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1 Introduction

Let (B, ‖.‖B) be a quasi-Banach space with a countable unconditional basis
B = {e j : j ∈ N}. A main question in Approximation Theory consists in finding
a characterization (if possible) or at least suitable embeddings for the non-
linear approximation spaces Aα

q(B, B), α > 0, 0 < q ≤ ∞, defined using the N-
term error of approximation σN(x, B) (see Sections 2.2 and 2.3 for definitions).
Such characterizations or inclusions are often given in terms of “smoothness
classes” of the sort

b(B; B) :=
⎧
⎨

⎩
x =

∞∑

j=1

c je j ∈ B : {‖c je j‖B}∞j=1 ∈ b

⎫
⎬

⎭
,

where b is a suitable sequence space whose elements decay at infinity, such as
�τ or more generally the discrete Lorentz classes �τ,q.

The simplest result in this direction appears when B is an orthonormal basis
in a Hilbert space H , and was first proved by Stechkin when α = 1/2 and q = 1
(see [31] or [8] for general α, q).

Theorem 1.1 [8, 31] Let B = {e j}∞j=1 be an orthonormal basis in a Hilbert space
H, and α > 0, 0 < q ≤ ∞. Then

Aα
q(B, H) = �τ,q(B; H)

where τ is def ined by 1
τ

= α + 1
2 .

Many results have been published in the literature similar to Theorem 1.1
when H is replaced by a particular space (say, Lp) and the basis B is a particular
one (for example, a wavelet basis). We refer to the survey articles [5, 35, 36]
for detailed statements and references.

There are also a number of results for general pairs (B,B) (even with the
weaker notion of quasi-greedy basis [9, 13, 20]). We recall two of them in the
setting of unconditional bases which we consider here. For simplicity, in all the
statements we assume that the basis is normalized, meaning ‖e j‖B = 1, ∀ j ∈ N.
The first result can be found in [21] (see also [11]).

Theorem 1.2 [21, Theorem 1], [11, Theorem 6.1] Let B be a quasi-Banach
space and B = {e j}∞j=1 a (normalized) unconditional basis satisfying the follow-
ing property: there exists p ∈ (0, ∞) and a constant C > 0 such that

1
C

|�|1/p ≤
∥
∥
∥
∥
∥

∑

k∈�

ek

∥
∥
∥
∥
∥

B

≤ C|�|1/p (1.1)

for all f inite � ⊂ N . Then, for α > 0 and 0 < q ≤ ∞ we have

Aα
q(B, B) = �τ,q(B; B)

when τ is def ined by 1
τ

= α + 1
p .
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Condition (1.1) is sometimes referred as B having the p-Temlyakov
property [20], or as B being a p-space [11, 16]. For instance, wavelet bases in Lp

satisfy this property [33]. The second result we quote is proved in [13] (see also [21]).

Theorem 1.3 [13, Theorem 3.1]. Let B be a Banach space and B = {e j}∞j=1 a
(normalized) unconditional basis with the following property: there exist 1 ≤
p ≤ q ≤ ∞ and constants A, B > 0 such that when x = ∑

j∈N
c je j ∈ B we have

A ‖{c j}‖�q,∞ ≤ ‖x‖B ≤ B ‖{c j}‖�p,1 . (1.2)

Then, for α > 0 and 0 < s ≤ ∞ we have

�τp,s(B; B) ↪→ Aα
s (B, B) ↪→ �τq,s(B; B) (1.3)

where 1
τp

= α + 1
p and 1

τq
= α + 1

q . Moreover, the inclusions given in (1.3) are
best possible in the sense described in Section 4 of [13].

Condition (1.2) is referred in [13] as (B,B) having the (p, q) sandwich
property, and it is shown to be equivalent to

A′|�|1/q ≤
∥
∥
∥
∥
∥

∑

k∈�

ek

∥
∥
∥
∥
∥

B

≤ B′|�|1/p (1.4)

for all � ⊂ N finite. Observe that (1.4) coincides with (1.1) when p = q .

The purpose of this article is to obtain optimal embeddings for Aα
q(B, B) as

in (1.3) when no condition such as (1.4) is imposed. As it may be expected,
the notion of “democracy function” will play a crucial role. More precisely, we
define the right and left democracy functions associated with a basis B in B by

hr(N;B, B) ≡ sup
|�|=N

∥
∥
∥
∥

∑

k∈�

ek

‖ek‖B

∥
∥
∥
∥

B

and h�(N;B, B) ≡ inf
|�|=N

∥
∥
∥
∥

∑

k∈�

ek

‖ek‖B

∥
∥
∥
∥

B

for N = 1, 2, 3, . . . . These functions are implicit in earlier works on greedy
approximation (see eg [9, 34, 38]) and explicitly defined in [19], page 203. We
refer to Section 5 for various examples where h�(N) and hr(N) are computed
explicitly (modulo multiplicative constants). As usual, when h�(N) ≈ hr(N) for
all N ∈ N we say that B is a democratic basis in B (see [23]).

The embeddings will be given in terms of weighted discrete Lorentz spaces
�

q
η , with quasi-norms defined by

∥
∥{ck}

∥
∥

�
q
η

≡
( ∞∑

k=1

∣
∣η(k) c∗

k

∣
∣q 1

k

) 1
q

,

where {c∗
k} denotes the decreasing rearrangement of {|ck|} and the weight

η = {η(k)}∞k=1 is a suitable sequence increasing to infinity and satisfying the
doubling property (see Section 2.4 for precise definitions and references). In
the special case η(k) = k1/τ we recover the classical definition �

q
η = �τ,q.
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Theorem 1.4 Let B be a quasi-Banach space and B an unconditional basis.
Assume that h�(N) is doubling. Then if α > 0 and 0 < q ≤ ∞ we have the
continuous embeddings

�
q
kαhr(k)

(B; B) ↪→ Aα
q(B, B) ↪→ �

q
kαh�(k)

(B; B) . (1.5)

Moreover, for f ixed α and q these inclusions are best possible in the scale of
weighted discrete Lorentz spaces �

q
η , in the sense explained in Sections 3, 4 and 6.

Observe that this theorem generalizes Theorems 1.2 and 1.3. In Theorem
1.2 we have hr(N) ≈ h�(N) ≈ N1/p and in Theorem 1.3, hr(N) � N1/p and
h�(N) � N1/q. When B is democratic in B, Theorem 1.4 shows that

Aα
q(B, B) = �

q
kαh(k)

(B; B)

with h(k) = hr(k) ≈ h�(k) , which recovers Corollary 1 in [13, Section 6] for
greedy bases in a Banach space.

Theorem 1.4 is a consequence of the results proved in Sections 3 and 4.
Section 3 deals with the lower embedding in (1.5) and shows the relation
to Jackson type inequalities. Section 4 deals with the upper embedding of
(1.5) and its relation to Bernstein type inequalities. Section 5 contains various
examples of democracy functions and embeddings with precise references;
these are all special cases of Theorem 1.4. In Section 6 we apply Theorem 1.4
to estimate the democracy functions h� and hr of the approximation space Aα

q .
Finally, the last section of the paper is dedicated to study the “greedy

classes” G α
q (B, B) introduced by Gribonval and Nielsen in [13], and their

relations with the approximation spaces Aα
q(B, B). The classes G α

q are defined
similarly to the approximation spaces, but with the error of approximation
σN(x) replaced by the quantity ‖x − GN(x)‖B (see Section 2.3 for details).
It is easy to see that G α

q (B, B) ⊂ Aα
q(B, B); moreover, since any democratic

unconditional basis is greedy (see [23]) if follows that in this case we have
G α

q (B, B) = Aα
q(B, B) . One may conjecture that for unconditional bases B the

converse is true, that is G α
q (B, B) = Aα

q(B, B) implies that B is democratic in B.
We do not know how to show this, but we can exhibit a fairly general class of
non-democratic pairs (B, B) for which G α

q (B, B) �= Aα
q(B, B) for all α > 0 and

q ∈ (0, ∞] . This is the case for instance of wavelet bases when B is equal to
Lp(log L)γ (γ �= 0) or Lp,r (p �= r). We also illustrate how irregular the classes
G α

q (B, B) can be when B is not democratic, showing in simple situations that
they are not even linear spaces.

2 General setting

2.1 Bases

Since we work in the setting of quasi-Banach spaces (B, ‖ · ‖B), we shall often
use the ρ-power triangle inequality

‖x + y‖ρ

B
≤ ‖x‖ρ

B
+ ‖y‖ρ

B
, (2.1)
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which holds for a sufficiently small ρ = ρB ∈ (0, 1] (and hence for all μ ≤ ρB);
see [3, Lemma 3.10.1]. The case ρB = 1 gives a Banach space.

