtaining I1. Thus, we first establish (2.4); after this we manipulate the expression 
involving the terms with m ¢ 0 and obtain the equality that we need for the definition of If. 

Let us fix e and j and put F(~) = Ff(~) - f(2J~)~e(~).  We remind the reader that f 6 D; 

thus, F is compactly supported in Rn \ {0} and belongs to L I(1R n) 71 L2(Rn). Moreover, 

Hence, 

~ ' ( -k )  = m ~ .  f'r"+2ra zr F( I ; ) e i k '~d l ;= f~e i l~ {m~ .F( I ;+2m~r ) ]d l ; '  

(2.5) 



888 Michael Frazier. Gustavo Garrigds. Kunchuan Wang. and Guido Weiss 

where T n is the n-toms, which we may identify with {/j = (~1 . . . . .  ~n) ~ R n [ 0 < ~g < 2rr, e = 1 . . . . .  n }. 
The fact that F is compactly supported implies that the series ~"~m~r." F(/J + 2zrm) involves only 
a finite number of terms. This, together with the Dr periodicity of e ik'~, justifies the interchange 
of summation and integration (over T n) that gives us the last equality. We see, therefore, that the 
numbers (2~) -n F ( - k )  are the Fourier coefficients of the periodic function Y~m~Z" F(/J + 2rrm), 
which is in L2(T n) because the sum only involves a finite number of ms when/j is in T n. Thus, by 
the Plancherel theorem for Fourier series, 

1 I (2~)n E F ( - k )  2 
k~Z" 

= F(/J +2mzr))(p ff z  F(/J +2pz'))d/j 

Again, the fact that F is compactly supported and the 2zr-periodicity of the series justifies the 
interchange of summation and integration (over T n) that gives us the last equality. This last equality, 
written in terms of f and ~ by using the identity 

F(/J) ~ F(/J +2Jrm)= f(2J/j)4/g(/j)E f(2J(/j +2m:r)) ~'e(/j+2mzr)' 
mEZ n mET. n 

together with (2.5), gives us (2.4). 
T h u s ,  

L 

e=l  j c Z  

f (2J(/j + 2re : r ) )~ ' ( / j  + 2 m z r ) d / j .  
~=I j~Z  

The first of these summands is I0 (after a change of variables q = 2J/j). In order to justify the 
manipulations that show that the second summand equals It, as defined immediately after (2.3), we 
shall prove the following: 

L e m m a  3. 
For every f E ~D and ~ E L2(Rn), then: 

E 2Jnf~.  I f (2j/j) }(/j)[ E I f  ( 2j(/j + 2nvr) )~( / j  + 2re:r) I d / j <  ¢~. 
j~Z m#O 

R e m a r k  4. 
In addition to allowing us to make all the changes in the order of summation and integration 

that will give us the desired expresion for Ii, this lemma shows that the sum of the squares of  the 
"coefficients" ( f ,  ~ k )  (which we denoted by I) is finite if and only if lo < oo, for  each f E Z). By 

varying f in D (for examPLle, letting fi = XC, where C is a compact subset o f f  n \ {0}) we see that 
lo < ~ if  and only if ~e=l  ~ j ~ z  [~e(2J/j)12 is locally integrable in ]R n \ {0} (that is, integrable 
over each compact C C R n \ {0}). This is, of course, clearly true when (1.8)(i) is valid. As we shall 
see, this local integrability property will furnish us with an appropiate condition that guarantees the 
convergence of  the series (1.7)(i). 
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In order to establish Lemma 3 we observe that since 

+ 2mJr)[ _< ~(~) 2 q- ]~(~ "[- 2mzr) 2 , 2l~b(~)l 

it suffices to show that 

fR"IZE2Jn[j~Zm#O J2(2J') f ( 2 J ( ' + 2 m ~ r ) ) ] }  ]~ (~ ) [2d~<O0  (2.6) 

(observe that the sum involving [~t(~ + 2m~r)[ 2 reduces to (2.6) via the changes of variable 7/ = 
~j + 2rnzr). But (2.6) is an immediate consequence of the following: 

Lemma 4. 
Suppose 0 < a < b < oo, f ~ L°°(Rn), suppf _C {/j : a < I/Jl < b} and3 = diam(supp f), 

then 
rr(Ij)-- Z Z 2in f ( 2 Q j ) ]  I f (2J( / j  + 2mzr))[ <_C3 n f 2oo 

j~Z m#O 

for a.e. ~ 6 ]R n, where C = ~-y 

Proof .  If3 < 2J27r, then at most one of the points 2J~ and 2J~ +2J2mzr lies in supp f ,  since m 
is a non-zero n-tuple with integer components. Thus, in the sum defining rr (~) we need only consider 
j _< jo, where j0 is the greatest integer satisfying 2 jo _< ~ .  We claim that the sum of the terms, in 

the series defining rr (5), that involves each such j does not exceed \ 2rr ] [1 /[[ 2 .  To see this, we first 

observe that 2 jn [f(ZJ/j)] I f ( 2  j (/j + 2m~r) )1 < 2J n 11 f 112. We then observe that, for j and/j fixed, the 

number of lattice points m # 0 for which f ( 2  j (/j + 2mzr)) # 0 is not larger than ( 1 + 2~_..A)n. To see 

this suppose mo is a lattice point such that )~(2J (/j +2mort)) # 0. Then, since 8 = diam(supp f ) ,  if 
.f(2J(~ q- 2mTr)) 5k 0, we must have 3 >_ [2J (~j -}- 2mzr) - 2J(~j + 2m0zr)[ = 2J Im - m012zr. Thus, 

2-J8 This sphere is contained in the n-dimensional m must lie within the sphere about mo of radius --'2"h- • 

"cube" of sidelength ~ centered at too. But the number of lattice points within this cube does not 

exceed (1 + -~2-J) n. Putting these estimates together we see that for j < jo 

Z 2  j" f ( 2 J , ) [ / ( 2 ' ( ~ + 2 m , ~ ) )  < 
m#O 

1 + 3  . n ~ - 2 - ' )  2 jn f 2 =(2J+-~)n  I f  2 < ( 2 J ° + ~ )  n f 2 < ( 3 3 ~  n f 2 .  
- - k,2~r ) 

Finally, we observe that for ](2J/j) to be non-zero we must have a _< 2 j l/j[ _< b. Thus, j must 

lie in the interval [log 2 i-~, log2 1-~1] toproduce anon-zerosummand intheseriesdefiningtr(~j). But 

b integers in this interval. Together with the last estimate, this gives us there are at most 1 + log 2 fi- 

