Democracy functions and optimal embeddings for approximation spaces

Gustavo Garrigós · Eugenio Hernández · Maria de Natividade

Received: 25 November 2009 / Accepted: 25 February 2011 / Published online: 23 September 2011 © Springer Science+Business Media, LLC 2011

Abstract We prove optimal embeddings for nonlinear approximation spaces \mathcal{A}_q^{α} , in terms of weighted Lorentz sequence spaces, with the weights depending on the democracy functions of the basis. As applications we recover known embeddings for *N*-term wavelet approximation in L^p , Orlicz, and Lorentz norms. We also study the "greedy classes" \mathscr{G}_q^{α} introduced by Gribonval and Nielsen, obtaining new counterexamples which show that $\mathscr{G}_q^{\alpha} \neq \mathcal{A}_q^{\alpha}$ for most non-democratic unconditional bases.

Keywords Non-linear approximation • Greedy algorithm • Democratic bases • Jackson and Bernstein inequalities • Discrete Lorentz spaces • Wavelets

Mathematics Subject Classifications (2010) 41A17 · 42C40

Communicated by Volodya Temlyakov.

Research supported by Grants MTM2007-60952 and MTM2010-16518 (Spain). Research of M. de Natividade supported by Instituto Nacional de Bolsas de Estudos de Angola, INABE.

G. Garrigós · E. Hernández (⊠) · M. de Natividade

Departamento de Matemáticas,

Universidad Autónoma de Madrid, 28049, Madrid, Spain e-mail: eugenio.hernandez@uam.es

G. Garrigós e-mail: gustavo.garrigos@uam.es

M. de Natividade e-mail: maria.denatividade@uam.es

1 Introduction

Let $(\mathbb{B}, \|.\|_{\mathbb{B}})$ be a quasi-Banach space with a countable **unconditional** basis $\mathcal{B} = \{e_j : j \in \mathbb{N}\}$. A main question in **Approximation Theory** consists in finding a characterization (if possible) or at least suitable embeddings for the nonlinear approximation spaces $\mathcal{A}_q^{\alpha}(\mathcal{B}, \mathbb{B}), \alpha > 0, 0 < q \le \infty$, defined using the **N**-term error of approximation $\sigma_N(x, \mathbb{B})$ (see Sections 2.2 and 2.3 for definitions). Such characterizations or inclusions are often given in terms of "smoothness classes" of the sort

$$\mathfrak{b}(\mathcal{B};\mathbb{B}) := \left\{ x = \sum_{j=1}^{\infty} c_j e_j \in \mathbb{B} : \{ \|c_j e_j\|_{\mathbb{B}} \}_{j=1}^{\infty} \in \mathfrak{b} \right\},\$$

where b is a suitable sequence space whose elements decay at infinity, such as ℓ^{τ} or more generally the discrete Lorentz classes $\ell^{\tau,q}$.

The simplest result in this direction appears when \mathcal{B} is an orthonormal basis in a Hilbert space \mathbb{H} , and was first proved by Stechkin when $\alpha = 1/2$ and q = 1(see [31] or [8] for general α , q).

Theorem 1.1 [8, 31] Let $\mathcal{B} = \{e_j\}_{j=1}^{\infty}$ be an orthonormal basis in a Hilbert space \mathbb{H} , and $\alpha > 0$, $0 < q \le \infty$. Then

$$\mathcal{A}^{\alpha}_{a}(\mathcal{B},\mathbb{H}) = \ell^{\tau,q}(\mathcal{B};\mathbb{H})$$

where τ is defined by $\frac{1}{\tau} = \alpha + \frac{1}{2}$.

Many results have been published in the literature similar to Theorem 1.1 when \mathbb{H} is replaced by a particular space (say, L^p) and the basis \mathcal{B} is a particular one (for example, a wavelet basis). We refer to the survey articles [5, 35, 36] for detailed statements and references.

There are also a number of results for general pairs $(\mathbb{B}, \mathcal{B})$ (even with the weaker notion of quasi-greedy basis [9, 13, 20]). We recall two of them in the setting of unconditional bases which we consider here. For simplicity, in all the statements we assume that the basis is *normalized*, meaning $||e_j||_{\mathbb{B}} = 1, \forall j \in \mathbb{N}$. The first result can be found in [21] (see also [11]).

Theorem 1.2 [21, Theorem 1], [11, Theorem 6.1] Let \mathbb{B} be a quasi-Banach space and $\mathcal{B} = \{e_j\}_{j=1}^{\infty} a$ (normalized) unconditional basis satisfying the following property: there exists $p \in (0, \infty)$ and a constant C > 0 such that

$$\frac{1}{C}|\Gamma|^{1/p} \le \left\|\sum_{k\in\Gamma} e_k\right\|_{\mathbb{B}} \le C|\Gamma|^{1/p} \tag{1.1}$$

for all finite $\Gamma \subset \mathbb{N}$. Then, for $\alpha > 0$ and $0 < q \leq \infty$ we have

$$\mathcal{A}^{\alpha}_{q}(\mathcal{B},\mathbb{B}) = \ell^{\tau,q}(\mathcal{B};\mathbb{B})$$

when τ is defined by $\frac{1}{\tau} = \alpha + \frac{1}{p}$.

Deringer

Condition (1.1) is sometimes referred as \mathcal{B} having the *p*-Temlyakov property [20], or as \mathbb{B} being a *p*-space [11, 16]. For instance, wavelet bases in L^p satisfy this property [33]. The second result we quote is proved in [13] (see also [21]).

Theorem 1.3 [13, Theorem 3.1]. Let \mathbb{B} be a Banach space and $\mathcal{B} = \{e_j\}_{j=1}^{\infty}$ a (normalized) unconditional basis with the following property: there exist $1 \le p \le q \le \infty$ and constants A, B > 0 such that when $x = \sum_{j \in \mathbb{N}} c_j e_j \in \mathbb{B}$ we have

$$A \|\{c_j\}\|_{\ell^{q,\infty}} \le \|x\|_{\mathbb{B}} \le B \|\{c_j\}\|_{\ell^{p,1}}.$$
(1.2)

Then, for $\alpha > 0$ *and* $0 < s \le \infty$ *we have*

$$\ell^{\tau_p,s}(\mathcal{B};\mathbb{B}) \hookrightarrow \mathcal{A}^{\alpha}_{s}(\mathcal{B},\mathbb{B}) \hookrightarrow \ell^{\tau_q,s}(\mathcal{B};\mathbb{B})$$
(1.3)

where $\frac{1}{\tau_p} = \alpha + \frac{1}{p}$ and $\frac{1}{\tau_q} = \alpha + \frac{1}{q}$. Moreover, the inclusions given in (1.3) are best possible in the sense described in Section 4 of [13].

Condition (1.2) is referred in [13] as $(\mathbb{B}, \mathcal{B})$ having the (p, q) sandwich property, and it is shown to be equivalent to

$$A'|\Gamma|^{1/q} \le \left\|\sum_{k\in\Gamma} e_k\right\|_{\mathbb{B}} \le B'|\Gamma|^{1/p}$$
(1.4)

for all $\Gamma \subset \mathbb{N}$ finite. Observe that (1.4) coincides with (1.1) when p = q.

The purpose of this article is to obtain optimal embeddings for $\mathcal{A}_q^{\alpha}(\mathcal{B}, \mathbb{B})$ as in (1.3) when no condition such as (1.4) is imposed. As it may be expected, the notion of "democracy function" will play a crucial role. More precisely, we define the **right** and **left democracy functions** associated with a basis \mathcal{B} in \mathbb{B} by

$$h_r(N; \mathcal{B}, \mathbb{B}) \equiv \sup_{|\Gamma|=N} \left\| \sum_{k \in \Gamma} \frac{e_k}{\|e_k\|_{\mathbb{B}}} \right\|_{\mathbb{B}} \text{ and } h_\ell(N; \mathcal{B}, \mathbb{B}) \equiv \inf_{|\Gamma|=N} \left\| \sum_{k \in \Gamma} \frac{e_k}{\|e_k\|_{\mathbb{B}}} \right\|_{\mathbb{B}}$$

for N = 1, 2, 3, ... These functions are implicit in earlier works on greedy approximation (see eg [9, 34, 38]) and explicitly defined in [19], page 203. We refer to Section 5 for various examples where $h_{\ell}(N)$ and $h_r(N)$ are computed explicitly (modulo multiplicative constants). As usual, when $h_{\ell}(N) \approx h_r(N)$ for all $N \in \mathbb{N}$ we say that \mathcal{B} is a *democratic basis* in \mathbb{B} (see [23]).

The embeddings will be given in terms of weighted discrete Lorentz spaces ℓ_{η}^{q} , with quasi-norms defined by

$$\|\{c_k\}\|_{\ell^q_\eta} \equiv \left(\sum_{k=1}^{\infty} |\eta(k) c_k^*|^q \frac{1}{k}\right)^{\frac{1}{q}},$$

where $\{c_k^*\}$ denotes the decreasing rearrangement of $\{|c_k|\}$ and the *weight* $\eta = \{\eta(k)\}_{k=1}^{\infty}$ is a suitable sequence increasing to infinity and satisfying the doubling property (see Section 2.4 for precise definitions and references). In the special case $\eta(k) = k^{1/\tau}$ we recover the classical definition $\ell_{\eta}^q = \ell^{\tau,q}$.

Theorem 1.4 Let \mathbb{B} be a quasi-Banach space and \mathcal{B} an unconditional basis. Assume that $h_{\ell}(N)$ is doubling. Then if $\alpha > 0$ and $0 < q \le \infty$ we have the continuous embeddings

$$\ell^{q}_{k^{\alpha}h_{r}(k)}(\mathcal{B};\mathbb{B}) \hookrightarrow \mathcal{A}^{\alpha}_{q}(\mathcal{B},\mathbb{B}) \hookrightarrow \ell^{q}_{k^{\alpha}h_{r}(k)}(\mathcal{B};\mathbb{B}).$$

$$(1.5)$$

Moreover, for fixed α and q these inclusions are best possible in the scale of weighted discrete Lorentz spaces ℓ_{n}^{q} in the sense explained in Sections 3, 4 and 6.

Observe that this theorem generalizes Theorems 1.2 and 1.3. In Theorem 1.2 we have $h_r(N) \approx h_\ell(N) \approx N^{1/p}$ and in Theorem 1.3, $h_r(N) \leq N^{1/p}$ and $h_\ell(N) \gtrsim N^{1/q}$. When \mathcal{B} is democratic in \mathbb{B} , Theorem 1.4 shows that

$$\mathcal{A}^{\alpha}_{a}(\mathcal{B},\mathbb{B}) = \ell^{q}_{k^{\alpha}h(k)}(\mathcal{B};\mathbb{B})$$

with $h(k) = h_r(k) \approx h_\ell(k)$, which recovers Corollary 1 in [13, Section 6] for greedy bases in a Banach space.

Theorem 1.4 is a consequence of the results proved in Sections 3 and 4. Section 3 deals with the lower embedding in (1.5) and shows the relation to Jackson type inequalities. Section 4 deals with the upper embedding of (1.5) and its relation to Bernstein type inequalities. Section 5 contains various examples of democracy functions and embeddings with precise references; these are all special cases of Theorem 1.4. In Section 6 we apply Theorem 1.4 to estimate the democracy functions h_{ℓ} and h_r of the approximation space $\mathcal{A}_{\alpha}^{\alpha}$.

Finally, the last section of the paper is dedicated to study the "greedy classes" $\mathscr{G}_q^{\alpha}(\mathcal{B}, \mathbb{B})$ introduced by Gribonval and Nielsen in [13], and their relations with the approximation spaces $\mathcal{A}_q^{\alpha}(\mathcal{B}, \mathbb{B})$. The classes \mathscr{G}_q^{α} are defined similarly to the approximation spaces, but with the error of approximation $\sigma_N(x)$ replaced by the quantity $||x - G_N(x)||_{\mathbb{B}}$ (see Section 2.3 for details). It is easy to see that $\mathscr{G}_q^{\alpha}(\mathcal{B}, \mathbb{B}) \subset \mathcal{A}_q^{\alpha}(\mathcal{B}, \mathbb{B})$; moreover, since any democratic unconditional basis is greedy (see [23]) if follows that in this case we have $\mathscr{G}_q^{\alpha}(\mathcal{B}, \mathbb{B}) = \mathcal{A}_q^{\alpha}(\mathcal{B}, \mathbb{B})$. One may conjecture that for unconditional bases \mathcal{B} the converse is true, that is $\mathscr{G}_q^{\alpha}(\mathcal{B}, \mathbb{B}) = \mathcal{A}_q^{\alpha}(\mathcal{B}, \mathbb{B})$ implies that \mathcal{B} is democratic in \mathbb{B} . We do not know how to show this, but we can exhibit a fairly general class of non-democratic pairs $(\mathcal{B}, \mathbb{B})$ for which $\mathscr{G}_q^{\alpha}(\mathcal{B}, \mathbb{B}) \neq \mathcal{A}_q^{\alpha}(\mathcal{B}, \mathbb{B})$ for all $\alpha > 0$ and $q \in (0, \infty]$. This is the case for instance of wavelet bases when \mathbb{B} is equal to $L^p(\log L)^\gamma$ ($\gamma \neq 0$) or $L^{p,r}$ ($p \neq r$). We also illustrate how irregular the classes $\mathscr{G}_q^{\alpha}(\mathcal{B}, \mathbb{B})$ can be when \mathcal{B} is not democratic, showing in simple situations that they are not even linear spaces.

2 General setting

2.1 Bases

Since we work in the setting of quasi-Banach spaces $(\mathbb{B}, \|\cdot\|_{\mathbb{B}})$, we shall often use the ρ -power triangle inequality

$$\|x + y\|_{\mathbb{B}}^{\rho} \le \|x\|_{\mathbb{B}}^{\rho} + \|y\|_{\mathbb{B}}^{\rho}, \qquad (2.1)$$

which holds for a sufficiently small $\rho = \rho_{\mathbb{B}} \in (0, 1]$ (and hence for all $\mu \le \rho_{\mathbb{B}}$); see [3, Lemma 3.10.1]. The case $\rho_{\mathbb{B}} = 1$ gives a Banach space.

