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Abstract

We study the efficiency of greedy algorithms for N-term wavelet approximation in Orlicz spaces L® ®4 ). We compute the left
and right democracy functions in terms of the fundamental function of L?, recovering a recent result of Wojtaszczyk [P. Woj-
taszczyk, Greediness of the Haar system in rearrangement invariant spaces, in: T. Figiel, A. Kamont (Eds.), Approximation and
Probability, vol. 72, Banach Center Publications, Warszawa, 2006, pp. 385-395], which establishes that wavelet bases can only
be greedy when L? = L? for some 1 < p < oco. In addition, optimal Jackson and Bernstein inequalities are obtained, as well as
inclusions for the approximation spaces based on L. These inclusions are expressed in terms of sequence spaces of weighted
Lorentz and Marcinkiewicz type, with the weights depending on the fundamental function of L%, which in some cases can be
described as Besov spaces of generalized smoothness.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Greedy algorithm; Non-linear approximation; Orlicz spaces; Wavelets

1. Introduction

Let (B, || - lg) be a Banach (or quasi-Banach) space with a countable unconditional basis B = {e;: j € N}; that
is, every x € B can be uniquely represented as an unconditionally convergent series x = Y jeNSj€j for some se-
quence of scalars {s;}. Let X denote the set of all elements y € B with at most N non-null coefficients in the basis
representation y = ) jensjej. Forx e B, the N-term error of approximation (with respect to B3) is defined by

on(0p = inf{llx — ylp: y € Iy}, (L1)
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Two main questions in approximation theory concern the construction of efficient algorithms for N-term approxima-
tion, and the characterization of the approximation spaces

L Te
A%(B) = [erB%: [Z(N%N(xm)qﬁ] <oo}, (1.2)

N>1

when o > 0 and 0 < ¢ < oo (with the obvious modification when g = 00).
A computationally efficient method to produce N-term approximations, which has been widely investigated in
recent years, is the so-called greedy algorithm. If x =} sje; and we order the basis elements in such a way that

Isjejlls = llspepnln = lspejls =
(handling ties arbitrarily), the greedy algorithm of step N is defined by the correspondence
N
XZZSjejEB% GN()C)ZZSjkejkEEN. (1.3)
JjeN k=1
It is clear that oy (x)p < ||lx — Gy (x)||B- A basis B is said to be greedy in (B, || - ||g) if the converse inequality holds
up to a constant, that is, for some ¢ > 1

%”x—GN(x)HB <on(x)p, VxeB, N=1,2,....

Thus, for such bases the greedy algorithm produces an almost optimal N-term approximation, which leads often to
a precise identification of the approximation spaces Ag (B). A result of Konyagin and Temlyakov [19] characterizes
greedy bases in a Banach space B as those which are unconditional and democratic, the latter meaning that for some
constant C > 0

>

Z lieyllz
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h ‘ ley |
B yer: 1€ IB

B

holds for all finite sets of indices I", I'’ C N with the same cardinality.

Wavelet systems are well known examples of greedy bases for many function and distribution spaces. Indeed,
Temlyakov showed in [29] that the Haar basis (and any wavelet system L”-equivalent to it) is greedy in the Lebesgue
spaces L”(R?) for 1 < p < oco. When wavelets have sufficient smoothness and decay, they are also greedy bases for
the more general Sobolev and Triebel-Lizorkin classes (see, e.g., [11,14]).

The purpose of this paper is to study the efficiency of wavelet greedy algorithms in the class of Orlicz spaces
L?®(RY). We recall that, as M. Soardi proved in [28], wavelet bases are unconditional in every L? with non-trivial
Boyd indices (see Section 2 below for definitions and precise statements). It may seem surprising that wavelet bases
are not democratic (hence not greedy) in a typical L% space.

Theorem 1.1. (See Wojtaszczyk [31].) Let L® (R?) be an Orlicz space with non trivial Boyd indices. An admissible
wavelet basis is democratic in L% (R?) if and only if L% (R?) = L?(R?) for some 1 < p < oo.

This result makes interesting to understand how far wavelet bases are from being democratic in general L? spaces.
To quantify democracy of a basis B = {e;} jen we shall study the following functions:

>

ey Iz

ey
lley B

and hy(N)=

h.(N)=  sup

inf
Card(I")=N Card(I')=N

vel B B

which we call right and left democracy functions of B (see also [9,16]). Observe that a basis is democratic if and only
if these two quantities are comparable for all N > 1. Our main result gives a precise estimate for these functions in
terms of intrinsic properties of the space L?. Namely, let Hq‘)" (t) = sup,. o @(ts)/@(s) denote the dilation function
associated with the fundamental function ¢ of L?, and let H_ be the same quantity with “sup” replaced by “inf” (see
Section 2.1 for the precise definitions).
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Theorem 1.2. Let L? (R?) be an Orlicz space with non-trivial Boyd indices. Then,
h(N)=~ H}(N) and h¢(N)=H, (N)

where the involved constants are independent of N > 1.

This result will have interesting applications in the study of greedy approximation in Orlicz spaces. We take up
this task in the last part of the paper, where we investigate Jackson and Bernstein type estimates and corresponding
inclusions for the N-term approximation spaces. In the well-known L” case, these estimates are naturally given in
terms of the class of discrete Lorentz spaces £ (see, e.g., [7,11,12,14,17]). In the general Orlicz situation we shall
need weighted Lorentz sequence spaces, defined by

gl i
. — %
Af=1stlsllag=| D (mlsg)'2 | <o,
k=1
where {s/} is the non-increasing rearrangement of s and the weight n = {n;} is a fixed increasing and doubling
sequence (see Section 6 below). In particular, AZ = (%4 when n; = k!/7. Weighted Lorentz spaces have already been
used in the study of approximation spaces associated with multivariate Haar systems (see, e.g., [16]). To state our
result we use the notation

s(L?) = {f e L?(RY): {{f.v0)IVolLe}, €5}, (1.4)

for any fixed sequence space s, indexed on the set of dyadic cubes in RY.

Theorem 1.3. Let L? (RY) be an Orlicz space with Boyd indices 0 < e STy <l,andleta>0and0 < g < oo.
Then

Azahr(k) (L(p) - AZ‘(LCD) - Azdhg(k)(L¢)' (1.5)

These embeddings are optimal, in the sense that the largest and smallest weighted Lorentz spaces that one can place
on the left- and right-hand side of (1.5) are respectively Aza hy (k) and AZa ho (k)" We point out that a necessary and
sufficient condition for these two spaces to be equal is that #,.(N) >~ hy(N), in which case the basis is necessarily
greedy and L® = L. Theorem 1.3 leads also to the following inclusions in terms of classical Lorentz spaces.

Corollary 1.4. Under the same hypotheses of Theorem 1.3 we have:

(a) A‘;‘(Ld’) s T (L), for all % <a+mpe and g1 € (0, 0]
(b) LN (L) <> AZ(L®), forall + > a + 7 1o and g1 € (0, o).

Finally, we point out that some of these inclusions can be described in terms of Besov spaces of generalized
smoothness [15,22], namely,

BY (L) ={f: {w@)If xvjlc} e 4 @),
for suitable increasing functions ¥ (). We refer to Section 6.4 below for precise statements and explicit results in the
particular case of the Zygmund classes L? (log L)? (RY).
The organization of the paper is a follows. Section 2 contains definitions and results concerning Orlicz spaces,
wavelet bases and the greedy algorithm. Some examples of Orlicz spaces with non-democratic wavelet bases are

given in Section 3. Sections 4 and 5 are devoted to the proofs of Theorems 1.2 and 1.1, respectively. Jackson and
Bernstein type estimates, as well as the inclusions described in Theorem 1.3 and Corollary 1.4 are given in Section 6.