This completes the proof of Lemmas 3 and 4. [ ]  

We now turn our attention to showing that li has the form announced after equality (2.3). We 
have shown that 

(2zr) n I ------- 



890 Michael Frazier, Gustavo Garrigrs, Kunchuan Wang, and Guido Weiss 

lo-+-ZZ2JnfRf(2.il~)~e(l~) f (2J (~j + 2rnrr))~e(/j + 2m~r)d~j. (2.7) 
~=1 j ~ Z  

I f m  = (mr,  m2 . . . . .  ran) ~ (0, 0 . . . . .  0) = 0, then there exists a unique non-negative integer r 
such that m = 2rq with q ~ O n. Since by Lemma 3 the integrand in the second summand of (2.7) 
is absolutely convergent, the following equalities that allow us to isolate the terms involving tq(/j) 
are valid and the second term in (2.7) equals 

L 

EE 
£=1 j~Z 

L 

EZ 
~=1 j~Z 

L 

= 

m#0 

r>O qEO n 

q~O n r>O j ~ Z  

L 

e~l fR" f(~j) ~ ~ ~ ~ (2r (2-t'~J)) ~ (2r (2-P~j + 2 r rq ) ) f  (~j + 2P2:rq) d~j 
= qEO n r>0 p~Z 

s. Z f (/J +2P2Jrq)t, (2-P/J) d~j" 
qEO n pEZ 

This proves (2.3). It is now clear that the "if" part of Theorem 1 is true. Indeed, if the system tp 
satisfies (1.8)(0 and (ii), then I0 = Ilfll 2 and I1 = 0. By (2.3) we then have 

L 

I( ' )1  = 1211 = ~ ~ :.  ~'~.k = t = (2~)-" (I0 + ~,) = (2~)-" + 0 = , f , 2 .  
t=, j~Z k~Z" 

which is equality (2.1) for all f E 29. By Lemma 2, we then can conclude that (2.1) holds for all 
f E L2(~). 

We shall now prove the converse. Let us assume that (2.1) holds for all f E D. As we 
explained in Remark 4, this implies that 

L 

£=I jEZ 

is locally integrable on R n \ {0}. Thus, almost every point in R n is a point of differentiability of the 
integral of r. Let us choose such a/J0 ~ 0; that is, if ~n is the volume of the unit ball in R n, 

lira 1 ft~ r(~)d~ = r (~J0) • (2.8) 
8-'~0+ ~'2nt~ n _E~OI<, ~ 

Let us fix 8 > 0 such that B~(~j0) = {~ : I/J -/J0l < ~} C R n \ {0} and choose f~ ~ 29 by letting 

f~ (~ )  = XB~(~o) (~)  . 

Using the notation in (2.3), and adding the superscript 8 to denote the dependence on this choice of 
f,~, we have 

(2~r) n 1 = (2:n') n I '~ = I~ + 1 : .  
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Thus, I '~ = Ilfa[I 2 = (2~r)-nllfall 2 = (2:r) -n and we have 

1 = r(s e) d~ + I18, 
f2nsn ~(~o) 

for every 8 small enough. From this we see that if we show that 118 tends to 0 as 8 --+ 0+,  we have 
r (~Jo) = 1 (by (2.8)) and equality (1.8)(i) is satisfied by the system qJ, since almost all points of R n 
are such/~o s. 

Arguing as we did when we established Lemma 3, we see that I1 1 is dominated by the sum 
of two terms: 

L 

g----1 j ~Z  m#0 

and another term in which ~e(lj) is replaced by ~g(~j + 2re:r) (which, after the change of variables 
I / =  ~j + 2m~r, reduces to the first term). Letting ~ denote any one of the L functions in qJ, it suffices 
to show, therefore, that 

I~'~= fR" ~ ~ 2jn ~'~ (2j~j) fS (2J(~ + 2 m : r ) ) [  @(~j)2d~ 
jETZ m#0 

tends to 0 as 8 --+ 0+.  The diameter of the support of j~ is 23; hence, since m # 0 we must have 

8 if 2 j > ~-. Let jo be the largest integer such that 2 jo < * • then we need only consider j < jo in 

the sum defining I~ 't~ . Also, if .~(2J~j) ~ 0, we must have 12-//j - ~Jol < 8 and this, in turn, implies 
I~Jol - ~ -< 2Jl@l. Since B,~(~jo ) C R n \ {0}, we must have I/iol - 8 > 0 as well. Hence, 

yt" 
I t_ 2-J (1,01-3)  _> 2-Jo (l o1-3) >__ ( leo1-3)  > 0 

Thus, applying Lemma 4 to f,~, with a = I~Jol - 3, b = 1@ol + a, we have 

~ _< ~(~) (~) a/~_< 

h - l o g 2 ~  } (28) n j~ 2o0 fSl>_(i,ol_,).~l~(tj) d~_< 

It is clear that this last expression tends to 0 as 8 ~ 0h-. We can conclude, therefore, that equal- 
ity (1.8)(i) is satisfied by q~. This also shows that 1~ = 0 for all f 6 D since I0 must, then, equal 
Ilfll 2 = (2~r)nllfll 2 and, thus, Ilfl] z = I = (2~r)-~(lo + ID = Ilfll z + (2rr) -~h.  That is, 

= I1 = fR" j¢(tj) ~ Z f (tj + 2 '2zrq)tq (2-P~j) d~j 0 
p~X q~ O n 

for all f 6 79. An application of the polarization identity then gives us 

fR . f(~j) Z Z i(~J + 2P2zrq) tq (2-P~J) d~j = 0  (2.9) 
p~Z  q~O n 
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for all f ,  g e 7). 
Let us fix qo ~ O n and choose a point ~o of differentiability of the integral of tqo such that 

to  ~ 0 ~ to + 22qo. Since tqo e L 1 (Rn) (see the argument that follows (1.7) almost all points of 
Rn have these properties. We need only consider/~ > 0 sufficiently small so that both B~(to) and 
Ba(to + 2zrqo) lie within Rn \ {0}. Let f~ and ga in D be functions such that 

. ~ ( t )  = 1 1 
XB~(¢o)(t) and g~(t) = ~ ~ ( B s ( ~ 0 + 2 7 r q 0 ) ( ~ )  • 

(observe that ga(t) = fa ( t  - 2~rqo)). Then 

.~(t)g,~ (t + 2rtqo) = 
1 

f2,a ~ XB6f~o)(t) 

and this allows us to write (2.9) in the form 

= 1 /B t q o ( ~ ) d t +  ~ fR ~(~)g'(~+2P2:rq)tq(2-P~)d~ 
~"2n~n 8(~0) (P.q) ¢ZxOn n 

(P,q)#(0,q0) 

1 L --]Bs(~O)] (~o) tq°(t)dt q- JS " 

In order to show that equality (1.8)(ii) is satisfied at to  (and, thus, a.e.) it suffices to prove 
that lim~-+o+ Ja = 0. We therefore examine the sum defining J~ more closely. 