A sequence of vectors B = {e j}∞j=1 is a basis of B if every x ∈ B can be
uniquely represented as x = ∑∞

j=1 c je j for some scalars c j, with convergence
in ‖ · ‖B. The basis B is unconditional if the series converges unconditionally,
or equivalently if there is some K > 0 such that

∥
∥
∥
∥
∥
∥

∞∑

j=1

λ jc je j

∥
∥
∥
∥
∥
∥

B

≤ K

∥
∥
∥
∥
∥
∥

∞∑

j=1

c je j

∥
∥
∥
∥
∥
∥

B

(2.2)

for every sequence of scalars {λ j}∞j=1 with |λ j| ≤ 1 (see e.g. [15, Chapter 5]).
For simplicity in the statements, throughout the paper we shall assume that

B is a normalized basis, meaning ‖e j‖B = 1 for all j ∈ N . We shall also assume
that the unconditionality constant in (2.2) is K = 1. This can be achieved if
necessary introducing an equivalent quasi-norm in B

|||x|||B = sup
�finite,|λ j|≤1

∥
∥
∥
∥
∥
∥

∑

j∈�

λ jx je j

∥
∥
∥
∥
∥
∥

B

, if x =
∞∑

j=1

x je j.

Observe that with this renorming we still have |||e j|||B = 1.
With the above assumptions, the following lattice property will be used

often below: if |yk| ≤ |xk| for all k ∈ N and x = ∑∞
k=1 xkek ∈ B, then the series

y = ∑∞
k=1 ykek converges in B and ‖y‖B ≤ ‖x‖B. Also, using (2.2) with K = 1

we see that, for every � ⊂ N finite

(

inf
j∈�

|c j|
)
∥
∥
∥
∥
∥
∥

∑

j∈�

e j

∥
∥
∥
∥
∥
∥

B

≤
∥
∥
∥
∥
∥
∥

∑

j∈�

c je j

∥
∥
∥
∥
∥
∥

B

≤
(

sup
j∈�

|c j|
)∥
∥
∥
∥
∥
∥

∑

j∈�

e j

∥
∥
∥
∥
∥
∥

B

. (2.3)

2.2 Non-linear approximation and greedy algorithm

Let B = {e j}∞j=1 be a basis in B. Let �N , N = 1, 2, 3, . . ., be the set of all y ∈ B

with at most N non-null coefficients in the unique basis representation. For
x ∈ B, the N-term error of approximation with respect to B is defined as

σN(x) = σN(x;B, B) ≡ inf
y∈�N

‖x − y‖B, N = 1, 2, 3 . . .

We also set �0 = {0} so that σ0(x) = ‖x‖B . Using the lattice property men-
tioned in Section 2.1 it is easy to see that for x = ∑∞

j=1 c je j we actually have

σN(x) = inf
|�|=N

⎧
⎨

⎩

∥
∥
∥
∥x −

∑

γ∈�

cγ eγ

∥
∥
∥
∥

B

⎫
⎬

⎭
, (2.4)

that is, only coefficients from x are relevant when computing σN(x); see e.g.
[11, (2.6)].

Given x = ∑∞
j=1 c je j ∈ B, let π denote any bijection of N such that

‖cπ( j)eπ( j)‖ ≥ ‖cπ( j+1)eπ( j+1)‖, for all j ∈ N. (2.5)
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Without loss of generality we may assume that the basis is normalized and then
(2.5) becomes |cπ( j)| ≥ |cπ( j+1)|, for all j ∈ N. A greedy algorithm of step N
is a correspondence assigning

x =
∞∑

j=1

c je j ∈ B �−→ Gπ
N(x) ≡

N∑

j=1

cπ( j)eπ( j)

for any π as in (2.5). The error of greedy approximation at step N is de-
fined by

γN(x) = γN(x;B, B) ≡ sup
π

‖x − Gπ
N(x)‖B. (2.6)

Notice that σN(x) ≤ γN(x), but the reverse inequality may not be true in
general. It is said that B is a greedy basis in B when there is a constant c ≥ 1
such that

γN(x;B, B) ≤ c σN(x;B, B), ∀ x ∈ B, N = 1, 2, 3, . . .

A celebrated theorem of Konyagin and Temlyakov characterizes greedy bases
as those which are unconditional and democratic [23].

2.3 Approximation spaces and greedy classes

The classical non-linear approximation spaces Aα
q(B, B) are defined as follows:

for α > 0 and 0 < q < ∞

Aα
q(B, B) =

⎧
⎨

⎩
x ∈ B : ‖x‖Aα

q
≡ ‖x‖B +

[ ∞∑

n=1

(
NασN(x;B, B)

)q 1
N

] 1
q

< ∞
⎫
⎬

⎭
.

When q = ∞ the definition takes the form:

Aα
∞(B, B) = {

x ∈ B : ‖x‖Aα∞ ≡ ‖x‖B + sup
N≥1

NασN(x) < ∞}
.

It is well known that Aα
q(B, B) are quasi-Banach spaces (see e.g. [29]). Also,

equivalent quasi-norms can be obtained restricting to dyadic N’s:

‖x‖Aα
q

≈ ‖x‖B +
[ ∞∑

k=0

(
2kασ2k(x)

)q

] 1
q

and likewise for q = ∞. This is a simple consequence of the monotonicity of
σN(x) (see eg [29, Proposition 2] or [7, (2.3)]).

The greedy classes G α
q (B, B) are defined as before replacing the role of σN(x)

by the error of greedy approximation γN(x) given in (2.6), that is

G α
q (B, B)=

⎧
⎨

⎩
x ∈ B : ‖x‖G α

q
≡ ‖x‖B +

[ ∞∑

N=1

(
NαγN(x;B, B)

)q 1
N

] 1
q

< ∞
⎫
⎬

⎭

(2.7)
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(and similarly for q = ∞). We also have the equivalence

‖x‖G α
q

≈ ‖x‖B +
[ ∞∑

k=0

(
2kαγ2k(x)

)q

] 1
q

, (2.8)

since γN(x) is non-increasing by the lattice property in Section 2.1.
Since σN(x) ≤ γN(x) for all x ∈ B it is clear that1

G α
q (B, B) ↪→ Aα

q(B, B) . (2.9)

When B is a greedy basis in B it holds that G α
q (B, B) = Aα

q(B, B) with equivalent
quasi-norms. For non greedy bases, however, the inclusion may be strict, and
the classes G α

q may not even be linear spaces (see Section 7.1 below).

2.4 Discrete Lorentz spaces

Let η = {η(k)}∞k=1 be a sequence so that

(a) 0 < η(k) ≤ η(k + 1) for all k = 1, 2, . . . and limk−→∞ η(k) = ∞.

(b) η is doubling, that is, η(2k) ≤ Cη(k) for all k = 1, 2, . . . , and some C > 0.

We shall denote the set of all such sequences by W. If η ∈ W and 0 < r ≤ ∞,

the weighted discrete Lorentz space �r
η is defined as

�r
η =

⎧
⎨

⎩
s = {sk}∞k=1 ∈ c0 : ‖s‖�r

η
≡
[ ∞∑

k=1

(
η(k)s∗

k

)r 1
k

] 1
r

< ∞
⎫
⎬

⎭

(with ‖s‖�∞
η

= supk∈N
η(k)s∗

k when r = ∞). Here {s∗
k} denotes the decreasing

rearrangement of {|sk|}, that is s∗
k = |sπ(k)| where π is any bijection of N such

that |sπ(k)| ≥ |sπ(k+1)| for all k = 1, 2, . . . (since we are assuming limk→∞ sk = 0
such π ’s always exist). When η ∈ W the set �r

η is a quasi-Banach space (see e.g.
[4, Section 2.2]). Equivalent quasi-norms are given by

‖s‖�r
η
≈
⎡

⎣
∞∑

j=0

(
η(κ j)s∗

κ j

)r

⎤

⎦

1/r

, (2.10)

for any fixed integer κ > 1. Particular examples are the classical Lorentz
sequence spaces �p,r (with η(k) = k1/p), and the Lorentz–Zygmund spaces
�p,r(log �)γ (for which η(k) = k1/p logγ (k + 1); see e.g. [2, p. 285]).

Occasionally we will need to assume a stronger condition on the weights η.

For an increasing sequence η we define

Mη(m) = sup
k∈N

η(k)

η(mk)
, m = 1, 2, 3, . . . .

1Here, as in the rest of the paper, X ↪→ Y means X ⊂ Y and there exists C > 0 such that ‖x‖Y ≤
C‖x‖X for all x ∈ X. The equality of spaces X = Y is interpreted as X ↪→ Y and Y ↪→ X.
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Observe that we always have Mη(m) ≤ 1. We shall say that η ∈ W+ when η ∈
W and there exists some integer κ > 1 for which Mη(κ) < 1. This is equivalent
to say that the “lower dilation index” iη > 0, where we let

iη ≡ sup
m≥1

log Mη(m)

− log m
.

