Democracy functions and optimal embeddings for approximation spaces

Gustavo Garrigós • Eugenio Hernández •
Maria de Natividade

Received: 25 November 2009 / Accepted: 25 February 2011 /
Published online: 23 September 2011
© Springer Science+Business Media, LLC 2011

Abstract

We prove optimal embeddings for nonlinear approximation spaces \mathcal{A}_{q}^{α}, in terms of weighted Lorentz sequence spaces, with the weights depending on the democracy functions of the basis. As applications we recover known embeddings for N-term wavelet approximation in L^{p}, Orlicz, and Lorentz norms. We also study the "greedy classes" \mathscr{G}_{q}^{α} introduced by Gribonval and Nielsen, obtaining new counterexamples which show that $\mathscr{G}_{q}^{\alpha} \neq \mathcal{A}_{q}^{\alpha}$ for most non-democratic unconditional bases.

Keywords Non-linear approximation • Greedy algorithm • Democratic bases • Jackson and Bernstein inequalities • Discrete Lorentz spaces • Wavelets

Mathematics Subject Classifications (2010) 41A17•42C40

[^0]
1 Introduction

Let $\left(\mathbb{B},\|.\|_{\mathbb{B}}\right)$ be a quasi-Banach space with a countable unconditional basis $\mathcal{B}=\left\{e_{j}: j \in \mathbb{N}\right\}$. A main question in Approximation Theory consists in finding a characterization (if possible) or at least suitable embeddings for the nonlinear approximation spaces $\mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B}), \alpha>0,0<q \leq \infty$, defined using the \mathbf{N} term error of approximation $\sigma_{N}(x, \mathbb{B})$ (see Sections 2.2 and 2.3 for definitions). Such characterizations or inclusions are often given in terms of "smoothness classes" of the sort

$$
\mathfrak{b}(\mathcal{B} ; \mathbb{B}):=\left\{x=\sum_{j=1}^{\infty} c_{j} e_{j} \in \mathbb{B}:\left\{\left\|c_{j} e_{j}\right\|_{\mathbb{B}}\right\}_{j=1}^{\infty} \in \mathfrak{b}\right\}
$$

where \mathfrak{b} is a suitable sequence space whose elements decay at infinity, such as ℓ^{τ} or more generally the discrete Lorentz classes $\ell^{\tau, q}$.

The simplest result in this direction appears when \mathcal{B} is an orthonormal basis in a Hilbert space \mathbb{H}, and was first proved by Stechkin when $\alpha=1 / 2$ and $q=1$ (see [31] or [8] for general α, q).

Theorem 1.1 $[8,31]$ Let $\mathcal{B}=\left\{e_{j}\right\}_{j=1}^{\infty}$ be an orthonormal basis in a Hilbert space \mathbb{H}, and $\alpha>0,0<q \leq \infty$. Then

$$
\mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{H})=\ell^{\tau, q}(\mathcal{B} ; \mathbb{H})
$$

where τ is defined by $\frac{1}{\tau}=\alpha+\frac{1}{2}$.
Many results have been published in the literature similar to Theorem 1.1 when \mathbb{H} is replaced by a particular space (say, L^{p}) and the basis \mathcal{B} is a particular one (for example, a wavelet basis). We refer to the survey articles [5, 35, 36] for detailed statements and references.

There are also a number of results for general pairs $(\mathbb{B}, \mathcal{B})$ (even with the weaker notion of quasi-greedy basis $[9,13,20]$). We recall two of them in the setting of unconditional bases which we consider here. For simplicity, in all the statements we assume that the basis is normalized, meaning $\left\|e_{j}\right\|_{\mathbb{B}}=1, \forall j \in \mathbb{N}$. The first result can be found in [21] (see also [11]).

Theorem 1.2 [21, Theorem 1], [11, Theorem 6.1] Let \mathbb{B} be a quasi-Banach space and $\mathcal{B}=\left\{e_{j}\right\}_{j=1}^{\infty}$ a (normalized) unconditional basis satisfying the following property: there exists $p \in(0, \infty)$ and a constant $C>0$ such that

$$
\begin{equation*}
\frac{1}{C}|\Gamma|^{1 / p} \leq\left\|\sum_{k \in \Gamma} e_{k}\right\|_{\mathbb{B}} \leq C|\Gamma|^{1 / p} \tag{1.1}
\end{equation*}
$$

for all finite $\Gamma \subset \mathbb{N}$. Then, for $\alpha>0$ and $0<q \leq \infty$ we have

$$
\mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})=\ell^{\tau, q}(\mathcal{B} ; \mathbb{B})
$$

when τ is defined by $\frac{1}{\tau}=\alpha+\frac{1}{p}$.

Condition (1.1) is sometimes referred as \mathcal{B} having the p-Temlyakov property [20], or as \mathbb{B} being a p-space [11, 16]. For instance, wavelet bases in L^{p} satisfy this property [33]. The second result we quote is proved in [13] (see also [21]).

Theorem 1.3 [13, Theorem 3.1]. Let \mathbb{B} be a Banach space and $\mathcal{B}=\left\{e_{j}\right\}_{j=1}^{\infty} a$ (normalized) unconditional basis with the following property: there exist $1 \leq$ $p \leq q \leq \infty$ and constants $A, B>0$ such that when $x=\sum_{j \in \mathbb{N}} c_{j} e_{j} \in \mathbb{B}$ we have

$$
\begin{equation*}
A\left\|\left\{c_{j}\right\}\right\|_{\ell q, \infty} \leq\|x\|_{\mathbb{B}} \leq B\left\|\left\{c_{j}\right\}\right\|_{\ell p, 1} . \tag{1.2}
\end{equation*}
$$

Then, for $\alpha>0$ and $0<s \leq \infty$ we have

$$
\begin{equation*}
\ell^{\tau_{p}, s}(\mathcal{B} ; \mathbb{B}) \hookrightarrow \mathcal{A}_{s}^{\alpha}(\mathcal{B}, \mathbb{B}) \hookrightarrow \ell^{\tau_{q}, s}(\mathcal{B} ; \mathbb{B}) \tag{1.3}
\end{equation*}
$$

where $\frac{1}{\tau_{p}}=\alpha+\frac{1}{p}$ and $\frac{1}{\tau_{q}}=\alpha+\frac{1}{q}$. Moreover, the inclusions given in (1.3) are best possible in the sense described in Section 4 of [13].

Condition (1.2) is referred in [13] as $(\mathbb{B}, \mathcal{B})$ having the (p, q) sandwich property, and it is shown to be equivalent to

$$
\begin{equation*}
A^{\prime}|\Gamma|^{1 / q} \leq\left\|\sum_{k \in \Gamma} e_{k}\right\|_{\mathbb{B}} \leq B^{\prime}|\Gamma|^{1 / p} \tag{1.4}
\end{equation*}
$$

for all $\Gamma \subset \mathbb{N}$ finite. Observe that (1.4) coincides with (1.1) when $p=q$.
The purpose of this article is to obtain optimal embeddings for $\mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$ as in (1.3) when no condition such as (1.4) is imposed. As it may be expected, the notion of "democracy function" will play a crucial role. More precisely, we define the right and left democracy functions associated with a basis \mathcal{B} in \mathbb{B} by

$$
h_{r}(N ; \mathcal{B}, \mathbb{B}) \equiv \sup _{|\Gamma|=N}\left\|\sum_{k \in \Gamma} \frac{e_{k}}{\left\|e_{k}\right\|_{\mathbb{B}}}\right\|_{\mathbb{B}} \quad \text { and } \quad h_{\ell}(N ; \mathcal{B}, \mathbb{B}) \equiv \inf _{|\Gamma|=N}\left\|\sum_{k \in \Gamma} \frac{e_{k}}{\left\|e_{k}\right\|_{\mathbb{B}}}\right\|_{\mathbb{B}}
$$

for $N=1,2,3, \ldots$ These functions are implicit in earlier works on greedy approximation (see eg [9, 34, 38]) and explicitly defined in [19], page 203. We refer to Section 5 for various examples where $h_{\ell}(N)$ and $h_{r}(N)$ are computed explicitly (modulo multiplicative constants). As usual, when $h_{\ell}(N) \approx h_{r}(N)$ for all $N \in \mathbb{N}$ we say that \mathcal{B} is a democratic basis in \mathbb{B} (see [23]).