A sequence of vectors $\mathcal{B} = \{e_j\}_{j=1}^{\infty}$ is a basis of \mathbb{B} if every $x \in \mathbb{B}$ can be uniquely represented as $x = \sum_{j=1}^{\infty} c_j e_j$ for some scalars c_j , with convergence in $\|\cdot\|_{\mathbb{B}}$. The basis \mathcal{B} is **unconditional** if the series converges unconditionally, or equivalently if there is some K > 0 such that

$$\left\|\sum_{j=1}^{\infty} \lambda_j c_j e_j\right\|_{\mathbb{B}} \le K \left\|\sum_{j=1}^{\infty} c_j e_j\right\|_{\mathbb{B}}$$
(2.2)

for every sequence of scalars $\{\lambda_i\}_{i=1}^{\infty}$ with $|\lambda_i| \le 1$ (see e.g. [15, Chapter 5]).

For simplicity in the statements, throughout the paper we shall assume that \mathcal{B} is a **normalized** basis, meaning $||e_j||_{\mathbb{B}} = 1$ for all $j \in \mathbb{N}$. We shall also assume that the unconditionality constant in (2.2) is K = 1. This can be achieved if necessary introducing an equivalent quasi-norm in \mathbb{B}

$$|||x|||_{\mathbb{B}} = \sup_{\Gamma \text{finite}, |\lambda_j| \le 1} \left\| \sum_{j \in \Gamma} \lambda_j x_j e_j \right\|_{\mathbb{B}}, \quad \text{if } x = \sum_{j=1}^{\infty} x_j e_j.$$

Observe that with this renorming we still have $||e_j||_{\mathbb{B}} = 1$.

...

With the above assumptions, the following **lattice property** will be used often below: if $|y_k| \le |x_k|$ for all $k \in \mathbb{N}$ and $x = \sum_{k=1}^{\infty} x_k e_k \in \mathbb{B}$, then the series $y = \sum_{k=1}^{\infty} y_k e_k$ converges in \mathbb{B} and $||y||_{\mathbb{B}} \le ||x||_{\mathbb{B}}$. Also, using (2.2) with K = 1 we see that, for every $\Gamma \subset \mathbb{N}$ finite

$$\left(\inf_{j\in\Gamma}|c_{j}|\right)\left\|\sum_{j\in\Gamma}e_{j}\right\|_{\mathbb{B}}\leq\left\|\sum_{j\in\Gamma}c_{j}e_{j}\right\|_{\mathbb{B}}\leq\left(\sup_{j\in\Gamma}|c_{j}|\right)\left\|\sum_{j\in\Gamma}e_{j}\right\|_{\mathbb{B}}.$$
(2.3)

2.2 Non-linear approximation and greedy algorithm

Let $\mathcal{B} = \{e_j\}_{j=1}^{\infty}$ be a basis in \mathbb{B} . Let Σ_N , N = 1, 2, 3, ..., be the set of all $y \in \mathbb{B}$ with at most N non-null coefficients in the unique basis representation. For $x \in \mathbb{B}$, the N-term error of approximation with respect to \mathcal{B} is defined as

$$\sigma_N(x) = \sigma_N(x; \mathcal{B}, \mathbb{B}) \equiv \inf_{y \in \Sigma_N} \|x - y\|_{\mathbb{B}}, \quad N = 1, 2, 3 \dots$$

We also set $\Sigma_0 = \{0\}$ so that $\sigma_0(x) = ||x||_{\mathbb{B}}$. Using the lattice property mentioned in Section 2.1 it is easy to see that for $x = \sum_{j=1}^{\infty} c_j e_j$ we actually have

$$\sigma_N(x) = \inf_{|\Gamma|=N} \left\{ \left\| x - \sum_{\gamma \in \Gamma} c_{\gamma} e_{\gamma} \right\|_{\mathbb{B}} \right\},$$
(2.4)

that is, only coefficients from x are relevant when computing $\sigma_N(x)$; see e.g. [11, (2.6)].

Given $x = \sum_{i=1}^{\infty} c_i e_i \in \mathbb{B}$, let π denote any bijection of \mathbb{N} such that

$$\|c_{\pi(j)}e_{\pi(j)}\| \ge \|c_{\pi(j+1)}e_{\pi(j+1)}\|, \quad \text{for all} \quad j \in \mathbb{N}.$$
(2.5)

🖉 Springer

Without loss of generality we may assume that the basis is normalized and then (2.5) becomes $|c_{\pi(j)}| \ge |c_{\pi(j+1)}|$, for all $j \in \mathbb{N}$. A greedy algorithm of step N is a correspondence assigning

$$x = \sum_{j=1}^{\infty} c_j e_j \in \mathbb{B} \longmapsto G_N^{\pi}(x) \equiv \sum_{j=1}^N c_{\pi(j)} e_{\pi(j)}$$

for any π as in (2.5). The **error of greedy approximation** at step N is defined by

$$\gamma_N(x) = \gamma_N(x; \mathcal{B}, \mathbb{B}) \equiv \sup_{\pi} \|x - G_N^{\pi}(x)\|_{\mathbb{B}}.$$
(2.6)

Notice that $\sigma_N(x) \leq \gamma_N(x)$, but the reverse inequality may not be true in general. It is said that \mathcal{B} is a **greedy basis** in \mathbb{B} when there is a constant $c \geq 1$ such that

$$\gamma_N(x; \mathcal{B}, \mathbb{B}) \leq c \, \sigma_N(x; \mathcal{B}, \mathbb{B}), \quad \forall x \in \mathbb{B}, N = 1, 2, 3, \dots$$

A celebrated theorem of Konyagin and Temlyakov characterizes greedy bases as those which are unconditional and democratic [23].

2.3 Approximation spaces and greedy classes

The classical non-linear approximation spaces $\mathcal{A}_q^{\alpha}(\mathcal{B}, \mathbb{B})$ are defined as follows: for $\alpha > 0$ and $0 < q < \infty$

$$\mathcal{A}_{q}^{\alpha}(\mathcal{B},\mathbb{B}) = \left\{ x \in \mathbb{B} : \|x\|_{\mathcal{A}_{q}^{\alpha}} \equiv \|x\|_{\mathbb{B}} + \left[\sum_{n=1}^{\infty} \left(N^{\alpha} \sigma_{N}(x;\mathcal{B},\mathbb{B}) \right)^{q} \frac{1}{N} \right]^{\frac{1}{q}} < \infty \right\}.$$

When $q = \infty$ the definition takes the form:

$$\mathcal{A}_{\infty}^{\alpha}(\mathcal{B},\mathbb{B}) = \left\{ x \in \mathbb{B} : \|x\|_{\mathcal{A}_{\infty}^{\alpha}} \equiv \|x\|_{\mathbb{B}} + \sup_{N \ge 1} N^{\alpha} \sigma_{N}(x) < \infty \right\}.$$

It is well known that $\mathcal{A}_q^{\alpha}(\mathcal{B}, \mathbb{B})$ are quasi-Banach spaces (see e.g. [29]). Also, equivalent quasi-norms can be obtained restricting to dyadic *N*'s:

$$\|x\|_{\mathcal{A}^{\alpha}_{q}} \approx \|x\|_{\mathbb{B}} + \left[\sum_{k=0}^{\infty} (2^{k\alpha}\sigma_{2^{k}}(x))^{q}\right]^{\frac{1}{2}}$$

and likewise for $q = \infty$. This is a simple consequence of the monotonicity of $\sigma_N(x)$ (see eg [29, Proposition 2] or [7, (2.3)]).

The **greedy classes** $\mathscr{G}_q^{\alpha}(\mathcal{B}, \mathbb{B})$ are defined as before replacing the role of $\sigma_N(x)$ by the error of greedy approximation $\gamma_N(x)$ given in (2.6), that is

$$\mathscr{G}_{q}^{\alpha}(\mathcal{B},\mathbb{B}) = \left\{ x \in \mathbb{B} : \|x\|_{\mathscr{G}_{q}^{\alpha}} \equiv \|x\|_{\mathbb{B}} + \left[\sum_{N=1}^{\infty} \left(N^{\alpha} \gamma_{N}(x;\mathcal{B},\mathbb{B}) \right)^{q} \frac{1}{N} \right]^{\frac{1}{q}} < \infty \right\}$$

$$(2.7)$$

Deringer

(and similarly for $q = \infty$). We also have the equivalence

$$\|x\|_{\mathscr{G}_q^{\alpha}} \approx \|x\|_{\mathbb{B}} + \left[\sum_{k=0}^{\infty} \left(2^{k\alpha} \gamma_{2^k}(x)\right)^q\right]^{\frac{1}{q}}, \qquad (2.8)$$

since $\gamma_N(x)$ is non-increasing by the lattice property in Section 2.1.

Since $\sigma_N(x) \leq \gamma_N(x)$ for all $x \in \mathbb{B}$ it is clear that¹

$$\mathscr{G}_{q}^{\alpha}(\mathcal{B},\mathbb{B}) \hookrightarrow \mathcal{A}_{q}^{\alpha}(\mathcal{B},\mathbb{B}).$$
(2.9)

When \mathcal{B} is a greedy basis in \mathbb{B} it holds that $\mathscr{G}_q^{\alpha}(\mathcal{B}, \mathbb{B}) = \mathcal{A}_q^{\alpha}(\mathcal{B}, \mathbb{B})$ with equivalent quasi-norms. For non greedy bases, however, the inclusion may be strict, and the classes \mathscr{G}_q^{α} may not even be linear spaces (see Section 7.1 below).

2.4 Discrete Lorentz spaces

Let $\eta = {\eta(k)}_{k=1}^{\infty}$ be a sequence so that

- (a) $0 < \eta(k) \le \eta(k+1)$ for all k = 1, 2, ... and $\lim_{k \to \infty} \eta(k) = \infty$.
- (b) η is *doubling*, that is, $\eta(2k) \leq C\eta(k)$ for all k = 1, 2, ..., and some C > 0.

We shall denote the set of all such sequences by \mathbb{W} . If $\eta \in \mathbb{W}$ and $0 < r \le \infty$, the weighted discrete Lorentz space ℓ_n^r is defined as

$$\ell_{\eta}^{r} = \left\{ \mathbf{s} = \{s_{k}\}_{k=1}^{\infty} \in \mathfrak{c}_{0} : \|\mathbf{s}\|_{\ell_{\eta}^{r}} \equiv \left[\sum_{k=1}^{\infty} (\eta(k)s_{k}^{*})^{r} \frac{1}{k} \right]^{\frac{1}{r}} < \infty \right\}$$

(with $\|\mathbf{s}\|_{\ell_{\eta}^{\infty}} = \sup_{k \in \mathbb{N}} \eta(k) s_{k}^{*}$ when $r = \infty$). Here $\{s_{k}^{*}\}$ denotes the decreasing rearrangement of $\{|s_{k}|\}$, that is $s_{k}^{*} = |s_{\pi(k)}|$ where π is any bijection of \mathbb{N} such that $|s_{\pi(k)}| \ge |s_{\pi(k+1)}|$ for all $k = 1, 2, \ldots$ (since we are assuming $\lim_{k\to\infty} s_{k} = 0$ such π 's always exist). When $\eta \in \mathbb{W}$ the set ℓ_{η}^{r} is a quasi-Banach space (see e.g. [4, Section 2.2]). Equivalent quasi-norms are given by

$$\|\mathbf{s}\|_{\ell^r_{\eta}} \approx \left[\sum_{j=0}^{\infty} \left(\eta(\kappa^j) s^*_{\kappa^j}\right)^r\right]^{1/r}, \qquad (2.10)$$

for any fixed integer $\kappa > 1$. Particular examples are the classical Lorentz sequence spaces $\ell^{p,r}$ (with $\eta(k) = k^{1/p}$), and the Lorentz–Zygmund spaces $\ell^{p,r}(\log \ell)^{\gamma}$ (for which $\eta(k) = k^{1/p} \log^{\gamma}(k+1)$; see e.g. [2, p. 285]).

Occasionally we will need to assume a stronger condition on the weights η . For an increasing sequence η we define

$$M_{\eta}(m) = \sup_{k \in \mathbb{N}} \frac{\eta(k)}{\eta(mk)}, \quad m = 1, 2, 3, \dots$$

¹Here, as in the rest of the paper, $X \hookrightarrow Y$ means $X \subset Y$ and there exists C > 0 such that $||x||_Y \le C||x||_X$ for all $x \in X$. The equality of spaces X = Y is interpreted as $X \hookrightarrow Y$ and $Y \hookrightarrow X$.

Observe that we always have $M_{\eta}(m) \leq 1$. We shall say that $\eta \in \mathbb{W}_+$ when $\eta \in \mathbb{W}$ and there exists some integer $\kappa > 1$ for which $M_{\eta}(\kappa) < 1$. This is equivalent to say that the "lower dilation index" $i_{\eta} > 0$, where we let

$$i_{\eta} \equiv \sup_{m>1} \frac{\log M_{\eta}(m)}{-\log m}$$
.

For example, $\eta = \{k^{\alpha} \log^{\beta}(k+1)\}$ has $i_{\eta} = \alpha$, and hence $\eta \in \mathbb{W}_{+}$ iff $\alpha > 0$. In general, if η is obtained from a increasing function $\phi : \mathbb{R}^{+} \to \mathbb{R}^{+}$ as $\eta(k) = \phi(ak)$, for some fixed a > 0, then $i_{\eta} > 0$ iff $i_{\phi} > 0$, the latter denoting the standard lower dilation index of ϕ (see e.g. [24, p. 54] for the definition).

Below we will need the following result:

Lemma 2.1 If $\eta \in W_+$ then there exists a constant C > 0 such that

$$\sum_{j=0}^{n} \eta(\kappa^{j}) \le C\eta(\kappa^{n}), \quad \forall \ n \in \mathbb{N},$$
(2.11)

where $\kappa > 1$ is an integer as in the definition of \mathbb{W}_+ .

Proof Write $\delta = M_{\eta}(\kappa) < 1$. By definition $M_{\eta}(\kappa) \ge \eta(\kappa^{j})/\eta(\kappa^{j+1})$, and therefore

$$\eta(\kappa^{j}) \le \delta \eta(\kappa^{j+1}), \quad \forall \ j = 0, 1, 2, \dots$$
 (2.12)

Iterating (2.12) we deduce that $\eta(\kappa^{j}) \leq \delta^{n-j}\eta(\kappa^{n})$, for j = 0, 1, 2, ..., n and hence

$$\sum_{j=0}^{n} \eta(\kappa^{j}) \le \eta(\kappa^{n}) \sum_{j=0}^{n} \delta^{n-j} \le \eta(\kappa^{n}) \frac{1}{1-\delta} \,.$$

Remark 2.2 If η is increasing and doubling, then $\{k^{\alpha} \eta(k)\} \in \mathbb{W}_+$ for all $\alpha > 0$. Also, if $\eta \in \mathbb{W}_+$ then $\eta^r \in \mathbb{W}_+$, for all r > 0.