For example, η = {kα logβ(k + 1)} has iη = α, and hence η ∈ W+ iff α > 0. In
general, if η is obtained from a increasing function φ : R

+ → R
+ as η(k) =

φ(ak), for some fixed a > 0, then iη > 0 iff iφ > 0, the latter denoting the
standard lower dilation index of φ (see e.g. [24, p. 54] for the definition).

Below we will need the following result:

Lemma 2.1 If η ∈ W+ then there exists a constant C > 0 such that
n∑

j=0

η(κ j) ≤ Cη(κn), ∀ n ∈ N, (2.11)

where κ > 1 is an integer as in the def inition of W+.

Proof Write δ = Mη(κ) < 1. By definition Mη(κ) ≥ η(κ j)/η(κ j+1), and
therefore

η(κ j) ≤ δη(κ j+1), ∀ j = 0, 1, 2, . . . . (2.12)

Iterating (2.12) we deduce that η(κ j) ≤ δn− jη(κn), for j = 0, 1, 2, . . . , n and
hence

n∑

j=0

η(κ j) ≤ η(κn)

n∑

j=0

δn− j ≤ η(κn)
1

1 − δ
.

��

Remark 2.2 If η is increasing and doubling, then {kα η(k)} ∈ W+ for all α > 0.
Also, if η ∈ W+ then ηr ∈ W+, for all r > 0.

We now estimate the fundamental function of �r
η. We shall denote the

indicator sequence of � ⊂ N by 1� , that is the sequence with entries 1 for j ∈ �

and 0 otherwise.

Lemma 2.3

(a) If η ∈ W then
∥
∥1�

∥
∥

�∞
η

= η(|�|), ∀ finite � ⊂ N.

(b) If η ∈ W+ and r ∈ (0, ∞) then
∥
∥1�

∥
∥

�r
η

≈ η(|�|), ∀ finite � ⊂ N

with the constants involved independent of �.
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Proof Part (a) is trivial since η is increasing. To prove (b) use (2.10) and the
previous lemma. ��

Finally, as mentioned in Section 1, given a (normalized) basis B in B we shall
consider the following subspaces

�q
η(B, B) :=

⎧
⎨

⎩
x =

∞∑

j=1

c je j ∈ B : {c j}∞j=1 ∈ �q
η

⎫
⎬

⎭
,

endowed with the quasi-norm ‖x‖�
q
η(B,B) := ‖{c j}‖�

q
η
. These spaces are not

necessarily complete, but they are when
∥
∥
∥
∥

∑

j

c je j

∥
∥
∥
∥

B

≤ C‖{c j}‖�
q
η
, ∀ finite {c j},

a property which holds in certain situations (see e.g. Remark 3.2). When this is
the case, the space �

q
η(B, B) is just an isomorphic copy of �

q
η inside B.

2.5 Democracy functions

Following [23], a (normalized) basis B in a quasi-Banach space B is said to be
democratic if there exists C > 0 such that

∥
∥
∥
∥

∑

k∈�

ek

∥
∥
∥
∥

B

≤ C

∥
∥
∥
∥

∑

k∈�′
ek

∥
∥
∥
∥

B

,

for all finite sets �, �′ ⊂ N with the same cardinality. This is a key notion in
the theory of greedy approximation, as it allows to characterize greedy bases
as those which are both unconditional and democratic (see [23]).

As we recall in Section 5, wavelet bases are well known examples of greedy
bases for many function spaces, such as Lp, Sobolev, or more generally, the
Triebel–Lizorkin spaces. However, they are not democratic in some other
instances such as BMO, or the Orlicz L� and Lorentz Lp,q spaces (when
these are different from Lp). In fact, it is proved in [39] that the Haar basis
is democratic in a rearrangement invariant space X in [0, 1] if and only if
X = Lp for some p ∈ (1, ∞). An earlier example of non-democratic basis is
the multivariate (hyperbolic) Haar system in Lp(Rd) for p �= 2 and d > 1 (see
[34] and Example 5.5 below).

Thus, non-democratic bases are also common. To quantify the democracy of
a (normalized) system B = {e j}∞j=1 in B one introduces the following concepts:

hr(N;B, B) ≡ sup
|�|=N

∥
∥
∥
∥

∑

k∈�

ek

∥
∥
∥
∥

B

and h�(N;B, B) ≡ inf
|�|=N

∥
∥
∥
∥

∑

k∈�

ek

∥
∥
∥
∥

B

,

which we shall call the right and left democracy functions of B (see also [9, 12,
19]). We shall omit B or B when these are understood from the context.

Some general properties of h� and hr are proved in the next proposition.
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Proposition 2.4 Let B = {e j}∞j=1 be a (normalized) unconditional basis in B with
the lattice property from Section 2.1. Then

(a) 1 ≤ h�(N) ≤ hr(N) ≤ N1/ρ , ∀ N = 1, 2, . . ., where ρ = ρB is as in (2.1).
(b) h�(N) and hr(N) are non-decreasing in N = 1, 2, 3 . . .

(c) hr(N) is doubling, that is, ∃ c > 0 such that hr(2N) ≤ c hr(N), ∀ N ∈ N.
(d) There exists c ≥ 1 such that h�(N + 1) ≤ c h�(N) for all N = 1, 2, 3 . . .

Proof

(a) and (b) follow immediately from the lattice property of B and the ρ-
triangular inequality.

(c) Given N ∈ N, choose � ⊂ N with |�| = 2N such that∥
∥
∑

k∈� ek
∥
∥

B
≥ hr(2N)/2. Partitioning arbitrarily � = �′ ∪ �′′

with |�′| = |�′′| = N, and using the ρ-power triangle inequality,
one easily obtains

1
2 hr(2N) ≤

∥
∥
∥
∥
∥

∑

k∈�

ek

∥
∥
∥
∥
∥

B

=
∥
∥
∥
∥
∥

∑

k∈�′
ek +

∑

k∈�′′
ek

∥
∥
∥
∥
∥

B

≤ 21/ρhr(N) .

(d) Given N ∈ N, choose � ⊂ N with |�| = N such that∥
∥
∑

k∈� ek
∥
∥

B
≤ 2h�(N). Let �′ = � ∪ {ko} for any ko /∈ �. Then

h�(N + 1) ≤
∥
∥
∥
∥
∥

∑

k∈�′
ek

∥
∥
∥
∥
∥

B

≤
(∥
∥
∥
∥
∥

∑

k∈�

ek

∥
∥
∥
∥
∥

ρ

B

+ 1

)1/ρ

≤ (2ρ[h�(N)]ρ + 1)
1/ρ

.

Thus, using (a) we obtain h�(N + 1) ≤ (2ρ + 1)
1
ρ h�(N) ≤ 2 ·

21/ρh�(N). ��

Remark 2.5 We do not know whether property (d) can be improved to show
that h�(N) is actually doubling. This is however the case in all the examples we
have considered below (see Section 5).

3 Right democracy and Jackson type inequalities

Our first result deals with inclusions for the greedy classes G α
q (B, B).

Theorem 3.1 Let B = {e j}∞j=1 be a (normalized) unconditional basis in B. Fix
α > 0 and q ∈ (0, ∞). Then, for any sequence η such that {kαη(k)}∞k=1 ∈ W+ the
following statements are equivalent:

1. There exists C > 0 such that for all N = 1, 2, 3, . . .
∥
∥
∥
∥
∥

∑

k∈�

ek

∥
∥
∥
∥
∥

B

≤ Cη(N) , ∀ � ⊂ N with |�| = N. (3.1)
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2. Jackson type inequality for �∞
kαη(k)

(B, B): ∃ Cα > 0 such that ∀ N = 0, 1, 2 . . .

γN(x) ≤ Cα(N + 1)−α‖x‖�∞
kαη(k)

(B,B), ∀ x ∈ �∞
kαη(k)(B, B). (3.2)

3. �∞
kαη(k)

(B, B) ↪→ G α∞(B, B) .

4. �
q
kαη(k)

(B, B) ↪→ G α
q (B, B) .

5. Jackson type inequality for �
q
kαη(k)

(B, B): ∃ Cα,q > 0 such that ∀ N =
0, 1, 2, . . .

γN(x) ≤ Cα,q(N + 1)−α‖x‖�
q
kαη(k)

(B,B), ∀ x ∈ �
q
kαη(k)

(B, B) . (3.3)

Proof

1 ⇒ 2 Let x = ∑
k∈N

ckek ∈ �∞
kαη(k)

(B, B) and let π be a bijection of N such
that

|cπ(k)| ≥ |cπ(k+1)|, k = 1, 2, 3, . . . (3.4)

For fixed N = 0, 1, 2, . . ., denote λ j = 2 j(N + 1). Then, the ρ-power
triangle inequality and (2.3) give

∥
∥x − Gπ

N(x)
∥
∥ρ

B
=
∥
∥
∥
∥
∥

∞∑

k=N+1

cπ(k)eπ(k)

∥
∥
∥
∥
∥

ρ

B

≤
∞∑

j=0

∥
∥
∥
∑

λ j≤k<λ j+1
cπ(k)eπ(k)

∥
∥
∥

ρ

B

≤
∞∑

j=0

|cπ(λ j)|ρ
∥
∥
∥
∑

λ j≤k<λ j+1
eπ(k)

∥
∥
∥

ρ

B

.