The embeddings will be given in terms of weighted discrete Lorentz spaces ℓ_{η}^{q}, with quasi-norms defined by

$$
\left\|\left\{c_{k}\right\}\right\|_{\ell_{n}^{q}} \equiv\left(\sum_{k=1}^{\infty}\left|\eta(k) c_{k}^{*}\right|^{q} \frac{1}{k}\right)^{\frac{1}{q}}
$$

where $\left\{c_{k}^{*}\right\}$ denotes the decreasing rearrangement of $\left\{\left|c_{k}\right|\right\}$ and the weight $\eta=\{\eta(k)\}_{k=1}^{\infty}$ is a suitable sequence increasing to infinity and satisfying the doubling property (see Section 2.4 for precise definitions and references). In the special case $\eta(k)=k^{1 / \tau}$ we recover the classical definition $\ell_{\eta}^{q}=\ell^{\tau, q}$.

Theorem 1.4 Let \mathbb{B} be a quasi-Banach space and \mathcal{B} an unconditional basis. Assume that $h_{\ell}(N)$ is doubling. Then if $\alpha>0$ and $0<q \leq \infty$ we have the continuous embeddings

$$
\begin{equation*}
\ell_{k^{\alpha} h_{r}(k)}^{q}(\mathcal{B} ; \mathbb{B}) \hookrightarrow \mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B}) \hookrightarrow \ell_{k^{\alpha} h_{\ell}(k)}^{q}(\mathcal{B} ; \mathbb{B}) . \tag{1.5}
\end{equation*}
$$

Moreover, for fixed α and q these inclusions are best possible in the scale of weighted discrete Lorentz spaces ℓ_{η}^{q}, in the sense explained in Sections 3, 4 and 6.

Observe that this theorem generalizes Theorems 1.2 and 1.3. In Theorem 1.2 we have $h_{r}(N) \approx h_{\ell}(N) \approx N^{1 / p}$ and in Theorem $1.3, h_{r}(N) \lesssim N^{1 / p}$ and $h_{\ell}(N) \gtrsim N^{1 / q}$. When \mathcal{B} is democratic in \mathbb{B}, Theorem 1.4 shows that

$$
\mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})=\ell_{k^{\alpha} h(k)}^{q}(\mathcal{B} ; \mathbb{B})
$$

with $h(k)=h_{r}(k) \approx h_{\ell}(k)$, which recovers Corollary 1 in [13, Section 6] for greedy bases in a Banach space.

Theorem 1.4 is a consequence of the results proved in Sections 3 and 4. Section 3 deals with the lower embedding in (1.5) and shows the relation to Jackson type inequalities. Section 4 deals with the upper embedding of (1.5) and its relation to Bernstein type inequalities. Section 5 contains various examples of democracy functions and embeddings with precise references; these are all special cases of Theorem 1.4. In Section 6 we apply Theorem 1.4 to estimate the democracy functions h_{ℓ} and h_{r} of the approximation space \mathcal{A}_{q}^{α}.

Finally, the last section of the paper is dedicated to study the "greedy classes" $\mathscr{G}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$ introduced by Gribonval and Nielsen in [13], and their relations with the approximation spaces $\mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$. The classes \mathscr{G}_{q}^{α} are defined similarly to the approximation spaces, but with the error of approximation $\sigma_{N}(x)$ replaced by the quantity $\left\|x-G_{N}(x)\right\|_{\mathbb{B}}$ (see Section 2.3 for details). It is easy to see that $\mathscr{G}_{q}^{\alpha}(\mathcal{B}, \mathbb{B}) \subset \mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$; moreover, since any democratic unconditional basis is greedy (see [23]) if follows that in this case we have $\mathscr{G}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})=\mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$. One may conjecture that for unconditional bases \mathcal{B} the converse is true, that is $\mathscr{G}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})=\mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$ implies that \mathcal{B} is democratic in \mathbb{B}. We do not know how to show this, but we can exhibit a fairly general class of non-democratic pairs $(\mathcal{B}, \mathbb{B})$ for which $\mathscr{G}_{q}^{\alpha}(\mathcal{B}, \mathbb{B}) \neq \mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$ for all $\alpha>0$ and $q \in(0, \infty]$. This is the case for instance of wavelet bases when \mathbb{B} is equal to $L^{p}(\log L)^{\gamma}(\gamma \neq 0)$ or $L^{p, r}(p \neq r)$. We also illustrate how irregular the classes $\mathscr{G}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$ can be when \mathcal{B} is not democratic, showing in simple situations that they are not even linear spaces.

2 General setting

2.1 Bases

Since we work in the setting of quasi-Banach spaces $\left(\mathbb{B},\|\cdot\|_{\mathbb{B}}\right)$, we shall often use the ρ-power triangle inequality

$$
\begin{equation*}
\|x+y\|_{\mathbb{B}}^{\rho} \leq\|x\|_{\mathbb{B}}^{\rho}+\|y\|_{\mathbb{B}}^{\rho} \tag{2.1}
\end{equation*}
$$

which holds for a sufficiently small $\rho=\rho_{\mathbb{B}} \in(0,1]$ (and hence for all $\left.\mu \leq \rho_{\mathbb{B}}\right)$; see [3, Lemma 3.10.1]. The case $\rho_{\mathbb{B}}=1$ gives a Banach space.

A sequence of vectors $\mathcal{B}=\left\{e_{j}\right\}_{j=1}^{\infty}$ is a basis of \mathbb{B} if every $x \in \mathbb{B}$ can be uniquely represented as $x=\sum_{j=1}^{\infty} c_{j} e_{j}$ for some scalars c_{j}, with convergence in $\|\cdot\|_{\mathbb{B}}$. The basis \mathcal{B} is unconditional if the series converges unconditionally, or equivalently if there is some $K>0$ such that

$$
\begin{equation*}
\left\|\sum_{j=1}^{\infty} \lambda_{j} c_{j} e_{j}\right\|_{\mathbb{B}} \leq K\left\|\sum_{j=1}^{\infty} c_{j} e_{j}\right\|_{\mathbb{B}} \tag{2.2}
\end{equation*}
$$

for every sequence of scalars $\left\{\lambda_{j}\right\}_{j=1}^{\infty}$ with $\left|\lambda_{j}\right| \leq 1$ (see e.g. [15, Chapter 5]).
For simplicity in the statements, throughout the paper we shall assume that \mathcal{B} is a normalized basis, meaning $\left\|e_{j}\right\|_{\mathbb{B}}=1$ for all $j \in \mathbb{N}$. We shall also assume that the unconditionality constant in (2.2) is $K=1$. This can be achieved if necessary introducing an equivalent quasi-norm in \mathbb{B}

$$
\|x\|_{\mathbb{B}}=\sup _{\Gamma \text { finite },\left|\lambda_{j}\right| \leq 1}\left\|\sum_{j \in \Gamma} \lambda_{j} x_{j} e_{j}\right\|_{\mathbb{B}}, \quad \text { if } x=\sum_{j=1}^{\infty} x_{j} e_{j} .
$$

Observe that with this renorming we still have $\left\|e_{j}\right\|_{\mathbb{B}}=1$.
With the above assumptions, the following lattice property will be used often below: if $\left|y_{k}\right| \leq\left|x_{k}\right|$ for all $k \in \mathbb{N}$ and $x=\sum_{k=1}^{\infty} x_{k} e_{k} \in \mathbb{B}$, then the series $y=\sum_{k=1}^{\infty} y_{k} e_{k}$ converges in \mathbb{B} and $\|y\|_{\mathbb{B}} \leq\|x\|_{\mathbb{B}}$. Also, using (2.2) with $K=1$ we see that, for every $\Gamma \subset \mathbb{N}$ finite

$$
\begin{equation*}
\left(\inf _{j \in \Gamma}\left|c_{j}\right|\right)\left\|\sum_{j \in \Gamma} e_{j}\right\|_{\mathbb{B}} \leq\left\|\sum_{j \in \Gamma} c_{j} e_{j}\right\|_{\mathbb{B}} \leq\left(\sup _{j \in \Gamma}\left|c_{j}\right|\right)\left\|\sum_{j \in \Gamma} e_{j}\right\|_{\mathbb{B}} \tag{2.3}
\end{equation*}
$$

2.2 Non-linear approximation and greedy algorithm

Let $\mathcal{B}=\left\{e_{j}\right\}_{j=1}^{\infty}$ be a basis in \mathbb{B}. Let $\Sigma_{N}, N=1,2,3, \ldots$, be the set of all $y \in \mathbb{B}$ with at most N non-null coefficients in the unique basis representation. For $x \in \mathbb{B}$, the N-term error of approximation with respect to \mathcal{B} is defined as

$$
\sigma_{N}(x)=\sigma_{N}(x ; \mathcal{B}, \mathbb{B}) \equiv \inf _{y \in \Sigma_{N}}\|x-y\|_{\mathbb{B}}, \quad N=1,2,3 \ldots
$$

We also set $\Sigma_{0}=\{0\}$ so that $\sigma_{0}(x)=\|x\|_{\mathbb{B}}$. Using the lattice property mentioned in Section 2.1 it is easy to see that for $x=\sum_{j=1}^{\infty} c_{j} e_{j}$ we actually have

$$
\begin{equation*}
\sigma_{N}(x)=\inf _{|\Gamma|=N}\left\{\left\|x-\sum_{\gamma \in \Gamma} c_{\gamma} e_{\gamma}\right\|_{\mathbb{B}}\right\}, \tag{2.4}
\end{equation*}
$$

that is, only coefficients from x are relevant when computing $\sigma_{N}(x)$; see e.g. [11, (2.6)].