If 3~(~j)~ (t + 2P2~rq) # 0, we must have [~j - ~Jol < 3 and [~Jo + 2:rqo - / j  - 2P2:rq[ < 8. 
Thus, 

1 8 
Iqo - 2Pq[ = ~ [(to + 2:rqo) - (t  + 2v2arq) + (t - / Jo) l  < -'rr (2.10) 

8 Since we are interested in lima-+o+ J8 we can assume ~ < 1. I f p  > 0 we must have [qo - 2Pq] > 

1 > ~ s i n c e q o  ~ O n • I f p = 0 w e m u s t h a v e l q o - 2 P q l  = I q o - q l  > 1 > ~ w h e n q o  ~ q .  
Finally, i f p  < 0 we must have ]qo - 2Pql = 2Pl2-Pqo - ql > 2P since q ~ 0 n. Hence, i f jo  is the 
largest integer such that 2 j° < a__ we have Jo < 0 and 

Ja = ~_~ ~ fR. A(l:')ga(t + 2P27rq)tq(2-Pt) dr" 
P< JO q c o n  

Making the change of variables 1/= 2 - P t  we obtain 

IJ, I Z 2," I.A (2'011, , + 2, q))l It,,o )l 
P<Jo q~O n 

Since 
L 

2 Itq<t)l _< 
e=l 

we can reduce our problem to estimating 
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and an analogous term, J~, in which ~e(2mS) is replaced by ~e(2'n(5 + 2zrq)) (this is the same 

argument we used prior to our introduction of I~' I~). Once we have shown that lims~o+ Ja 1 = 0, it 
will be easy to see how we can modify the argument to obtain lims~0+ j2 = 0. J81 (and J~) depends 
on g; we do not indicate this dependence in the sequel because there are only a finite number of these 
terms. 

Let T(5) = Y~-m>_.0 ~e (2m5) 2. The argument in the first section that showed that tq 6 L l(Rn) 

applies here to show T ~ Ll(~n). Furthermore, since [Ba(5o)l 1/2 .~ = XBs(~o)(5) we have 

2Pn f12 T(5) 1~' (2p(5 + 2:rq))[ d~j. 

P<Jo q~O" 

If~8 (2 p (5 + 2zrq)) ~ 0 we must have 12 p (5 + 2zrq) - (50 + 2zrq0)l < 6 and this inequality, together 
with 12P5 - 5ol < 8, implies (as in the case (2.10)) 

1 6 
[q° -2Pq[  = ~-~ 12P(5 + 2 z r q ) - ( 5 °  + 2 7 r q ° ) +  ( 5 ° -  2P5)1 < --'Jr (2.11) 

In our case p < jo < 0; hence, from (2.11) we have [2-gqo - q[ < gZ~A and 2-Pqo is a lattice point. 

number of lattice points q satisfying this inequality cannot exceed "(1 + 2~2_____A-)n since they must The 

2-P28 Consequently, lie within the n-dimensional cube centered at 2-Pqo of side length at most "-7--" 

( I1 ,11oo 
qEO n \ 

Using this estimate together with 11~8 Iloo = ~ .  in the above expression for j1 we obtain 

s l  < Z 2p + - -  f2n6-----ff P~-~ol<,~ 
p< Jo 

( ~ ) n  1 f2  T(5)d5 
--< Z 2j° + ~ P~--/~OI<8 

p<_Jo 

p<_Jo 

But, {5 : 12P5 - 5ol < 6} c {5 : 2-P(15ol - 6) < 151 < 2-P(15ol + 6)} - ~p. If 36 < 15ol the 
sets Ap, p = Jo, jo - 1, jo - 2 . . . . .  are mutually disjoint. Thus, 

1 ( 3 ) n f 2  1 ( 3 ) n ~  < - -  T(/j) d5 < T(5)d5 .  
-- f2n -in (1~ol-8)<1~ 1 -- ~nn (l~ol-a)<l~l 

But the last integral tends to 0 as 6 ~ 0+ since T ~ Ll(Rn). Thus, J] --+ 0 as 6 --+ 0+. As 
mentioned before, a similar argument shows lims~o+ J]  = 0. In fact, the change of variables 
1/--- 5 -I- 2:rq in the integrals defining ./2 convert this quantity to, essentially, Ja 1 except that the roles 
of fs and g,~ are interchanged. Because of this we can let the point 50 + 27rqo play the role of 50 in 
the argument we just gave in order to show that lims~o+ J]  = 0. We thus obtain the desired result 
l i m ~ o +  J~ = 0 and, therefore, Equation (1.8)(ii) is satisfied by the system q~ almost everywhere. 
This establishes Theorem 1. []  



894 Michael Frazier, Gustavo Garrigds, Kunchuan Wang, and Guido Weiss 

3. The Second Theorem 
We now consider the case when the "analyzing" family • = {4 I, ~b 2 . . . . .  4) L } differs from 

the "synthesizing" system ~P = {lp l, 9 2 . . . . .  9/-}. As indicated in the first section, the result we 
shall establish "essentially" asserts that Equation (1.6) is satisfied for all f ~ L 2 (~n) if and only if 
Equations (1.7)(i) and (ii) are satisfied a.e. by • and qJ. There are some basic differences between 
the general case, however, and the one we just presented in Section 2. The local integrability in 
A n \ {0} of the expressions ~ j E z  1~(2J~)l  2, first discussed in Remark 4, played an important 
role in our arguments and arose in a natural way from our arguments. We did not, however, need 
to assume this property for the system qJ when we announced Theorem 1, the principal result in 
Section 2. ff we do assume that this property holds for both systems • and qJ, the proof that the two 
equations (1.7)(i) and (ii) are equivalent to the equality 

L 

e=l jEZ kEZ n 

for all f ~ 79 is essentially the same as the proof we presented for Theorem 1. We will be more 
precise about this below. From this we do obtain a "weak version" of the representation (1.6) for all 
such f .  This is a consequence of the fact that, by polarization, (3.1) implies 

L 

,f, = z E >-: (:. 
~=l  j E Z  kEZ n 

for all f and g in 79. We cannot, however, establish the Lz(Rn)-convergence of the series (1.6). 
If we do not make the local integrability assumptions for each of the two series 

. . . . .  

j r Z  j~Z  

we can still establish the equivalence of (1.7) and some form of (3.1). We will present the arguments 
for this result in the fourth section. It is also clear from our presentation that the case L > 1 offers 
no more complications than the case L = 1; hence, we will not use the upper index e from now on. 