There are exactly λ j = 2 j(N + 1) elements in the interior sum, so using
(3.1) we obtain

∥
∥x − Gπ

N(x)
∥
∥ρ

B
≤ Cρ

∞∑

j=0

(
c∗
λ j

η(λ j)
)ρ = Cρ

∞∑

j=0

(
λα

j c∗
λ j

η(λ j)
)ρ

λ
−αρ

j

≤ Cρ‖x‖ρ

�∞
kαη(k)

(B,B) (N + 1)−αρ
∑∞

j=0 2− jαρ

= Cα,ρ (N + 1)−αρ ‖x‖ρ

�∞
kαη(k)

(B,B) .

The result follows taking the supremum over all bijections π satisfying
(3.4).

Remark 3.2 The special case N = 0 in (3.2) says that

‖x‖B ≤ C‖x‖�∞
kαη(k)

(B,B), (3.5)

which in particular implies �
q
kαη(k)

(B, B) ↪→ B, for all q ∈ (0, ∞].

2 ⇒ 3 This is immediate from the definition of G α∞ (and Remark 3.2), since

‖x‖G α∞(B,B) := ‖x‖B + sup
N≥1

NαγN(x) ≤ Cα‖x‖�∞
kαη(k)

(B,B).
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3 ⇒ 1 Let � ⊂ N with |�|= N. Choose �′ with |�′|= N and so that � ∩ �′ =∅,
and consider x = ∑

k∈� ek + ∑
k∈�′ 2ek . Then

γN(x) =
∥
∥
∥
∥
∥

∑

k∈�

ek

∥
∥
∥
∥
∥

B

, (3.6)

and therefore

Nα

∥
∥
∥
∥
∥

∑

k∈�

ek

∥
∥
∥
∥
∥

B

= NαγN(x) ≤ ‖x‖G α∞(B,B). (3.7)

On the other hand, call ω(k) = kαη(k). By monotonicity, Lemma 2.3
and the doubling property of ω we have

‖x‖�∞
ω (B,B) ≤ 2

∥
∥1�∪�′

∥
∥

�∞
ω

= 2ω(2N) ≤ c ω(N) . (3.8)

Combining (3.7) and (3.8) with the inclusion �∞
kαη(k)

(B, B) ↪→ G α∞(B, B)

gives (3.1).
5 ⇒ 1 Let � ⊂ N with |�| = N, and choose �′ and x as in the proof of 3 ⇒ 1.

As before call ω(k) = kαη(k). Then Lemma 2.3 and the assumption
ω ∈ W+ give

‖x‖�
q
ω(B,B) ≤ 2

∥
∥1�∪�′

∥
∥

�
q
ω

≈ ω(2N) ≤ c ω(N) .

Since we are assuming 5 we can write (recall (3.6))
∥
∥
∥
∥
∥

∑

k∈�

ek

∥
∥
∥
∥
∥

B

= γN(x) ≤ Cα,ρ(N + 1)−α‖x‖�
q
ω(B,B) � N−αω(N) = η(N),

which proves (3.1).
1 ⇒ 4 The proof is similar to 1 ⇒ 2 with a few modifications we indi-

cate next. Given x ∈ �
q
kαη(k)

(B, B) and π as in (3.4) we write x =
∑∞

j=−1
∑

2 j<k≤2 j+1 cπ(k)eπ(k). Then arguing as before (with N = 2m) we
obtain

∥
∥x − Gπ

2m(x)
∥
∥μ

B
≤

∞∑

j=m

|cπ(2 j)|μ
∥
∥
∥
∑

2 j<k≤2 j+1 eπ(k)

∥
∥
∥

μ

B

,

where we choose now any μ < min{q, ρB}. Taking the supremum over
all π ’s and using (3.1) we obtain

γ2m(x;B, B)μ ≤ Cμ

∞∑

j=m

(
c∗

2 j η(2 j)
)μ

.

Therefore
[ ∞∑

m=0

(
2mαγ2m(x)

)q

] 1
q

≤ C

⎡

⎣
∞∑

m=0

2mαq

⎛

⎝
∞∑

j=0

[
c∗

2 j+m η(2 j+m)
]μ

⎞

⎠

q/μ⎤

⎦

1/q

.
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Since q/μ > 1, we can use Minkowski’s inequality on the right hand
side to obtain

[ ∞∑

m=0

(
2mαγ2m(x)

)q

] 1
q

≤ C

⎡

⎣
∞∑

j=0

( ∞∑

m=0

2mαq[c∗
2 j+m η(2 j+m)

]q

)μ/q
⎤

⎦

1/μ

= C

⎡

⎣
∞∑

j=0

2− jαμ

⎛

⎝
∞∑

�= j

2�αq[c∗
2� η(2�)

]q

⎞

⎠

μ/q⎤

⎦

1/μ

≤ C′ ‖{ck}‖�
q
kαη(k)

.

This implies the desired estimate

‖x‖G α
q (B,B) � ‖{ck}‖�

q
kαη(k)

,

using the dyadic expressions for the norms in (2.8) and (2.10) (and

Remark 3.2).
4 ⇒ 5 This is trivial since 4 implies �

q
kαηk(B, B) ↪→ G α

q (B, B) ↪→ G α∞(B, B), and
this clearly gives (3.3).

��

Remark 3.3 The equivalences 1 to 3 remain true under the weaker assumption
{kαη(k)} ∈ W.

Remark 3.4 Observe that if any of the statements in 2 to 5 of Theorem 3.1
holds for one fixed α > 0 and q ∈ (0, ∞], then the assertions remain true for
all α and q (as long as {kαη(k)} ∈ W+), since the statement in 1 is independent
of these parameters.

Corollary 3.5 (Optimal inclusions into G α
q ) Let B be a (normalized) uncondi-

tional basis in B. Fix α > 0 and q ∈ (0, ∞]. Then

�
q
kαhr(k)

(B, B) ↪→ G α
q (B, B). (3.9)

Moreover, if ω ∈ W+ then, �
q
ω(B, B) ↪→ G α

q (B, B) if and only if ω(k) � kαhr(k).

Proof For q < ∞, the inclusion (3.9) is an application of 4 in the theorem with
η = hr (after noticing that {kαhr(k)} ∈ W+ by Proposition 2.4 and Remark 2.2).
The second assertion is just a restatement of 1 ⇔ 4 with η(k) = ω(k)/kα . For
q = ∞ use 3 instead of 4. ��

We now prove similar results for the approximation spaces Aα
q(B, B).
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Theorem 3.6 Let B = {e j}∞j=1 be a (normalized) unconditional basis in B.
Fix α > 0 and q ∈ (0, ∞]. Then, for any sequence η ∈ W+ the following are
equivalent:

1. There exists C > 0 such that for all N = 1, 2, 3, . . .

∥
∥
∥
∥
∥

∑

k∈�

ek

∥
∥
∥
∥
∥

B

≤ Cη(N) , ∀ � ⊂ N with |�| = N. (3.10)

2. �
q
kαη(k)

(B, B) ↪→ Aα
q(B, B) .

3. Jackson type inequality for �
q
kαη(k)

(B, B): ∃ Cα,q > 0 such that ∀ N =
0, 1, 2, . . .

σN(x) ≤ Cα,q(N + 1)−α‖x‖�
q
kαη(k)

(B,B), ∀ x ∈ �
q
kαη(k)

(B, B) . (3.11)

Proof 1 ⇒ 2 follows directly from Theorem 3.1 and G α
q ↪→ Aα

q . Also, 2 ⇒ 3 is
trivial since Aα

q ↪→ Aα∞, and 3 is equivalent to �
q
kαη(k)

(B, B) ↪→ Aα∞.
We must show 3 ⇒ 1. Let κ > 1 be a fixed integer as in the definition of

the class W+ (and in particular satisfying (2.11)), and denote 1� = ∑
k∈� ek for

a set � ⊂ N. For any �n ⊂ N with |�n| = κn, we can find a subset �n−1 with
|�n−1| = κn−1 such that

‖1�n − 1�n−1‖B ≤ 2σκn−1(1�n).

Repeating this argument we choose � j−1 ⊂ � j with |� j| = κ j and so that

‖1� j − 1� j−1‖B ≤ 2σκ j−1(1� j), for j = 1, 2 . . . , n .

Setting �−1 = ∅, and using the ρ-power triangle inequality we see that

‖1�n‖ρ

B
=
∥
∥
∥
∥
∥
∥

n∑

j=0

1� j − 1� j−1

∥
∥
∥
∥
∥
∥

ρ

B

≤
n∑

j=0

‖1� j − 1� j−1‖ρ

B
≤ 2ρ

n∑

j=0

σκ j−1(1� j)
ρ .