Remark 1.5. In 2006, after the manuscript of this paper was completed, we discovered an earlier preprint of P. Woj-
taszczyk [31] where a more general result than Theorem 1.1 is proved; namely, wavelet bases are actually not greedy
in any rearrangement invariant space distinct from L”. Since our approach to this problem has been independent
and different from [31], we have included our original proof of Theorem 1.1, based on the stronger result stated in
Theorem 1.2.
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2. Preliminaries
2.1. Basics on Orlicz spaces

In this section we recall some basic facts about Orlicz spaces, referring to [27] and [3] for a complete account on
this topic.

A Young function is a convex non-decreasing function @ :[0, co) — [0, c0] so that lim,_ g+ @ () = 0 and
lim;_, ;oo @ (#) = 0o. Throughout this paper we shall assume that @ is strictly increasing and everywhere finite,!
so that it is a continuous bijection of [0, c0). Given such @, the Orlicz space L‘p(Rd) is the set of all measurable
functions f:Rd — C so that @(| f(x)|/1) € LY (RY) for some A > 0. It is well known that L? (R¢) becomes a re-
arrangement invariant Banach function space when endowed with the Luxemburg norm

I f 1L ma) :inf{k > 0: /@('f;)m)dx < l} 2.1

R4

(see, e.g., [3, p. 269]). The fundamental function of a rearrangement invariant space X in R¢ is defined by ¢(r) =
llxallx, where A € R? is any measurable set with Lebesgue measure |A| = t. In the particular case of Orlicz spaces
X = L?(RY), the fundamental function can be computed explicitly in terms of @, by means of the formula

(1) t>0 2.2)

o1/’
(see [3, p. 276]). Observe that ¢ is a continuous strictly increasing bijection of [0, c0). Moreover, it can be shown that
@ is a quasi-concave function, that is, ¢(¢)/t is non-increasing [3, p. 67].

The Boyd indices, mx, wx of a rearrangement invariant function space X are usually defined in terms of the norms
of the so-called “dilation operators” [3, p. 149]. However, in the special case of Orlicz spaces X = L%, the Boyd
indices can be computed directly from the fundamental function ¢. More precisely, if we denote the dilation function
associated with ¢ by

TN 1 C1))
Hy =500 )

t>0, 2.3)

then the lower and upper Boyd indices of L® (R?) are given by

. logHf (1) log Hf (1)
;o =ip= lim ———— = sup ———,
—»0+ logt 0<t<1 logt
log H1(t) log HF (1)
Tpo=1I,= lim 8D gy 2 (2.4)
t—oo  logt I<t<oo logt
(see [3, p. 277], [20, p. 54]). In particular, 0 < i, < Iy, < 1. Assuming further that i, > 0 it follows that
@(st) < Ce max{si‘/’fe, sl‘/’“}(p(t), s,t>0 (2.5)
and
(st) = Ce min{si‘/’_s, s’V’+8}g0(t), s,t>0 (2.6)

for every ¢ > 0 and some constant C, > O (see, e.g., [18, p. 3]).
In our applications we shall only consider Orlicz spaces with non-trivial Boyd indices, thatis, 0 < 7 ;0 <70 < 1.
In this case, from (2.5) and (2.6) we see that
p(s) . D) ) .. D)
m — = lim — =00 m —— =

li =1 and lim — =1
s—>0t § t—o00 f §—>00 § t—0t t

0.

Thus, with the terminology of [27], @ will be an N -function (or “nice” Young function).

1 This restriction avoids a few pathological cases which fall outside the scope of this paper.
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Finally we shall denote by A, the set of all non-negative functions A(¢) in [0, oo) which are doubling, i.e., 0 <
h(2t) < Ch(t) for some constant C > 0 and all # > 0. It is not difficult to see from (2.2)—(2.6) that ;o > 0 is
actually equivalent to @ € Aj. In fact, if (@, ¥) is a pair of complementary Young functions (see, e.g., [27, p. 6] for
the precise definition), then @, ¥ € A, is equivalent to say that (L®, LY) is a pair of reflexive Orlicz spaces with
0<m;e <7 o < 1. Some of these properties will be used below without further mention.

Example 2.1. When & (1) =17, 1 < p < 00, then L?(RY) = L (R) and ¢(t) = '/7. Hence, H,} (1) = t'/7, which
implies ;0 =7;0 =1/p.

Example 2.2. When @ (t) = tP[log(e + 1)]%, with @ > 0 and 1 < p < oo, then L? is the classical Zygmund space
LP(log L)*. In this case, ¢(t) > ¢'/P (1 +log® 1/6)*/? and Hf (1) ~t'/P(1 4 log™ 1/1)*/?, which implies 7 ;o =
ﬁLdﬁ = l/p

Example 2.3. Let @ () >~ t”[log(e + 1)]%, with « <0 and 1 < p < co. Then ¢(¢) =~ e+ log™ 1/6)%/P and
HJ (1) ~t'/7 /(1 4 log" 1)*/P, which implies 7,0 =710 = 1/p.

Example 2.4. Consider the Young function

ifo<r <1,

o ="
Tt it

In this case one has L® = L2 N L* with equivalence of norms: || fll e = | fll;2n4 = max{ll fll 2, | fll;+}. More-
over, it is not difficult to see from this identity and the definition of fundamental function that ¢(¢) = HJ (1) =

t1/4X[o’1)(t) + tl/z)([l,oo)(t). Therefore w;0 =1/4, T 0 =1/2.
Example 2.5. Consider now the Young function

o) = {’4

ifo<r<1 _|r* ifo<gr<l,
Qr—1?% ifr>1

T2 ifr>1.

Then L? = L? + L* with equivalence of norms: || |l o = || fll ;2,4 = inf{l|gll;2 + ||A]l 4}, where the infimum is
taken over all decompositions f = g + h with g € L? and h € L*. The fundamental function is given by ¢(f) ~
/2 x0,1) () + /4 X[1,00) (), while H(/')“ (t) is comparable to the one given in the previous example. Thus we obtain
againmw ;o =1/4, 70 =1/2.

Remark 2.6. In the last two examples the exponents 2 and 4 can be replaced by any p, g € [1, 00), leading to the
Orlicz spaces L” N L7 and L? + L9, which satisfy analogous properties after obvious modifications.

2.2. Wavelet bases and Orlicz spaces

LetD={Qjx = 277([0, )4 + k): j €Z, k eZ% denote the set of all dyadic cubes in RY. We say that a finite
collection of functions {¢', ..., ¥L} c L2(R?) is an orthonormal wavelet family if the system

{vh, 1) =212y 2Ix —k): jez, keZ!, t=1,..., L} 2.7

forms an orthonormal basis of L2(R?). We will say that the wavelet family is admissible if in addition the system in
(2.7) is an unconditional basis of L?(R?) for all 1 < p < co. The reader can consult [13,23] for constructions, exam-
ples and properties of orthonormal wavelets. Admissible wavelets include the d-dimensional Haar system, wavelets
arising from r-regular multiresolution analyses (see [23, p. 22]), wavelets belonging to the regularity class R (as
defined in [13, p. 64] for d = 1), and actually any orthonormal wavelet in L?(R¢) with very mild decay conditions
(see [26,30]).
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M. Soardi proved in [28] that an admissible wavelet basis {I/fé}QeD, ¢=1.....1 1s also an unconditional basis for any

.....

Orlicz space L? (R?) with non-trivial Boyd indices 0 < ;0 < ;o < 1. Thatis, every function f € L? (R?) can be
written in the form

L
F=32 2 (fvol. 238)

{=1 QeD

with unconditional convergence in L? (R%), and moreover

L 1/2
1 llLo @y = H (Z >l WQ>|2|Q|—1XQ(-)>

(=1 QeD

2.9)

L®(RY)

This result was derived from the corresponding wavelet characterization of Lebesgue spaces L (R?), 1 < p < oo, by
applying Boyd’s interpolation theorem for sublinear operators.

,,,,,

that

< 0. (2.10)
L (Rd)

L 1/2
(Z Z|sg|2|Q|‘xQ(-)>

£=1 QeD

Isllje =‘

Thus, the correspondence f +— {SEQ} ={(f, Wé)}QeD, ¢=1,....L defines an isomorphism from L? onto §%. As usual,
this will reduce our research about N-term approximation in Orlicz spaces to prove the corresponding results on the
sequence spaces f® (see Section 6 below).