We begin by presenting an example that illustrates some of the assertions we have made. Let 
I = [--2rc, --~r) U (rr, 2rr] and 0 be the function satisfying 0 = Xl • Thus, 0 is the Shannon 
orthonormal wavelet (see [8]). We then define ~ by ~(~) = 0(2~) ---- Xl-n,-~)u(~:rl(~) or, 

equivalently, by ~(x)  = 2-10(2-1x) .  Let 4~ be the scaling function associated with the Shannon 
wavelet; that is, 4) = Xl -n : l  • 

Proposition 1. 
The pair (dp, 9 ) satisfy equalities (1.7)(i) and (ii); that is, 

~ - ~ ( 2 J ~ ) ~ ( 2 J ~ ) =  1 forall  ~ # 0 ,  (0 
x ~ 

O0 

(ii) tq(¢)=~'-~6(2m¢)~(xm(¢+2~q))=O fora.e.¢~R, Vq ~2Z+1.  
m=0 

^--~ 

Proof .  Since supp 6 C supp q~ we have 4) 9 = ~ (because ~ = X½1 is real-valued) and (i) 

is an immediate consequence of the fact that {2JI}, j E Z,  is partition of R \ {0}. Equality (ii) 
follows from the fact that the supports of q~ and ~ (. + 2~r q) are disjoint (except for a set of Lebesgue 
measure zero) since q is an odd integer and, thus, I q[ _ 1. [ ]  
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Proposition 2. 
{ .4~j .2e}  and {.f2~j,2e+l},  j , ~ z ,  are, each, anorthonormalbasisforL2(~). 

Proof .  The identity ,f2~j,2e = 0j-l,~, j ,  e ~ Z, and the fact that 0 is an orthonormal wavelet 

show that {~d~ ~j,2z }, j , £  G Z, is an orthonormal basis for L2(]R). 

To see that the family {,,/2 ~j,2e+l }, j ,  ~ ~ Z,  is an orthonormal family, we first observe 

that, since ~ satisfies (1.8)(i) and (ii) ~, equality (2.1) is true for all f ~ L~(R); that is, 

llfll:, > = I ( : ,  I = 
j~ZkEZ 

(3.4) 

for all f E L2(N). Breaking up the sum on the right into even and odd ks, and using the fact that 

[ ~/~ ~j,2e ] j ,  £ s Z is an orthonormal basis we obtain, by (3.4), 
t / 

llfll 2 _ -  

j ~ Z  e~Z 

1 
- : II:l) = + I ( : ,  = 

j ~ Z  £~Z 

Hence, 

j ~ Z  e~Z 

for all f E L2(~). Since [IV'2 ¢/j,2e+l II = 1 for all j ,  e ~ z, it follows from Lemma 1 and (3.5) that 

the system [~/2~'/.ze+l], j ,e  ~ z,  is an orthonormal basis for LI(~).  [ ]  

This example illustrates why the unconditional Lz(Rn)-convergence of the series (1.6) is not 
true in general when the two equations in Proposition 1 are satisfied. Let us be more precise. We 
continue using the functions ~p and ~ we just introduced. We observed that )--~-j~z [~(2J~)l z = 1 

for all g ~ R \ {0} ; however, ~~.jEz 1~(21~)12 = c~ for all ~ ~ R (in particular this last sum does 
not define a locally integrable function in R \ {0} ). Thus, we are in the situation described in (3.3) 
and we shall show that a "weak version" of (1.6) is, indeed, true. The L2(R)-convergence of the 
series (1.6), however, is not unconditional. To see some of the difficulties we encounter in this case 
let us choose a function f ~ V0, the space generated by the integral translates of the scaling function 
~b. In fact, let us choose f = q% Since V0 C I~ for j > 0, we have 

k~Z 

for each j > 0. Since {tpj,k}k~Z is an orthonormal basis for Vj 

[[~bl[ 2 = ~ [(~b, ~bj.k) [ 2 (3.6) 

k~7, 

l The function 11i we are considering now is a particular case of the class of functions ~ satisfying ]~[ = b ,  
where b is as in (1.9). Proposition 2 clearly shows that a "simple re-normalization" cannot convert the system 
{ ~,j,/¢ } to an orthonormal basis, as we indicated at the end of Section 1. 
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f o r j  > 0 .  
Consider the series ~k~z(4~, ~j,k)~rj,k for each j .  Because of Proposition 2, this series is the 

sum of two orthogonal expansions 

Uj -1-- Vj ~- ~ (q~, ~j.2£) ~j.2£ "J- ~ (~b, q~j.2£+,) ~j.2£+1 
£eZ £~Z 

and, from (3.6) we have 

Iluj II = + IloJ II = 
1 1 

= : oj.zdl' + :  2 
£~Z e~Z 

1 
= : 114~112 

for each j > 0. Hence, for infinitely many j either l] uj ll2 or II oj 112 exceeds ¼ II~bl]2 = ~. Thus, if, 
say, Iluj 112 _> ¼ infinitely often, then 

>•0 
~j.2g 2 

= Z lluJtl' 
j_  e~Z 2 j>_O 

(since uj _k uj, i f0  < j < j ') .  Clearly, then, the series ~--~q~z Y']-k~z(~, qbJ,k)aPJ.k cannot converge 
unconditionally to q~ in the L2(R)-norm. 

We now turn our attention to the extension of Theorem 1 to the case of a pair 4~, ~p of 
"generating functions". We first establish the following. 