Now, the hypothesis (3.11) and Lemma 2.3 give

σκ j−1(1� j) � κ− jα‖1� j‖�
q
kαη(k)

(B,B) ≈ η(κ j).

Thus, combining these two expressions we obtain

‖1�n‖B �

⎡

⎣
n∑

j=0

η(κ j)ρ

⎤

⎦

1ρ

≤ C η(κn) , (3.12)

where the last inequality follows from the assumption η ∈ W+ and Lemma 2.1.
This shows (3.10) when N = κn, n = 1, 2, . . . The general case follows easily
using the doubling property of η. ��
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Remark 3.7 As before, if any of the statements in 2 or 3 holds for one fixed
α > 0 and q ∈ (0, ∞], then the assertions remain true for all α and q, since 1 is
independent of these parameters.

Remark 3.8 Observe also that 1 ⇒ 2 ⇒ 3 hold with the weaker assumption
{kαη(k)} ∈ W+ from Theorem 3.1 (and in particular hold for η = hr as stated
in (1.5)). However, the stronger assumption η ∈ W+ is crucial to obtain 3 ⇒ 1,
and cannot be removed as shown in Example 5.6 below.

Corollary 3.9 (Optimality of the inclusions into Aα
q) Let B be a (normalized)

unconditional basis in B. Fix α > 0 and q ∈ (0, ∞]. Then

�
q
kαhr(k)

(B, B) ↪→ Aα
q(B, B). (3.13)

If for some ω ∈ W+ we have �
q
ω(B, B) ↪→ Aα

q(B, B), then necessarily ω(k) � kα .
Moreover if ω(k) = kαη(k), with η increasing and doubling, then

(a) if iη > 0, then necessarily η(k) � hr(k), and hence �
q
ω ↪→ �

q
kαhr(k)

.
(b) if iη = 0, then η(k) � hr(k)/(log k)1/ρ and �

q
kαη(k)

↪→ �
q
{kαhr(k)/(log k)1/ρ }.

Proof The inclusion (3.13) is actually a consequence of (3.9). Assertion (a) is
just 2 ⇒ 3 ⇒ 1 in the theorem. For assertion (b) notice that in the last step of
the proof of 3 ⇒ 1, the right hand inequality of (3.12) can always be replaced
by

‖1�n‖B �
[ n∑

j=0

η(κ j)ρ
]1ρ

� η(κn) n1/ρ

when η is increasing. Thus hr(N) � η(N)(log N)1/ρ holds for N = κn, and by
the doubling property also for all N ∈ N. Finally, if �

q
ω(B, B) ↪→ Aα

q(B, B) for
some general ω ∈ W+, then given � ⊂ N with |�| = N we trivially have

ω(N) ≈ ‖1�‖�
q
ω

� ‖1�‖Aα∞ ≥ (N/2)α σN/2(1�) ≥ (N/2)α. ��

Remark 3.10 Assertion (b) shows that the inclusion in (3.13) is optimal, except
perhaps for a logarithmic loss. The logarithmic loss may actually happen, as
there are Banach spaces B with hr(N) ≈ log N and so that

Aα
q(B) = �

q
kα = �

q
{kαhr(k)/ log k}.

See Example 5.6 below.

4 Left democracy and Bernstein type inequalities

It is well known that upper inclusions for the approximation spaces Aα
q , as in

(1.5), depend upon Bernstein type inequalities. In this section we show how
the left democracy function of B is linked with these two properties.
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We first remark that, for each α > 0 and 0 < q ≤ ∞, the approximation
classes Aα

q and G α
q satisfy trivial Bernstein inequalities, namely, there exists

Cα,q > 0 such that

‖x‖Aα
q (B,B) ≤ ‖x‖G α

q (B,B) ≤ Cα,q Nα‖x‖B, ∀ x ∈ �N, N = 1, 2, . . . (4.1)

This follows easily from the definition of the norms and the trivial estimates
σN(x) ≤ γN(x) ≤ ‖x‖B.

We start with a preliminary result which is essentially known in the literature
(see eg [29]). As usual B = {e j}∞j=1 is a fixed (normalized) unconditional basis
in B.

Proposition 4.1 Let E be a subspace of B, endowed with a quasi-norm ‖.‖E sat-
isfying the ρ-triangle inequality for some ρ = ρE. For each α > 0 the following
are equivalent:

1. ∃ Cα > 0 such that ‖x‖E ≤ Cα Nα ‖x‖B, ∀ x ∈ �N, N = 1, 2, . . .

2. Aα
ρ(B, B) ↪→ E .

3. G α
ρ (B, B) ↪→ E .

Proof

1 ⇒ 2 Given x ∈ Aα
ρ(B, B), by the representation theorem for approximation

spaces [29] one can write x = ∑∞
k=0 xk with xk ∈ �2k, k = 0, 1, 2, . . . ,

such that
( ∞∑

k=0

2kαρ‖xk‖ρ

B

)1/ρ

≤ C‖x‖Aα
ρ (B,B) .

The hypothesis 1 and the ρE-triangular inequality then give

‖x‖ρ

E
≤

∞∑

k=0

‖xk‖ρ

E
≤ Cρ

α

∞∑

k=0

2kαρ‖xk‖ρ

B
≤ C′ ‖x‖ρ

Aα
ρ (B,B).

2 ⇒ 3 This follows from the trivial inclusion G α
ρ (B, B) ↪→ Aα

ρ(B, B) .

3 ⇒ 1 This is immediate using (4.1).
��

Theorem 4.2 Let B = {e j}∞j=1 be a (normalized) unconditional basis in B. Fix
α > 0 and q ∈ (0, ∞]. Then, for any increasing and doubling sequence {η(k)}
the following statements are equivalent:

1. There exists C > 0 such that for all N = 1, 2, 3, . . .

∥
∥
∥
∥
∥

∑

k∈�

ek

∥
∥
∥
∥
∥

B

≥ 1
C η(N), ∀ � ⊂ N with |�| = N. (4.2)
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2. Bernstein type inequality for �
q
kαη(k)

(B, B): ∃ Cα,q > 0 such that

‖x‖�
q
kαη(k)

(B,B) ≤ Cα,q Nα ‖x‖B, ∀ x ∈ �N, N = 1, 2, 3, . . . (4.3)

3. Aα
q(B, B) ↪→ �

q
kαη(k)

(B, B) .

4. G α
q (B, B) ↪→ �

q
kαη(k)

(B, B).

Proof

1 ⇒ 2 Let x = ∑
k∈� ckek ∈ �N . For any bijection π with |cπ(k)| decreasing,

and any integer m ∈ {1, . . . , N} we have

|cπ(m)| η(m) ≤ C |cπ(m)|
∥
∥
∥
∥

m∑

j=1

eπ( j)

∥
∥
∥
∥

B

≤ C

∥
∥
∥
∥

m∑

j=1

cπ( j)eπ( j)

∥
∥
∥
∥

B

≤ C‖x‖B ,

using (2.3) in the second inequality. This gives

‖x‖�
q
kαη(k)

=
[

N∑

m=1

(mαη(m)c∗
m)q 1

m

]1/q

≤C‖x‖B

[
N∑

m=1

mαq 1
m

]1/q

≈‖x‖B Nα.

2 ⇒ 1 For any � ⊂ N with |�| = N, applying (4.3) to 1� = ∑
k∈� ek we obtain

‖1�‖B ≥ 1
Cα,q

N−α‖1�‖�
q
kαη(k)

(B,B) � η(N),

where in the last inequality we have used ‖1�‖�
q
ω

� ω(N), when ω ∈ W.
2 ⇒ 3 We have already proved that 1 ⇔ 2; since 1 does not depend on α, q,

then 2 actually holds for all α̃ > 0. In particular, from Proposition 4.1,
we have

Aα̃
ρ ↪→ E := �

q
kα̃η(k)

(B, B) (4.4)

for α̃ ∈ ( α
2 , 3α

2 ) and some sufficiently small ρ > 0. Now, from the
general theory developed in [7], the spaces Aα

q satisfy a reiteration
theorem for the real interpolation method, and in particular

Aα
q = (

Aα0
q0

,Aα1
q1

)

1/2, q , (4.5)

when α = (α0 + α1)/2 with α1 > α0 > 0, and q0, q1, q ∈ (0, ∞]. On the
other hand, for the family of weighted Lorentz spaces it is known that

(
�q

ω0
, �q

ω1

)

θ, q = �q
ω , 0 < θ < 1, 0 < q ≤ ∞, (4.6)

when ω0, ω1 ∈ W+ and ω = ω1−θ
0 ωθ

1 (see e.g. [25, Theorem 3]). Thus,
for fixed α and q, we can choose the parameters accordingly, and use
the inclusion (4.4), to obtain

Aα
q = (

Aα0
ρ ,Aα1

ρ

)

1/2, q ↪→ (
�

q
kα0 η(k)

, �
q
kα1 η(k)

)

1/2, q = �
q
kαη(k)

(B, B).