Given $x=\sum_{j=1}^{\infty} c_{j} e_{j} \in \mathbb{B}$, let π denote any bijection of \mathbb{N} such that

$$
\begin{equation*}
\left\|c_{\pi(j)} e_{\pi(j)}\right\| \geq\left\|c_{\pi(j+1)} e_{\pi(j+1)}\right\|, \quad \text { for all } \quad j \in \mathbb{N} . \tag{2.5}
\end{equation*}
$$

Without loss of generality we may assume that the basis is normalized and then (2.5) becomes $\left|c_{\pi(j)}\right| \geq\left|c_{\pi(j+1)}\right|, \quad$ for all $\quad j \in \mathbb{N}$. A greedy algorithm of step N is a correspondence assigning

$$
x=\sum_{j=1}^{\infty} c_{j} e_{j} \in \mathbb{B} \longmapsto G_{N}^{\pi}(x) \equiv \sum_{j=1}^{N} c_{\pi(j)} e_{\pi(j)}
$$

for any π as in (2.5). The error of greedy approximation at step N is defined by

$$
\begin{equation*}
\gamma_{N}(x)=\gamma_{N}(x ; \mathcal{B}, \mathbb{B}) \equiv \sup _{\pi}\left\|x-G_{N}^{\pi}(x)\right\|_{\mathbb{B}} . \tag{2.6}
\end{equation*}
$$

Notice that $\sigma_{N}(x) \leq \gamma_{N}(x)$, but the reverse inequality may not be true in general. It is said that \mathcal{B} is a greedy basis in \mathbb{B} when there is a constant $c \geq 1$ such that

$$
\gamma_{N}(x ; \mathcal{B}, \mathbb{B}) \leq c \sigma_{N}(x ; \mathcal{B}, \mathbb{B}), \quad \forall x \in \mathbb{B}, \quad N=1,2,3, \ldots
$$

A celebrated theorem of Konyagin and Temlyakov characterizes greedy bases as those which are unconditional and democratic [23].

2.3 Approximation spaces and greedy classes

The classical non-linear approximation spaces $\mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$ are defined as follows: for $\alpha>0$ and $0<q<\infty$

$$
\mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})=\left\{x \in \mathbb{B}:\|x\|_{\mathcal{A}_{q}^{\alpha}} \equiv\|x\|_{\mathbb{B}}+\left[\sum_{n=1}^{\infty}\left(N^{\alpha} \sigma_{N}(x ; \mathcal{B}, \mathbb{B})\right)^{q} \frac{1}{N}\right]^{\frac{1}{q}}<\infty\right\} .
$$

When $q=\infty$ the definition takes the form:

$$
\mathcal{A}_{\infty}^{\alpha}(\mathcal{B}, \mathbb{B})=\left\{x \in \mathbb{B}:\|x\|_{\mathcal{A}_{\infty}^{\alpha}} \equiv\|x\|_{\mathbb{B}}+\sup _{N \geq 1} N^{\alpha} \sigma_{N}(x)<\infty\right\} .
$$

It is well known that $\mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$ are quasi-Banach spaces (see e.g. [29]). Also, equivalent quasi-norms can be obtained restricting to dyadic N 's:

$$
\|x\|_{\mathcal{A}_{q}^{\alpha}} \approx\|x\|_{\mathbb{B}}+\left[\sum_{k=0}^{\infty}\left(2^{k \alpha} \sigma_{2^{k}}(x)\right)^{q}\right]^{\frac{1}{q}}
$$

and likewise for $q=\infty$. This is a simple consequence of the monotonicity of $\sigma_{N}(x)$ (see eg [29, Proposition 2] or [7, (2.3)]).

The greedy classes $\mathscr{G}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$ are defined as before replacing the role of $\sigma_{N}(x)$ by the error of greedy approximation $\gamma_{N}(x)$ given in (2.6), that is

$$
\begin{equation*}
\mathscr{G}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})=\left\{x \in \mathbb{B}:\|x\|_{\mathscr{G}_{q}^{\alpha}} \equiv\|x\|_{\mathbb{B}}+\left[\sum_{N=1}^{\infty}\left(N^{\alpha} \gamma_{N}(x ; \mathcal{B}, \mathbb{B})\right)^{q} \frac{1}{N}\right]^{\frac{1}{q}}<\infty\right\} \tag{2.7}
\end{equation*}
$$

(and similarly for $q=\infty$). We also have the equivalence

$$
\begin{equation*}
\|x\|_{\mathscr{G}_{q}^{\alpha}} \approx\|x\|_{\mathbb{B}}+\left[\sum_{k=0}^{\infty}\left(2^{k \alpha} \gamma_{2^{k}}(x)\right)^{q}\right]^{\frac{1}{q}} \tag{2.8}
\end{equation*}
$$

since $\gamma_{N}(x)$ is non-increasing by the lattice property in Section 2.1.
Since $\sigma_{N}(x) \leq \gamma_{N}(x)$ for all $x \in \mathbb{B}$ it is clear that ${ }^{1}$

$$
\begin{equation*}
\mathscr{G}_{q}^{\alpha}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B}) \tag{2.9}
\end{equation*}
$$

When \mathcal{B} is a greedy basis in \mathbb{B} it holds that $\mathscr{G}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})=\mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$ with equivalent quasi-norms. For non greedy bases, however, the inclusion may be strict, and the classes \mathscr{G}_{q}^{α} may not even be linear spaces (see Section 7.1 below).

2.4 Discrete Lorentz spaces

Let $\eta=\{\eta(k)\}_{k=1}^{\infty}$ be a sequence so that
(a) $0<\eta(k) \leq \eta(k+1)$ for all $k=1,2, \ldots$ and $\lim _{k \rightarrow \infty} \eta(k)=\infty$.
(b) η is doubling, that is, $\eta(2 k) \leq C \eta(k)$ for all $k=1,2, \ldots$, and some $C>0$.

We shall denote the set of all such sequences by \mathbb{W}. If $\eta \in \mathbb{W}$ and $0<r \leq \infty$, the weighted discrete Lorentz space ℓ_{η}^{r} is defined as

$$
\ell_{\eta}^{r}=\left\{\mathbf{s}=\left\{s_{k}\right\}_{k=1}^{\infty} \in \mathfrak{c}_{0}: \quad\|\mathbf{s}\|_{\ell_{n}^{r}} \equiv\left[\sum_{k=1}^{\infty}\left(\eta(k) s_{k}^{*}\right)^{r} \frac{1}{k}\right]^{\frac{1}{r}}<\infty\right\}
$$

(with $\|\mathbf{s}\|_{\ell \eta}^{\infty}=\sup _{k \in \mathbb{N}} \eta(k) s_{k}^{*}$ when $r=\infty$). Here $\left\{s_{k}^{*}\right\}$ denotes the decreasing rearrangement of $\left\{\left|s_{k}\right|\right\}$, that is $s_{k}^{*}=\left|s_{\pi(k)}\right|$ where π is any bijection of \mathbb{N} such that $\left|s_{\pi(k)}\right| \geq\left|s_{\pi(k+1)}\right|$ for all $k=1,2, \ldots$ (since we are assuming $\lim _{k \rightarrow \infty} s_{k}=0$ such π 's always exist). When $\eta \in \mathbb{W}$ the set ℓ_{η}^{r} is a quasi-Banach space (see e.g. [4, Section 2.2]). Equivalent quasi-norms are given by

$$
\begin{equation*}
\|\mathbf{s}\|_{\ell_{\eta}^{r}} \approx\left[\sum_{j=0}^{\infty}\left(\eta\left(\kappa^{j}\right) s_{\kappa^{j}}^{*}\right)^{r}\right]^{1 / r} \tag{2.10}
\end{equation*}
$$

for any fixed integer $\kappa>1$. Particular examples are the classical Lorentz sequence spaces $\ell^{p, r}$ (with $\eta(k)=k^{1 / p}$), and the Lorentz-Zygmund spaces $\ell^{p, r}(\log \ell)^{\gamma}$ (for which $\eta(k)=k^{1 / p} \log ^{\gamma}(k+1)$; see e.g. [2, p. 285]).