Remark 2.7. For the sake of simplicity, we shall assume throughout the paper that the number L = 1. Our theorems
will remain valid for any L > 1, since the finite sum appearing in the definition of {® is completely harmless in our
computations.

2.3. Greedy bases and democracy

We defined in the introduction the notion of greedy basis in a quasi-normed Banach space (B, || ||g). We also
mentioned the result of Konyagin and Temlyakov [19] characterizing greedy bases as those which are unconditional
and democratic. For simplicity, given a basis B = {¢;} j>1 in B we shall denote the normalized characteristic function
of a set of indices I C N by

I ~(1133 B) _ €j
Ip=1p"=3
je

< Jlej e
Thus, B is democratic in B if there exists C > 1 such that

I1rle < Cllir e 2.11)

for all finite sets of indices I, I'" C N with Card I" = Card I'"’. Quite often one can show democracy by finding a
function 4 : N — R* for which

1
Fh(Card ) < <|irle < Ch(CardI"), VI CD. (2.12)

In the case of wavelet bases, many classical function and distribution spaces satisfy (2.12) with A(N) = N'/7_ Indeed,
this is the situation for Lebesgue spaces L” (R?) when 1 < p < oo (see [29]); for Hardy spaces H” (RY), 0 < p<1
and Sobolev spaces WP (R%), 1 < p < 00 (see [14]); and more generally for the family of Triebel-Lizorkin spaces
(Rd) with 0 < p <00, s € R, 0 < r < 0o (under the usual decay and smoothness assumptions, and with the
standard modification of the basis in the case of inhomogeneous spaces; see [11]). Thus, wavelet bases are democratic
and hence greedy in all these spaces.
Wavelet bases, however, are not democratic in other classical spaces, such as BMO, the Besov classes Bg, q with

p # q, and as we shall see below, Orlicz spaces L? distinct from L. To deal with these cases the following notion
will be useful.
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Definition 2.8. Let B be an unconditional basis in a quasi-Banach space B. The right-democracy function associated
with B is defined by

he(Ny= sup |Irlle, N=1.2,....
Card(I")=N

Analogously, the left-democracy function associated with B is defined by

he(N)= inf |1plg, N=1,2,....
Card(I")=N

Observe that B is democratic in B if and only if &,(N) < Chy(N) for all N > 1 and some C > 0. Also, if the
p-triangle inequality holds in B and 55 is an unconditional basis we have
<hi(N) <h (N)<NYP, YN >1,

for some ¢ > 0 (we thank an anonymous referee for pointing out this fact).
3. Examples

We show with a few examples that, in general, admissible wavelet bases are not democratic in Orlicz spaces. In
order to do so one needs to estimate |1/ |, in terms of Card I". This can be easily done when I is a collection of

pairwise disjoint dyadic cubes of equal size.

Lemma 3.1. Let L? (R?) be an Orlicz space with 0 < wre <o <1, and let B={yg: Q € D} be an admissible
wavelet basis. If I' = {Q1, Q2, ..., On} C D is a pairwise disjoint family then

< xo()
r o @) = Z : 3.1)
£ 012D |0 )
If we further assume that all the cubes in I are of the same size, say |Q| =25 for all Q € I" and some k € Z, then
. _ p(N2H)
ILrllpegay = oKy (3.2)
Proof. For a single element /¢ of the basis B we have, by (2.9),
1/2
xo() (2D
Vol eray =~ H(—) =" (3.3)
QIIL? (R4) 10| L% ®d) |Q|1/2
Thus, using again the expression of the norm in (2.9) it follows that
v ! 0\
- 0 Xol
I lo g = D o ~ (Z )
Qer IVollze ra) L (RY) Qerl’ Vo ”iﬂRd) 12l L®(Rd)
172
N‘(Z xo() ) Z xo()
- 2
oer 12D Lowty N ger (12D Lq)(Rd)
where in the last equality we have used that the cubes in I" are pairwise disjoint. Assuming further that | Q| = 24 for
every Q € I', we obtain
p(N2)
117l zo gy = (zkd) > xo() (zkd) <‘ U QD oK)
Qer L‘P(Rd)
Remark 3.2. Defining
p(12) - [ 002t
h+ t) = = 34
O =swp o 0=t o (3.4)
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it follows from Lemma 3.1 that if I" is a family of disjoint cubes of the same size then

h, (Card I S IIr |0 ey Sy (Card ). (3.5)

Moreover, this estimate is sharp in the sense that we can find families " for which || 1 || Lo (Rd) is comparable to either

h; (Card I') or hgg (Card I'). Thus, if h(';(N ) and h;(N ) are not comparable for N > 1 it follows that admissible
wavelet bases are not democratic in Orlicz spaces.

Proposition 3.3. For the Orlicz spaces L> N L* and L*> + L* given in Examples 2.4 and 2.5 we have that h;(N) ~
NY* and h;’ (N) >~ N2 when N € N. Thus, admissible wavelet bases are not democratic for these spaces.

Recall that in the previous examples we have 7 ; » # 7 ; . We also show that there are Orlicz spaces with ;¢ =
7 ;o for which admissible wavelet bases are not democratic.

Proposition 3.4. Let o € R and 1 < p < oo. Then, the Orlicz space LP(logL)* satisfies h,(N) ~ NYP(1 +
log N)~*/? and h} (N) ~ N'/? when a > 0 and h,;(N) ~ N'/? and h} (N) ~ N'/P (1 + log N)~*/? when a < 0.
Thus, admissible wavelet bases are neither democratic nor greedy for LP (log L)* with a # 0.

We conclude this section with the simple proof of the previous two propositions.

Proof of Proposition 3.3. We first obtain the desired estimates for &, and h(';. Let us observe that these expressions
are not comparable. Thus, by Remark 3.2, in both cases, we can conclude that admissible wavelet bases are not
democratic

We do the case L? = L?> N L* where @ is given in Example 2.4 as the other case can be proved similarly. For
N € N, we have

1/4 if s <1/N
o(Ns) [N s /N,
=1 N2s1/4 if1/N <s<1,

v(s) N2 ifs>1.
Hence,
Nzkd Nzkd
) =sup P22 12 and =it EEE ) e g
kez, 9(25) ke, @(2kd)

Proof of Proposition 3.4. We do the case o > 0 as the other case can be proved similarly. As before it suffices to
get the desired estimates for /2, and hjp‘. Recall from Example 2.2 that the fundamental function associated with

LP(log L)% is given by ¢ (1) >~ ¢'/P(1 +log* 1/1)%/?. Then,

1/p( 1+log 3z \a/p .
@(Ns) N /p(l-i-loglz\}s) ifs <1/N, o
o(s) — | NYP(141ogl/s)~¥/P if1/N <s<1, .
NY/P if s > 1.

Thus, k., (N) =~ N7 (1 +1og N)~*/? and b} (N) ~ N'/?. O
4. Left and right democracy functions for Orlicz spaces

We saw in (3.5) that for any I" C D consisting of disjoint cubes of the same size we have
h, (CardI") < |17 || Lo @y S g (Card ).

Our main theorem in this section shows that these inequalities remain true for arbitrary I” C Q. We state this result
in a slightly different way than Theorem 1.2 in the Introduction.
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Theorem 4.1. Ler L? (R?) be an Orlicz space with indices 0 < ;e <Tpe < 1andlet B={yg: Q €D} bean
admissible wavelet basis. Then

h (Card I) < |17l Lo ey S hf(Card ), VI CD. (4.1)

In particular, the left and right democracy functions associated with B in L® (R?) satisfy hy ~ h, and hy ~ hzj‘.

Remark 4.2. As mentioned in Remark 3.2, the estimates in (4.1) are best possible, as one can obtain comparable
quantities on the left- or right-hand sides by considering sets I" consisting only of disjoint cubes of the same size.