3 ⇒ 4 This is trivial since G α
q ↪→ Aα

q .
4 ⇒ 2 This is trivial from (4.1). ��
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Remark 4.3 Observe that 3 ⇒ 4 ⇒ 2 ⇔ 1 hold with the weaker assumption
{kαη(k)} ∈ W.

Corollary 4.4 (Optimal inclusions of Aα
q into �

q
ω) Let B be a (normalized)

unconditional basis in B. Fix α > 0 and q ∈ (0, ∞].
(a) If h�(N) is doubling then Aα

q(B, B) ↪→ �
q
kαh�(k)

(B, B).
(b) If for some ω ∈ W we have Aα

q(B, B) ↪→ �
q
ω(B, B) then necessarily ω(k) �

kαh�(k), and hence �
q
kαh�(k)

↪→ �
q
ω .

Proof Part (a) is an application of 1 ⇒ 3 in the theorem with η = h� (which
under the doubling assumption satisfies {kαh�(k)} ∈ W+ for all α > 0). Part
(b) is just a restatement of 3 ⇒ 1 in the theorem, setting η(k) = ω(k)/kα and
taking into account Remark 4.3. ��

5 Examples and applications

In this section we describe the democracy functions h� and hr in various
examples which can be found in the literature. Inclusions for Aα

q(B, B) and
G α

q (B, B) will be obtained inmediately from the results of Sections 3 and
4. The most interesting case appears when B is a wavelet basis, and B a
function or distribution space in R

d which can be characterized by such basis
(eg, the general Besov or Triebel–Lizorkin spaces, Bα

p,q and Fs
p,q, and also

rearrangement invariant spaces as the Orlicz and Lorentz classes, L� and
Lp,q). Such characterizations provide a description of each B as a sequence
space, so for simplicity we shall work in this simpler setting, reminding in each
case the original function space framework.

Let D = D(Rd) denote the family of all dyadic cubes Q in R
d, ie

D = {
Q j,k = 2− j([0, 1)d + k) : j ∈ Z, k ∈ Z

d
}
.

We shall consider sequences indexed by D, s = {sQ}Q∈D, endowed with quasi-
norms of the following form

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

Q∈D

(
|Q|γ− 1

2 |sQ| χQ( · )
)r

⎞

⎠

1/r
∥
∥
∥
∥
∥
∥
∥

X

, (5.1)

where 0 < r ≤ ∞, γ ∈ R and X is a suitable quasi-Banach function space in
R

d, such as the ones we consider below. The canonical basis Bc = {eQ}Q∈D
is formed by the sequences eQ with entry 1 at Q and 0 otherwise. In each
of the examples below, the greedy algorithms and democracy functions are
considered with respect to the normalized basis B = {

eQ/‖eQ‖B

}
. Similarly,

when stating the corresponding results for the functional setting we shall write
W for the wavelet basis.
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Example 5.1 (X = Lp(Rd), 0< p<∞) In this case, it is customary to consider
the sequence spaces fs

p,r, s ∈ R, 0 < r ≤ ∞, with quasi-norms given by

∥
∥s
∥
∥

fs
p,r

:=

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

Q∈D

(
|Q|− s

d − 1
2 |sQ| χQ( · )

)r

⎞

⎠

1/r
∥
∥
∥
∥
∥
∥
∥

Lp(Rd)

.

It was proved in [11, 16, 18] that, for all s ∈ R and 0 < r ≤ ∞,

h�(N; fs
p,r) ≈ hr(N; fs

p,r) ≈ N1/p (5.2)

and

Aα
q(fs

p,r) = �τ,q(fs
p,r) =

{
s : {sQ‖eQ‖fs

p,r
}Q ∈ �τ,q

}
, (5.3)

if 1
τ

= α + 1
p , as asserted in Theorem 1.2.

It is well-known that fs
p,r coincides with the coefficient space under a wavelet

basis W of the (homogeneous) Triebel–Lizorkin space Ḟs
p,r(R

d), defined in
terms of Littlewood–Paley theory (see e.g. [10, 22, 26]). In particular, under
suitable decay and smoothness on the wavelet family (so that it is an uncon-
ditional basis of the involved spaces) the statement in (5.3) can be translated
into

Aα
q(W, Ḟs

p,r(R
d)) = G α

q (W, Ḟs
p,r(R

d)) = Ḃs+αd
q,q (Rd)

when 1
q = α + 1

p . We refer to [5, 11, 16, 17] for details and further results.

Example 5.2 (Weighted Lebesgue spaces X = Lp(w), 0 < p < ∞) For weights
w(x) in the Muckenhoupt class A∞(Rd), one can define sequence spaces
fs

p,r(w) with the quasi-norm

∥
∥s
∥
∥

fs
p,r(w)

:=

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

Q∈D

(
|Q|− s

d − 1
2 |sQ| χQ( · )

)r

⎞

⎠

1/r
∥
∥
∥
∥
∥
∥
∥

Lp(Rd,w)

.

Similar computations as in the previous case in this more general situation will
also lead to the identities in (5.2) and (5.3), with fs

p,r replaced by fs
p,r(w). We

refer to [21, 27] for details in some special cases.
When W is a (sufficiently smooth) orthonormal wavelet basis and w is a

weight in the Muckenhoupt class Ap(R
d), 1 < p < ∞, then f0

p,2(w) becomes
the coefficient space of the weighted Lebesgue space Lp(w) (see e.g. [1]). One
then obtains as special case

h�(N;W, Lp(w)) ≈ hr(N;W, Lp(w)) ≈ N
1
p .

Moreover, if ω ∈ Aτ (R
d) ,

Aα
τ (W, Lp(w)) ≈ G α

τ (W, Lp(w)) ≈ Ḃαd
τ,τ (w

τ/p), if 1
τ

= α + 1
p ,

where Ḃα
τ,q(w) denotes a weighted Besov space (see [27] for details).
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Example 5.3 (Orlicz spaces X = L�(Rd)) Following [12], we denote by f� the
sequence space with quasi-norm

‖s‖f� :=

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

Q∈D

(
|sQ| χQ( · )

|Q|1/2

)2

⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

L�(Rd)

,

where L� is an Orlicz space with non-trivial Boyd indices. If we denote by
ϕ(t) = 1/�−1(1/t), the fundamental function of L�, then it is shown in [12]
that

h�(N; f�) ≈ inf
s>0

ϕ(Ns)
ϕ(s) and hr(N; f�) ≈ sup

s>0

ϕ(Ns)
ϕ(s) ,

with the two expressions being equivalent iff ϕ(t) = t1/p (ie, iff L� = Lp).
Thus, these are first examples of non-democratic spaces, with a wide range
of possibilities for the democracy functions. The theorems in Sections 3 and
4 recover the embeddings obtained in [12] for the approximation classes
Aα

q(f�) and G α
q (f�) in terms of weighted discrete Lorentz spaces. When using

suitable wavelet bases, these lead to corresponding inclusions for Aα
q(W, L�)

and G α
q (W, L�), some of which can be expressed in terms of Besov spaces of

generalized smoothness (see [12] for details).

Example 5.4 (Lorentz spaces X = Lp,q(Rd), 0 < p, q < ∞) Consider se-
quence spaces lp,q defined by the following quasi-norms

‖s‖lp,q :=

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

Q∈D

(
|sQ| χQ( · )

|Q|1/2

)2

⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

Lp,q(Rd)

.

Their democracy functions have been computed in [14], obtaining

h�(N; lp,q) ≈ N
1

max(p,q) and hr(N; lp,q) ≈ N
1

min(p,q) .

These imply corresponding inclusions for the classes Aα
s (lp,q) and G α

s (lp,q) in
terms of discrete Lorentz spaces �τ,s (as described in the theorems of Sections
3 and 4). The spaces lp,q characterize, via wavelets, the usual Lorentz spaces
Lp,q(Rd) when 1 < p < ∞ and 1 ≤ q < ∞ [32]. Hence inclusions for Aα

s (W, Lp,q)

and G α
s (W, Lp,q) can be obtained using standard Besov spaces.

Example 5.5 (Hyperbolic wavelets) For 0 < p < ∞, consider now the se-
quence space

‖s‖f
p
hyp

:=
∥
∥
∥
∥
∥
∥

(
∑

R

(
|sR| χR( · )

|R|1/2

)2
)1/2

∥
∥
∥
∥
∥
∥

Lp(Rd)

.
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where R runs over the family of all dyadic rectangles of R
d, that is R =

I1 × . . . × Id, with Ii ∈ D(R), i = 1, . . . , d. This gives another example of non-
democratic basis. In fact, the following result is proved in [38, Proposition 11]
(see also [34]):

(a) If 0 < p ≤ 2,

h�(N; f
p
hyp) ≈ N1/p(log N)

( 1
2 − 1

p )(d−1) and hr(N; f
p
hyp) ≈ N1/p.