Occasionally we will need to assume a stronger condition on the weights η. For an increasing sequence η we define

$$
M_{\eta}(m)=\sup _{k \in \mathbb{N}} \frac{\eta(k)}{\eta(m k)}, \quad m=1,2,3, \ldots
$$

[^1]Observe that we always have $M_{\eta}(m) \leq 1$. We shall say that $\eta \in \mathbb{W}_{+}$when $\eta \in$ \mathbb{W} and there exists some integer $\kappa>1$ for which $M_{\eta}(\kappa)<1$. This is equivalent to say that the "lower dilation index" $i_{\eta}>0$, where we let

$$
i_{\eta} \equiv \sup _{m \geq 1} \frac{\log M_{\eta}(m)}{-\log m}
$$

For example, $\eta=\left\{k^{\alpha} \log ^{\beta}(k+1)\right\}$ has $i_{\eta}=\alpha$, and hence $\eta \in \mathbb{W}_{+}$iff $\alpha>0$. In general, if η is obtained from a increasing function $\phi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$as $\eta(k)=$ $\phi(a k)$, for some fixed $a>0$, then $i_{\eta}>0$ iff $i_{\phi}>0$, the latter denoting the standard lower dilation index of ϕ (see e.g. [24, p. 54] for the definition).

Below we will need the following result:
Lemma 2.1 If $\eta \in \mathbb{W}_{+}$then there exists a constant $C>0$ such that

$$
\begin{equation*}
\sum_{j=0}^{n} \eta\left(\kappa^{j}\right) \leq C \eta\left(\kappa^{n}\right), \quad \forall n \in \mathbb{N} \tag{2.11}
\end{equation*}
$$

where $\kappa>1$ is an integer as in the definition of \mathbb{W}_{+}.
Proof Write $\delta=M_{\eta}(\kappa)<1$. By definition $\quad M_{\eta}(\kappa) \geq \eta\left(\kappa^{j}\right) / \eta\left(\kappa^{j+1}\right)$, and therefore

$$
\begin{equation*}
\eta\left(\kappa^{j}\right) \leq \delta \eta\left(\kappa^{j+1}\right), \quad \forall j=0,1,2, \ldots . \tag{2.12}
\end{equation*}
$$

Iterating (2.12) we deduce that $\eta\left(\kappa^{j}\right) \leq \delta^{n-j} \eta\left(\kappa^{n}\right)$, for $j=0,1,2, \ldots, n$ and hence

$$
\sum_{j=0}^{n} \eta\left(\kappa^{j}\right) \leq \eta\left(\kappa^{n}\right) \sum_{j=0}^{n} \delta^{n-j} \leq \eta\left(\kappa^{n}\right) \frac{1}{1-\delta}
$$

Remark 2.2 If η is increasing and doubling, then $\left\{k^{\alpha} \eta(k)\right\} \in \mathbb{W}_{+}$for all $\alpha>0$. Also, if $\eta \in \mathbb{W}_{+}$then $\eta^{r} \in \mathbb{W}_{+}$, for all $r>0$.

We now estimate the fundamental function of ℓ_{η}^{r}. We shall denote the indicator sequence of $\Gamma \subset \mathbb{N}$ by 1_{Γ}, that is the sequence with entries 1 for $j \in \Gamma$ and 0 otherwise.

Lemma 2.3

(a) If $\eta \in \mathbb{W}$ then

$$
\left\|1_{\Gamma}\right\|_{\ell_{\eta}^{\infty}}=\eta(|\Gamma|), \quad \forall \text { finite } \Gamma \subset \mathbb{N} .
$$

(b) If $\eta \in \mathbb{W}_{+}$and $r \in(0, \infty)$ then

$$
\left\|1_{\Gamma}\right\|_{\ell_{\eta}^{r}} \approx \eta(|\Gamma|), \quad \forall \text { finite } \Gamma \subset \mathbb{N}
$$

with the constants involved independent of Γ.

Proof Part (a) is trivial since η is increasing. To prove (b) use (2.10) and the previous lemma.

Finally, as mentioned in Section 1, given a (normalized) basis \mathcal{B} in \mathbb{B} we shall consider the following subspaces

$$
\ell_{\eta}^{q}(\mathcal{B}, \mathbb{B}):=\left\{x=\sum_{j=1}^{\infty} c_{j} e_{j} \in \mathbb{B}:\left\{c_{j}\right\}_{j=1}^{\infty} \in \ell_{\eta}^{q}\right\}
$$

endowed with the quasi-norm $\|x\|_{\ell_{\eta}^{q}(\mathcal{B}, \mathbb{B})}:=\left\|\left\{c_{j}\right\}\right\|_{\ell_{\eta}^{q}}$. These spaces are not necessarily complete, but they are when

$$
\left\|\sum_{j} c_{j} e_{j}\right\|_{\mathbb{B}} \leq C\left\|\left\{c_{j}\right\}\right\|_{\ell_{n}^{q}}, \quad \forall \text { finite }\left\{c_{j}\right\}
$$

a property which holds in certain situations (see e.g. Remark 3.2). When this is the case, the space $\ell_{\eta}^{q}(\mathcal{B}, \mathbb{B})$ is just an isomorphic copy of ℓ_{η}^{q} inside \mathbb{B}.

2.5 Democracy functions

Following [23], a (normalized) basis \mathcal{B} in a quasi-Banach space \mathbb{B} is said to be democratic if there exists $C>0$ such that

$$
\left\|\sum_{k \in \Gamma} e_{k}\right\|_{\mathbb{B}} \leq C\left\|\sum_{k \in \Gamma^{\prime}} e_{k}\right\|_{\mathbb{B}},
$$

for all finite sets $\Gamma, \Gamma^{\prime} \subset \mathbb{N}$ with the same cardinality. This is a key notion in the theory of greedy approximation, as it allows to characterize greedy bases as those which are both unconditional and democratic (see [23]).

As we recall in Section 5, wavelet bases are well known examples of greedy bases for many function spaces, such as L^{p}, Sobolev, or more generally, the Triebel-Lizorkin spaces. However, they are not democratic in some other instances such as $B M O$, or the Orlicz L^{Φ} and Lorentz $L^{p, q}$ spaces (when these are different from L^{p}). In fact, it is proved in [39] that the Haar basis is democratic in a rearrangement invariant space \mathbb{X} in [0,1] if and only if $\mathbb{X}=L^{p}$ for some $p \in(1, \infty)$. An earlier example of non-democratic basis is the multivariate (hyperbolic) Haar system in $L^{p}\left(\mathbb{R}^{d}\right)$ for $p \neq 2$ and $d>1$ (see [34] and Example 5.5 below).

Thus, non-democratic bases are also common. To quantify the democracy of a (normalized) system $\mathcal{B}=\left\{e_{j}\right\}_{j=1}^{\infty}$ in \mathbb{B} one introduces the following concepts:

$$
h_{r}(N ; \mathcal{B}, \mathbb{B}) \equiv \sup _{|\Gamma|=N}\left\|\sum_{k \in \Gamma} e_{k}\right\|_{\mathbb{B}} \quad \text { and } \quad h_{\ell}(N ; \mathcal{B}, \mathbb{B}) \equiv \inf _{|\Gamma|=N}\left\|\sum_{k \in \Gamma} e_{k}\right\|_{\mathbb{B}}
$$

which we shall call the right and left democracy functions of \mathcal{B} (see also $[9,12$, 19]). We shall omit \mathcal{B} or \mathbb{B} when these are understood from the context.

Some general properties of h_{ℓ} and h_{r} are proved in the next proposition.

Proposition 2.4 Let $\mathcal{B}=\left\{e_{j}\right\}_{j=1}^{\infty}$ be a (normalized) unconditional basis in \mathbb{B} with the lattice property from Section 2.1. Then
(a) $1 \leq h_{\ell}(N) \leq h_{r}(N) \leq N^{1 / \rho}, \forall N=1,2, \ldots$, where $\rho=\rho_{\mathbb{B}}$ is as in (2.1).
(b) $h_{\ell}(N)$ and $h_{r}(N)$ are non-decreasing in $N=1,2,3 \ldots$
(c) $h_{r}(N)$ is doubling, that is, $\exists c>0$ such that $h_{r}(2 N) \leq c h_{r}(N), \forall N \in \mathbb{N}$.
(d) There exists $c \geq 1$ such that $h_{\ell}(N+1) \leq c h_{\ell}(N)$ for all $N=1,2,3 \ldots$