Theorem 2. 
Suppose that qb, Vt ~ L2(R n) are such that the functions defined by the series in (3.3) are 

locally integrable in R n \ {0}. Then ~ and ~ satisfy the equations 

(i) Eq~(2J~j)~r(2'~)=l, for a.e.~ ER n, 
j~z 

oo 

(ii) tq(~) = E ~ (2m~) ~ (2m(~ + 2Jrq)) = O, for a.e. ~ ~ R n, 
m--O 

when q ~ O n, 

(3.7) 
if  and only if 

II 2 fllz.,~. ) = ~ ~ (f, ~j.k)(~j,k, f) (3.8) 
j :Z  k:Z n 

for all f E •. The convergence of  all these series is absolute and, thus, unconditional. 

Since I(f, ~Pj,k)l l(4~j,k, f ) l  < I(f, lPj,k)l 2 + I(f, 4~j,k)l 2 , the decomposition (2.3) applied to 
and 4~ separately (with f ~ D), and the observations made in Remark 4, give us the absolute 

(and unconditional) convergence of the series appearing in Theorem 2 (we use, of course, the local 
integrability of the series in (3.3)). 

P roof .  Let us now indicate which modifications in the argument we presented in Section 2 are 
needed to provide a proof of this theorem. Here I denotes the sum on the right in (3.8). We begin 
by establishing the analog of the decomposition (2.3): 

(2~r) n I = Io + 11, (3.9) 
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where 

and 

to : s(v ) 
j~Z 

jEg k # o 

= fR" f ( ~ ) 2  ~ f(~ + 2zr2Pq) tq (2-"~) d~ 
peg q~O" 

(3.10) 

where tq is defined by (ii) in the statement of Theorem 2 and involves both q~ and ~. 
The proof of the decomposition (3.9) follows the same line as the one we gave for (2.3). The 

changes that are needed are obvious: the Plancherel theorem gives us the product 

(L s (2,,)+<,,e"O S 
instead of the absolute value squared of the first factor. This leads us to the introduction of the 

function Gj(t) = f(2J~)~(~) along with Fj(t) = f ( 2 J t ) ~ ( ~ ) .  We then "periodize" both Fj and 
Gj to obtain the equality 

which leads us to the first expression for II in (3.10) (see the argument preceding Lemma 3). 
In order to prove that I1 equals the second expression for I1 in (3.10) we need to establish the 

analogs ofLemmas 3 and 4. This last estimate, of course, does not involve the functions 4~ and ~ and 
no change is needed. For the analog of Lemma 3 the problem can clearly be reduced to establishing 
the inequality (2.6). 

Having established the decomposition (3.9), it is then immediate that equalities (i) and (ii), 
of Theorem 2 imply (3.8) for all f ~ 79. We must, therefore, show that the converse is true. Again, 
the argument we gave in Section 2 for the corresponding part in (2.1) applies here if we make some 

simple and natural modifications. In (2.8) we now must choose r ( t )  = )--~Ocz q~(2J~)~(2J/~). 
Then, the same choice of f8 e 79 and the inequality 

2 ~,(tj) ~(t~ + 2mz~) _< ~/(~j)l 2 + 4b(~ + 2msr) 2 , 

leads us to the equality 1 = ~ l  fnost~oj'~" r ( t )  d t +  I~, where l ima,0+ I~ = 0. When t0 is a point 
of differentiability of the integral of r we obtain equality (i) in Theorem 2 at t0. As in Section 2, 
this also gives us the equality (2.9) with tq(t) as defined in (ii) of Theorem 2. Again, we choose fa 
and ga as before. The rest of proof given at the end of Section 2 applies here and this establishes 
Theorem 2. [ ]  

4. Some Other Results 
In the last section we obtained the equivalence between equality (3.8) and the two equations (i) 

and (ii) announced in Theorem 2 provided the two series in (3.3) are locally integrable in IR n \ {0}. We 
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also gave an example of two functions ~b, ~, ~ L2(•) that satisfy (i) and (ii) but ~ j E z  l~(2J~)l 2 
is not locally integrable in R \ {0}. We left open the question of the validity of (3.8) in this case but 
did observe that (1.6) cannot be interpreted in terms of unconditional convergence in L 2 (R) (which 
clearly implies (3.8)). In this section we examine other interpretations of (3.8) and its connection 
with equalities (i) and (ii) without assuming local integrability of the series in (3.3). 

Let us first examine the convergence of the series in (3.8) when ~b and ~p are functions in 
L 2 (~n). Toward this end we establish the following result: 

L e m m a  5. 
Let J be a f ixed integer, then the series 

s, = s,(:) = E (:, ':'J,,,) (¢,:,k, :) 
j<J  keg n 

converges absolutely f o r  each f ~ 79 when dp, ~0 ~ L2(Rn). 

P r o o f i  By Schwarz's inequality it suffices to show that 

~ l(f, ~P;,k)l 2< O0 

j <J  kEZ n 

for f E D. We argue as we did in the proof of the decomposition of (2.3) to obtain 

(2~')n E E ](f' IPJ'k)[ 2= Z ~R n l:<e>l = 
j < J  kEZ n j < J  

Z 2jn fN.: (2J~)~(~) E : ( 2j(~ -I- 2mrr)) ff(~ + 2mzr) d~ .  
j < J  m:/:O 

Lemma 3 assures us that the second summand represents an absolutely convergent series that is 
integrable. Moreover, 

j < J m=~O 

where C is independent of J.  In order to estimate the first summand, we use the fact that f E 79 
and, thus, supp f lies in an annular region of the form {~ ~ R n 12-ZJr _< I~1 _< 2/'~r} • Hence, we 
can estimate this first summand as follows: 

L-1 

_ _ j < _ J  . . . .  j < J  

g=-Lj<J  - - ~=-L 

<_ 2n~2L < ~ 

and Lemma 5 is proved. []  

The double sum on the right of (3.8) corresponds to the expression I in Section 2. In analogy 
with (2.3) we shall consider a similar decomposition for the partial sums S.t of this double series: 

(2zr) n S.t = I6 t + 11 , J E Z, (4.1) 
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where 

I~ = fR n .f(l~) 2 E ~ (2-Jlr;) ~ (2-Jt~)dl~ 
j<_J 

and 

I( = E 2in fR. f (2JtJ) 6(~) E f ( 2j(~ + 2k:r)) ff(/j + 2krr) dtj . 
j < J  k#O 

The observations we made that showed how to obtain (3.9) and the first equality in (3.10) are 
valid here and provide us with (4.1). The argument we made in the proof of Lemma 5 shows that 
~j_<j 1~(2-J~)l 1@(2-J~)l is locally integrable in R n \ {0}. Hence, I~ is well-defined for each 
f 6 D. Reasoning as we did at the end of Section 3, we shall show that I1 has an expression 
involving the functions tq (as in the term following the second equality in (3.10)); in fact, for J 
sufficiently large, we have, as in (3.10), 