We now estimate the *fundamental function* of ℓ_{η}^{r} . We shall denote the indicator sequence of $\Gamma \subset \mathbb{N}$ by 1_{Γ} , that is the sequence with entries 1 for $j \in \Gamma$ and 0 otherwise.

Lemma 2.3

(a) If $\eta \in \mathbb{W}$ then

$$\|1_{\Gamma}\|_{\ell_n^{\infty}} = \eta(|\Gamma|), \quad \forall \text{ finite } \Gamma \subset \mathbb{N}.$$

(b) If $\eta \in \mathbb{W}_+$ and $r \in (0, \infty)$ then

 $\|1_{\Gamma}\|_{\ell^r} \approx \eta(|\Gamma|), \quad \forall \text{ finite } \Gamma \subset \mathbb{N}$

with the constants involved independent of Γ .

Proof Part (a) is trivial since η is increasing. To prove (b) use (2.10) and the previous lemma.

Finally, as mentioned in Section 1, given a (normalized) basis \mathcal{B} in \mathbb{B} we shall consider the following subspaces

$$\ell^q_{\eta}(\mathcal{B},\mathbb{B}) := \left\{ x = \sum_{j=1}^{\infty} c_j e_j \in \mathbb{B} : \{c_j\}_{j=1}^{\infty} \in \ell^q_{\eta} \right\},\$$

endowed with the quasi-norm $||x||_{\ell^q_{\eta}(\mathcal{B},\mathbb{B})} := ||\{c_j\}||_{\ell^q_{\eta}}$. These spaces are not necessarily complete, but they are when

$$\left\|\sum_{j} c_{j} e_{j}\right\|_{\mathbb{B}} \leq C \|\{c_{j}\}\|_{\ell_{\eta}^{q}}, \quad \forall \text{ finite } \{c_{j}\}$$

a property which holds in certain situations (see e.g. Remark 3.2). When this is the case, the space $\ell_{\eta}^{q}(\mathcal{B}, \mathbb{B})$ is just an isomorphic copy of ℓ_{η}^{q} inside \mathbb{B} .

2.5 Democracy functions

Following [23], a (normalized) basis \mathcal{B} in a quasi-Banach space \mathbb{B} is said to be **democratic** if there exists C > 0 such that

$$\left\|\sum_{k\in\Gamma}e_k\right\|_{\mathbb{B}}\leq C\left\|\sum_{k\in\Gamma'}e_k\right\|_{\mathbb{B}},$$

for all finite sets Γ , $\Gamma' \subset \mathbb{N}$ with the same cardinality. This is a key notion in the theory of greedy approximation, as it allows to characterize greedy bases as those which are both unconditional and democratic (see [23]).

As we recall in Section 5, wavelet bases are well known examples of greedy bases for many function spaces, such as L^p , Sobolev, or more generally, the Triebel-Lizorkin spaces. However, they are not democratic in some other instances such as *BMO*, or the Orlicz L^{Φ} and Lorentz $L^{p,q}$ spaces (when these are different from L^p). In fact, it is proved in [39] that the Haar basis is democratic in a rearrangement invariant space X in [0, 1] if and only if $X = L^p$ for some $p \in (1, \infty)$. An earlier example of non-democratic basis is the multivariate (hyperbolic) Haar system in $L^p(\mathbb{R}^d)$ for $p \neq 2$ and d > 1 (see [34] and Example 5.5 below).

Thus, non-democratic bases are also common. To quantify the democracy of a (normalized) system $\mathcal{B} = \{e_j\}_{j=1}^{\infty}$ in \mathbb{B} one introduces the following concepts:

$$h_r(N; \mathcal{B}, \mathbb{B}) \equiv \sup_{|\Gamma|=N} \left\| \sum_{k \in \Gamma} e_k \right\|_{\mathbb{B}} \text{ and } h_\ell(N; \mathcal{B}, \mathbb{B}) \equiv \inf_{|\Gamma|=N} \left\| \sum_{k \in \Gamma} e_k \right\|_{\mathbb{B}},$$

which we shall call the **right and left democracy functions of** \mathcal{B} (see also [9, 12, 19]). We shall omit \mathcal{B} or \mathbb{B} when these are understood from the context.

Some general properties of h_{ℓ} and h_r are proved in the next proposition.

Proposition 2.4 Let $\mathcal{B} = \{e_j\}_{j=1}^{\infty}$ be a (normalized) unconditional basis in \mathbb{B} with the lattice property from Section 2.1. Then

- (a) $1 \le h_{\ell}(N) \le h_r(N) \le N^{1/\rho}, \forall N = 1, 2, ..., where \rho = \rho_{\mathbb{B}} \text{ is as in } (2.1).$
- (b) $h_{\ell}(N)$ and $h_r(N)$ are non-decreasing in N = 1, 2, 3...
- (c) $h_r(N)$ is doubling, that is, $\exists c > 0$ such that $h_r(2N) \le c h_r(N), \forall N \in \mathbb{N}$.
- (d) There exists $c \ge 1$ such that $h_{\ell}(N+1) \le c h_{\ell}(N)$ for all N = 1, 2, 3...

Proof

- (a) and (b) follow immediately from the lattice property of \mathcal{B} and the ρ -triangular inequality.
 - (c) Given $N \in \mathbb{N}$, choose $\Gamma \subset \mathbb{N}$ with $|\Gamma| = 2N$ such that $\left\| \sum_{k \in \Gamma} e_k \right\|_{\mathbb{B}} \ge h_r(2N)/2$. Partitioning arbitrarily $\Gamma = \Gamma' \cup \Gamma''$ with $|\Gamma'| = |\Gamma''| = N$, and using the ρ -power triangle inequality, one easily obtains

$$\frac{1}{2}h_r(2N) \le \left\|\sum_{k\in\Gamma} e_k\right\|_{\mathbb{B}} = \left\|\sum_{k\in\Gamma'} e_k + \sum_{k\in\Gamma''} e_k\right\|_{\mathbb{B}} \le 2^{1/\rho}h_r(N).$$

(d) Given $N \in \mathbb{N}$, choose $\Gamma \subset \mathbb{N}$ with $|\Gamma| = N$ such that $\left\| \sum_{k \in \Gamma} e_k \right\|_{\mathbb{R}} \le 2h_{\ell}(N)$. Let $\Gamma' = \Gamma \cup \{k_o\}$ for any $k_o \notin \Gamma$. Then

$$h_{\ell}(N+1) \leq \left\| \sum_{k \in \Gamma'} e_k \right\|_{\mathbb{B}} \leq \left(\left\| \sum_{k \in \Gamma} e_k \right\|_{\mathbb{B}}^{\rho} + 1 \right)^{1/\rho}$$
$$\leq \left(2^{\rho} [h_{\ell}(N)]^{\rho} + 1 \right)^{1/\rho}.$$

Thus, using (a) we obtain $h_{\ell}(N+1) \le (2^{\rho}+1)^{\frac{1}{\rho}} h_{\ell}(N) \le 2 \cdot 2^{1/\rho} h_{\ell}(N)$.

Remark 2.5 We do not know whether property (d) can be improved to show that $h_{\ell}(N)$ is actually doubling. This is however the case in all the examples we have considered below (see Section 5).

3 Right democracy and Jackson type inequalities

Our first result deals with inclusions for the greedy classes $\mathscr{G}_q^{\alpha}(\mathcal{B}, \mathbb{B})$.

Theorem 3.1 Let $\mathcal{B} = \{e_j\}_{j=1}^{\infty}$ be a (normalized) unconditional basis in \mathbb{B} . Fix $\alpha > 0$ and $q \in (0, \infty)$. Then, for any sequence η such that $\{k^{\alpha}\eta(k)\}_{k=1}^{\infty} \in \mathbb{W}_+$ the following statements are equivalent:

1. There exists C > 0 such that for all N = 1, 2, 3, ...

$$\left\|\sum_{k\in\Gamma} e_k\right\|_{\mathbb{B}} \le C\eta(N), \quad \forall \ \Gamma \subset \mathbb{N} \ with \ |\Gamma| = N.$$
(3.1)

2. Jackson type inequality for $\ell_{k^{\alpha}n(k)}^{\infty}(\mathcal{B}, \mathbb{B})$: $\exists C_{\alpha} > 0$ such that $\forall N = 0, 1, 2...$

$$\gamma_N(x) \le C_{\alpha}(N+1)^{-\alpha} \|x\|_{\ell^{\infty}_{k^{\alpha}\eta(k)}(\mathcal{B},\mathbb{B})}, \quad \forall \ x \in \ell^{\infty}_{k^{\alpha}\eta(k)}(\mathcal{B},\mathbb{B}).$$
(3.2)

- 3. $\ell^{\infty}_{k^{\alpha}\eta(k)}(\mathcal{B},\mathbb{B}) \hookrightarrow \mathscr{G}^{\alpha}_{\infty}(\mathcal{B},\mathbb{B}).$
- 4. $\ell^q_{k^{\alpha}n(k)}(\mathcal{B},\mathbb{B}) \hookrightarrow \mathscr{G}^{\alpha}_q(\mathcal{B},\mathbb{B}).$
- 5. Jackson type inequality for $\ell^q_{k^{\alpha}\eta(k)}(\mathcal{B},\mathbb{B})$: $\exists C_{\alpha,q} > 0$ such that $\forall N = 0, 1, 2, ...$

$$\gamma_N(x) \le C_{\alpha,q}(N+1)^{-\alpha} \|x\|_{\ell^q_{k^\alpha\eta(k)}(\mathcal{B},\mathbb{B})}, \quad \forall \ x \in \ell^q_{k^\alpha\eta(k)}(\mathcal{B},\mathbb{B}).$$
(3.3)

Proof

 $1 \Rightarrow 2$ Let $x = \sum_{k \in \mathbb{N}} c_k e_k \in \ell^{\infty}_{k^{\alpha} \eta(k)}(\mathcal{B}, \mathbb{B})$ and let π be a bijection of \mathbb{N} such that

$$|c_{\pi(k)}| \ge |c_{\pi(k+1)}|, \quad k = 1, 2, 3, \dots$$
 (3.4)

For fixed N = 0, 1, 2, ..., denote $\lambda_j = 2^j (N + 1)$. Then, the ρ -power triangle inequality and (2.3) give

$$\begin{aligned} \left\| x - G_N^{\pi}(x) \right\|_{\mathbb{B}}^{\rho} &= \left\| \sum_{k=N+1}^{\infty} c_{\pi(k)} e_{\pi(k)} \right\|_{\mathbb{B}}^{\rho} \leq \sum_{j=0}^{\infty} \left\| \sum_{\lambda_j \leq k < \lambda_{j+1}} c_{\pi(k)} e_{\pi(k)} \right\|_{\mathbb{B}}^{\rho} \\ &\leq \sum_{j=0}^{\infty} |c_{\pi(\lambda_j)}|^{\rho} \left\| \sum_{\lambda_j \leq k < \lambda_{j+1}} e_{\pi(k)} \right\|_{\mathbb{B}}^{\rho}. \end{aligned}$$

There are exactly $\lambda_j = 2^j (N+1)$ elements in the interior sum, so using (3.1) we obtain

$$\begin{split} \left\| x - G_N^{\pi}(x) \right\|_{\mathbb{B}}^{\rho} &\leq C^{\rho} \sum_{j=0}^{\infty} \left(c_{\lambda_j}^* \eta(\lambda_j) \right)^{\rho} = C^{\rho} \sum_{j=0}^{\infty} \left(\lambda_j^{\alpha} c_{\lambda_j}^* \eta(\lambda_j) \right)^{\rho} \lambda_j^{-\alpha \rho} \\ &\leq C^{\rho} \left\| x \right\|_{\ell_{k}^{\alpha} \eta(k)}^{\rho}(\mathcal{B}, \mathbb{B})} (N+1)^{-\alpha \rho} \sum_{j=0}^{\infty} 2^{-j\alpha \rho} \\ &= C_{\alpha, \rho} \left(N+1 \right)^{-\alpha \rho} \left\| x \right\|_{\ell_{k}^{\alpha} \eta(k)}^{\rho}(\mathcal{B}, \mathbb{B})}. \end{split}$$

The result follows taking the supremum over all bijections π satisfying (3.4).

Remark 3.2 The special case N = 0 in (3.2) says that

$$\|x\|_{\mathbb{B}} \le C \|x\|_{\ell^{\infty}_{k^{\alpha}_{n}(k)}(\mathcal{B},\mathbb{B})},\tag{3.5}$$

which in particular implies $\ell^q_{k^q \eta(k)}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathbb{B}$, for all $q \in (0, \infty]$.

 $2 \Rightarrow 3$ This is immediate from the definition of $\mathscr{G}^{\alpha}_{\infty}$ (and Remark 3.2), since

$$\|x\|_{\mathscr{G}^{\alpha}_{\infty}(\mathcal{B},\mathbb{B})} := \|x\|_{\mathbb{B}} + \sup_{N \ge 1} N^{\alpha} \gamma_N(x) \le C_{\alpha} \|x\|_{\ell^{\infty}_{k^{\alpha}\eta(k)}(\mathcal{B},\mathbb{B})}.$$

1 / --

 $3 \Rightarrow 1$ Let $\Gamma \subset \mathbb{N}$ with $|\Gamma| = N$. Choose Γ' with $|\Gamma'| = N$ and so that $\Gamma \cap \Gamma' = \emptyset$, and consider $x = \sum_{k \in \Gamma} e_k + \sum_{k \in \Gamma'} 2e_k$. Then

$$\gamma_N(x) = \left\| \sum_{k \in \Gamma} e_k \right\|_{\mathbb{B}}, \qquad (3.6)$$

and therefore

$$N^{\alpha} \left\| \sum_{k \in \Gamma} e_k \right\|_{\mathbb{B}} = N^{\alpha} \gamma_N(x) \le \|x\|_{\mathscr{G}^{\alpha}_{\infty}(\mathcal{B}, \mathbb{B})}.$$
 (3.7)

On the other hand, call $\omega(k) = k^{\alpha} \eta(k)$. By monotonicity, Lemma 2.3 and the doubling property of ω we have

$$\|x\|_{\ell^{\infty}_{\omega}(\mathcal{B},\mathbb{B})} \le 2 \|1_{\Gamma \cup \Gamma'}\|_{\ell^{\infty}_{\omega}} = 2\omega(2N) \le c\,\omega(N)\,.$$
(3.8)

Combining (3.7) and (3.8) with the inclusion $\ell^{\infty}_{k^{\alpha}\eta(k)}(\mathcal{B},\mathbb{B}) \hookrightarrow \mathscr{G}^{\alpha}_{\infty}(\mathcal{B},\mathbb{B})$ gives (3.1).