Proof

(a) and (b) follow immediately from the lattice property of \mathcal{B} and the ρ triangular inequality.
(c) Given $N \in \mathbb{N}$, choose $\Gamma \subset \mathbb{N}$ with $|\Gamma|=2 N$ such that $\left\|\sum_{k \in \Gamma} e_{k}\right\|_{\mathbb{B}} \geq h_{r}(2 N) / 2$. Partitioning arbitrarily $\Gamma=\Gamma^{\prime} \cup \Gamma^{\prime \prime}$ with $\left|\Gamma^{\prime}\right|=\left|\Gamma^{\prime \prime}\right|=N$, and using the ρ-power triangle inequality, one easily obtains

$$
\frac{1}{2} h_{r}(2 N) \leq\left\|\sum_{k \in \Gamma} e_{k}\right\|_{\mathbb{B}}=\left\|\sum_{k \in \Gamma^{\prime}} e_{k}+\sum_{k \in \Gamma^{\prime \prime}} e_{k}\right\|_{\mathbb{B}} \leq 2^{1 / \rho} h_{r}(N) .
$$

(d) Given $N \in \mathbb{N}$, choose $\Gamma \subset \mathbb{N}$ with $|\Gamma|=N$ such that $\left\|\sum_{k \in \Gamma} e_{k}\right\|_{\mathbb{B}} \leq 2 h_{\ell}(N)$. Let $\Gamma^{\prime}=\Gamma \cup\left\{k_{o}\right\}$ for any $k_{o} \notin \Gamma$. Then

$$
\begin{aligned}
h_{\ell}(N+1) & \leq\left\|\sum_{k \in \Gamma^{\prime}} e_{k}\right\|_{\mathbb{B}} \leq\left(\left\|\sum_{k \in \Gamma} e_{k}\right\|_{\mathbb{B}}^{\rho}+1\right)^{1 / \rho} \\
& \leq\left(2^{\rho}\left[h_{\ell}(N)\right]^{\rho}+1\right)^{1 / \rho} .
\end{aligned}
$$

Thus, using (a) we obtain $h_{\ell}(N+1) \leq\left(2^{\rho}+1\right)^{\frac{1}{\rho}} h_{\ell}(N) \leq 2$. $2^{1 / \rho} h_{\ell}(N)$.

Remark 2.5 We do not know whether property (d) can be improved to show that $h_{\ell}(N)$ is actually doubling. This is however the case in all the examples we have considered below (see Section 5).

3 Right democracy and Jackson type inequalities

Our first result deals with inclusions for the greedy classes $\mathscr{G}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$.
Theorem 3.1 Let $\mathcal{B}=\left\{e_{j}\right\}_{j=1}^{\infty}$ be a (normalized) unconditional basis in \mathbb{B}. Fix $\alpha>0$ and $q \in(0, \infty)$. Then, for any sequence η such that $\left\{k^{\alpha} \eta(k)\right\}_{k=1}^{\infty} \in \mathbb{W}_{+}$the following statements are equivalent:

1. There exists $C>0$ such that for all $N=1,2,3, \ldots$

$$
\begin{equation*}
\left\|\sum_{k \in \Gamma} e_{k}\right\|_{\mathbb{B}} \leq C \eta(N), \quad \forall \Gamma \subset \mathbb{N} \text { with }|\Gamma|=N . \tag{3.1}
\end{equation*}
$$

2. Jackson type inequality for $\ell_{k^{\alpha} \eta(k)}^{\infty}(\mathcal{B}, \mathbb{B}): \exists C_{\alpha}>0$ such that $\forall N=0,1,2 \ldots$

$$
\begin{equation*}
\gamma_{N}(x) \leq C_{\alpha}(N+1)^{-\alpha}\|x\|_{k^{\alpha} \eta(k)}^{\infty}(\mathcal{B}, \mathbb{B}), \quad \forall x \in \ell_{k^{\alpha} \eta(k)}^{\infty}(\mathcal{B}, \mathbb{B}) . \tag{3.2}
\end{equation*}
$$

3. $\ell_{k^{\alpha} \eta(k)}^{\infty}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathscr{G}_{\infty}^{\alpha}(\mathcal{B}, \mathbb{B})$.
4. $\quad \ell_{k^{\alpha} \eta(k)}^{q}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathscr{G}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$.
5. Jackson type inequality for $\ell_{k^{\alpha} \eta(k)}^{q}(\mathcal{B}, \mathbb{B}): \exists C_{\alpha, q}>0$ such that $\forall N=$ $0,1,2, \ldots$

$$
\begin{equation*}
\gamma_{N}(x) \leq C_{\alpha, q}(N+1)^{-\alpha}\|x\|_{\ell_{k^{\alpha} \eta(k)}^{q}(\mathcal{B}, \mathbb{B})}, \quad \forall x \in \ell_{k^{\alpha} \eta(k)}^{q}(\mathcal{B}, \mathbb{B}) . \tag{3.3}
\end{equation*}
$$

Proof

$1 \Rightarrow 2$ Let $x=\sum_{k \in \mathbb{N}} c_{k} e_{k} \in \ell_{k^{\alpha} \eta(k)}^{\infty}(\mathcal{B}, \mathbb{B})$ and let π be a bijection of \mathbb{N} such that

$$
\begin{equation*}
\left|c_{\pi(k)}\right| \geq\left|c_{\pi(k+1)}\right|, \quad k=1,2,3, \ldots \tag{3.4}
\end{equation*}
$$

For fixed $N=0,1,2, \ldots$, denote $\lambda_{j}=2^{j}(N+1)$. Then, the ρ-power triangle inequality and (2.3) give

$$
\begin{aligned}
\left\|x-G_{N}^{\pi}(x)\right\|_{\mathbb{B}}^{\rho} & =\left\|\sum_{k=N+1}^{\infty} c_{\pi(k)} e_{\pi(k)}\right\|_{\mathbb{B}}^{\rho} \leq \sum_{j=0}^{\infty}\left\|\sum_{\lambda_{j} \leq k<\lambda_{j+1}} c_{\pi(k)} e_{\pi(k)}\right\|_{\mathbb{B}}^{\rho} \\
& \leq \sum_{j=0}^{\infty}\left|c_{\pi\left(\lambda_{j}\right)}\right|^{\rho}\left\|\sum_{\lambda_{j} \leq k<\lambda_{j+1}} e_{\pi(k)}\right\|_{\mathbb{B}}^{\rho} .
\end{aligned}
$$

There are exactly $\lambda_{j}=2^{j}(N+1)$ elements in the interior sum, so using (3.1) we obtain

$$
\begin{aligned}
\left\|x-G_{N}^{\pi}(x)\right\|_{\mathbb{B}}^{\rho} & \leq C^{\rho} \sum_{j=0}^{\infty}\left(c_{\lambda_{j}}^{*} \eta\left(\lambda_{j}\right)\right)^{\rho}=C^{\rho} \sum_{j=0}^{\infty}\left(\lambda_{j}^{\alpha} c_{\lambda_{j}}^{*} \eta\left(\lambda_{j}\right)\right)^{\rho} \lambda_{j}^{-\alpha \rho} \\
& \leq C^{\rho}\|x\|_{\ell_{k^{\alpha} \eta(k)}^{\alpha}(\mathcal{B}, \mathbb{B})}^{\rho}(N+1)^{-\alpha \rho} \sum_{j=0}^{\infty} 2^{-j \alpha \rho} \\
& =C_{\alpha, \rho}(N+1)^{-\alpha \rho}\|x\|_{\ell_{k^{\alpha}}{ }_{n}(k)}^{\rho}(\mathcal{B}, \mathbb{B})
\end{aligned}
$$

The result follows taking the supremum over all bijections π satisfying (3.4).

Remark 3.2 The special case $N=0$ in (3.2) says that

$$
\begin{equation*}
\|x\|_{\mathbb{B}} \leq C\|x\|_{\ell_{k^{\chi}}^{\infty}(k)}^{\infty}(\mathcal{B}, \mathbb{B}), \tag{3.5}
\end{equation*}
$$

which in particular implies $\ell_{k^{\alpha} \eta(k)}^{q}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathbb{B}$, for all $q \in(0, \infty]$.
$2 \Rightarrow 3$ This is immediate from the definition of $\mathscr{G}_{\infty}^{\alpha}$ (and Remark 3.2), since

$$
\|x\|_{\mathscr{G}_{\infty}^{\alpha}(\mathcal{B}, \mathbb{B})}:=\|x\|_{\mathbb{B}}+\sup _{N \geq 1} N^{\alpha} \gamma_{N}(x) \leq C_{\alpha}\|x\|_{k_{k^{\alpha}} \eta_{\eta(k)}(\mathcal{B}, \mathbb{B})} .
$$

$3 \Rightarrow 1 \quad$ Let $\Gamma \subset \mathbb{N}$ with $|\Gamma|=N$. Choose Γ^{\prime} with $\left|\Gamma^{\prime}\right|=N$ and so that $\Gamma \cap \Gamma^{\prime}=\emptyset$, and consider $x=\sum_{k \in \Gamma} e_{k}+\sum_{k \in \Gamma^{\prime}} 2 e_{k}$. Then

$$
\begin{equation*}
\gamma_{N}(x)=\left\|\sum_{k \in \Gamma} e_{k}\right\|_{\mathbb{B}}, \tag{3.6}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
N^{\alpha}\left\|\sum_{k \in \Gamma} e_{k}\right\|_{\mathbb{B}}=N^{\alpha} \gamma_{N}(x) \leq\|x\|_{\mathscr{G}_{\infty}^{\alpha}(\mathcal{B}, \mathbb{B})} . \tag{3.7}
\end{equation*}
$$