I1J = ~ .  f(~) E E f (~ + 2~r2Pq) tq (2-P~j) d~j = I1 
pEZ qE O n 

(4.2) 

(the size of J for this to be true depends on the diameter of the support of f ,  where f 6 79). To see 
this we repeat the arguments we gave before, but need to take into account that the sum in the index 
j is limited by J: 

i( -----j~<jfRf(~)~b(2-Jl;) E f ( ~ +  2J2mzr) ~ (2-'/J + 2ran') d~J 
_ ha#0 

= j<~j_ ~ .  3~(~j)q~ (2-J~j) r>0E q~O"E a~ (/J + 2'+r27rq) ~ (2-J~j + 2~r2rq) d~j 

= f= f<e) EEa(2r(2-(r+J)~))f(~+2J+r2~rq)~(2r(2-(r+J)~+2q~r))d~ 
qcO n r>O j < J  

= £ .  f(~J) E E E q~ (2"2-'~1 ~ (2 r (2-P/~ + 2Jrq))f (~j + 2P2zrq) d~j 
q~O n r>O p<J+r 

= (2r2-P~j) ~ (2 r (2-'~j +2r rq) ) f  (~ + 2P2zrq) d/j 
qEO n p<J r>O 

+ fR" f(~) E E E q] (2rz-p~) ~ ( 2r (2-p~ + 2~rq))f (/i + 2PZrcq) d~j. 
qEO n p>J r>_p-J 

The first summand equals 

fR. f(l~) E E f (I; + 2P27cq) tq (2-pl~) dl~ " 
qEO n p<_J 

If the diameter of the support of f does not exceed 2J+12rr, then either ~ or ~j + 2P2Jrq must lie 
outside supp f if p > J (since q E On). Thus, f(~) f(~ + 2P2rrq) = 0 and the second term is 
0. But, in this case we also have 

£ f(l~)E Ef(~+2P2Jrq) tq(2-Pl~) d~=O" 
qEO n p> J 
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We have shown, therefore, that (4.2) is true if J + 2  > log2 { diam (usupp f)  } . Thus, together 

with (4.1), this gives us the equivalence limj__,~ Sj exists if and only if l i m j ~  IJ  exists. 
In the present context we have not yet considered the two equations, (i) and (ii), in (3.7); 

however, these observations can be used to obtain the following version of Theorem 2 when we do 
not assume the local integrability of the series (3.3) in R n \ {0}: 

Theorem 3. 
Suppose q~, ~ ~ LZ(Rn). Then 

lira S,t = lim Z Z (f '  ~j.k)(4~j,k, f )  = [[fU 2 
J--.-~co J - + c o  

j < J  kEZ n 

(4.3) 

for every f ~ 79 if and only if 

(i) l im j . - ~  Z q~ (2 - j~ )  ff (2-J~) = 1  
j<_J 

weakly in Lt(K)  whenever K is a compact subset of  R n \ {0}, 
where 1 is the constant function that equals I on N n, 

oo 

(ii) t q ( ~ ) = Z q ~ ( 2 r ~ ) ~ ( 2 r ( ~ + 2 ~ r q ) ) = 0 ,  for a . e . ~ E N  n, V q E O  n 
r----0 

(4.4) 

Proof .  We first show that (4.4) implies (4.3). Since tq(~) = 0 for a.e. ~, (4.1) and (4.2) imply 

S j ( f )  = Sj -----(2*r)-n I~ = (2zr) -n fR" If'e'l = X ~(2-'/~) ~ (2-J~) d~ . 
j<_J 

But, by (i) and the fact that K = supp f is a compact subset of R n \ {0} we have 

lim Ss = (2zr) -n f~ f (~)  2 d~ = [[f[I 2 
J - - + ~  n 

and, thus, (4.3) is true. 
To establish the converse we first show that (4.4)(ii) is a consequence of (4.3). The argument 

is much like the one we gave for Theorem 1. We select a point ~0 of differentiability of the integral 
of tqo such that neither ~o nor ~o + 2zrqo is 0, and 8 > 0 such that Bs(~0), Bs(~o + 2~rqo) 
are disjoint balls in R n \ {0}. Again we choose f8 and g8 such that f~ = ~ 1  Xas(~o) and 
~ ~ .  1 Xas(~o+2rrqo) • From (4.1) and polarization we have, for large J (see the discussion 
before Theorem 3), 

j <_ J k s Z  n 

j_<J 

+ ~ .  g - ~ E  Z J~(~ + 2~2Pq)tq (2-p~J) d~ 
p~Z q~O n 

p~Z q~O n 
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since f~ ~ = 0 because B~(~j0) N B~(~j 0 + 2~rqo) = 0 (we observe that it suffices to choose J so 
that 2J+2rr > diam(supp (f~ + ~ ) ) ) .  On the other hand, by polarization and (4.3) we have 

lim Z Z (f~' 7/j,k) (~j,k, g,0 = (fs, g,) = 0 
J---~-oo 

j<J  k E Z  n 

A 
(using, again, f8 g8 = 0 and the Plancherel theorem). But we have just shown that for J large 
enough 

(f,, g,)= 
j<J  kEZ n 

fr E fa(  + 2zr2Pqltq(2-Pl]) dl =--Aa 
pqZ RE O n 

and the last expression is independent of J.  It follows that A~ = 0. 
But the argument that was presented at the end of Section 2, which showed liras-,0+ A8 = 

tqo(~0), applies here. Consequently, tqo(~0) = 0 and (4.4)(ii) is established since almost every 
point in R n is such to, a point of differentiability of the integral of tqo. 