 $5 \Rightarrow 1$ Let $\Gamma \subset \mathbb{N}$ with $|\Gamma| = N$, and choose Γ' and x as in the proof of $3 \Rightarrow 1$. As before call $\omega(k) = k^{\alpha} \eta(k)$. Then Lemma 2.3 and the assumption $\omega \in \mathbb{W}_+$ give

$$\|x\|_{\ell^q_{\omega}(\mathcal{B},\mathbb{B})} \leq 2 \|1_{\Gamma \cup \Gamma'}\|_{\ell^q_{\omega}} \approx \omega(2N) \leq c \, \omega(N) \, .$$

Since we are assuming 5 we can write (recall (3.6))

$$\left\|\sum_{k\in\Gamma}e_k\right\|_{\mathbb{B}}=\gamma_N(x)\leq C_{\alpha,\rho}(N+1)^{-\alpha}\|x\|_{\ell^q_{\omega}(\mathcal{B},\mathbb{B})}\lesssim N^{-\alpha}\omega(N)=\eta(N),$$

which proves (3.1).

1 \Rightarrow 4 The proof is similar to 1 \Rightarrow 2 with a few modifications we indicate next. Given $x \in \ell^q_{k^\alpha \eta(k)}(\mathcal{B}, \mathbb{B})$ and π as in (3.4) we write $x = \sum_{j=-1}^{\infty} \sum_{2^j < k \le 2^{j+1}} c_{\pi(k)} e_{\pi(k)}$. Then arguing as before (with $N = 2^m$) we obtain

$$\|x - G_{2^m}^{\pi}(x)\|_{\mathbb{B}}^{\mu} \leq \sum_{j=m}^{\infty} |c_{\pi(2^j)}|^{\mu} \|\sum_{2^j < k \leq 2^{j+1}} e_{\pi(k)}\|_{\mathbb{B}}^{\mu},$$

where we choose now any $\mu < \min\{q, \rho_{\mathbb{B}}\}$. Taking the supremum over all π 's and using (3.1) we obtain

$$\gamma_{2^m}(x; \mathcal{B}, \mathbb{B})^{\mu} \leq C^{\mu} \sum_{j=m}^{\infty} \left(c_{2^j}^* \eta(2^j)\right)^{\mu}.$$

Therefore

$$\left[\sum_{m=0}^{\infty} \left(2^{m\alpha} \gamma_{2^m}(x)\right)^q\right]^{\frac{1}{q}} \le C \left[\sum_{m=0}^{\infty} 2^{m\alpha q} \left(\sum_{j=0}^{\infty} \left[c_{2^{j+m}}^* \eta(2^{j+m})\right]^\mu\right)^{q/\mu}\right]^{1/q}\right]^{1/q}$$

Since $q/\mu > 1$, we can use Minkowski's inequality on the right hand side to obtain

$$\begin{split} \left[\sum_{m=0}^{\infty} \left(2^{m\alpha} \gamma_{2^{m}}(x)\right)^{q}\right]^{\frac{1}{q}} &\leq C \left[\sum_{j=0}^{\infty} \left(\sum_{m=0}^{\infty} 2^{m\alpha q} \left[c_{2^{j+m}}^{*} \eta(2^{j+m})\right]^{q}\right)^{\mu/q}\right]^{1/\mu} \\ &= C \left[\sum_{j=0}^{\infty} 2^{-j\alpha \mu} \left(\sum_{\ell=j}^{\infty} 2^{\ell\alpha q} \left[c_{2^{\ell}}^{*} \eta(2^{\ell})\right]^{q}\right)^{\mu/q}\right]^{1/\mu} \\ &\leq C' \left\|\{c_{k}\}\right\|_{\ell^{q}_{k^{\alpha}\eta(k)}}. \end{split}$$

This implies the desired estimate

$$\|x\|_{\mathscr{G}^{\alpha}_{q}(\mathcal{B},\mathbb{B})} \lesssim \|\{c_k\}\|_{\ell^{q}_{k^{\alpha}n^{(k)}}},$$

using the dyadic expressions for the norms in (2.8) and (2.10) (and Remark 3.2).

 $4 \Rightarrow 5$ This is trivial since 4 implies $\ell^q_{k^\alpha \eta k}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathscr{G}^{\alpha}_q(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathscr{G}^{\alpha}_{\infty}(\mathcal{B}, \mathbb{B})$, and this clearly gives (3.3).

Remark 3.3 The equivalences 1 to 3 remain true under the weaker assumption $\{k^{\alpha}\eta(k)\} \in \mathbb{W}$.

Remark 3.4 Observe that if any of the statements in 2 to 5 of Theorem 3.1 holds for one fixed $\alpha > 0$ and $q \in (0, \infty]$, then the assertions remain true for all α and q (as long as $\{k^{\alpha}\eta(k)\} \in \mathbb{W}_+$), since the statement in 1 is independent of these parameters.

Corollary 3.5 (Optimal inclusions into \mathscr{G}_q^{α}) Let \mathcal{B} be a (normalized) unconditional basis in \mathbb{B} . Fix $\alpha > 0$ and $q \in (0, \infty]$. Then

$$\ell^{q}_{k^{\alpha}h_{r}(k)}(\mathcal{B},\mathbb{B}) \hookrightarrow \mathscr{G}^{\alpha}_{q}(\mathcal{B},\mathbb{B}).$$
(3.9)

Moreover, if $\omega \in \mathbb{W}_+$ *then,* $\ell^q_{\omega}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathscr{G}^{\alpha}_q(\mathcal{B}, \mathbb{B})$ *if and only if* $\omega(k) \gtrsim k^{\alpha}h_r(k)$.

Proof For $q < \infty$, the inclusion (3.9) is an application of 4 in the theorem with $\eta = h_r$ (after noticing that $\{k^{\alpha}h_r(k)\} \in \mathbb{W}_+$ by Proposition 2.4 and Remark 2.2). The second assertion is just a restatement of $1 \Leftrightarrow 4$ with $\eta(k) = \omega(k)/k^{\alpha}$. For $q = \infty$ use 3 instead of 4.

We now prove similar results for the approximation spaces $\mathcal{A}^{\alpha}_{a}(\mathcal{B}, \mathbb{B})$.

Theorem 3.6 Let $\mathcal{B} = \{e_j\}_{j=1}^{\infty}$ be a (normalized) unconditional basis in \mathbb{B} . Fix $\alpha > 0$ and $q \in (0, \infty]$. Then, for any sequence $\eta \in \mathbb{W}_+$ the following are equivalent:

1. There exists C > 0 such that for all N = 1, 2, 3, ...

$$\left\|\sum_{k\in\Gamma} e_k\right\|_{\mathbb{B}} \le C\eta(N), \quad \forall \ \Gamma \subset \mathbb{N} \ with \ |\Gamma| = N.$$
(3.10)

- 2. $\ell^q_{k^{\alpha}n(k)}(\mathcal{B},\mathbb{B}) \hookrightarrow \mathcal{A}^{\alpha}_q(\mathcal{B},\mathbb{B}).$
- 3. Jackson type inequality for $\ell^q_{k^{\alpha}\eta(k)}(\mathcal{B},\mathbb{B})$: $\exists C_{\alpha,q} > 0$ such that $\forall N = 0, 1, 2, ...$

$$\sigma_N(x) \le C_{\alpha,q}(N+1)^{-\alpha} \|x\|_{\ell^q_{k^\alpha\eta(k)}(\mathcal{B},\mathbb{B})}, \quad \forall \ x \in \ell^q_{k^\alpha\eta(k)}(\mathcal{B},\mathbb{B}).$$
(3.11)

Proof 1 \Rightarrow 2 follows directly from Theorem 3.1 and $\mathscr{G}_q^{\alpha} \hookrightarrow \mathscr{A}_q^{\alpha}$. Also, 2 \Rightarrow 3 is trivial since $\mathscr{A}_q^{\alpha} \hookrightarrow \mathscr{A}_{\infty}^{\alpha}$, and 3 is equivalent to $\ell_{k^{\alpha}n(k)}^q(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathscr{A}_{\infty}^{\alpha}$.

We must show $3 \Rightarrow 1$. Let $\kappa > 1$ be a fixed integer as in the definition of the class \mathbb{W}_+ (and in particular satisfying (2.11)), and denote $1_\Delta = \sum_{k \in \Delta} e_k$ for a set $\Delta \subset \mathbb{N}$. For any $\Gamma_n \subset \mathbb{N}$ with $|\Gamma_n| = \kappa^n$, we can find a subset Γ_{n-1} with $|\Gamma_{n-1}| = \kappa^{n-1}$ such that

$$\|1_{\Gamma_n} - 1_{\Gamma_{n-1}}\|_{\mathbb{B}} \le 2\sigma_{\kappa^{n-1}}(1_{\Gamma_n}).$$

Repeating this argument we choose $\Gamma_{j-1} \subset \Gamma_j$ with $|\Gamma_j| = \kappa^j$ and so that

$$\|1_{\Gamma_{j}} - 1_{\Gamma_{j-1}}\|_{\mathbb{B}} \le 2\sigma_{\kappa^{j-1}}(1_{\Gamma_{j}}), \text{ for } j = 1, 2..., n.$$

Setting $\Gamma_{-1} = \emptyset$, and using the ρ -power triangle inequality we see that

$$\|\mathbf{1}_{\Gamma_n}\|_{\mathbb{B}}^{\rho} = \left\|\sum_{j=0}^{n} \mathbf{1}_{\Gamma_j} - \mathbf{1}_{\Gamma_{j-1}}\right\|_{\mathbb{B}}^{\rho} \leq \sum_{j=0}^{n} \|\mathbf{1}_{\Gamma_j} - \mathbf{1}_{\Gamma_{j-1}}\|_{\mathbb{B}}^{\rho} \leq 2^{\rho} \sum_{j=0}^{n} \sigma_{\kappa^{j-1}}(\mathbf{1}_{\Gamma_j})^{\rho}.$$

Now, the hypothesis (3.11) and Lemma 2.3 give

$$\sigma_{\kappa^{j-1}}(1_{\Gamma_j}) \lesssim \kappa^{-j\alpha} \| 1_{\Gamma_j} \|_{\ell^q_{k^\alpha\eta(k)}(\mathcal{B},\mathbb{B})} \approx \eta(\kappa^j).$$

Thus, combining these two expressions we obtain

$$\|1_{\Gamma_n}\|_{\mathbb{B}} \lesssim \left[\sum_{j=0}^n \eta(\kappa^j)^{\rho}\right]^{1\rho} \le C \eta(\kappa^n), \qquad (3.12)$$

where the last inequality follows from the assumption $\eta \in W_+$ and Lemma 2.1. This shows (3.10) when $N = \kappa^n$, n = 1, 2, ... The general case follows easily using the doubling property of η .

Remark 3.7 As before, if any of the statements in 2 or 3 holds for one fixed $\alpha > 0$ and $q \in (0, \infty]$, then the assertions remain true for all α and q, since 1 is independent of these parameters.

Remark 3.8 Observe also that $1 \Rightarrow 2 \Rightarrow 3$ hold with the weaker assumption $\{k^{\alpha}\eta(k)\} \in \mathbb{W}_+$ from Theorem 3.1 (and in particular hold for $\eta = h_r$ as stated in (1.5)). However, the stronger assumption $\eta \in \mathbb{W}_+$ is crucial to obtain $3 \Rightarrow 1$, and cannot be removed as shown in Example 5.6 below.

Corollary 3.9 (Optimality of the inclusions into \mathcal{A}_a^{α}) Let \mathcal{B} be a (normalized) unconditional basis in \mathbb{B} . Fix $\alpha > 0$ and $q \in (0, \infty]$. Then

$$\ell^{q}_{k^{\alpha}h_{r}(k)}(\mathcal{B},\mathbb{B}) \hookrightarrow \mathcal{A}^{\alpha}_{q}(\mathcal{B},\mathbb{B}).$$
(3.13)

If for some $\omega \in \mathbb{W}_+$ we have $\ell^q_{\omega}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathcal{A}^{\alpha}_{a}(\mathcal{B}, \mathbb{B})$, then necessarily $\omega(k) \gtrsim k^{\alpha}$. Moreover if $\omega(k) = k^{\alpha} \eta(k)$, with η increasing and doubling, then

(a) *if* $i_{\eta} > 0$, *then necessarily* $\eta(k) \gtrsim h_r(k)$, *and hence* $\ell^q_{\omega} \hookrightarrow \ell^q_{k^{\alpha}h_r(k)}$. (b) *if* $i_{\eta} = 0$, *then* $\eta(k) \gtrsim h_r(k)/(\log k)^{1/\rho}$ *and* $\ell^q_{k^{\alpha}\eta(k)} \hookrightarrow \ell^q_{(k^{\alpha}h_r(k)/(\log k)^{1/\rho})}$.

Proof The inclusion (3.13) is actually a consequence of (3.9). Assertion (a) is just $2 \Rightarrow 3 \Rightarrow 1$ in the theorem. For assertion (b) notice that in the last step of the proof of $3 \Rightarrow 1$, the right hand inequality of (3.12) can always be replaced bv

$$\|1_{\Gamma_n}\|_{\mathbb{B}} \lesssim \left[\sum_{j=0}^n \eta(\kappa^j)^{
ho}
ight]^{1
ho} \lesssim \eta(\kappa^n) n^{1/
ho}$$

when η is increasing. Thus $h_r(N) \leq \eta(N) (\log N)^{1/\rho}$ holds for $N = \kappa^n$, and by the doubling property also for all $N \in \mathbb{N}$. Finally, if $\ell^q_{\omega}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathcal{A}^{\alpha}_a(\mathcal{B}, \mathbb{B})$ for some general $\omega \in \mathbb{W}_+$, then given $\Gamma \subset \mathbb{N}$ with $|\Gamma| = N$ we trivially have

$$\omega(N) \approx \|\mathbf{1}_{\Gamma}\|_{\ell_{\omega}^{q}} \gtrsim \|\mathbf{1}_{\Gamma}\|_{\mathcal{A}_{\infty}^{\alpha}} \ge (N/2)^{\alpha} \,\sigma_{N/2}(\mathbf{1}_{\Gamma}) \ge (N/2)^{\alpha}.$$

Remark 3.10 Assertion (b) shows that the inclusion in (3.13) is optimal, except perhaps for a logarithmic loss. The logarithmic loss may actually happen, as there are Banach spaces \mathbb{B} with $h_r(N) \approx \log N$ and so that

$$\mathcal{A}^{\alpha}_{q}(\mathbb{B}) = \ell^{q}_{k^{\alpha}} = \ell^{q}_{\{k^{\alpha}h_{r}(k)/\log k\}}.$$

See Example 5.6 below.