The rest of this section is devoted to prove Theorem 4.1. We first present a very simple argument for the case
of pairwise disjoint cubes. The general case is more technical and will require a linearization argument and some
combinatorics about dyadic intervals.

4.1. Proof of Theorem 4.1: The case of disjoint cubes

Assume first that I = {Q1, ..., Qn} consists of pairwise disjoint cubes. Let A = h(‘;(N), so that p(N|Q|) <
Ap(]Q)), for all Q € I'. Therefore, since the elements of I" are disjoint and @ is increasing

ZQ FX(Q|—8\)) 1
o= Jar= 3 o (1) (wian)
R{ < A 2?5500 )12 < 2\ swvion )@

Qerl’ Qerl’

_Q; ( <N|Q|>>|Q|

Thus, by (3.1) and (2.1) we have

x0()
7 9(10])

<hf(N).
L?(Rd)

I1rllze gy =

The lower estimate is obtained in a similar way: take now A < h;(N) so that (N |Q|) > 2e(|Q|) forall Q e I'.
Then, reasoning as above

/‘ <ZQ61;£(Q|8) Z (M)(IQI))|Q| Yoo <m)IQI

R Qer

Z (" (i) o=

M

Thus, (3.1) and (2.1) yield
Z xo0()
790D

4.2. Proof of Theorem 4.1: The general case

> h, (N).
L® (Rd)

Il Lo gy =

In the case of disjoint cubes just considered we have two important features. First, Lemma 3.1 allows us to “lin-
earize” the square function in (2.9). Second, for the estimates obtained in the previous argument it is crucial that the
sets involved are disjoint. For general families of cubes we are going to follow the same scheme. First we “linearize”
the square function and then we dominate this by an expression involving only disjoint subsets from I". This last
argument is the most subtle, since it requires a careful selection procedure on dyadic cubes.
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4.2.1. Linearization of the square function
Given a finite set I" C D, we shall denote

1/2
(%)
Sr(x)=<z xe ) , 42)
000

so that, by (2.9) and (3.3), we have ||ir ||L®(Rd) ~|Sr ||L¢(Rd).
For every x € UQ <r O, we define Qy as the smallest (hence unique) cube in I” containing x. It is clear that

X0, (%)
S > , V , 4.3
rZ 0.0 erLJFQ @

since the left-hand side contains at least the cube Qy (and possibly more). We now show that the reverse inequality
holds with some universal constant. Indeed, if we enlarge the sum to include all dyadic cubes containing O, we have

o0

rx) £¢(|Q|)2 Qéx p(1QD)? ;fp(2fd|Qx|)2
QeD

Since we are working in an Orlicz space with iy, > 0, by (2.6) we can choose 0 < & < iy, and find C > 0 such that
02740 ]) = €274 =9 (| Q ). Therefore,

o 1 X0, (%)
Sr(x)?<C 1G - '
r () ;0 2046102~ p(10:1)?

This and (4.3) show that

_ X0, (x)
(0

This linearization procedure has been used by other authors in the context of N-term approximation (see, e.g., [6,11,
14]).
Observe from (4.4) that S (x) >~ S

Fmin:{Qx:xE U Q}

Qerl’

Sr(x)

(4.4)

(x), where I denotes the family of minimal cubes in I, that is,

Moreover, as we shall see below, the cardinalities of I" and Ij, are comparable, so that for our purposes only the
cubes in I, will be relevant. However, we still need a finer selection, since the cubes in I, are not necessarily
pairwise disjoint.

4.2.2. Shaded and lighted cubes

We start with an example. Suppose we have a family I” of 10 cubes which have been arranged by generations as
in Fig. 1.

Projecting a beam of light as shown in Fig. 2, some parts of a cube Q; receive light: we call these parts Light(Q;).
Some other portion of the cube Q; is shaded: we call this portion Shade(Q;). The shaded parts of the cubes given in
Fig. 1 are represented with thicker lines in Fig. 2. Observe that the minimal cubes are those with some portion of light,
as x € Light(Q;) if and only if Q, = Q;. In this example, I'in = I" \ {Q¢}. Notice also that {Light(Q): Q € I'min} is
a disjoint collection.

Now we give precise definitions: given a fixed I C D, for any Q € I" we define the Shade of Q as the union of all
cubes from I strictly contained in Q

Shade(Q) =| J{R: Re T, R Q).
We define the Light of Q as
Light(Q) = Q \ Shade(Q).
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l l Light J l
G Qi
Qo i Qe Q1 Qe
Q]i:: . Iiiii Q]E:: - Iiiii
Fig. 1. ' ={01,..., 010} Fig. 2. Shade & Light.

As mentioned above it is clear that Q € Iy, if and only if Light(Q) # @, and moreover

Ue= U rLisho,

Qer Q€ lmin

where the sets in the last union are pairwise disjoint. Therefore, by (4.4) we can write

XLight(0) (X)
Spn~ Y SEEE 4.5)
Oerus (120D

where in the last sum there is at most one non-zero term.

Next we classify the cubes as shaded if the shade is a big portion of the cube or lighted if this does not happen.
Precisely, a cube Q € I' is called shaded if |Shade(Q)| > % |Q|, and we write I's for the collection of cubes from
I" which are shaded. A cube Q from I is called lighted if it is not shaded, that is, if |Light(Q)| > 2% |Q|. We write
Iy, for the collection of all cubes from I” that are lighted. Observe that I';, C I'yip.-

Lemma 4.3. With the above definitions we have
d

1
o Card(I") < Card(I'1) < Card({ in) < Card(I"), VI CD.

Proof. Clearly, as we have observed before Card(/7) < Card({1in) < Card(I"). Thus, we need to prove the left-hand
side inequality. Given Q € D, we write Ok k=1,2,...,2¢ for the 2¢ dyadic cubes contained in Q of size 2740
For Qe lgand k=1,2,...,2%, let Q§ be a biggest cube from I" with Q§ C Q. Notice that the cubes Q§ exist
for every Q € I's: otherwise, if for some ko € {1, 2, ..., 2%} there is no cube from I contained in QX0 we have that
Q%  Light(Q) and then

_ 24 1
[Shade(Q)| < |\ 0| = (1 =27%)IQI = =10,
contradicting the definition of Is.
The procedure just described assigns 24 different cubes from I” to each Q € I's, namely Qé, Q2, R de, and

neither of them coincides with Q.
We claim that if Q, R € I's and Q # R, then we necessarily have Qlé #* Rf for all 1 <k, ¢ <2¢. This is trivially

true if Q N R = . Without loss of generality, we may assume Q C R and also Q C R!. It follows from here that
Q§ #+ Rg forallk=1,2,...,29 and all £ =2, 3, ..., 29 since Q§ c R! while Rg C R for ¢ # 1. Moreover, as R; is

the biggest cube in I" contained in R! and 0 C R! we have that 0cC Rtl C R!'. Hence, forallk =1, ...,2¢ we have
okcoc R:lI and thus Q§ #Ré.
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In short, to each Q € I's we have assigned 2¢ different cubes in I" and these are not associated to any other cube
in I's. We conclude that 2d Card(I's) < Card(I") and, as desired,

1 24 1
Card(/7) = Card(I") — Card(Is) > Card(I") — 2 Card(I") = o Card(I'). O

4.2.3. Proof of (4.1)

We can now conclude easily the proof of Theorem 4.1. By (4.2) and (4.5), we know that

Z XLight(Q) (X)
0T (0D

so we only have to estimate this last expression. Let A = hjp‘(Card(Fmin)), so that ¢(| Q| Card(I min)) < A@(|Q]) for
all Q € Iyin- Since {Light(Q): Q € I'nin} is a disjoint collection, we have

, 4.6)
L (Rd)

% ”L‘P(R") =

2 gery %QQI))(X) 1
4; e >d = qb( ) Light
R{ < g ) QEX:Fmin wotop ) 1Ll
: - (V)=
gQEX]—}:Mqj(90(|Q|CEII‘(Zl(I-'mill)))lQl_QEXI_;mnq)<(p <|Q|Card(Fmin)))|Q|_l'