It is now particularly easy to show that (4.4)(i) is also a consequence of (4.3). In fact, if we 
use (4.1), (4.2), and (4.4)(ii) we have 

Sj --(2~r) -n I0 J = (2~r) -n f=. ly(e, E 4 (2- ;e )  4 
j_<J 

Thus, by (4.3) we have 

J - -~ -oo  
j<_J 

for every g >_ O, g • L°°(R n) with supp g a compact subset K of R" \ {0}. Writing g = 
gl + ig2 = g+ - g'{ + i(g'~ - g~) for the general g • L°°(K) we obtain (4.4)(i). [ ]  

Remark  5. 
The weak convergence of the sequence in (4.4)(i) can be also expressed as 

lirn ~- - ]~q~(2-J~ j )~(2-J~)= l  in cr(L~o e ( N n \ { 0 } ) , L c ~ ( R n \ { 0 } ) )  , 
j<J  

the w-topology of the Frdchet space L~o e (R n \ {0}) with respect to its dual Lc~(R n \ {0}). The same 
reasoning applies in (4.3), in which we may say that 

f = lim Z ~ (f '  7/j,k)~bj,k = lim ~ Z (f '  q~j,k)7/j.k in or(D*, 29) (4.5) 
J --+ cx~ J - - -~oo  z . - - ,  

j < J  kETL.n j<_J kEZ n 

where the dense space 29 has the topology inherited by the Frdchet space ~ = L ~ ( ~  n \ {0}) i.e., 

fn "+ f in 29 if and only if fn "+ f in ~ n L c (R \ {0}) and the convergence of the sequences in (4.5) 
is in the w*-topology of the dual space 29* of 29. 

This result, Theorem 3, applies to the example of the pair of functions, ~b and 7/, we introduced 
in Section 3. In fact, Proposition 1 tells us that, in particular, (4.4)(i) and (ii) are satisfied by this 
pair of functions. Moreover, if K is a compact set of R n \ {0}, then (4.4)(i) is a finite sum (in j )  
when/~ • K. Thus, the pair ~p and 7/satisfy (4.3) which, by polarization, is equivalent to 

lim ~ Z ( f '  7/J'k) (q~J'k'g) = ( f ' g )  
J---~- <x~ z . - . t  

j<J  k E Z  n 
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for all f ,  g ~ D (in this case the series above is again a finite sum over j). This is a weak form of 
the representation 

f = Z Z (f' 1/rJ'k)q~j,k (4.6) 
jEZ krg  n 

for f ,  g ~ 79, as we indicated in (4.5). We have already discussed why we cannot expect (4.6) to be 
true in L2(R n) as an unconditionally convergent series. Another inconvenient feature of our results 
is that we have established them only for f ~ 79. Of course, we assumed very little about ~b and 
ap besides the equations (4.4)(i) and (ii). We shall end this article with a result that involves the 
L z (R n)-convergence of the series in (4.6) based on a "natural" hypothesis about the systems {~Pj,k } 
and {~j.k} , J E Z,  k E g n. 

Theorem 4. 
Suppose ok, ~t ~ L 2(Rn). Then 

f =  ~ ( f ,  Vtj,k)qbj.k= ~ (f ,  qbj,k)~tj,k (4.7) 
jEZ,kEZ n jEZ,kEZ n 

for  all f E L2(~ n) with both series converging unconditionally in L2(]~n), is equivalent to the 
following three properties. There exists a constant C > 0 such that 

jE/g,k~g a 

Z 

I(f '  ~PJ,k)l 2 -< C IIf[I 2 

I(f '  ~bj,k) [ 2 --< C Ilfl[ z 
for all f ~ L2(Rn),  (4.8) 

jEZ,kEZ n 

y ' ~ ( 2 J ~ ) q ~ ( 2 J ~ )  = 1 for a.e.~ E R  n , (4.9) 
j~Z 

oo 
tq(e) = (2"5)  (2m(  + 2 q)) = 0 for  a.e. Vq e O n , (4.10) 

ra=0 

where the series in (4.9) and (4.10) are absolutely convergent for a.e. ~ ~ R n. 

R e m a r k  6. 
a system {ej} ofvectors in a Hilbertspace ~ such that y~j t(f, ej)a 2 < C[[fl4 2 foral l  f ~ 7-[ 

is calleda Besselsequence. Thus, condition (4.g) asserts that {~by,k} a n d  {~/~j,k} , j ~ Z, k E Z n 
are each a Bessel sequence. A simple condition that guarantees that ~t generates a Bessel sequence 
{fly,k}, j E Z, k ~ Z n, (see [21) is the following: Let 0 be any non-negative function on [0, cx~) 
that is increasing on [0, 1) and decreasing on [1, ~ )  ; suppose, in addition, that 

f5 O(w) 1+ dw < ~ .  

Then, if ~ ~ L2(R) satisfies if(w)[ < 0([tol) for w ~ R ,  {qJj,k(x)} = {aJ/2¢(aJx - bk)} ,  j 

Z, k E Z, is a Bessel sequence whenever a > 1 and b > 0. An n-dimensional version of  this result 
is easy to obtain. We cite the result in [2] to show that (4.8) is not very restrictive; the couples ~b, ~0 
introduced by Frazier and Jawerth (see [4, 5]) satisfy these conditions. 

R e m a r k  7. 
It will be shown in the course of the proof of  Theorem 4 that if(4.8) holds, then there exists a 

positive constant C such that 

q~ 2)~ < C  and ~ ~ 2J~ _<C a.e.e  (4.11) 
jE~. j~Z 
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In particular, the series in (4.9) is absolutely convergent for a.e. ~. 

R e m a r k  8. 
Each of the systems {q~j,k} and {~j,k} , j ~ Z, k ~ Z n , is a frame. In fact, suppose thefirst 

inequality in (4. 8) is satisfied and 

j~Z k~Z n 

for all f ~ L 2(R n) (which follows from (4.7)). Then 

[[f]12 = E E (f' ~j,k)((~j,k, f) 
j~Z k~Z n 

i /2 

~Z,k~Z n 

< ~/'Cllfll2 C EEZ,kEZ n I(f'~bJ'k)12) 

Dividing by v:-CIIfll2 we obtain 

I/2 

1/2 

I 
:ii::_ ~ I(:,~:,,)I 2. 

j~Z ,k~Z  n 

Thus, together with the second inequality in (4.8) shows that {q~j.k } , j E Z, k E Z n , is a frame. 