4 Left democracy and Bernstein type inequalities

It is well known that upper inclusions for the approximation spaces \mathcal{A}^{α}_{a} , as in (1.5), depend upon Bernstein type inequalities. In this section we show how the left democracy function of \mathcal{B} is linked with these two properties.

We first remark that, for each $\alpha > 0$ and $0 < q \le \infty$, the approximation classes \mathcal{A}_q^{α} and \mathscr{G}_q^{α} satisfy trivial Bernstein inequalities, namely, there exists $C_{\alpha,q} > 0$ such that

$$\|x\|_{\mathcal{A}^{\alpha}_{a}(\mathcal{B},\mathbb{B})} \leq \|x\|_{\mathscr{G}^{\alpha}_{a}(\mathcal{B},\mathbb{B})} \leq C_{\alpha,q} N^{\alpha} \|x\|_{\mathbb{B}}, \quad \forall x \in \Sigma_{N}, \quad N = 1, 2, \dots$$
(4.1)

This follows easily from the definition of the norms and the trivial estimates $\sigma_N(x) \le \gamma_N(x) \le ||x||_{\mathbb{B}}$.

We start with a preliminary result which is essentially known in the literature (see eg [29]). As usual $\mathcal{B} = \{e_j\}_{j=1}^{\infty}$ is a fixed (normalized) unconditional basis in \mathbb{B} .

Proposition 4.1 Let \mathbb{E} be a subspace of \mathbb{B} , endowed with a quasi-norm $\|.\|_{\mathbb{E}}$ satisfying the ρ -triangle inequality for some $\rho = \rho_{\mathbb{E}}$. For each $\alpha > 0$ the following are equivalent:

- 1. $\exists C_{\alpha} > 0$ such that $||x||_{\mathbb{E}} \leq C_{\alpha} N^{\alpha} ||x||_{\mathbb{B}}, \forall x \in \Sigma_N, N = 1, 2, \dots$
- 2. $\mathcal{A}^{\alpha}_{o}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathbb{E}$.
- 3. $\mathscr{G}^{\alpha}_{\rho}(\mathcal{B},\mathbb{B}) \hookrightarrow \mathbb{E}$.

Proof

1 ⇒ 2 Given $x \in \mathcal{A}^{\alpha}_{\rho}(\mathcal{B}, \mathbb{B})$, by the representation theorem for approximation spaces [29] one can write $x = \sum_{k=0}^{\infty} x_k$ with $x_k \in \Sigma_{2^k}$, k = 0, 1, 2, ..., such that

$$\left(\sum_{k=0}^{\infty} 2^{k\alpha\rho} \|x_k\|_{\mathbb{B}}^{\rho}\right)^{1/\rho} \leq C \|x\|_{\mathcal{A}^{\alpha}_{\rho}(\mathcal{B},\mathbb{B})}.$$

The hypothesis 1 and the $\rho_{\mathbb{E}}$ -triangular inequality then give

$$\|x\|_{\mathbb{E}}^{\rho} \leq \sum_{k=0}^{\infty} \|x_k\|_{\mathbb{E}}^{\rho} \leq C_{\alpha}^{\rho} \sum_{k=0}^{\infty} 2^{k\alpha\rho} \|x_k\|_{\mathbb{B}}^{\rho} \leq C' \|x\|_{\mathcal{A}_{\rho}^{\alpha}(\mathcal{B},\mathbb{B})}^{\rho}.$$

 $2 \Rightarrow 3$ This follows from the trivial inclusion $\mathscr{G}^{\alpha}_{\rho}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathcal{A}^{\alpha}_{\rho}(\mathcal{B}, \mathbb{B})$.

 $3 \Rightarrow 1$ This is immediate using (4.1).

Theorem 4.2 Let $\mathcal{B} = \{e_j\}_{j=1}^{\infty}$ be a (normalized) unconditional basis in \mathbb{B} . Fix $\alpha > 0$ and $q \in (0, \infty]$. Then, for any increasing and doubling sequence $\{\eta(k)\}$ the following statements are equivalent:

1. There exists C > 0 such that for all N = 1, 2, 3, ...

$$\left\|\sum_{k\in\Gamma} e_k\right\|_{\mathbb{B}} \ge \frac{1}{C}\eta(N), \quad \forall \ \Gamma \subset \mathbb{N} \text{ with } |\Gamma| = N.$$
(4.2)

2. Bernstein type inequality for $\ell^q_{k^{\alpha}\eta(k)}(\mathcal{B}, \mathbb{B})$: $\exists C_{\alpha,q} > 0$ such that

$$\|x\|_{\ell^q_{k^\alpha_{\eta(k)}}(\mathcal{B},\mathbb{B})} \leq C_{\alpha,q} N^\alpha \|x\|_{\mathbb{B}}, \quad \forall x \in \Sigma_N, \ N = 1, 2, 3, \dots$$
(4.3)

 $\begin{array}{ll} 3. & \mathcal{A}^{\alpha}_{q}(\mathcal{B},\mathbb{B}) \hookrightarrow \ell^{q}_{k^{\alpha}\eta(k)}(\mathcal{B},\mathbb{B}) \,. \\ 4. & \mathscr{G}^{\alpha}_{q}(\mathcal{B},\mathbb{B}) \hookrightarrow \ell^{q}_{k^{\alpha}\eta(k)}(\mathcal{B},\mathbb{B}). \end{array}$

Proof

1 ⇒ 2 Let $x = \sum_{k \in \Gamma} c_k e_k \in \Sigma_N$. For any bijection π with $|c_{\pi(k)}|$ decreasing, and any integer $m \in \{1, ..., N\}$ we have

$$|c_{\pi(m)}| \eta(m) \le C |c_{\pi(m)}| \left\| \sum_{j=1}^{m} e_{\pi(j)} \right\|_{\mathbb{B}} \le C \left\| \sum_{j=1}^{m} c_{\pi(j)} e_{\pi(j)} \right\|_{\mathbb{B}} \le C \|x\|_{\mathbb{B}},$$

using (2.3) in the second inequality. This gives

$$\|x\|_{\ell^{q}_{k^{\alpha}\eta(k)}} = \left[\sum_{m=1}^{N} (m^{\alpha}\eta(m)c_{m}^{*})^{q} \frac{1}{m}\right]^{1/q} \le C\|x\|_{\mathbb{B}} \left[\sum_{m=1}^{N} m^{\alpha q} \frac{1}{m}\right]^{1/q} \approx \|x\|_{\mathbb{B}} N^{\alpha}.$$

 $2 \Rightarrow 1$ For any $\Gamma \subset \mathbb{N}$ with $|\Gamma| = N$, applying (4.3) to $1_{\Gamma} = \sum_{k \in \Gamma} e_k$ we obtain

$$\|1_{\Gamma}\|_{\mathbb{B}} \geq \frac{1}{C_{\alpha,q}} N^{-\alpha} \|1_{\Gamma}\|_{\ell^q_{k^\alpha\eta(k)}(\mathcal{B},\mathbb{B})} \gtrsim \eta(N),$$

where in the last inequality we have used $\|1_{\Gamma}\|_{\ell_{\omega}^{q}} \gtrsim \omega(N)$, when $\omega \in \mathbb{W}$. 2 \Rightarrow 3 We have already proved that 1 \Leftrightarrow 2; since 1 does not depend on α , q, then 2 actually holds for all $\tilde{\alpha} > 0$. In particular, from Proposition 4.1, we have

$$\mathcal{A}^{\tilde{\alpha}}_{\rho} \hookrightarrow \mathbb{E} := \ell^{q}_{k^{\tilde{\alpha}}\eta(k)}(\mathcal{B}, \mathbb{B}) \tag{4.4}$$

for $\tilde{\alpha} \in (\frac{\alpha}{2}, \frac{3\alpha}{2})$ and some sufficiently small $\rho > 0$. Now, from the general theory developed in [7], the spaces \mathcal{A}_q^{α} satisfy a reiteration theorem for the real interpolation method, and in particular

$$\mathcal{A}_{q}^{\alpha} = \left(\mathcal{A}_{q_{0}}^{\alpha_{0}}, \mathcal{A}_{q_{1}}^{\alpha_{1}}\right)_{1/2, q}, \qquad (4.5)$$

when $\alpha = (\alpha_0 + \alpha_1)/2$ with $\alpha_1 > \alpha_0 > 0$, and $q_0, q_1, q \in (0, \infty]$. On the other hand, for the family of weighted Lorentz spaces it is known that

$$\left(\ell^q_{\omega_0}, \ell^q_{\omega_1}\right)_{\theta, q} = \ell^q_{\omega}, \quad 0 < \theta < 1, \quad 0 < q \le \infty,$$

$$(4.6)$$

when $\omega_0, \omega_1 \in \mathbb{W}_+$ and $\omega = \omega_0^{1-\theta} \omega_1^{\theta}$ (see e.g. [25, Theorem 3]). Thus, for fixed α and q, we can choose the parameters accordingly, and use the inclusion (4.4), to obtain

$$\mathcal{A}_{q}^{\alpha} = \left(\mathcal{A}_{\rho}^{\alpha_{0}}, \mathcal{A}_{\rho}^{\alpha_{1}}\right)_{1/2, q} \hookrightarrow \left(\ell_{k^{\alpha_{0}}\eta(k)}^{q}, \ell_{k^{\alpha_{1}}\eta(k)}^{q}\right)_{1/2, q} = \ell_{k^{\alpha}\eta(k)}^{q}(\mathcal{B}, \mathbb{B}).$$

- $3 \Rightarrow 4$ This is trivial since $\mathscr{G}_q^{\alpha} \hookrightarrow \mathcal{A}_q^{\alpha}$.
- $4 \Rightarrow 2$ This is trivial from (4.1).

Remark 4.3 Observe that $3 \Rightarrow 4 \Rightarrow 2 \Leftrightarrow 1$ hold with the weaker assumption $\{k^{\alpha}\eta(k)\} \in \mathbb{W}$.

Corollary 4.4 (Optimal inclusions of \mathcal{A}_q^{α} into ℓ_{ω}^q) Let \mathcal{B} be a (normalized) unconditional basis in \mathbb{B} . Fix $\alpha > 0$ and $q \in (0, \infty]$.

- (a) If $h_{\ell}(N)$ is doubling then $\mathcal{A}^{\alpha}_{q}(\mathcal{B}, \mathbb{B}) \hookrightarrow \ell^{q}_{k^{\alpha}h_{\ell}(k)}(\mathcal{B}, \mathbb{B}).$
- (b) If for some $\omega \in \mathbb{W}$ we have $\mathcal{A}_q^{\alpha}(\mathcal{B}, \mathbb{B}) \hookrightarrow \ell_{\omega}^{q}(\mathcal{B}, \mathbb{B})$ then necessarily $\omega(k) \lesssim k^{\alpha}h_{\ell}(k)$, and hence $\ell_{k^{\alpha}h_{\ell}(k)}^{q} \hookrightarrow \ell_{\omega}^{q}$.

Proof Part (a) is an application of $1 \Rightarrow 3$ in the theorem with $\eta = h_{\ell}$ (which under the doubling assumption satisfies $\{k^{\alpha}h_{\ell}(k)\} \in \mathbb{W}_+$ for all $\alpha > 0$). Part (b) is just a restatement of $3 \Rightarrow 1$ in the theorem, setting $\eta(k) = \omega(k)/k^{\alpha}$ and taking into account Remark 4.3.

5 Examples and applications

In this section we describe the democracy functions h_{ℓ} and h_r in various examples which can be found in the literature. Inclusions for $\mathcal{A}_q^{\alpha}(\mathcal{B}, \mathbb{B})$ and $\mathscr{G}_q^{\alpha}(\mathcal{B}, \mathbb{B})$ will be obtained inmediately from the results of Sections 3 and 4. The most interesting case appears when \mathcal{B} is a wavelet basis, and \mathbb{B} a function or distribution space in \mathbb{R}^d which can be characterized by such basis (eg, the general Besov or Triebel–Lizorkin spaces, $B_{p,q}^{\alpha}$ and $F_{p,q}^{s}$, and also rearrangement invariant spaces as the Orlicz and Lorentz classes, L^{Φ} and $L^{p,q}$). Such characterizations provide a description of each \mathbb{B} as a sequence space, so for simplicity we shall work in this simpler setting, reminding in each case the original function space framework.

Let $\mathcal{D} = \mathcal{D}(\mathbb{R}^d)$ denote the family of all dyadic cubes Q in \mathbb{R}^d , ie

$$\mathcal{D} = \{ Q_{j,k} = 2^{-j} ([0,1)^d + k) : j \in \mathbb{Z}, k \in \mathbb{Z}^d \}.$$

We shall consider sequences indexed by \mathcal{D} , $\mathbf{s} = \{s_Q\}_{Q \in \mathcal{D}}$, endowed with quasinorms of the following form

$$\left\| \left(\sum_{\mathcal{Q} \in \mathcal{D}} \left(|\mathcal{Q}|^{\gamma - \frac{1}{2}} |s_{\mathcal{Q}}| \chi_{\mathcal{Q}}(\cdot) \right)^r \right)^{1/r} \right\|_{\mathbb{X}} , \qquad (5.1)$$

where $0 < r \le \infty$, $\gamma \in \mathbb{R}$ and \mathbb{X} is a suitable quasi-Banach function space in \mathbb{R}^d , such as the ones we consider below. The canonical basis $\mathcal{B}_c = \{\mathbf{e}_Q\}_{Q \in \mathcal{D}}$ is formed by the sequences \mathbf{e}_Q with entry 1 at Q and 0 otherwise. In each of the examples below, the greedy algorithms and democracy functions are considered with respect to the normalized basis $\mathcal{B} = \{\mathbf{e}_Q / \|\mathbf{e}_Q\|_{\mathbb{B}}\}$. Similarly, when stating the corresponding results for the functional setting we shall write \mathcal{W} for the wavelet basis.