Hence, by (4.6) and Lemma 4.3, and since h;f is non-decreasing, we have
117l gray < hyf (Card(Fnin)) < i (Card I).
We next show how to obtain the left-hand side of (4.1). By (4.6), and using that I't, C I'in, We can write

Z XLight(Q) (X)
Ocry o(19D

Now let A <h, (2= Card(I7)) so that ¢ (|Q|) < ¢(]Q|2~% Card(I7})) for any Q € I'. Proceeding as before, using
that |Light(Q)| > 27¢|Q| for Q € I'z, we deduce that

rll Lo @y 2

L®(RY)

XLight(Q) (X)

2 0er " oD ) ( 1 )
¢y dx = O —— ) |Ligh
R[ < 7 Q;L retop ) HEm@)
1
) 270|=1.
S (so(z—d|Q|Card<rL>)> a

Thus, by (2.1), Lemma 4.3 and by (2.6) with s = (2¢ — 1)27%¢ and ¢ = Card(I") we obtain
I rll Lo ay = hy, (274 Card(IL)) > h, ((2¢ — 1)272 Card(I")) > Ch,, (Card I").
This completes the proof of Theorem 4.1. 0O

5. Greediness of wavelet bases in L?

In this section we prove Theorem 1.1. Some of the arguments have been adapted from [27] (see, however, an
alternative proof in [31, Section 2]). Throughout the section we shall assume that ¢: (0, c0) — (0, c0) is a non-
decreasing function so that lim,_, o+ ¢(¢) = 0, lim;_, 5, ¢(¢) = 00, and, in addition, ¢ € A, that is, ¢(2¢) < Cop(2),
for all r > 0.

Recall the definitions of HJ (1) and h(f(t) in (2.3) and (3.4), and let us also introduce

t
Hy (1) = inf aC)
s>0 @(s)
The following lemma is a trivial consequence of the doubling property.

> 0.
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Lemma 5.1. Given ¢ as above we have

co—lh;(r) H; (1) <h,(t) and h}(t) <HS (1) <Cohf(r), Vi>0. (5.1

Our second lemma follows an argument presented in [27, pp. 31-32] in the context of Young functions, which we

have adapted to our situation.
Lemma 5.2. Let ¢ be as above and suppose that there exists C1 > 0 such that

HJ(N)gClH_(N), forall N =1,2,3,.... (5.2)
Then, there exist co > 1 and 0 < a < 00 such that

't <) <cot®, forallt>O0. (5.3)
Proof. The proof is divided into several steps.

Step 1. H+(t) < CoCiH, (1) forallt > 0.
Letr>1 and choose N such that N <t < N + 1. Using that ¢ is non-decreasing, ¢ € Ay and (5.2), we have

Hy (1) <HS (N +1) < Hy (2N) < CoH, (N) < CoCiH, (N) < CoCiH, (1).

The inequality for # € (0, 1) follows from the previous case and H;‘ () =1/H, (1/1).

Step 2. There exists co > 1 such that ¢, go(t)<p(s) o(ts) < cop(t)p(s) forallt > 0 and s € (0, 1].
From Step 1 we deduce

@(ts) " _ p@-1)
<H, (1) <CoCiH, (1) < CoCy .
@(s) ¢ ¢ @(1)
On the other hand, Step 1 also implies
(t-1) (ts)
o) = oV <o HS (1) < o(DCoC1H,, (1) < (1) CoCr &

(1) p(s)

Step 3. There exists 0 < a < 00 such that ¢(t) < cot® forall t € (0, 1].
Let f1(u) =log[co/@(e™)]. For all u, v > 0, Step 2 yields

2
it =log—  <log——C  _ )+ fiw). (5.4)
pe e V) ple™)pe™)

Let # > v > 0 and choose n € N such that nv < u < (n + 1)v. Then, by (5.4) and the fact that f; is non-decreasing
we obtain

fiw) < fi((+ Do) <+ 1) fi(v).

Since nv +v<u+vwehave (n+1) < ”+” , and hence

filw) < vf](v), u>v>0.
Thus, for all v > 0,
lim sup fiw) < lim sup utv i) = /i (v)’ (5.5)
U—00 u U— 00 u v v
which shows that
0 < limsup fiw) < liminf fi (v)'
U—>00 u v—>00 v

Consequently, there exists o > 0 such that lim,,_, o / ‘;")

v > 0, we obtain o < fl(v) 1 5 loglco/@(e™")]. This estimate with # = ™", implies that ¢(7) < cor® for all 7 € (0, 1],
as we wanted to prove.

= «. Using (5.5) it follows that @ < oo and also that for
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Step 4. For all t € (0, 1], we have t* < cop(t) and also a > 0.
Let f>(u) =log(1/[cop(e™™)]). For all u, v > 0, by Step 2 we have

=1 <1
L)+ f2(v) og C(2)(/3(€_”)§0(€_U) <log Co(p(e_(”+”))

For u > v > 0, choose n € N such that nv < u < (n + 1)v. Then, by (5.6) and the fact that f> is non-decreasing
nfr(v) < fo(nv) < fr(u).

Since u < (n + 1)v we have n > “*, and hence

= fr(u+v). (5.6)

u—

5 Ufz(v) < forw), u>v>0.

Note that f>(u) =2log1/co + f1(u). Hence for all v > 0
L . u—vHE) L)

o= lim > lim
Uu— 00 u u—>00 Y v v

(5.7)

This implies that « > 0. On the other hand, this estimate with t = ¢~ yields that ¢(r) > %t"‘ for all € (0, 1], as we
wanted to prove.

Step 5. The proof of (5.3).

The previous steps imply that

gt < (1) <cot®, forallre (0, 1]. (5.8)
Lett > 1. By Step 2 and (5.8)

o' <p =¢(r-171) <cop®e(t™") < Bp)r.
Consequently, ¢, 32 @(t). A similar argument gives

oo =gt 17" = cylo®e(t™") = ¢y o)™

and therefore ¢(f) < cgt‘)‘, completing the proof of (5.3). O

Proof of Theorem 1.1. We already mentioned in Section 2.3 that (admissible) wavelet bases are greedy in L” (R%)
for all 1 < p < co. Thus, the interesting implication is the converse.

Suppose that a given wavelet basis is democratic in an Orlicz space L? (R). Then, Theorem 4.1 and Remark 3.2
give

hf(N)<Ch;(N), N=1,2,3,...,

for some constant C > 0. Note that the fundamental function ¢ of L? clearly satisfies the conditions we assumed at
the beginning of this section. Hence, Lemma 5.1 implies

Hf(N)<CiH,(N), N=1,2,3,...,

and therefore Lemma 5.2 leads to ¢(r) > t%, for some 0 < a < co. Taking p = 1/, we have that L? (R = LP(RY)
with equivalent norms. Moreover, since 7 ;o = T ;» = 1/p, we necessarily have 1 < p <oco. O

6. Greedy algorithm and errors of approximation
In this section we prove Theorem 1.3 and Corollary 1.4, concerning the inclusions of the N-term approximation

spaces of L? (R). To do so, it suffices to consider the same problems in the sequence space {® defined in Section 2.2.
We recall that f% is the space of all sequences of complex numbers s = {so}pep such that

1/2
(Z |sQ|2|Q|1xQ(-)>

QeD

< Q.
L®(R9)

Islle =‘
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In this setting the approximation is performed from the canonical basis {ep}gcp, Where each vector e has entry 1 at
the index Q, and 0 otherwise. Observe that the canonical basis is unconditional in f®, and in particular that {® satisfies
the lattice property

Isgl <ltgl, VQe€eD = H{SQ}QeDHf¢<||{tQ}QeD||faa. (6.1

The greedy algorithm in f takes the following form: given s = {so}oep € §%, we order the index set in such a way
that
Iso,eg, llje = llsg,e0, 5o = lsgseqsllje = - (6.2)

handling ties arbitrarily. Notice that, as in (3.3)