(b) If 2 ≤ p < ∞,

h�(N; f
p
hyp) ≈ N1/p and hr(N; f

p
hyp) ≈ N1/p(log N)

( 1
2 − 1

p )(d−1)
.

If Hd denotes the multidimensional (hyperbolic) Haar basis, then f
p
hyp

becomes the coefficient space of the usual Lp(Rd) if 1 < p < ∞ (and
the dyadic Hardy space H p(Rd) if 0 < p ≤ 1). In this case, one obtains
corresponding inclusions for the classes Aα

q(Hd, Lp) and G α
q (Hd, Lp) (see

also [19, Theorem 5.2]), some of which could possibly be expressed in
terms of Besov spaces of bounded mixed smoothness [6, 19].

Example 5.6 (Bounded mean oscillation) Let bmo denote the space of se-
quences s = {sI}I∈D with

‖s‖bmo = sup
I∈D

(
1
|I|

∑

J⊂I ,J∈D
|sJ|2|J|

)1/2

< ∞ . (5.4)

This sequence space gives the correct characterization of BMO(R) for
sufficiently smooth wavelet bases appropriately normalized(see [10, 16, 37]).
Their democracy functions are determined by

h�(N; bmo) ≈ 1 , hr(N; bmo) ≈ (
log N

)1/2
. (5.5)

The first part of (5.5) is easy to prove, and the second follows, for instance, by
an argument similar to the one presented in the proof of [28, Lemma 3]. Our
results of Sections 3 and 4 give in this case the inclusions:

�
q

kα
√

log k
↪→ G α

q (bmo) ↪→ Aα
q(bmo) ↪→ �

q
kα = �1/α,q . (5.6)

However, this is not the best one can say for the approximation classes Aα
q . A

result proved in [30] (see also Proposition 11.6 in [16]) shows that one actually
has

Aα
q(bmo) = Aα

q(�∞) = �1/α,q,

for all α > 0 and q ∈ (0, ∞]. For 0 < r < ∞ one can define the space bmor re-
placing the 2 by r in (5.4); it can then be shown that hr(N; bmor) ≈ (

log N
)1/r

and Aα
q(bmor) = �1/α,q.

6 Democracy functions for Aα
q(B, B) and G α

q (B, B)

As usual, we fix a (normalized) unconditional basis B = {e j}∞j=1 in B. In this
section we compute the democracy functions for the spaces Aα

q(B, B) and
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G α
q (B, B), in terms of the democracy functions in the ambient space B. To

distinguish among these notions we shall use, respectively, the notations

h�(N;Aα
q), h�(N; G α

q ) and h�(N; B),

and similarly for hr (recall the definitions in Section 2.5). Since we shall use the
embeddings in Sections 3 and 4, observe first that

h�(N; �q
ω(B, B)) ≈ hr(N; �q

w(B, B)) ≈ ω(N), (6.1)

for all ω ∈ W+ and 0 < q ≤ ∞. This is immediate from the definition of the
spaces �

q
ω(B, B) and Lemma 2.3.

Proposition 6.1 Fix α > 0 and 0 < q ≤ ∞. If h�( · ; B) is doubling then

(a) h�(N; G α
q ) ≈ Nαh�(N; B).

(b) hr(N; G α
q ) ≈ Nαhr(N; B).

In particular, B is democratic in G α
q (B, B) if and only if B is democratic in B.

Proof The inequalities “�” in (a), and “�” in (b) follow immediately from the
embeddings

�
q
kαhr(k)

(B; B) ↪→ G α
q (B, B) ↪→ �

q
kαh�(k)

(B; B)

and the remark in (6.1). Thus we must show the converse inequalities. To
establish (a), given N = 1, 2, 3, . . . choose � with |�| = N and so that ‖1�‖B ≤
2h�(N; B). Then, using the trivial bound in (4.1) we obtain

h�(N; G α
q ) ≤ ‖1�‖G α

q
� Nα‖1�‖B ≈ Nαh�(N; B).

We now prove “�” in (b). Given N = 1, 2, . . ., choose first � with |�| = N
and ‖1�‖B ≥ 1

2 hr(N; B), and then any �′ disjoint with � with |�′| = N. Then

hr(2N; G α
q ) ≥ ∥

∥1�∪�′
∥
∥

G α
q

� NαγN(1�∪�′ ; B) � Nα
∥
∥1�

∥
∥

B
≈ Nαhr(N; B).

The required bound then follows from the doubling property of hr. ��

Proposition 6.2 Fix α > 0 and 0 < q ≤ ∞, and assume that h�( · ; B) is dou-
bling. Then

(a) h�(N;Aα
q) ≈ Nαh�(N; B).

(b) hr(N;Aα
q) � Nαhr(N; B).

In particular, if B is democratic in B then B is democratic in Aα
q(B, B).

Proof As before, “�” in (a), and “�” in (b) follow immediately from the
embeddings

�
q
kαhr(k)

(B; B) ↪→ Aα
q(B, B) ↪→ �

q
kαh�(k)

(B; B).

The converse inequality in (a) follows from the previous proposition and the
trivial inclusion G α

q ↪→ Aα
q . ��
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As shown in Example 5.6, the converse to the last statement in Proposition
6.2 is not necessarily true. The space B = bmo is not democratic, but their ap-
proximation classes Aα

q(bmo) = �1/α, q are democratic. Moreover, this example
shows that the converse to the inequality in (b) does not necessarily hold, since

hr(N;Aq
α(bmo)) = Nα but Nαhr(N; bmo) ≈ Nα(log N)1/2.

Nevertheless, we can give a sufficient condition for hr(N;Aα
q) ≈

Nαhr(N; B), which turns out to be easily verifiable in all the other examples
presented in §5.

Property (H) We say that B satisfies the Property (H) if for each n =
1, 2, 3, ... there exist �n ⊂ N, with |�n| = 2n, satisfying the property

‖1�′ ‖B ≈ hr(2n−1; B), ∀ �′ ⊂ �n with |�′| = 2n−1.

Proposition 6.3 Assume that B satisf ies the Property (H). Then, for all α > 0
and 0 < q ≤ ∞

hr(N;Aα
q) ≈ Nαhr(N; B)

Proof We must show “�”, for which we argue as in the proof of Proposition
6.1. Given N = 2n, select �n as in the definition of Property (H). Then,

hr(N;Aα
q) ≥ ∥

∥1�n

∥
∥
Aα

q
� Nα σN/2(1�n).

Now, the property (H) (and the remark in (2.4)) give

σN/2(1�n) = inf
{‖1�′ ‖B : �′ ⊂ �, |�′| = N/2

} ≈ hr(N/2; B) ≈ hr(N; B).

Combining these two facts the proposition follows for N = 2n. For general N
use the result just proved and the doubling property of hr. ��

As an immediate consequence, the property (H) allows to remove the pos-
sible logarithmic loss for the embedding �

q
kαhr(k)

(B, B) ↪→ Aα
q(B, B) discussed in

Corollary 3.9.

Corollary 6.4 (More about optimality for inclusions into Aα
q) Assume that

(B,B) satisf ies property (H). If for some α > 0, q ∈ (0, ∞] and ω ∈ W+ we have
�

q
ω(B, B) ↪→ Aα

q(B, B), then necessarily ω(k) � kαhr(k), and therefore �
q
ω ↪→

�
q
kαhr(k)

.

The following examples show that Property (H) is often satisfied.

Example 6.1 Wavelet bases in Orlicz spaces L�(Rd) satisfy the property (H).
Indeed, recall from [12, Theorem 1.2] (see also Example 5.3) that

hr(N; L�) ≈ sup
s>0

ϕ(Ns)/ϕ(s) . (6.2)



278 G. Garrigós et al.

Moreover, any collection � of N pairwise disjoint dyadic cubes with the same
f ixed size a > 0 satisfies

‖1�‖L� ≈ ϕ(Na)/ϕ(a) , (6.3)

(see eg [12, Lemma 3.1]). Thus, for each N = 2n, we first select an = 2 jnd so
that hr(2n; L�) ≈ ϕ(2nan)/ϕ(an) , and then we choose as �n any collection of
2n pairwise disjoint cubes with constant size an. Then, any subfamily �′ ⊂ �n

with |�′| = N/2, satisfies

‖1�′ ‖L� ≈ ϕ((N/2)an)/ϕ(an) ≈ ϕ(Nan)/ϕ(an) ≈ hr(N) ≈ hr(N/2),

by (6.3) and the doubling property of ϕ and hr.

Example 6.2 Wavelet bases in Lorentz spaces Lp,q(Rd), 1 < p, q < ∞. These
also satisfy the property (H). Indeed, it can be shown that any set � consisting
of N disjoint cubes of the same size has

‖1�‖Lp,q ≈ N
1
p ,

while sets � consisting of N disjoint cubes all having dif ferent sizes satisfy

‖1�‖Lp,q ≈ N
1
q .