Proof .  We first show that (4.7) implies (4.8), (4.9), and (4.10). We will use the following result 
for a general Hilbert space 7-/(see [10], Vol I, Lemma (14.9)(b) on page 425): 

L e m m a  6. 
Let oo {xi }i=1 be a system of vectors in ~ .  I f  ~'~.~1 xi converges unconditionally in 7-[, then 

oo 

E Ilxill2 < C =C({x i } )  < cx~. 
i=l 

W e  app ly  this  l e m m a  to the s e q u e n c e  {(f, ¢~j,k)~j,k} , j E ~,, k E Z n : Y~j ,k(f ,  ~J,k)l/tJ,k 
converges unconditionally by (4.7); thus, since ~p and ~ are fixed and non-zero in this discussion, 

I(f, ~:.k)l 2 = zl~', -2 ~ ll(f, ~bJ, k) ~J.kll~ -< c jlV:tl -= = c:. ( 4 . 1 2 )  
jEZ,kET, n jEZ,kET, n 

Consider the linear operator defined on L2(R n) by 

Tf = {(f, cPj,k)} , (j,k) E Z × Z n 

Inequality (4.12) shows that it maps L 2 (Rn) into e 2 (Z × Z n). Suppose the pair (f, £, with £ = { e j. k }, 
is a limit point of its graph. Then there exists a sequence {fro}, m E N, such that (fro, Tfm) "-> 
(f, £) in the graph norm as m --+ oo. In particular, limm--+oo ~.j~7. )--'~k~Zn I(fm, ~bj,k) -- ej,kl 2 = 0 
showing that e lk  = l i m m ~ ( f m ,  ~bj,k) = (f,  ~bj,k) for each (j, k) ~ Z × Z n . Thus, the graph 
of T is closed and, as a consequence, T is bounded: there exists a constant C > 0, independent of 
f E L2(~,n), such that 

~3 I(:, ~;,~)I ~ -< c rI::. 
j~Z k~Z n 
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The same argument shows that 

Z Z [(f, ~PJ,k)[ 2 < C [Ifl[ 2 
j~Z k~Z" 

for all f ~ L2(Rn), and this establishes (4.8). 
Let p denote either q~ or ~t and let us apply the decomposition (2.3) for f ~ 79 and tq(/j) = 

oo Y~m=0 fi(2m~)fi(2m (~ + 2:rq)) : 

( j , k ) E Z x Z  n j ~ g  

+ fR"/(~)  E Z f (~ + 2zc2Pq) tq(2-Pl~) d~; " 
p~Z q~O n 

By the observation we made in Remark 4 and (4.8), we see that ~--~j~z It3(2J~)l 2 = r(~j) is locally 
integrable in N n \ {0}. We choose/Jo to be a point of differentiability of the integral of r(~) and 
f~ so that fi~ = ~ 1  XB~(~o) (see (2.8) and the sentence that follows). Applying the argument we 
presented after (2.8) we have 

1 £, + l~ = f.n ] A(~) z~(~)a~ + I~ = (2~)" I 's 
f2nad (to) 

- - ( 2 u y  ~ [(fa, pj,k)12 <_(2~ryCIIf, ll2=C, 
(j,k)eZ×Z" 

where the inequality follows from (4.8). Letting 8 -+ 0+, since lim~_~0+ I~ -- 0, we obtain 
r(~0) < C. That is, (4.11) is satisfied and the series in (4.9) is absolutely convergent for a.e. ~. The 
equality part of (4.9) and equality (4.10) are consequences of Theorem 2. 

We now turn to the converse. We begin by proving the two extensions of Lemmas I and 2 
that involve two systems g = {ej}, ~ = {~}, j ~ N, of vectors in a Hilbert space 7-/. These are 
general versions of the systems {~bj,k} and {~Pj,k}, j e Z, k e Z n, which, for simplicity, we index 
by the natural numbers N. In this context, (4.8) becomes 

(i) E I(h, ei)l 2 < C Ilhl[ 2 (ii) ~ I(h, .fi)l 2 < C Ilhll 2 (4.13) 
i ~ N  i E N  

for all h ~7-/. 

Lemma 7. 
Suppose g = { ej } and ~ = { f j } satisfy (4.13) and for all h in a dense subset 79 of Tl 

[[hll2 = Z (h, el) (3~, h) . (4.14) 

Then equality (4.14) is valid for all h E 7-[. 

Proof.  Let h ~ 7-/; (4.13) implies that the series in (4.14) is absolutely convergent. Let {hn } C 7) 
be a sequence such that Ilhn - h[[ -+ 0 as n -+ oo. Then, by Schwarz's inequality and (4.13), 

j~N(h, ej) ( f j ,h) -- llhH2 < ] j~N(h-hn,  ej) (f j ,h) + (hn,ej) (fj, h -hn )  

+ [ Ilh.ll 2 - Ilhll 2 [ _< C IIh - h~ll Ilhll + C IIh~ll Ilh - h.II + [ Ilh.ll 2 - 
A 

[Ihll 2 
I I I 
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which goes to 0 as n ~ ~x~. [ ]  

L e m m a  8. 
Suppose E = {ej} and .7" = {j~} satisfy (4.13). 

equivalent 

(i) 

(ii) 

Then the following two properties are 

In this case, the convergence of  aU the series is unconditional. 

P r o o f .  That (ii) implies (i) is trivial. Let us, then, assume (i). By polarization we have 

( g , h ) = E ( g ,  e j ) ( f j , h )  f o r a l l g ,  h E ~ .  (4.15) 
jsN 

I f  we can show that the partial sums of oo. ~ = t ( h ,  ej) f j  (or the second series in (ii)) form a 

h Cauchy sequence, it follows that (ii) must be true. Indeed, if u = )--~=1 ( , ej)f j  then, using (4.15), 
we must have 

O~ 

(u, g) = ~ (h, ej) (~, g) = (h, g) 
j= l  

for all g E 7-/and, thus, u = h .  But 

(h, ej) 3~ = sup (h, ey) (3~,g) 
j=M Ilgll=l 

< 

1/2 

< 

sup [(h, ej)l 2 c1/211gll = c 1/2 I(h, ej)l 2 , 
llgll=l =M 

where the last inequality is a consequence of (4.13)(ii). Since the series )-'~=l I(h, e j)12 is conver- 
gent (by (4.13)(i)) we see that the partial sums in question do form a Cauchy sequence. [ ]  

We can now easily finish the proof of  Theorem 4. Equalities (4.9), (4.10), and inequality (4.8) 
(which as we indicated implies (4.11)) permit us to apply Theorem 2 to obtain (3.8) for all f ~ D. 
An application of  Lemma 7 then gives us the equality 

j E Z  k E Z  n 

for all f E L2(R n) and, then, by Lemma 8 the desired equalities (4.7). [ ]  
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