1
legllje =9(IQ1)/1Q12, QeD. (6.3)
The greedy algorithm of step N > 1 is given by the correspondence

N
s= Z spep € ¥ — Gy(s) = Zster.
QeD k=1
As usual, when N =0 we set Go(s) = 0.
We recall the definition of the approximation spaces: given o > 0 and 0 < g < 00

AS(1%) = {se £ [ Z(N%N(s)@)q%r < oo},

N>1

and

1
1 q
I8llagse) = sl + [ 2. (NQUN(S)f¢)qN:| '

N>1

When g = oo one modifies these definitions in the standard way:

Ago(f(p) = {S e§®: sup NaUN(S)fd’ < 00} Isll a2 sy = lIsllje + sup N“GN(s)fq>.
N1 N>1

6.1. Sequence spaces in D

We recall the definition of some classical sequence spaces over the index set D. All of them are subspaces of
¢o and therefore for each sequence {sgp}pep We can find an enumeration of the index set D = {Q};2, so that
[sg;| = |sg,| = --- and in addition limy_, o sg, = 0. We shall always assume that {sp, };>1 corresponds to such
ordering, which coincides with the non-increasing rearrangement s* of the sequence s.

Let n = {nx}x>1 be a fixed positive increasing sequence so that limy_, o, 7x = 00 and 1 is doubling (i.e. nyx < C,
k > 1). Then, for each 0 < r < oo we define a discrete Lorentz space by

1
Ap = {s € co: lIsllay = [Z(MSQ"')V%} < oo}.
k>1
Note that for r = oo one writes ||s|| a5 = supy 1k|s g, |. These are quasi-Banach rearrangement invariant spaces, which
are Banach when r > 1 and in addition {1} /k}; is non-increasing (see [4, p. 28]). When r =1 or r = oo we shall
write, respectively, A, and M), (the latter called Marcinkiewicz space). The particular case {n; = k'/7} leads to the
classical (discrete) Lorentz spaces Aj = £"" (D). The spaces Aj for general 7, and in particular their interpolation
properties, have been studied, e.g., in [4,22,25]. In our applications we shall use the sequences {ny = k“hf;(k)}k% s
for suitable « > 0, which always satisfy the required assumptions.
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Remark 6.1. Given a fixed sequence space s as above, we define a new sequence space s(f®), isomorphic to s, by
s(i%) = {s={so)oep € 1*: {sollegljo}, €5},

with |[s]| s¢o) = |l {solleg ll5o }olls. Such definitions appear naturally in relation with greedy approximation when the

basis is not normalized (see, e.g., [11]).

6.2. Jackson’s inequalities

In this section we apply our results in Section 4 to obtain Jackson type estimates associated with the greedy
algorithm.

Proposition 6.2. Let @ be a Young function so that 0 < 7 ;0 <7 0 < 1. Then, Ah;r (f(p) — f¢, and moreover, there
is a constant C > 0 so that

o0 N ]
[s=6nv1®]ie <C 3 lsoieollohy k)7, VN >1. (6.4)
k>N/2

Proof. We show (6.4) for every N > 1 (when N = 1, as Go(s) = 0, this is the embedding A h;(fd’) — §2). By the
triangular inequality and (6.1) we have

Z S0, €0

Is=Gn-19) 50 =

Z S0, €0;

o0
<>
® j=0

k=N f =012/ N<k<2/+IN A
> e
Ok
S Z ||SQ2./NeQ2jN||f¢ Z leg, Il
=0 2Nk<2FIy LRI 5o

00
<€ Z ”SQz.iNeszN ”f(p h;/t (2‘/N)
=0

where in the last inequality we have used Theorem 4.1. This estimate can be transformed into (6.4) using that h;f k)/k
is non-increasing. Indeed, one just writes the right-hand side as

e ht(2IN) ht (k)
Z Z [ Z @

||sQ2/NeQ2jN ”f(b 2i-1pN < 2 ”ster ”f‘b k :
J=02/-1N<k<2/N k>N/2

Remark 6.3. The inequality in (6.4) is best possible, in the sense that left- and right-hand sides are comparable for
certain choices of s. Given N > 2 we take k € Z so that

P(N2kd)

1h+(N) —
2" < @(2Kd)

< h;r(N). (6.5)
Let I" C D be a collection of 2N — 1 pairwise disjoint dyadic cubes of equal size 2kd and set s = 1 =
ZQeF eg/lleglljo. Notice that for Q € I' we have [sgegllje = 1. Thus s — Gy—1(s) = 1 for some I"" C I" with
CardI'" = N. It is easy to see that

p(N2K)

on-1S)ge =[5 = Gy1®o = i le = == = hEW), (6.6)

where the third equality follows as in Lemma 3.1.
On the other hand, when s = 1, the right-hand side of (6.4) takes the form ZN/2<,<<2N_1 h;g (k) k ~ h:;(N), by

the doubling property of //.
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Remark 6.4. We should also point out that for certain other sequences s the estimate in (6.4) may be too “crude.”
To see this consider the same example as before, but choosing the cubes sizes 25 so that in place of (6.5) we have

hy (N) < ‘/’%ﬁﬁ‘? < 2h;(N). Then, on_1(S)e = |ls — Gy—1(8)llge = hy (N), while the right-hand side of (6.4) is

still comparable to h;f(N ). For non-democratic spaces the gap between these two quantities can be big, as we have
seen in the examples in Section 3.

The estimate in (6.4) implies a decay of oy (S)fco as N growths. For general s € A hf (f‘p) we do not have further

information about the rate of decay. However, restricting s to appropriate subspaces we can obtain precise rates of
convergence.

Corollary 6.5. Let @ be a Young function so that0 < ;0 < T e < 1, andleto > 0. Then, for everys € Mkah;,f(k) (4®)
we have

s = Gn-19)| o < CN*W||S||Mkah+(k)(f¢), VN > 1. (6.7)
(4

Proof. By (6.4) and the definition of the Marcinkiewicz space

1 ad 1
+ —
ls=Gna1®]i <C 3 lsoreqllyoh () < Clislla, ., ) Dk
k>N/2 k>N/2
SCNT® ”S”Mkan;(k)(f(p)’ H

The previous result can be translated as an inclusion of approximation spaces.

Corollary 6.6. Let o > 0. Then
Myt o (i) = A% (7%)- 6.8)

Moreover, M, ht (k) is the largest M, -space so that M, (§®) — A% (4®).

Proof. The inclusion (6.8) is obvious from (6.7) and the definition of Ago(f‘b). To see the optimality, assume that
M, (f®) < A% (§®), and let s = 11 be as in Remark 6.3. Then, by (6.6) we have Isll aa 52y = N¥hJ(N). On the
other hand, ”S”Mn(f‘b) = Sup;<r<an—1 Mk = M2n—1. Thus, the assumed inclusion and the doubling property give

Nh} (N) < nn, which shows M, (%) < Mkah;(k)(f‘p). m
As a particular case we obtain the following inclusions in terms of classical Lorentz spaces.

Corollary 6.7. Let a > 0. Then, we have the inclusion

er,oo(qu') — A% (f‘p), whenever % >a+Te. (6.9)

Proof. By (2.5), we know that 1} (1) < Cot™1?€ ¥t > 1. Choosing & = % —a — e this gives k% (k) < K,
k > 1, which in turn implies £5°° — Mkahgj(k)- The result then follows from (6.8). O

Remark 6.8. Let us observe that from the proof of Corollary 6.6, if (6.9) is valid for % =a + 7, then it follows that
h;f(N) < N71?. Also, Lemma 5.1 and (2.4) imply that h;f(N) > N7L? and therefore h;f(N) ~ N7t? for N > 1.
Conversely, if one assumes that h;g (N) ~ N7t for N > 1, Corollary 6.6 gives £ (f?) — Ag’o(f‘p) with % =
o + 7w ;e. This shows that for (6.9) to be valid at the endpoint % =a + 7o, it is necessary and sufficient that
h;f(N) ~ N71? N > 1. In our examples in Section 2.1, this is the case for the Young functions associated with

L>2+L* L>NL*or L?(log L)* with & > 0, but may fail in other cases, such as for the spaces L” (log L)* with a <0
(see Example 2.3).
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6.3. Bernstein’s inequalities
Bernstein type estimates are useful to obtain converse inclusions for approximation spaces.