On the other hand, call $\omega(k)=k^{\alpha} \eta(k)$. By monotonicity, Lemma 2.3 and the doubling property of ω we have

$$
\begin{equation*}
\|x\|_{\ell_{\omega}^{\infty}(\mathcal{B}, \mathbb{B})} \leq 2\left\|1_{\Gamma \cup \Gamma^{\prime}}\right\|_{\ell_{\omega}^{\infty}}=2 \omega(2 N) \leq c \omega(N) \tag{3.8}
\end{equation*}
$$

Combining (3.7) and (3.8) with the inclusion $\ell_{k^{\alpha} \eta(k)}^{\infty}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathscr{G}_{\infty}^{\alpha}(\mathcal{B}, \mathbb{B})$ gives (3.1).
$5 \Rightarrow 1 \quad$ Let $\Gamma \subset \mathbb{N}$ with $|\Gamma|=N$, and choose Γ^{\prime} and x as in the proof of $3 \Rightarrow 1$. As before call $\omega(k)=k^{\alpha} \eta(k)$. Then Lemma 2.3 and the assumption $\omega \in \mathbb{W}_{+}$give

$$
\|x\|_{\ell_{\omega}^{q}(\mathcal{B}, \mathbb{B})} \leq 2\left\|1_{\Gamma \cup \Gamma^{\prime}}\right\|_{\ell_{\omega}^{q}} \approx \omega(2 N) \leq c \omega(N) .
$$

Since we are assuming 5 we can write (recall (3.6))

$$
\left\|\sum_{k \in \Gamma} e_{k}\right\|_{\mathbb{B}}=\gamma_{N}(x) \leq C_{\alpha, \rho}(N+1)^{-\alpha}\|x\|_{\ell_{\omega}^{q}(\mathcal{B}, \mathbb{B})} \lesssim N^{-\alpha} \omega(N)=\eta(N),
$$

which proves (3.1).
$1 \Rightarrow 4$ The proof is similar to $1 \Rightarrow 2$ with a few modifications we indicate next. Given $x \in \ell_{k^{\alpha} \eta(k)}^{q}(\mathcal{B}, \mathbb{B})$ and π as in (3.4) we write $x=$ $\sum_{j=-1}^{\infty} \sum_{2^{j}<k \leq 2^{j+1}} c_{\pi(k)} e_{\pi(k)}$. Then arguing as before (with $N=2^{m}$) we obtain

$$
\left\|x-G_{2^{m}}^{\pi}(x)\right\|_{\mathbb{B}}^{\mu} \leq \sum_{j=m}^{\infty}\left|c_{\pi\left(2^{j}\right)}\right|^{\mu}\left\|\sum_{2^{j}<k \leq 2^{j+1}} e_{\pi(k)}\right\|_{\mathbb{B}}^{\mu}
$$

where we choose now any $\mu<\min \left\{q, \rho_{\mathbb{B}}\right\}$. Taking the supremum over all π 's and using (3.1) we obtain

$$
\gamma_{2^{m}}(x ; \mathcal{B}, \mathbb{B})^{\mu} \leq C^{\mu} \sum_{j=m}^{\infty}\left(c_{2^{j}}^{*} \eta\left(2^{j}\right)\right)^{\mu} .
$$

Therefore

$$
\left[\sum_{m=0}^{\infty}\left(2^{m \alpha} \gamma_{2^{m}}(x)\right)^{q}\right]^{\frac{1}{q}} \leq C\left[\sum_{m=0}^{\infty} 2^{m \alpha q}\left(\sum_{j=0}^{\infty}\left[c_{2 j+m}^{*} \eta\left(2^{j+m}\right)\right]^{\mu}\right)^{q / \mu}\right]^{1 / q}
$$

Since $q / \mu>1$, we can use Minkowski's inequality on the right hand side to obtain

$$
\begin{aligned}
{\left[\sum_{m=0}^{\infty}\left(2^{m \alpha} \gamma_{2^{m}}(x)\right)^{q}\right]^{\frac{1}{q}} } & \leq C\left[\sum_{j=0}^{\infty}\left(\sum_{m=0}^{\infty} 2^{m \alpha q}\left[c_{2^{j+m}}^{*} \eta\left(2^{j+m}\right)\right]^{q}\right)^{\mu / q}\right]^{1 / \mu} \\
& =C\left[\sum_{j=0}^{\infty} 2^{-j \alpha \mu}\left(\sum_{\ell=j}^{\infty} 2^{\ell \alpha q}\left[c_{2^{\ell}}^{*} \eta\left(2^{\ell}\right)\right]^{q}\right)^{\mu / q}\right]^{1 / \mu} \\
& \leq C^{\prime}\left\|\left\{c_{k}\right\}\right\|_{\ell_{k^{\alpha} \eta(k)}^{q}}
\end{aligned}
$$

This implies the desired estimate

$$
\|x\|_{\mathscr{G}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})} \lesssim\left\|\left\{c_{k}\right\}\right\|_{\ell_{k^{\alpha}}^{q}(k)},
$$

using the dyadic expressions for the norms in (2.8) and (2.10) (and Remark 3.2).
$4 \Rightarrow 5 \quad$ This is trivial since 4 implies $\ell_{k^{\alpha} \eta k}^{q}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathscr{G}_{q}^{\alpha}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathscr{G}_{\infty}^{\alpha}(\mathcal{B}, \mathbb{B})$, and this clearly gives (3.3).

Remark 3.3 The equivalences 1 to 3 remain true under the weaker assumption $\left\{k^{\alpha} \eta(k)\right\} \in \mathbb{W}$.

Remark 3.4 Observe that if any of the statements in 2 to 5 of Theorem 3.1 holds for one fixed $\alpha>0$ and $q \in(0, \infty]$, then the assertions remain true for all α and q (as long as $\left\{k^{\alpha} \eta(k)\right\} \in \mathbb{W}_{+}$), since the statement in 1 is independent of these parameters.

Corollary 3.5 (Optimal inclusions into \mathscr{G}_{q}^{α}) Let \mathcal{B} be a (normalized) unconditional basis in \mathbb{B}. Fix $\alpha>0$ and $q \in(0, \infty]$. Then

$$
\begin{equation*}
\ell_{k^{\alpha} h_{r}(k)}^{q}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathscr{G}_{q}^{\alpha}(\mathcal{B}, \mathbb{B}) . \tag{3.9}
\end{equation*}
$$

Moreover, if $\omega \in \mathbb{W}_{+}$then, $\ell_{\omega}^{q}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathscr{G}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$ if and only if $\omega(k) \gtrsim k^{\alpha} h_{r}(k)$.
Proof For $q<\infty$, the inclusion (3.9) is an application of 4 in the theorem with $\eta=h_{r}$ (after noticing that $\left\{k^{\alpha} h_{r}(k)\right\} \in \mathbb{W}_{+}$by Proposition 2.4 and Remark 2.2). The second assertion is just a restatement of $1 \Leftrightarrow 4$ with $\eta(k)=\omega(k) / k^{\alpha}$. For $q=\infty$ use 3 instead of 4 .

We now prove similar results for the approximation spaces $\mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$.

Theorem 3.6 Let $\mathcal{B}=\left\{e_{j}\right\}_{j=1}^{\infty}$ be a (normalized) unconditional basis in \mathbb{B}. Fix $\alpha>0$ and $q \in(0, \infty]$. Then, for any sequence $\eta \in \mathbb{W}_{+}$the following are equivalent:

1. There exists $C>0$ such that for all $N=1,2,3, \ldots$

$$
\begin{equation*}
\left\|\sum_{k \in \Gamma} e_{k}\right\|_{\mathbb{B}} \leq C \eta(N), \quad \forall \Gamma \subset \mathbb{N} \text { with }|\Gamma|=N . \tag{3.10}
\end{equation*}
$$

2. $\ell_{k^{\alpha} \eta(k)}^{q}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$.
3. Jackson type inequality for $\ell_{k^{\alpha} \eta(k)}^{q}(\mathcal{B}, \mathbb{B}): \exists C_{\alpha, q}>0$ such that $\forall N=$ $0,1,2, \ldots$

$$
\begin{equation*}
\sigma_{N}(x) \leq C_{\alpha, q}(N+1)^{-\alpha}\|x\|_{\ell_{k^{\alpha} \eta(k)}^{q}(\mathcal{B}, \mathbb{B})}, \quad \forall x \in \ell_{k^{\alpha} \eta(k)}^{q}(\mathcal{B}, \mathbb{B}) . \tag{3.11}
\end{equation*}
$$

Proof $1 \Rightarrow 2$ follows directly from Theorem 3.1 and $\mathscr{G}_{q}^{\alpha} \hookrightarrow \mathcal{A}_{q}^{\alpha}$. Also, $2 \Rightarrow 3$ is trivial since $\mathcal{A}_{q}^{\alpha} \hookrightarrow \mathcal{A}_{\infty}^{\alpha}$, and 3 is equivalent to $\ell_{k^{\alpha} \eta(k)}^{q}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathcal{A}_{\infty}^{\alpha}$.