Example 5.1 ($\mathbb{X} = L^p(\mathbb{R}^d)$, $0) In this case, it is customary to consider the sequence spaces <math>f_{p,r}^s$, $s \in \mathbb{R}$, $0 < r \le \infty$, with quasi-norms given by

$$\left\|\mathbf{s}\right\|_{\mathbf{f}_{p,r}^{s}} := \left\| \left(\sum_{Q \in \mathcal{D}} \left(|Q|^{-\frac{s}{d} - \frac{1}{2}} |s_{Q}| \chi_{Q}(\cdot) \right)^{r} \right)^{1/r} \right\|_{L^{p}(\mathbb{R}^{d})}$$

It was proved in [11, 16, 18] that, for all $s \in \mathbb{R}$ and $0 < r \le \infty$,

$$h_{\ell}(N;\mathfrak{f}^{s}_{p,r}) \approx h_{r}(N;\mathfrak{f}^{s}_{p,r}) \approx N^{1/p}$$
(5.2)

and

$$\mathcal{A}_{q}^{\alpha}(\mathfrak{f}_{p,r}^{s}) = \ell^{\tau,q}(\mathfrak{f}_{p,r}^{s}) = \left\{ \mathbf{s} : \{ s_{Q} \| e_{Q} \|_{\mathfrak{f}_{p,r}^{s}} \}_{Q} \in \ell^{\tau,q} \right\},$$
(5.3)

if $\frac{1}{\tau} = \alpha + \frac{1}{p}$, as asserted in Theorem 1.2.

It is well-known that $f_{p,r}^s$ coincides with the coefficient space under a wavelet basis \mathcal{W} of the (homogeneous) Triebel–Lizorkin space $\dot{F}_{p,r}^s(\mathbb{R}^d)$, defined in terms of Littlewood–Paley theory (see e.g. [10, 22, 26]). In particular, under suitable decay and smoothness on the wavelet family (so that it is an unconditional basis of the involved spaces) the statement in (5.3) can be translated into

$$\mathcal{A}^{\alpha}_{q}(\mathcal{W},\dot{F}^{s}_{p,r}(\mathbb{R}^{d})) = \mathscr{G}^{\alpha}_{q}(\mathcal{W},\dot{F}^{s}_{p,r}(\mathbb{R}^{d})) = \dot{B}^{s+\alpha d}_{q,q}(\mathbb{R}^{d})$$

when $\frac{1}{q} = \alpha + \frac{1}{p}$. We refer to [5, 11, 16, 17] for details and further results.

Example 5.2 (Weighted Lebesgue spaces $\mathbb{X} = L^p(w), 0) For weights <math>w(x)$ in the Muckenhoupt class $A_{\infty}(\mathbb{R}^d)$, one can define sequence spaces $f_{p,r}^s(w)$ with the quasi-norm

$$\left\|\mathbf{s}\right\|_{\mathbf{f}_{p,r}^{s}(w)} := \left\| \left(\sum_{\mathcal{Q}\in\mathcal{D}} \left(|\mathcal{Q}|^{-\frac{s}{d}-\frac{1}{2}} |s_{\mathcal{Q}}| \, \chi_{\mathcal{Q}}(\cdot) \right)^{r} \right)^{1/r} \right\|_{L^{p}(\mathbb{R}^{d},w)}$$

Similar computations as in the previous case in this more general situation will also lead to the identities in (5.2) and (5.3), with $f_{p,r}^s$ replaced by $f_{p,r}^s(w)$. We refer to [21, 27] for details in some special cases.

When \mathcal{W} is a (sufficiently smooth) orthonormal wavelet basis and w is a weight in the Muckenhoupt class $A_p(\mathbb{R}^d)$, $1 , then <math>\mathfrak{f}_{p,2}^0(w)$ becomes the coefficient space of the weighted Lebesgue space $L^p(w)$ (see e.g. [1]). One then obtains as special case

$$h_{\ell}(N; \mathcal{W}, L^{p}(w)) \approx h_{r}(N; \mathcal{W}, L^{p}(w)) \approx N^{\frac{1}{p}}.$$

Moreover, if $\omega \in A_{\tau}(\mathbb{R}^d)$,

$$\mathcal{A}^{\alpha}_{\tau}(\mathcal{W}, L^{p}(w)) \approx \mathscr{G}^{\alpha}_{\tau}(\mathcal{W}, L^{p}(w)) \approx \dot{B}^{\alpha d}_{\tau,\tau}(w^{\tau/p}), \quad \text{if } \frac{1}{\tau} = \alpha + \frac{1}{p}$$

where $\dot{B}^{\alpha}_{\tau,q}(w)$ denotes a weighted Besov space (see [27] for details).

Example 5.3 (Orlicz spaces $\mathbb{X} = L^{\Phi}(\mathbb{R}^d)$) Following [12], we denote by \mathfrak{f}^{Φ} the sequence space with quasi-norm

$$\|\mathbf{s}\|_{\mathfrak{f}^{\Phi}} := \left\| \left(\sum_{\mathcal{Q} \in \mathcal{D}} \left(|s_{\mathcal{Q}}| \frac{\chi_{\mathcal{Q}}(\cdot)}{|\mathcal{Q}|^{1/2}} \right)^2 \right)^{1/2} \right\|_{L^{\Phi}(\mathbb{R}^d)}$$

where L^{Φ} is an Orlicz space with non-trivial Boyd indices. If we denote by $\varphi(t) = 1/\Phi^{-1}(1/t)$, the fundamental function of L^{Φ} , then it is shown in [12] that

$$h_{\ell}(N;\mathfrak{f}^{\Phi}) \approx \inf_{s>0} \frac{\varphi(Ns)}{\varphi(s)}$$
 and $h_r(N;\mathfrak{f}^{\Phi}) \approx \sup_{s>0} \frac{\varphi(Ns)}{\varphi(s)}$

with the two expressions being equivalent iff $\varphi(t) = t^{1/p}$ (ie, iff $L^{\Phi} = L^{p}$). Thus, these are first examples of non-democratic spaces, with a wide range of possibilities for the democracy functions. The theorems in Sections 3 and 4 recover the embeddings obtained in [12] for the approximation classes $\mathcal{A}_{q}^{\alpha}(f^{\Phi})$ and $\mathcal{G}_{q}^{\alpha}(f^{\Phi})$ in terms of weighted discrete Lorentz spaces. When using suitable wavelet bases, these lead to corresponding inclusions for $\mathcal{A}_{q}^{\alpha}(\mathcal{W}, L^{\Phi})$ and $\mathcal{G}_{q}^{\alpha}(\mathcal{W}, L^{\Phi})$, some of which can be expressed in terms of Besov spaces of generalized smoothness (see [12] for details).

Example 5.4 (Lorentz spaces $\mathbb{X} = L^{p,q}(\mathbb{R}^d)$, $0 < p, q < \infty$) Consider sequence spaces $\mathfrak{l}^{p,q}$ defined by the following quasi-norms

$$\|\mathbf{s}\|_{\mathfrak{l}^{p,q}} := \left\| \left(\sum_{\mathcal{Q} \in \mathcal{D}} \left(|s_{\mathcal{Q}}| \frac{\chi_{\mathcal{Q}}(\cdot)}{|\mathcal{Q}|^{1/2}} \right)^2 \right)^{1/2} \right\|_{L^{p,q}(\mathbb{R}^d)}$$

Their democracy functions have been computed in [14], obtaining

$$h_{\ell}(N; \mathfrak{l}^{p,q}) \approx N^{\frac{1}{\max(p,q)}}$$
 and $h_{r}(N; \mathfrak{l}^{p,q}) \approx N^{\frac{1}{\min(p,q)}}$

These imply corresponding inclusions for the classes $\mathcal{A}_{s}^{\alpha}(\mathfrak{l}^{p,q})$ and $\mathscr{G}_{s}^{\alpha}(\mathfrak{l}^{p,q})$ in terms of discrete Lorentz spaces $\ell^{\tau,s}$ (as described in the theorems of Sections 3 and 4). The spaces $\mathfrak{l}^{p,q}$ characterize, via wavelets, the usual Lorentz spaces $L^{p,q}(\mathbb{R}^d)$ when $1 and <math>1 \le q < \infty$ [32]. Hence inclusions for $\mathcal{A}_{s}^{\alpha}(\mathcal{W}, L^{p,q})$ and $\mathscr{G}_{s}^{\alpha}(\mathcal{W}, L^{p,q})$ can be obtained using standard Besov spaces.

Example 5.5 (Hyperbolic wavelets) For 0 , consider now the sequence space

$$\|\mathbf{s}\|_{\mathbf{f}^{p}_{\mathrm{hyp}}} := \left\| \left(\sum_{R} \left(|s_{R}| \frac{\chi_{R}(\cdot)}{|R|^{1/2}} \right)^{2} \right)^{1/2} \right\|_{L^{p}(\mathbb{R}^{d})}$$

🖄 Springer

where *R* runs over the family of all dyadic rectangles of \mathbb{R}^d , that is $R = I_1 \times \ldots \times I_d$, with $I_i \in \mathcal{D}(\mathbb{R})$, $i = 1, \ldots, d$. This gives another example of nondemocratic basis. In fact, the following result is proved in [38, Proposition 11] (see also [34]):

(a) If 0 ,

$$h_\ell(N;\mathfrak{f}^p_{\mathrm{hyp}}) pprox N^{1/p}(\log N)^{(rac{1}{2}-rac{1}{p})(d-1)}$$
 and $h_r(N;\mathfrak{f}^p_{\mathrm{hyp}}) pprox N^{1/p}$.

(b) If $2 \le p < \infty$,

$$h_{\ell}(N;\mathfrak{f}_{\mathrm{hyp}}^p) \approx N^{1/p}$$
 and $h_r(N;\mathfrak{f}_{\mathrm{hyp}}^p) \approx N^{1/p}(\log N)^{(\frac{1}{2}-\frac{1}{p})(d-1)}$

If \mathcal{H}_d denotes the multidimensional (hyperbolic) Haar basis, then f_{hyp}^p becomes the coefficient space of the usual $L^p(\mathbb{R}^d)$ if $1 (and the dyadic Hardy space <math>H^p(\mathbb{R}^d)$ if $0). In this case, one obtains corresponding inclusions for the classes <math>\mathcal{A}_q^{\alpha}(\mathcal{H}_d, L^p)$ and $\mathcal{G}_q^{\alpha}(\mathcal{H}_d, L^p)$ (see also [19, Theorem 5.2]), some of which could possibly be expressed in terms of Besov spaces of bounded mixed smoothness [6, 19].

Example 5.6 (Bounded mean oscillation) Let *b mo* denote the space of sequences $\mathbf{s} = \{s_I\}_{I \in D}$ with

$$\|\mathbf{s}\|_{bmo} = \sup_{I \in \mathcal{D}} \left(\frac{1}{|I|} \sum_{J \subset I, J \in \mathcal{D}} |s_J|^2 |J| \right)^{1/2} < \infty.$$
(5.4)

This sequence space gives the correct characterization of $BMO(\mathbb{R})$ for sufficiently smooth wavelet bases appropriately normalized(see [10, 16, 37]). Their democracy functions are determined by

$$h_{\ell}(N; bmo) \approx 1, \quad h_r(N; bmo) \approx \left(\log N\right)^{1/2}.$$
 (5.5)

1 /2

The first part of (5.5) is easy to prove, and the second follows, for instance, by an argument similar to the one presented in the proof of [28, Lemma 3]. Our results of Sections 3 and 4 give in this case the inclusions:

$$\ell^{q}_{k^{\alpha}\sqrt{\log k}} \hookrightarrow \mathscr{G}^{\alpha}_{q}(b\,mo) \hookrightarrow \mathcal{A}^{\alpha}_{q}(b\,mo) \hookrightarrow \ell^{q}_{k^{\alpha}} = \ell^{1/\alpha,q} \,. \tag{5.6}$$

However, this is not the best one can say for the approximation classes \mathcal{A}_q^{α} . A result proved in [30] (see also Proposition 11.6 in [16]) shows that one actually has

$$\mathcal{A}_{q}^{\alpha}(b\,mo)\,=\,\mathcal{A}_{q}^{\alpha}(\ell^{\infty})\,=\,\ell^{1/\alpha,q},$$

for all $\alpha > 0$ and $q \in (0, \infty]$. For $0 < r < \infty$ one can define the space $b mo_r$ replacing the 2 by r in (5.4); it can then be shown that $h_r(N; b mo_r) \approx (\log N)^{1/r}$ and $\mathcal{A}^{\alpha}_q(b mo_r) = \ell^{1/\alpha, q}$.

6 Democracy functions for $\mathcal{A}^{\alpha}_{q}(\mathcal{B}, \mathbb{B})$ and $\mathscr{G}^{\alpha}_{q}(\mathcal{B}, \mathbb{B})$

As usual, we fix a (normalized) unconditional basis $\mathcal{B} = \{e_j\}_{j=1}^{\infty}$ in \mathbb{B} . In this section we compute the democracy functions for the spaces $\mathcal{A}_a^{\alpha}(\mathcal{B}, \mathbb{B})$ and

 $\mathscr{G}^{\alpha}_{a}(\mathcal{B},\mathbb{B})$, in terms of the democracy functions in the ambient space \mathbb{B} . To distinguish among these notions we shall use, respectively, the notations

$$h_{\ell}(N; \mathcal{A}_{a}^{\alpha}), \quad h_{\ell}(N; \mathscr{G}_{a}^{\alpha}) \text{ and } h_{\ell}(N; \mathbb{B}),$$

and similarly for h_r (recall the definitions in Section 2.5). Since we shall use the embeddings in Sections 3 and 4, observe first that

$$h_{\ell}(N; \ell^{q}_{\omega}(\mathcal{B}, \mathbb{B})) \approx h_{r}(N; \ell^{q}_{w}(\mathcal{B}, \mathbb{B})) \approx \omega(N), \tag{6.1}$$

for all $\omega \in \mathbb{W}_+$ and $0 < q \leq \infty$. This is immediate from the definition of the spaces $\ell^q_{\omega}(\mathcal{B}, \mathbb{B})$ and Lemma 2.3.

Proposition 6.1 Fix $\alpha > 0$ and $0 < q < \infty$. If $h_{\ell}(\cdot; \mathbb{B})$ is doubling then

- (a) $h_{\ell}(N; \mathscr{G}_{q}^{\alpha}) \approx N^{\alpha}h_{\ell}(N; \mathbb{B}).$ (b) $h_{r}(N; \mathscr{G}_{q}^{\alpha}) \approx N^{\alpha}h_{r}(N; \mathbb{B}).$

In particular, \mathcal{B} is democratic in $\mathscr{G}^{\alpha}_{q}(\mathcal{B}, \mathbb{B})$ if and only if \mathcal{B} is democratic in \mathbb{B} .