Proposition 6.9. Let @ be a Young function sothat0 < ;e < 7T o < 1. Then, P s Mh(; (%) and there is a constant
C > 0 so that

|Gn(s) ”Mh; G = S Isgcegillyelry, () < C[Gn () |0, YN >1. (6.10)

Proof. As before, it suffices to show (6.10), since the embedding {® — Mh; (f®) follows by letting N — oo. For
fixed 1 <k < N, using Theorem 4.1 and the lattice property (6.1) we have

k

2

lsoreglljeh, (k) < Clisg,eq,llje —
0k C 0k f @ 0k C 0k f par ||eQ ||f(b

er

C||GN(s)||f¢. O
@

Remark 6.10. As before, one can show the optimality of (6.10) by finding an appropriate s for which both sides of
the inequality are comparable. Indeed, one just needs to choose s = 1, for I" consisting of N disjoint cubes of equal

o okd — P(N2*) - : :
size 2" and k such that hw (N) < o0FD) < 2h(p (N). In this case, as in Lemma 3.1 we have

kd)

@(N2

“GN(S) ||fq> = ||S||f¢> = W

~h, (N). (6.11)

On the other hand, as h(; is non-decreasing,
Gy (s) = sup h,(k)=h,(N),
v @l = 300 =1
and therefore both sides of (6.10) are comparable.
Corollary 6.11. Let @ be a Young function so that 0 < ;e < 7T e <1 and let a > 0. Then, there exists C > 0 so

that, for all N > 1,

”S”Akah(;(k)(fq}) < CNa||S||f<1>7 Vse Xy. (6.12)

Proof. Write s = G y(s) = Z,ivzl spceo; With |lso,eg,lljo = [Isg,e0,llje = - -. By (6.10) we have
o 1 X ke
Isla, ¢o= ];kah(;(k)Hster Il . <C|Gne)| o Z - < C'NIsljo. ]

K% hz (k)
¢ k=1

As before, the above result can be stated as an inclusion of approximation spaces. Below, the number p = p, €
(0, 1] is chosen so that the quasi-normed space A« hy (k) satisfies the p-triangular inequality, that is, for every N > 1,

st +s2lfy — <lsilly — +lIs2lly . (6.13)

k"‘hw (k) kahw (k) k"‘h(; (k)
Corollary 6.12. Let o« > 0. Then
@ @
AD(F?) = Agng 1 (7)- (6.14)
Moreover, Ak,,h(;(k) is the smallest Ay-space so that Ag (f‘p) — An(f¢)f0r some 0 < g < 1.

Proof. The argument for (6.14) is standard (see, e.g., [8]). It suffices to prove that
< o >
”s”Akah_(k)(fd’) S C“S”Ap(fd’)v Vse Xy, N =1
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with a constant C > 0 independent of N and one obtains the desired inclusion by letting N — co. We may also
assume N = 2’. Now, write s = Z]J-ZO[S(J) —sU~D], where by convention s/ =s, s(-1 =0 and s') € X, is so

that [|s — s ||;o <204 (s)j0, 0 < j < J. Then applying (6.13), and (6.12) to s/} —sU~1 € 5,;,1 we obtain
1 J 1

o
”S”Akamk)(fd’) < [ZHS(') sU— 1)||pka, (k)(f )i| gC[szp ”sm _s(/—1>||f¢i|
¢ ]:O

j=0

Now, by assumption for 1 < j < J
[s¢) —sU=D o <189 = 8]0 + s - UV o <doyi1 (S)50.
On the other hand, for j =0 we have
[ =50 =[5V ]j0 S [ 5] 0 + lIslje <2016)50 + sl jo-

Hence,

J—1 o
I814,4, ) < C[nsnfa» +Y (2%, (s)w)p} = [sll g 52)-

j=0

To see the optimality, assume that for some sequence n and g € (0, 1] we have Ag (¢®) — A,,(fd’), and let s = 11 be
as in Remark 6.10. Then by (6.11) we have

N

1 1
117 N N ~
||s||Ag(f¢)=||s||f¢+[2(k“ak(s)f¢)q%] snsup[Zk‘” ‘} ~ CN*hy (N).
k=1

k=1

On the other hand, by the doubling property

1
Isll 4,2y = an— > My R IN/2 2N
N/2<k<N

Thus, if the assumed inclusion holds, the previous two estimates lead us to ny < N 0‘h(;(N ), which in turn implies
Akah;(k) — A,. O

Corollary 6.13. Let o > 0. Then, we have the inclusions

A%(f) — -1 (f®),  whenever % <a+m;e. (6.15)

Proof. From (2.5) we have h, (1) = 1/h;§(1/t) > CetB? ™8, t > 1. Letting e =a + 70 — % we obtain that
k%h, (k) > k%, which leads to A, hy k) ¢%1. The result then follows from (6.14). O

Remark 6.14. As in Remark 6.8 if (6.15) holds at l =a+7 0 itfollows that h, (N) 2 > NZr® and therefore h+(t) <
tZ1? for 0 <t < 1. From Lemma 5.1 and (2. 4) we also have that h+(t) pe t”L“’ for 0 < ¢ < 1. This ylelds that

h+(t) >~ Z1? for 0 <t < 1. On the other hand, assuming that h+(t) >~ Z1? for 0 <t < 1, (6.14) implies (6.15)

at ; = o + m;e. All this shows that a necessary and sufficient condition for the endpoint case % =o+m;e in

(6.15) to hold is h;r(t) =~ tZ1? for t € (0, 1]. In our examples in Section 2.1, this is the case for the Young functions
associated with L? 4+ L*, L?> N L* or L?(log L)* with & < 0, but such property fails in this last case when @ > 0 (see
Example 2.2).
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6.4. Inclusions for the approximation spaces Ag (4®)

Finally, using real interpolation we can obtain inclusions for the whole family of approximation spaces Ay (6®),
0 < g < oo. For this we take into account the interpolation properties of the sequence spaces A?,, namely,

q
(Ao ks A ,7(,())9’(1 = Maygys @@= 1=+ 0ba, (6.16)

forall0 < ¢g,r <o00,0<6 <1 (see, e.g., [25, Proposition 6.2], [22, Theorem 3]).

Corollary 6.15. Let o« > 0 and 0 < g < 00. Then

Azah(;(k) (fQ)) - A(‘; (f¢) - Azah;(k) (fq)) (6.17)

Proof. Let oy <« < «p, so that o = (g + 1) /2. Then, for every 0 < g, r < 0o we have (see, e.g., [8])
Ag = (Ago’ A(;{l)l/lq'
Setting r = min{py,, O, } and using (6.14)
AG(5%) = (A7 (57), A7 (2))1 2. = (Areong o0 () Mg 0 (F)) 120 = A 40 ()
where the last equality follows from (6.16). Similarly, by (6.8)
AZ (f(p) = (Agg(fds)’ A% (f(b))l/Z,q < (Mk“0h$(k) (fd))v Mkalh;f(k)(f(p))]/z,q = Aza;1$(k) (f(p)- o

As a consequence of (6.17), and proceeding as in Corollaries 6.7 and 6.13 we obtain the following result.

Corollary 6.16. For all « > 0, g, qo0, q1 € (0, 0c0] we have
o (f7) > AG(17) = €0 (7).

1
7]

1

whenever -- <o+ 0 Sa+Tpo < 4.