We must show $3 \Rightarrow 1$. Let $\kappa>1$ be a fixed integer as in the definition of the class \mathbb{W}_{+}(and in particular satisfying (2.11)), and denote $1_{\Delta}=\sum_{k \in \Delta} e_{k}$ for a set $\Delta \subset \mathbb{N}$. For any $\Gamma_{n} \subset \mathbb{N}$ with $\left|\Gamma_{n}\right|=\kappa^{n}$, we can find a subset Γ_{n-1} with $\left|\Gamma_{n-1}\right|=\kappa^{n-1}$ such that

$$
\left\|1_{\Gamma_{n}}-1_{\Gamma_{n-1}}\right\|_{\mathbb{B}} \leq 2 \sigma_{\kappa^{n-1}}\left(1_{\Gamma_{n}}\right) .
$$

Repeating this argument we choose $\Gamma_{j-1} \subset \Gamma_{j}$ with $\left|\Gamma_{j}\right|=\kappa^{j}$ and so that

$$
\left\|1_{\Gamma_{j}}-1_{\Gamma_{j-1}}\right\|_{\mathbb{B}} \leq 2 \sigma_{\kappa}^{j-1}\left(1_{\Gamma_{j}}\right), \quad \text { for } j=1,2 \ldots, n
$$

Setting $\Gamma_{-1}=\emptyset$, and using the ρ-power triangle inequality we see that

$$
\left\|1_{\Gamma_{n}}\right\|_{\mathbb{B}}^{\rho}=\left\|\sum_{j=0}^{n} 1_{\Gamma_{j}}-1_{\Gamma_{j-1}}\right\|_{\mathbb{B}}^{\rho} \leq \sum_{j=0}^{n}\left\|1_{\Gamma_{j}}-1_{\Gamma_{j-1}}\right\|_{\mathbb{B}}^{\rho} \leq 2^{\rho} \sum_{j=0}^{n} \sigma_{\kappa^{j-1}}\left(1_{\Gamma_{j}}\right)^{\rho} .
$$

Now, the hypothesis (3.11) and Lemma 2.3 give

$$
\sigma_{\kappa}^{j-1}\left(1_{\Gamma_{j}}\right) \lesssim \kappa^{-j \alpha}\left\|1_{\Gamma_{j}}\right\|_{\ell_{k^{\alpha} \eta(k)}^{q}}(\mathcal{B}, \mathbb{B})<\eta\left(\kappa^{j}\right) .
$$

Thus, combining these two expressions we obtain

$$
\begin{equation*}
\left\|1_{\Gamma_{n}}\right\|_{\mathbb{B}} \lesssim\left[\sum_{j=0}^{n} \eta\left(\kappa^{j}\right)^{\rho}\right]^{1 \rho} \leq C \eta\left(\kappa^{n}\right), \tag{3.12}
\end{equation*}
$$

where the last inequality follows from the assumption $\eta \in \mathbb{W}+$ and Lemma 2.1. This shows (3.10) when $N=\kappa^{n}, n=1,2, \ldots$ The general case follows easily using the doubling property of η.

Remark 3.7 As before, if any of the statements in 2 or 3 holds for one fixed $\alpha>0$ and $q \in(0, \infty]$, then the assertions remain true for all α and q, since 1 is independent of these parameters.

Remark 3.8 Observe also that $1 \Rightarrow 2 \Rightarrow 3$ hold with the weaker assumption $\left\{k^{\alpha} \eta(k)\right\} \in \mathbb{W}_{+}$from Theorem 3.1 (and in particular hold for $\eta=h_{r}$ as stated in (1.5)). However, the stronger assumption $\eta \in \mathbb{W}_{+}$is crucial to obtain $3 \Rightarrow 1$, and cannot be removed as shown in Example 5.6 below.

Corollary 3.9 (Optimality of the inclusions into \mathcal{A}_{q}^{α}) Let \mathcal{B} be a (normalized) unconditional basis in \mathbb{B}. Fix $\alpha>0$ and $q \in(0, \infty]$. Then

$$
\begin{equation*}
\ell_{k^{\alpha} h_{r}(k)}^{q}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B}) . \tag{3.13}
\end{equation*}
$$

If for some $\omega \in \mathbb{W}_{+}$we have $\ell_{\omega}^{q}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$, then necessarily $\omega(k) \gtrsim k^{\alpha}$. Moreover if $\omega(k)=k^{\alpha} \eta(k)$, with η increasing and doubling, then
(a) if $i_{\eta}>0$, then necessarily $\eta(k) \gtrsim h_{r}(k)$, and hence $\ell_{\omega}^{q} \hookrightarrow \ell_{k^{\alpha} h_{r}(k)}^{q}$.
(b) if $i_{\eta}=0$, then $\eta(k) \gtrsim h_{r}(k) /(\log k)^{1 / \rho}$ and $\ell_{k^{\alpha} \eta(k)}^{q} \hookrightarrow \ell_{\left\{k^{\alpha} h_{r}(k) /(\log k)^{1 / \rho}\right\}}^{q}$.

Proof The inclusion (3.13) is actually a consequence of (3.9). Assertion (a) is just $2 \Rightarrow 3 \Rightarrow 1$ in the theorem. For assertion (b) notice that in the last step of the proof of $3 \Rightarrow 1$, the right hand inequality of (3.12) can always be replaced by

$$
\left\|1_{\Gamma_{n}}\right\|_{\mathbb{B}} \lesssim\left[\sum_{j=0}^{n} \eta\left(\kappa^{j}\right)^{\rho}\right]^{1 \rho} \lesssim \eta\left(\kappa^{n}\right) n^{1 / \rho}
$$

when η is increasing. Thus $h_{r}(N) \lesssim \eta(N)(\log N)^{1 / \rho}$ holds for $N=\kappa^{n}$, and by the doubling property also for all $N \in \mathbb{N}$. Finally, if $\ell_{\omega}^{q}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$ for some general $\omega \in \mathbb{W}_{+}$, then given $\Gamma \subset \mathbb{N}$ with $|\Gamma|=N$ we trivially have

$$
\omega(N) \approx\left\|1_{\Gamma}\right\|_{\ell_{\omega}^{q}} \gtrsim\left\|1_{\Gamma}\right\|_{\mathcal{A}_{\infty}^{\alpha}} \geq(N / 2)^{\alpha} \sigma_{N / 2}\left(1_{\Gamma}\right) \geq(N / 2)^{\alpha} .
$$

Remark 3.10 Assertion (b) shows that the inclusion in (3.13) is optimal, except perhaps for a logarithmic loss. The logarithmic loss may actually happen, as there are Banach spaces \mathbb{B} with $h_{r}(N) \approx \log N$ and so that

$$
\mathcal{A}_{q}^{\alpha}(\mathbb{B})=\ell_{k^{\alpha}}^{q}=\ell_{\left\{k^{\alpha} h_{r}(k) / \log k\right\}}^{q}
$$

See Example 5.6 below.

4 Left democracy and Bernstein type inequalities

It is well known that upper inclusions for the approximation spaces \mathcal{A}_{q}^{α}, as in (1.5), depend upon Bernstein type inequalities. In this section we show how the left democracy function of \mathcal{B} is linked with these two properties.

We first remark that, for each $\alpha>0$ and $0<q \leq \infty$, the approximation classes \mathcal{A}_{q}^{α} and \mathscr{G}_{q}^{α} satisfy trivial Bernstein inequalities, namely, there exists $C_{\alpha, q}>0$ such that

$$
\begin{equation*}
\|x\|_{\mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})} \leq\|x\|_{\mathscr{G}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})} \leq C_{\alpha, q} N^{\alpha}\|x\|_{\mathbb{B}}, \quad \forall x \in \Sigma_{N}, \quad N=1,2, \ldots \tag{4.1}
\end{equation*}
$$

This follows easily from the definition of the norms and the trivial estimates $\sigma_{N}(x) \leq \gamma_{N}(x) \leq\|x\|_{\mathbb{B}}$.