Proof The inequalities " \geq " in (a), and " \leq " in (b) follow immediately from the embeddings

$$\ell^{q}_{k^{\alpha}h_{r}(k)}(\mathcal{B};\mathbb{B}) \hookrightarrow \mathscr{G}^{\alpha}_{q}(\mathcal{B},\mathbb{B}) \hookrightarrow \ell^{q}_{k^{\alpha}h_{\ell}(k)}(\mathcal{B};\mathbb{B})$$

and the remark in (6.1). Thus we must show the converse inequalities. To establish (a), given N = 1, 2, 3, ... choose Γ with $|\Gamma| = N$ and so that $||1_{\Gamma}||_{\mathbb{B}} \leq 1$ $2h_{\ell}(N; \mathbb{B})$. Then, using the trivial bound in (4.1) we obtain

$$h_{\ell}(N; \mathscr{G}_{q}^{\alpha}) \leq \|1_{\Gamma}\|_{\mathscr{G}_{q}^{\alpha}} \lesssim N^{\alpha}\|1_{\Gamma}\|_{\mathbb{B}} \approx N^{\alpha}h_{\ell}(N; \mathbb{B}).$$

We now prove " \gtrsim " in (b). Given N = 1, 2, ..., choose first Γ with $|\Gamma| = N$ and $\|1_{\Gamma}\|_{\mathbb{B}} \geq \frac{1}{2}h_r(N;\mathbb{B})$, and then any Γ' disjoint with Γ with $|\Gamma'| = N$. Then

$$h_r(2N;\mathscr{G}_q^{\alpha}) \geq \left\| \mathbb{1}_{\Gamma \cup \Gamma'} \right\|_{\mathscr{G}_q^{\alpha}} \gtrsim N^{\alpha} \gamma_N(\mathbb{1}_{\Gamma \cup \Gamma'}; \mathbb{B}) \gtrsim N^{\alpha} \left\| \mathbb{1}_{\Gamma} \right\|_{\mathbb{B}} \approx N^{\alpha} h_r(N; \mathbb{B}).$$

The required bound then follows from the doubling property of h_r .

Proposition 6.2 Fix $\alpha > 0$ and $0 < q \le \infty$, and assume that $h_{\ell}(\cdot; \mathbb{B})$ is doubling. Then

(a) $h_{\ell}(N; \mathcal{A}_q^{\alpha}) \approx N^{\alpha} h_{\ell}(N; \mathbb{B}).$ (b) $h_r(N; \mathcal{A}_q^{\alpha}) \lesssim N^{\alpha} h_r(N; \mathbb{B}).$

In particular, if \mathcal{B} is democratic in \mathbb{B} then \mathcal{B} is democratic in $\mathcal{A}_{a}^{\alpha}(\mathcal{B}, \mathbb{B})$.

Proof As before, " \gtrsim " in (a), and " \lesssim " in (b) follow immediately from the embeddings

$$\ell^q_{k^{\alpha}h_r(k)}(\mathcal{B};\mathbb{B}) \hookrightarrow \mathcal{A}^{\alpha}_q(\mathcal{B},\mathbb{B}) \hookrightarrow \ell^q_{k^{\alpha}h_\ell(k)}(\mathcal{B};\mathbb{B}).$$

The converse inequality in (a) follows from the previous proposition and the trivial inclusion $\mathscr{G}_{a}^{\alpha} \hookrightarrow \mathcal{A}_{a}^{\alpha}$.

As shown in Example 5.6, the converse to the last statement in Proposition 6.2 is not necessarily true. The space $\mathbb{B} = b mo$ is not democratic, but their approximation classes $\mathcal{A}_q^{\alpha}(b m o) = \ell^{1/\alpha, q}$ are democratic. Moreover, this example shows that the converse to the inequality in (b) does not necessarily hold, since

 $h_r(N; \mathcal{A}^q_{\alpha}(b m o)) = N^{\alpha}$ but $N^{\alpha} h_r(N; b m o) \approx N^{\alpha} (\log N)^{1/2}$.

Nevertheless, we can give a sufficient condition for $h_r(N; \mathcal{A}_q^{\alpha}) \approx N^{\alpha}h_r(N; \mathbb{B})$, which turns out to be easily verifiable in all the other examples presented in §5.

Property (H) We say that \mathcal{B} satisfies the **Property (H)** if for each n = 1, 2, 3, ... there exist $\Gamma_n \subset \mathbb{N}$, with $|\Gamma_n| = 2^n$, satisfying the property

 $\|1_{\Gamma'}\|_{\mathbb{B}} \approx h_r(2^{n-1}; \mathbb{B}), \quad \forall \ \Gamma' \subset \Gamma_n \quad \text{with} \quad |\Gamma'| = 2^{n-1}.$

Proposition 6.3 Assume that \mathcal{B} satisfies the Property (H). Then, for all $\alpha > 0$ and $0 < q \le \infty$

$$h_r(N; \mathcal{A}^{\alpha}_a) \approx N^{\alpha} h_r(N; \mathbb{B})$$

Proof We must show " \gtrsim ", for which we argue as in the proof of Proposition 6.1. Given $N = 2^n$, select Γ_n as in the definition of Property (H). Then,

$$h_r(N; \mathcal{A}_q^{\alpha}) \geq \|1_{\Gamma_n}\|_{\mathcal{A}_q^{\alpha}} \gtrsim N^{\alpha} \sigma_{N/2}(1_{\Gamma_n}).$$

Now, the property (H) (and the remark in (2.4)) give

$$\sigma_{N/2}(1_{\Gamma_n}) = \inf \left\{ \| 1_{\Gamma'} \|_{\mathbb{B}} : \Gamma' \subset \Gamma, |\Gamma'| = N/2 \right\} \approx h_r(N/2; \mathbb{B}) \approx h_r(N; \mathbb{B}).$$

Combining these two facts the proposition follows for $N = 2^n$. For general N use the result just proved and the doubling property of h_r .

As an immediate consequence, the property (H) allows to remove the possible logarithmic loss for the embedding $\ell^q_{k^{\alpha}h_r(k)}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathcal{A}^{\alpha}_q(\mathcal{B}, \mathbb{B})$ discussed in Corollary 3.9.

Corollary 6.4 (More about optimality for inclusions into \mathcal{A}_q^{α}) Assume that $(\mathbb{B}, \mathcal{B})$ satisfies property (H). If for some $\alpha > 0, q \in (0, \infty]$ and $\omega \in \mathbb{W}_+$ we have $\ell_{\omega}^q(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathcal{A}_q^{\alpha}(\mathcal{B}, \mathbb{B})$, then necessarily $\omega(k) \gtrsim k^{\alpha}h_r(k)$, and therefore $\ell_{\omega}^q \hookrightarrow \ell_{k^{\alpha}h_r(k)}^q$.

The following examples show that Property (H) is often satisfied.

Example 6.1 Wavelet bases in Orlicz spaces $L^{\Phi}(\mathbb{R}^d)$ satisfy the property (H). Indeed, recall from [12, Theorem 1.2] (see also Example 5.3) that

$$h_r(N; L^{\Phi}) \approx \sup_{s>0} \varphi(Ns)/\varphi(s).$$
 (6.2)

🖄 Springer

Moreover, any collection Γ of N pairwise disjoint dyadic cubes with the same fixed size a > 0 satisfies

$$\|1_{\Gamma}\|_{L^{\Phi}} \approx \varphi(Na)/\varphi(a), \qquad (6.3)$$

(see eg [12, Lemma 3.1]). Thus, for each $N = 2^n$, we first select $a_n = 2^{j_n d}$ so that $h_r(2^n; L^{\Phi}) \approx \varphi(2^n a_n)/\varphi(a_n)$, and then we choose as Γ_n any collection of 2^n pairwise disjoint cubes with constant size a_n . Then, any subfamily $\Gamma' \subset \Gamma_n$ with $|\Gamma'| = N/2$, satisfies

$$\|1_{\Gamma'}\|_{L^{\Phi}} \approx \varphi((N/2)a_n)/\varphi(a_n) \approx \varphi(Na_n)/\varphi(a_n) \approx h_r(N) \approx h_r(N/2)$$

by (6.3) and the doubling property of φ and h_r .

Example 6.2 Wavelet bases in Lorentz spaces $L^{p,q}(\mathbb{R}^d)$, $1 < p, q < \infty$. These also satisfy the property (H). Indeed, it can be shown that any set Γ consisting of *N* disjoint cubes of the same size has

$$\|1_{\Gamma}\|_{L^{p,q}} \approx N^{\frac{1}{p}}$$
,

while sets Δ consisting of N disjoint cubes all having different sizes satisfy

$$\|1_{\Delta}\|_{L^{p,q}} \approx N^{\frac{1}{q}}$$

(see [14, (3.6) and (3.8)]). Since $h_r(N) \approx N^{1/(p \wedge q)}$, we can define the Γ_n 's with sets of the first type when $p \leq q$, and with sets of the second type when q < p, to obtain in both cases a collection satisfying the hypotheses of property (H).

Example 6.3 The hyperbolic Haar system in $L^p(\mathbb{R}^d)$ from Example 5.5 also satisfies property (H). In this case, again, any set Γ consisting of N disjoint rectangles has

$$\|1_{\Gamma}\|_{L^{p}(\mathbb{R}^{d})} = N^{\frac{1}{p}}.$$

On the other hand, if Δ_n denotes the set of all the dyadic rectangles in the unit cube with fixed size 2^{-n} , then

$$\|1_{\Delta_n}\|_{L^p(\mathbb{R}^d)} \approx 2^{n/p} n^{(d-1)/2} \approx |\Delta_n|^{1/p} (\log |\Delta_n|)^{(d-1)(\frac{1}{2} - \frac{1}{p})}.$$
 (6.4)

Moreover, it is not difficult to show that any $\Delta' \subset \Delta_n$ with $|\Delta'| = |\Delta_n|/2$ also satisfies (6.4) (with Δ_n replaced by Δ'). Hence, combining these two cases and using the description of $h_r(N)$ in Example 5.5, one easily establishes the property (H).

7 Counterexamples for the classes $\mathscr{G}_q^{\alpha}(\mathcal{B}, \mathbb{B})$

7.1 Conditions for $\mathscr{G}_q^{\alpha} \neq \mathcal{A}_q^{\alpha}$

Recall from Section 2.3 that $\mathscr{G}_q^{\alpha}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathcal{A}_q^{\alpha}(\mathcal{B}, \mathbb{B})$, with equality of the spaces when \mathcal{B} is a greedy basis. It is known that there are some *conditional*

democratic bases for which $\mathscr{G}_q^{\alpha} = \mathcal{A}_q^{\alpha}$ (see [13, Remark 6.2]). For unconditional bases, however, one could ask whether non-democracy necessarily implies that $\mathscr{G}_q^{\alpha} \neq \mathcal{A}_q^{\alpha}$. We do not know how to prove such a general result, but we can show that the inclusion $\mathcal{A}_q^{\alpha} \hookrightarrow \mathscr{G}_q^{\alpha}$ must fail whenever the gap between $h_{\ell}(N)$ and $h_r(N)$ is at least logarithmic (and even less than that). More precisely, we have the following.

Proposition 7.1 Let \mathcal{B} be an unconditional basis in \mathbb{B} and $\alpha > 0$. Suppose that there exist integers $p_N \ge q_N \ge 1$, N = 1, 2, ... such that

$$\lim_{N \to \infty} \frac{p_N}{q_N} = \infty \qquad and \qquad \frac{h_r(q_N)}{h_\ell(p_N)} \gtrsim \left(\frac{p_N}{q_N}\right)^{\alpha} . \tag{7.1}$$

Then the inclusion $\mathcal{A}^{\alpha}_{\tau}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathscr{G}^{\alpha}_{\tau}(\mathcal{B}, \mathbb{B})$ *does not hold for any* $\tau \in (0, \infty]$ *.*

Proof For each N, choose $\Gamma_l, \Gamma_r \subset \mathbb{N}$ with $|\Gamma_l| = p_N, |\Gamma_r| = q_N$, and such that

$$\|1_{\Gamma_{l}}\|_{\mathbb{B}} \le 2h_{\ell}(p_{N}), \quad \|1_{\Gamma_{r}}\|_{\mathbb{B}} \ge \frac{1}{2}h_{r}(q_{N}).$$
(7.2)

Set $x_N = \mathbf{1}_{\Gamma_r} + 2 \cdot \mathbf{1}_{\Gamma_l - \Gamma_l \cap \Gamma_r}$. Since $\#(\Gamma_l - \Gamma_l \cap \Gamma_r) \ge p_N - q_N$, when $k \in [1, p_N - q_N]$ we have

$$||x_N - G_k(x_N)||_{\mathbb{B}} \ge ||1_{\Gamma_r}||_{\mathbb{B}} \ge \frac{1}{2} h_r(q_N).$$

Therefore, using $p_N - q_N > p_N/2$ (since $p_N/q_N > 2$ for N large), we obtain that

$$\|x_N\|_{\mathscr{G}^{\alpha}_{\tau}(\mathcal{B},\mathbb{B})} \geq \frac{1}{2} \left[\sum_{k=1}^{p_N/2} \left(k^{\alpha} h_r(q_N) \right)^{\tau} \frac{1}{k} \right]^{\frac{1}{\tau}} \gtrsim h_r(q_N) p_N^{\alpha} .$$
(7.3)

On the other hand, we can estimate the norm of x_N as follows:

$$\|x_N\|_{\mathbb{B}} \lesssim \|1_{\Gamma_r}\|_{\mathbb{B}} + \|1_{\Gamma_l - \Gamma_l \cap \Gamma_r}\|_{\mathbb{B}} \le h_r(q_N) + 2h_\ell(p_N) \lesssim h_r(q_N)$$
(7.4)

where the last inequality is true for N large due to (7.1). Thus

$$\sigma_k(x_N) \le \|x_N\|_{\mathbb{B}} \lesssim h_r(q_N) \,. \tag{7.5}$$

Next, if $k \ge q_N$, by (7.2)

$$\sigma_k(x_N) \le 2 \|\mathbf{1}_{\Gamma_l - \Gamma_l \cap \Gamma_r}\|_{\mathbb{B}} \le 2 \|\mathbf{1}_{\Gamma_l}\|_{\mathbb{B}} \lesssim h_\ell(p_N) \,. \tag{7.6}$$

Combining (7.4), (7.5) and (7.6) we see that

$$\|x_N\|_{\mathcal{A}^{\alpha}_{\tau}(\mathcal{B},\mathbb{B})} \lesssim h_r(q_N) + \left[\sum_{k=1}^{q_N-1} \left(k^{\alpha} h_r(q_N)\right)^{\tau} \frac{1}{k} + \sum_{k=q_N}^{p_N+q_N} \left(k^{\alpha} h_{\ell}(p_N)\right)^{\tau} \frac{1}{k}\right]^{\frac{1}{\tau}}$$
$$\lesssim h_r(q_N) + \left[h_r(q_N)^{\tau}(q_N)^{\alpha\tau} + h_{\ell}(p_N)^{\tau}(p_N)^{\alpha\tau}\right]^{\frac{1}{\tau}}$$
$$\lesssim h_r(q_N) + h_r(q_N)(q_N)^{\alpha} \lesssim h_r(q_N)(q_N)^{\alpha}$$
(7.7)

where in the second inequality we have used the elementary fact $\sum_{k=a}^{a+b} k^{\gamma-1} \leq b^{\gamma}$ if $b \geq a$, and the third inequality is due to (7.1). Therefore, from (7.3) and (7.7) we deduce

$$\frac{\|x_N\|_{\mathscr{G}^{\alpha}_{\tau}}}{\|x_N\|_{\mathcal{A}^{\alpha}_{\tau}}} \gtrsim \frac{h_r(q_N)(p_N)^{\alpha}}{h_r(q_N)(q_N)^{\alpha}} = \left(\frac{p_N}{q_N}\right)^{\alpha} \longrightarrow \infty$$

as $N \to \infty$. This shows the desired result.