Proof. Pick t so that r—lo > % > o + 7 ;o. Then as in the proof of Corollary 6.7 we observed that for all # >> 1 we have

t"‘h(j(t) < t%. Then (6.17) and the embedding £%0-90 — £%9 yield
A7) = B () = A (F) = 04(07) = 200

For the other embedding we choose t verifying % < % < o + ;0. The proof of Corollary 6.13 yields that

t*h, (t) 2 t7. Then (6.17) and the embedding €77 — £7:91 give

AZ (fcb) s Azah;(k) (fqb) s AZ% (fdﬁ) — 74 (fd>) s T4 (fcb). O

Remark 6.17. Observe that the two results stated in the Introduction, Theorem 1.3 and Corollary 1.4, are straightfor-
ward consequences of Corollaries 6.15 and 6.16 and the definition of the spaces s(L%) in (1.4).

Remark 6.18. Notice finally that the inclusions in (6.17) remain as well valid when we replace Ay (%) by the smaller
approximation space

a1(%) = [ser®: | Zowte-avolory | <]

N>1

This is because of our formulation of the Jackson estimate in (6.7). We do not know however whether in general one
can have AZ (¢%) = g‘; (§%). See more properties of Q;‘(f@) in [12].
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6.5. Besov spaces of generalized smoothness

Let ¥: (0, 00) — (0, 00) be a fixed continuous function with sup,_ o ¥ (rs)/¥ (s) < oo, for all 7 > 0. Given 0 <
7,q < 00, we define a Besov space of W -smoothness, B;{’ q (RY), as the set of all tempered distributions f € S’(R)
for which

1

q

1w, = [Z(W(ZJ)uf x x,-an(Rd))q] < o0, (6.18)
JjEZ

where x € S(RY) is so that xqej<1) < X (€) < xqej<2)» and x;j(x) = 209y (2/x) — 207Dy (2/71x). As usual, one

takes the quotient of Bf , with the set of polynomials to obtain a (quasi)-Banach space.

Besov spaces of generalized smoothness were introduced in [5,22] in the context of real interpolation with function
parameters (see also references in [1,10]). The particular case ¥ (t) = t* corresponds to the usual (homogeneous)

Besov space B;’ q(Rd). When ¥ (¢) = t*(1 + log™ t)” one obtains logarithmic Besov spaces Bi?;y), analogous to
those studied by Leopold in [21] (see also [24]). Alternative characterizations of these spaces also appear in [2,15].
We point out that most of the above mentioned references only consider the theory of “inhomogeneous spaces” (in
which the series in (6.18) is truncated to j > 0; see (6.23) below). Minor modifications, however, are necessary to
carry out a similar theory in the “homogeneous” setting of B;{’ 7"

In this paper we shall only use the wavelet characterization of B;{’ q (R4) (which we may as well take as definition),
similar to the one obtained by Almeida in the inhomogeneous setting (see [1]). As in Section 2.2 we fix a wavelet
basis {1//ZQ}, which we shall assume to consist of Schwartz functions. For notational simplicity, we shall also drop the
super-index £.

Proposition 6.19. A tempered distribution f belongs to B;I/ q (R?) if and only if

1

714
Z[( 3 |w(|Q|—%)|Q|%—%<f,wQ>|’) } <o0. 6.19)

JEZ |Q|=2-7d

Moreover, this expression is comparable to || f ||%q, .
7.q

A particular case of this result is given next.

Corollary 6.20. Let @ be a Young function with 0 < w;0 < T e <1 and v > 0. Define ¥(t) = t%/d?_l(td) =
t%(p(t_d). Then,

B, =1feS®R): Y [(f.v0)eolfo <00 (6.20)
(0]

A=

with the equivalence of norms ||f||B;pr ~ (ZQ H (f,¥o)oeg ||;¢,) .

Proof. From (2.5) and (2.6) it follows that the function ¥ (¢) satisfies the conditions required at the beginning of this
section. By (6.3) and the definition of ¥ we have

leglise =101 20(1Q1) = 1Q1F 2w (10 7).

Therefore we can write

S if. vodoeolis =Y ¥ (1017 )11 2. yo)
) 0]

T
b

which together with Proposition 6.19 complete the proof. 0O

We now proceed to connect these Besov spaces with the approximation spaces A% (L®).
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Corollary 6.21. Let « > 0 and 0 < g < 0o. Then

B 5 g4 o AY(L?) Bzfl o™

70,70 71,71 ’

(6.21)
whenever % <a+mre<a+Tpe < %

Remark 6.22. As usual, the first inclusion in (6.21) is understood with the assignment f +— ) 0 (f,¥0)oV¥g,so that
polynomials in the Besov space are mapped into the null function of L% (see the proof below).

Proof of Corollary 6.21. We prove the first inclusion. Given f € Biooff(l ), by (6.20) the sequence

(J o joep belongs to , and since — > T e, also to +. roposition this implies that

{{f.¥o)ol olly }oep belong £ d rlo L 1 Ah By Proposition 6.2, this implies th

s={{f.V¥o)}loep € §?, and therefore f% = ZQ fivolovo € L?(RY) (Wlth convergence of the series in L?).

Moreover, by Corollary 6.16, we also have s € £% (fd’) — AZ‘ (fd’) Finally, since oy (s)fq> = oN(fﬁ)Up we easily

conclude that f te A‘Jl (L®) and || f 1) Ax(L?) S < ClfI BW as asserted. The second inclusion is proved similarly
-T0

using the right-hand 1nclusron of Corollary 6.16. O

Remark 6.23. A special case of the previous proof gives the Sobolev type embedding

L4
BIYU D 1P 0<t<1/T 0.

1_1y

This is a refinement of the classical estimate B”’ Pes LP for0 <1 < p.

The special case of Zygmund spaces L?(log L)”?. Let us now consider the special case of the Zygmund spaces
L% = LP(log L)’ in Examples 2.2 and 2.3 above. We wish to describe the approximation spaces A;‘ (L®), for fixed
a>0and0<g < o0

The description is given in terms of the logarithmic Besov spaces BT TV) (RY), i.e. B L With¥ () =14(1 +logt ).
By Corollary 6.20 and the explicit expression ¢ () > ¢ P (14+1log™1/t)7, we can 1dent1fy B%”’) (RY) with £7 (f‘p) when
=G+
Then, Corollary 6.21 gives

B0 s Al (Lp(log L)"P) < Bl1.») (6.22)

70,70 71,71

forallotl<oz<ozo,%():“70—l—%,andr—:i‘l—'—l—l

These inclusions can be slightly improved at the endpoints. More precisely, when y > 0, using Corollary 6.15 and
h;f(k) ~ kP we can take g = o in (6.22), provided g > 79. On the other hand, if y <0, one has h (k) >~ k'/P and
then Corollary 6.15 gives the right-hand inclusion of (6.22) with o) = «, provided g < 7;. Finally, observe that in the

special case y = 0 we recover the well-known identity B?,r = AZ(LP) with % = % + % (see, e.g., [11, (6.22)]).
6.6. Truncated wavelet bases

In some applications it may be of interest to replace the wavelet basis {1/¢} in Section 2.2 by a “truncated basis”
of the form

={yo: 10I< 1} Uy 101=1}.

where 1 ©) denotes a suitable scaling function. All the results stated in this paper remain valid for such bases, after
standard modifications. More precisely, one considers the characterization

( PIF2 wQ>|2|Q|—1xQ<~>> ( Yo |(r v xQo)

011 |0|=1

Il =

L® L®
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(implicit in the arguments of [28]) and the corresponding sequence space (which is isomorphic to the subspace of all
sequences of {2 supported in |Q| < 1). The arguments presented in Sections 3-5 can be carried out in exactly the
same way, except for the fact that h(‘; ), h; (t) in (3.4) are defined as

tzkd
h(; (t) = Sup (p(—kd)
k<o 925
because of the restriction |Q] < 1. Finally, in Section 6 one uses the “inhomogeneous” version of Besov spaces,
B;’f q (RY), given by the norm

e P25
and h(p (l) :klgf(‘)m,

1

q

£y, = | D (T @IS *xile)" (6.23)

j=20

where y; are as in Section 6.4 when j > 0, and xo = .
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