(see [14, (3.6) and (3.8)]). Since hr(N) ≈ N1/(p∧q), we can define the �n’s with
sets of the first type when p ≤ q, and with sets of the second type when q < p,
to obtain in both cases a collection satisfying the hypotheses of property (H).

Example 6.3 The hyperbolic Haar system in Lp(Rd) from Example 5.5 also
satisfies property (H). In this case, again, any set � consisting of N disjoint
rectangles has

‖1�‖Lp(Rd) = N
1
p .

On the other hand, if �n denotes the set of all the dyadic rectangles in the unit
cube with fixed size 2−n, then

‖1�n‖Lp(Rd) ≈ 2n/p n(d−1)/2 ≈ |�n|1/p(log |�n|)(d−1)(
1
2 − 1

p )
. (6.4)

Moreover, it is not difficult to show that any �′ ⊂ �n with |�′| = |�n|/2 also
satisfies (6.4) (with �n replaced by �′). Hence, combining these two cases
and using the description of hr(N) in Example 5.5, one easily establishes the
property (H).

7 Counterexamples for the classes G α
q (B, B)

7.1 Conditions for G α
q �= Aα

q

Recall from Section 2.3 that G α
q (B, B) ↪→ Aα

q(B, B), with equality of the spaces
when B is a greedy basis. It is known that there are some conditional
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democratic bases for which G α
q = Aα

q (see [13, Remark 6.2]). For unconditional
bases, however, one could ask whether non-democracy necessarily implies that
G α

q �= Aα
q . We do not know how to prove such a general result, but we can show

that the inclusion Aα
q ↪→ G α

q must fail whenever the gap between h�(N) and
hr(N) is at least logarithmic (and even less than that). More precisely, we have
the following.

Proposition 7.1 Let B be an unconditional basis in B and α > 0. Suppose that
there exist integers pN ≥ qN ≥ 1, N = 1, 2, . . . such that

lim
N→∞

pN

qN
= ∞ and

hr(qN)

h�(pN)
�
(

pN

qN

)α

. (7.1)

Then the inclusion Aα
τ (B, B) ↪→ G α

τ (B, B) does not hold for any τ ∈ (0, ∞].

Proof For each N, choose �l, �r ⊂ N with |�l| = pN , |�r| = qN , and such that

‖1�l ‖B ≤ 2h�(pN), ‖1�r‖B ≥ 1
2 hr(qN) . (7.2)

Set xN = 1�r + 2 · 1�l−�l∩�r . Since #(�l − �l ∩ �r) ≥ pN − qN , when k ∈
[1, pN − qN] we have

‖xN − Gk(xN)‖B ≥ ‖1�r ‖B ≥ 1
2 hr(qN) .

Therefore, using pN − qN > pN/2 (since pN/qN > 2 for N large), we obtain
that

‖xN‖G α
τ (B,B) ≥ 1

2

[pN/2∑

k=1

(
kαhr(qN)

)τ 1
k

] 1
τ

� hr(qN) pα
N . (7.3)

On the other hand, we can estimate the norm of xN as follows:

‖xN‖B � ‖1�r‖B + ‖1�l−�l∩�r‖B ≤ hr(qN) + 2h�(pN) � hr(qN) (7.4)

where the last inequality is true for N large due to (7.1). Thus

σk(xN) ≤ ‖xN‖B � hr(qN) . (7.5)

Next, if k ≥ qN , by (7.2)

σk(xN) ≤ 2‖1�l−�l∩�r‖B ≤ 2‖1�l ‖B � h�(pN) . (7.6)

Combining (7.4), (7.5) and (7.6) we see that

‖xN‖Aα
τ (B,B) � hr(qN) +

⎡

⎣
qN−1∑

k=1

(
kαhr(qN)

)τ 1
k

+
pN+qN∑

k=qN

(
kαh�(pN)

)τ 1
k

⎤

⎦

1
τ

� hr(qN) + [
hr(qN)τ (qN)ατ + h�(pN)τ (pN)ατ

] 1
τ

� hr(qN) + hr(qN)(qN)α � hr(qN)(qN)α (7.7)
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where in the second inequality we have used the elementary fact
∑a+b

k=a kγ−1 �
b γ if b ≥ a, and the third inequality is due to (7.1). Therefore, from (7.3) and
(7.7) we deduce

‖xN‖G α
τ

‖xN‖Aα
τ

� hr(qN)(pN)α

hr(qN)(qN)α
=

( pN

qN

)α −→ ∞

as N → ∞. This shows the desired result. ��

Corollary 7.2 Let B be an unconditional basis such that h�(N) � Nβ0 and
hr(N) � Nβ1 , for some β1 > β0 ≥ 0. Then, G α

q �= Aα
q for all α > 0 and all q ∈

(0, ∞].

Proof Choose r, s ∈ N , such that α+β0
α+β1

< r
s < 1. Take pN = Ns and qN = Nr.

Then, limN→∞ pN
qN

= limN→∞ Ns−r = ∞ and

hr(qN)

h�(pN)
� Nrβ1

Nsβ0
> Nα(s−r) =

(Ns

Nr

)α =
( pN

qN

)α

,

which proves (7.1) in this case, so that we can apply Proposition 7.1. ��

Corollary 7.3 Let B be an unconditional basis such that for some β ≥ 0 and
γ > 0 we have either

(i) hr(N) � Nβ(log N)γ and h�(N) � Nβ, or
(ii) hr(N) � Nβ and h�(N) � Nβ(log N)−γ .

Then, G α
q �= Aα

q for all α > 0 and all q ∈ (0, ∞].

Proof i) Choose a, b ∈ N such that 0 < a
b <

γ

α+β
. Let pN = Na2Nb

and qN =
2Nb

. Then, limN→∞ pN
qN

= limN→∞ Na = ∞ and

hr(qN)

h�(pN)
� (2Nb

)β(log 2Nb
)γ

Naβ(2Nb
)β

≈
Nbγ

Naβ
= Nbγ−aβ > Naα =

( pN

qN

)α

which proves (7.1) in this case, so that we can apply Proposition 7.1 to conclude
the result. The proof of ii) is similar with the same choice of pN and qN. ��

7.2 Non linearity of G α
q (B, B)

We conclude by showing with simple examples that G α
q (B, B) may not even be

a linear space when the basis B is not democratic.
Let B = �p ⊕�1 �q, 0 < q < p < ∞; that is, B consists of pairs (a, b) ∈ �p ×

�q, endowed with the quasi-norm ‖a‖�p + ‖b‖�q . We consider the canonical
basis in B.

Now, set β = α + 1
p and x = {(k−β, 0)}k∈N ∈ B. For N = 1, 2, 3, . . . we have

γN(x) =
(
∑

k>N

1
kβp

)1/p

≈
(

1
Nβp−1

)1/p

= N−α .
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This shows that x ∈ G α∞(B, B). Similarly, if we let γ = α + 1
q , then y =

{(0, j−γ )} j∈N belongs to G α∞. We will show, however, that x + y �∈ G α∞. In fact,
we will find a subsequence NJ of natural numbers so that

γNJ (x + y) ≈ 1

Nαβ/γ

J

(7.8)

(notice that β < γ since we chose q < p). To prove (7.8) let A1 = {1} and

A j =
{

k ∈ N : 1
jγ

≤ 1
kβ

<
1

( j − 1)γ

}
, j = 2, 3, . . .

The number of elements in A j is

|A j| ≈ jγ /β − ( j − 1)γ/β ≈ j
γ

β
−1

, j = 1, 2, 3, . . . (7.9)

For J = 2, 3, 4, . . . let NJ = ∑J
j=1 |A j| + J. From (7.9) we obtain

NJ ≈
J∑

j=1

j
γ

β
−1 + J ≈ J

γ

β + J ≈ J
γ

β ,

since γ > β . Thus,

γNJ (x+y)≈
⎛

⎜
⎝
∑

k>J
γ
β

k−βp

⎞

⎟
⎠

1/p

+
⎛

⎝
∑

j>J

j−γ q

⎞

⎠

1/q

≈ [
(Jγ /β)−βp+1]1/p+[

J−γ q+1]1/q

= J−αγ/β + J−α ≈ J−α ≈ (NJ)
−αβ/γ ,

proving (7.8).
A simple modification of the above construction can be used to show that

the set G α
s (B, B) is not linear, for any α > 0 and any s ∈ (0, ∞).

Note added in Proof C. Cabrelli and U. Molter have pointed out to us that the conditions
in Proposition 7.1 hold for every α > 0 as long as limN→∞hr(N)/hl(N) = ∞, or even if one
only assumes lim supN→∞hr(N)/hl(N) = ∞ and hl doubling. A proof of these facts will appear
elsewhere.
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