Corollary 7.2 Let \mathcal{B} be an unconditional basis such that $h_{\ell}(N) \leq N^{\beta_0}$ and $h_r(N) \geq N^{\beta_1}$, for some $\beta_1 > \beta_0 \geq 0$. Then, $\mathscr{G}_q^{\alpha} \neq \mathcal{A}_q^{\alpha}$ for all $\alpha > 0$ and all $q \in (0, \infty]$.

Proof Choose $r, s \in \mathbb{N}$, such that $\frac{\alpha + \beta_0}{\alpha + \beta_1} < \frac{r}{s} < 1$. Take $p_N = N^s$ and $q_N = N^r$. Then, $\lim_{N \to \infty} \frac{p_N}{q_N} = \lim_{N \to \infty} N^{s-r} = \infty$ and

$$\frac{h_r(q_N)}{h_\ell(p_N)} \gtrsim \frac{N^{r\beta_1}}{N^{s\beta_0}} > N^{\alpha(s-r)} = \left(\frac{N^s}{N^r}\right)^{\alpha} = \left(\frac{p_N}{q_N}\right)^{\alpha}$$

which proves (7.1) in this case, so that we can apply Proposition 7.1.

Corollary 7.3 Let \mathcal{B} be an unconditional basis such that for some $\beta \ge 0$ and $\gamma > 0$ we have either

- (i) $h_r(N) \gtrsim N^{\beta} (\log N)^{\gamma}$ and $h_{\ell}(N) \lesssim N^{\beta}$, or
- (ii) $h_r(N) \gtrsim N^{\beta} \text{ and } h_{\ell}(N) \lesssim N^{\beta} (\log N)^{-\gamma}.$ Then, $\mathscr{G}_q^{\alpha} \neq \mathcal{A}_q^{\alpha} \text{ for all } \alpha > 0 \text{ and all } q \in (0, \infty].$

Proof i) Choose $a, b \in \mathbb{N}$ such that $0 < \frac{a}{b} < \frac{\gamma}{\alpha+\beta}$. Let $p_N = N^a 2^{N^b}$ and $q_N = 2^{N^b}$. Then, $\lim_{N\to\infty} \frac{p_N}{q_N} = \lim_{N\to\infty} N^a = \infty$ and

$$\frac{h_r(q_N)}{h_\ell(p_N)} \gtrsim \frac{(2^{N^b})^\beta (\log 2^{N^b})^\gamma}{N^{a\beta} (2^{N^b})^\beta} \approx \frac{N^{b\gamma}}{N^{a\beta}} = N^{b\gamma - a\beta} > N^{a\alpha} = \left(\frac{p_N}{q_N}\right)^{\alpha}$$

which proves (7.1) in this case, so that we can apply Proposition 7.1 to conclude the result. The proof of ii) is similar with the same choice of p_N and q_N .

7.2 Non linearity of $\mathscr{G}_q^{\alpha}(\mathcal{B}, \mathbb{B})$

We conclude by showing with simple examples that $\mathscr{G}_q^{\alpha}(\mathcal{B}, \mathbb{B})$ may not even be a linear space when the basis \mathcal{B} is not democratic.

Let $\mathbb{B} = \ell^p \oplus_{\ell^1} \ell^q$, $0 < q < p < \infty$; that is, \mathbb{B} consists of pairs $(a, b) \in \ell^p \times \ell^q$, endowed with the quasi-norm $||a||_{\ell^p} + ||b||_{\ell^q}$. We consider the canonical basis in \mathbb{B} .

Now, set $\beta = \alpha + \frac{1}{p}$ and $x = \{(k^{-\beta}, 0)\}_{k \in \mathbb{N}} \in \mathbb{B}$. For $N = 1, 2, 3, \ldots$ we have

$$\gamma_N(x) = \left(\sum_{k>N} \frac{1}{k^{\beta p}}\right)^{1/p} \approx \left(\frac{1}{N^{\beta p-1}}\right)^{1/p} = N^{-\alpha}.$$

This shows that $x \in \mathscr{G}_{\infty}^{\alpha}(\mathcal{B}, \mathbb{B})$. Similarly, if we let $\gamma = \alpha + \frac{1}{q}$, then $y = \{(0, j^{-\gamma})\}_{j \in \mathbb{N}}$ belongs to $\mathscr{G}_{\infty}^{\alpha}$. We will show, however, that $x + y \notin \mathscr{G}_{\infty}^{\alpha}$. In fact, we will find a subsequence N_J of natural numbers so that

$$\gamma_{N_J}(x+y) \approx \frac{1}{N_J^{\alpha\beta/\gamma}} \tag{7.8}$$

(notice that $\beta < \gamma$ since we chose q < p). To prove (7.8) let $A_1 = \{1\}$ and

$$A_{j} = \left\{ k \in \mathbb{N} : \frac{1}{j^{\gamma}} \le \frac{1}{k^{\beta}} < \frac{1}{(j-1)^{\gamma}} \right\}, \quad j = 2, 3, \dots$$

The number of elements in A_i is

$$|A_j| \approx j^{\gamma/\beta} - (j-1)^{\gamma/\beta} \approx j^{\frac{\gamma}{\beta}-1}, \quad j = 1, 2, 3, \dots$$
 (7.9)

For J = 2, 3, 4, ... let $N_J = \sum_{j=1}^{J} |A_j| + J$. From (7.9) we obtain

$$N_J pprox \sum_{j=1}^J j^{rac{\gamma}{eta}-1} + J pprox J^{rac{\gamma}{eta}} + J pprox J^{rac{\gamma}{eta}}$$
 ,

since $\gamma > \beta$. Thus,

$$\begin{split} \gamma_{N_J}(x+y) &\approx \left(\sum_{k>J^{\frac{\gamma}{\beta}}} k^{-\beta p}\right)^{1/p} + \left(\sum_{j>J} j^{-\gamma q}\right)^{1/q} \approx \left[(J^{\gamma/\beta})^{-\beta p+1}\right]^{1/p} + \left[J^{-\gamma q+1}\right]^{1/q} \\ &= J^{-\alpha\gamma/\beta} + J^{-\alpha} \; \approx J^{-\alpha} \; \approx \; (N_J)^{-\alpha\beta/\gamma} \;, \end{split}$$

proving (7.8).

A simple modification of the above construction can be used to show that the set $\mathscr{G}_s^{\alpha}(\mathcal{B}, \mathbb{B})$ is not linear, for any $\alpha > 0$ and any $s \in (0, \infty)$.

Note added in Proof C. Cabrelli and U. Molter have pointed out to us that the conditions in Proposition 7.1 hold for every $\alpha > 0$ as long as $\lim_{N\to\infty} h_r(N)/h_l(N) = \infty$, or even if one only assumes $\lim_{N\to\infty} h_r(N)/h_l(N) = \infty$ and h_l doubling. A proof of these facts will appear elsewhere.

References

- Aimar, H.A., Bernardis, A.L., Martín-Reyes, F.J.: Multiresolution approximation and wavelet bases of weighted Lebesgue spaces. J. Fourier Anal. Appl. 9(5), 497–510 (2003)
- 2. Bennett, C., Sharpley, R.: Interpolation of operators. Academic Press Inc (1988)
- Bergh, J., Löfström, J.: Interpolation spaces. An introduction, no. 223. Springer-Verlag, New York (1976)
- Carro, M.J., Raposo, J., Soria, J.: Recent developments in the theory of Lorentz spaces and weighted inequalities. Mem. Am. Math. Soc. 877, 187 (2007)
- 5. DeVore, R.A.: Nonlinear approximation. Acta Numer. 7, 51–150 (1998)
- DeVore, R., Konyagin, S., Temlyakov, V.: Hyperbolic wavelet approximation. Constr. Approx. 14, 1–26 (1998)

- DeVore, R., Popov, V.A.: Interpolation spaces and nonlinear approximation. Function Spaces and Applications (Lund, 1986). Lecture Notes in Math., vol. 1302. Springer, Berlin, pp. 191– 205 (1988)
- DeVore, R.A., Temlyakov, V.N.: Some remarks on greedy algorithms. Adv. Comput. Math. 5(2–3), 113–187 (1996)
- 9. Dilworth, S.J., Kalton, N.J., Kutzarova, D., Temlyakov, V.N.: The thresholding greedy algorithm, greedy bases, and duality. Constr. Approx. **19**, 575–597 (2003)
- Frazier, M., Jawerth, B.: A discrete transform and decomposition of distribution spaces. J. Funct. Anal. 93, 34–170 (1990)
- 11. Garrigós, G., Hernández, E.: Sharp Jackson and Bernstein inequalities for *n*-term approximation in sequence spaces with applications. Indiana Univ. Math. J. **53**, 1739–1762 (2004)
- Garrigós, G., Hernández, E., Martell, J.M.: Wavelets, Orlicz spaces and greedy bases. Appl. Comput. Harmon. Anal. 24, 70–93 (2008)
- Gribonval, R., Nielsen, M.: Some remarks on non-linear approximation with Schauder bases. East. J. Approx. 7(2), 1–19 (2001)
- 14. Hernández, E., Martell, J.M., de Natividade, M.: Quantifying democracy of wavelet bases in Lorentz spaces. Constr. Approx. **33**, 1–14 (2011). doi:10.1007/s00365-010-9113-8
- 15. Hernández, E., Weiss, G.: A first course on wavelets. CRC Press, Boca Raton, FL (1996)
- Hsiao, C., Jawerth, B., Lucier, B.J., Yu, X.M.: Near optimal compression of almost optimal wavelet expansions. Wavelets: Mathemathics and Applications, Stud. Adv. Math., vol. 133, pp. 425–446. CRC, Boca Raton, FL (1994)
- Jawerth, B., Milman, M.: Wavelets and best approximation in Besov spaces. In: Interpolation Spaces and Related Topics (Haifa, 1990), pp. 107–112, Israel Math. Conf. Proc., vol. 5. Bar-Ilan University, Ramat Gan (1992)
- Jawerth, B., Milman, M.: Weakly rearrangement invariant spaces and approximation by largest elements. In: Interpolation Theory and Applications, pp. 103–110, Contemp. Math., vol. 445. Amer. Math. Soc., Providence, RI (2007)
- Kamont, A., Temlyakov, V.N.: Greedy approximation and the multivariate Haar system. Stud. Math. 161(3), 199–223 (2004)
- Kerkyacharian, G., Picard, D.: Entropy, universal coding, approximation, and bases properties. Constr. Approx. 20, 1–37 (2004). doi:10.1007/s00365-003-0556-z
- Kerkyacharian, G., Picard, D.: Nonlinear approximation and Muckenhoupt weights. Constr. Approx. 24, 123–156 (2006). doi:10.1007/s00365-005-0618-5
- Kyriazis, G. Multilevel characterization of anisotropic function spaces. SIAM J. Math. Anal. 36, 441–462 (2004)
- Konyagin, S.V., Temlyakov, V.N.: A remark on greedy approximation in Banach spaces. East. J. Approx. 5, 365–379 (1999)
- Krein, S., Petunin, J., Semenov, E.: Interpolation of Linear Operators. Translations Math. Monographs, vol. 55. Amer. Math. Soc., Providence (1992)
- Merucci, C.: Applications of interpolation with a function parameter to Lorentz, Sobolev and Besov spaces. Interpolation Spaces and Allied Topics in Analysis. Lecture Notes in Math., vol. 1070, pp. 183–201. Springer, Berlin (1984)
- Meyer, Y.: Ondelettes et Operateurs. I: Ondelettes. Hermann, Paris, (1990). [English translation: Wavelets and Operators. Cambridge University Press (1992)]
- de Natividade, M.: Best approximation with wavelets in weighted Orlicz spaces. Monatsh. Math. 164, 87–114 (2011). doi:10.1007/s00605-010-0244-6
- Oswald, P.: Greedy algorithms and best m-term approximation with respect to biorthogonal systems. J. Fourier Anal. Appl. 7(4), 325–341 (2001)
- 29. Pietsch, A.: Approximation spaces. J. Approx. Theory 32, 113–134 (1981)
- Rochberg, R., Taibleson, M.: An averaging operator on a tree. In: Harmonic analysis and partial differential equations (El Escorial, 1987), pp. 207–213, Lecture Notes in Math., vol. 1384. Springer, Berlin (1989)
- Stechkin, S.B.: On absolute convergence of orthogonal series. Dokl. Akad. Nauk SSSR 102, 37–40 (1955)
- Soardi, P.: Wavelet bases in rearrangement invariant function spaces. Proc. Am. Math. Soc. 125(12), 3669–3973 (1997)
- Temlyakov, V.N.: The best *m*-term approximation and greedy algorithms. Adv. Comput. Math. 8, 249–265 (1998)

- 34. Temlyakov, V.N.: Nonlinear *m*-term approximation with regard to the multivariate Haar system. East. J. Approx. **4**, 87–106 (1998)
- Temlyakov, V.N.: Nonlinear methods of approximation. Found. Comput. Math. 3(1), 33–107 (2003)
- Temlyakov, V.N.: Greedy approximation. Acta Numer., vol. 17, pp. 235–409, Cambridge University Press (2008)
- Wojstaszczyk, P.: The Franklin system is an unconditional basis in H¹. Ark. Mat. 20, 293–300 (1982)
- Wojstaszczyk, P.: Greedy algorithm for general biorthogonal systems. J. Approx. Theory 107, 293–314 (2000)
- Wojstaszczyk, P.: Greediness of the Haar system in rearrangement invariant spaces. Banach Cent. Publ., Warszawa 72, 385–395 (2006)