We start with a preliminary result which is essentially known in the literature (see eg [29]). As usual $\mathcal{B}=\left\{e_{j}\right\}_{j=1}^{\infty}$ is a fixed (normalized) unconditional basis in \mathbb{B}.

Proposition 4.1 Let \mathbb{E} be a subspace of \mathbb{B}, endowed with a quasi-norm $\|\cdot\|_{\mathbb{E}}$ satisfying the ρ-triangle inequality for some $\rho=\rho_{\mathbb{E}}$. For each $\alpha>0$ the following are equivalent:

1. $\exists C_{\alpha}>0$ such that $\|x\|_{\mathbb{E}} \leq C_{\alpha} N^{\alpha}\|x\|_{\mathbb{B}}, \forall x \in \Sigma_{N}, N=1,2, \ldots$
2. $\mathcal{A}_{\rho}^{\alpha}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathbb{E}$.
3. $\mathscr{G}_{\rho}^{\alpha}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathbb{E}$.

Proof

$1 \Rightarrow 2$ Given $x \in \mathcal{A}_{\rho}^{\alpha}(\mathcal{B}, \mathbb{B})$, by the representation theorem for approximation spaces [29] one can write $x=\sum_{k=0}^{\infty} x_{k}$ with $x_{k} \in \Sigma_{2^{k}}, k=0,1,2, \ldots$, such that

$$
\left(\sum_{k=0}^{\infty} 2^{k \alpha \rho}\left\|x_{k}\right\|_{\mathbb{B}}^{\rho}\right)^{1 / \rho} \leq C\|x\|_{\mathcal{A}_{\rho}^{\alpha}(\mathcal{B}, \mathbb{B})}
$$

The hypothesis 1 and the $\rho_{\mathbb{E}}$-triangular inequality then give

$$
\|x\|_{\mathbb{E}}^{\rho} \leq \sum_{k=0}^{\infty}\left\|x_{k}\right\|_{\mathbb{E}}^{\rho} \leq C_{\alpha}^{\rho} \sum_{k=0}^{\infty} 2^{k \alpha \rho}\left\|x_{k}\right\|_{\mathbb{B}}^{\rho} \leq C^{\prime}\|x\|_{\mathcal{A}_{\rho}^{\alpha}(\mathcal{B}, \mathbb{B})}^{\rho} .
$$

$2 \Rightarrow 3$ This follows from the trivial inclusion $\mathscr{G}_{\rho}^{\alpha}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathcal{A}_{\rho}^{\alpha}(\mathcal{B}, \mathbb{B})$.
$3 \Rightarrow 1 \quad$ This is immediate using (4.1).

Theorem 4.2 Let $\mathcal{B}=\left\{e_{j}\right\}_{j=1}^{\infty}$ be a (normalized) unconditional basis in \mathbb{B}. Fix $\alpha>0$ and $q \in(0, \infty]$. Then, for any increasing and doubling sequence $\{\eta(k)\}$ the following statements are equivalent:

1. There exists $C>0$ such that for all $N=1,2,3, \ldots$

$$
\begin{equation*}
\left\|\sum_{k \in \Gamma} e_{k}\right\|_{\mathbb{B}} \geq \frac{1}{C} \eta(N), \quad \forall \Gamma \subset \mathbb{N} \text { with }|\Gamma|=N . \tag{4.2}
\end{equation*}
$$

2. Bernstein type inequality for $\ell_{k^{\alpha} \eta(k)}^{q}(\mathcal{B}, \mathbb{B}): \exists C_{\alpha, q}>0$ such that

$$
\begin{equation*}
\|x\|_{\ell_{k^{\alpha} \eta(k)}^{q}(\mathcal{B}, \mathbb{B})} \leq C_{\alpha, q} N^{\alpha}\|x\|_{\mathbb{B}}, \quad \forall x \in \Sigma_{N}, \quad N=1,2,3, \ldots \tag{4.3}
\end{equation*}
$$

3. $\mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B}) \hookrightarrow \ell_{k^{\alpha} \eta(k)}^{q}(\mathcal{B}, \mathbb{B})$.
4. $\quad \mathscr{G}_{q}^{\alpha}(\mathcal{B}, \mathbb{B}) \hookrightarrow \ell_{k^{\alpha} \eta(k)}^{q}(\mathcal{B}, \mathbb{B})$.

Proof

$1 \Rightarrow 2$ Let $x=\sum_{k \in \Gamma} c_{k} e_{k} \in \Sigma_{N}$. For any bijection π with $\left|c_{\pi(k)}\right|$ decreasing, and any integer $m \in\{1, \ldots, N\}$ we have

$$
\left|c_{\pi(m)}\right| \eta(m) \leq C\left|c_{\pi(m)}\right|\left\|\sum_{j=1}^{m} e_{\pi(j)}\right\|_{\mathbb{B}} \leq C\left\|\sum_{j=1}^{m} c_{\pi(j)} e_{\pi(j)}\right\|_{\mathbb{B}} \leq C\|x\|_{\mathbb{B}},
$$

using (2.3) in the second inequality. This gives

$$
\|x\|_{\ell_{k^{\alpha} \eta(k)}^{q}}=\left[\sum_{m=1}^{N}\left(m^{\alpha} \eta(m) c_{m}^{*}\right)^{q} \frac{1}{m}\right]^{1 / q} \leq C\|x\|_{\mathbb{B}}\left[\sum_{m=1}^{N} m^{\alpha q} \frac{1}{m}\right]^{1 / q} \approx\|x\|_{\mathbb{B}} N^{\alpha}
$$

$2 \Rightarrow 1 \quad$ For any $\Gamma \subset \mathbb{N}$ with $|\Gamma|=N$, applying (4.3) to $1_{\Gamma}=\sum_{k \in \Gamma} e_{k}$ we obtain

$$
\left\|1_{\Gamma}\right\|_{\mathbb{B}} \geq \frac{1}{C_{\alpha, q}} N^{-\alpha}\left\|1_{\Gamma}\right\|_{\ell_{k^{\alpha}}^{q}(k)}(\mathcal{B}, \mathbb{B}) \geq \eta(N)
$$

where in the last inequality we have used $\left\|1_{\Gamma}\right\|_{\ell_{\omega}^{q}} \gtrsim \omega(N)$, when $\omega \in \mathbb{W}$.
$2 \Rightarrow 3 \quad$ We have already proved that $1 \Leftrightarrow 2$; since 1 does not depend on α, q, then 2 actually holds for all $\tilde{\alpha}>0$. In particular, from Proposition 4.1, we have

$$
\begin{equation*}
\mathcal{A}_{\rho}^{\tilde{\alpha}} \hookrightarrow \mathbb{E}:=\ell_{k^{\tilde{\alpha}} \eta(k)}^{q}(\mathcal{B}, \mathbb{B}) \tag{4.4}
\end{equation*}
$$

for $\tilde{\alpha} \in\left(\frac{\alpha}{2}, \frac{3 \alpha}{2}\right)$ and some sufficiently small $\rho>0$. Now, from the general theory developed in [7], the spaces \mathcal{A}_{q}^{α} satisfy a reiteration theorem for the real interpolation method, and in particular

$$
\begin{equation*}
\mathcal{A}_{q}^{\alpha}=\left(\mathcal{A}_{q_{0}}^{\alpha_{0}}, \mathcal{A}_{q_{1}}^{\alpha_{1}}\right)_{1 / 2, q}, \tag{4.5}
\end{equation*}
$$

when $\alpha=\left(\alpha_{0}+\alpha_{1}\right) / 2$ with $\alpha_{1}>\alpha_{0}>0$, and $q_{0}, q_{1}, q \in(0, \infty]$. On the other hand, for the family of weighted Lorentz spaces it is known that

$$
\begin{equation*}
\left(\ell_{\omega_{0}}^{q}, \ell_{\omega_{1}}^{q}\right)_{\theta, q}=\ell_{\omega}^{q}, \quad 0<\theta<1, \quad 0<q \leq \infty, \tag{4.6}
\end{equation*}
$$

when $\omega_{0}, \omega_{1} \in \mathbb{W}_{+}$and $\omega=\omega_{0}^{1-\theta} \omega_{1}^{\theta}$ (see e.g. [25, Theorem 3]). Thus, for fixed α and q, we can choose the parameters accordingly, and use the inclusion (4.4), to obtain

$$
\mathcal{A}_{q}^{\alpha}=\left(\mathcal{A}_{\rho}^{\alpha_{0}}, \mathcal{A}_{\rho}^{\alpha_{1}}\right)_{1 / 2, q} \hookrightarrow\left(\ell_{k^{\alpha_{0}} \eta(k)}^{q}, \ell_{k^{\alpha_{1}} \eta(k)}^{q}\right)_{1 / 2, q}=\ell_{k^{\alpha} \eta(k)}^{q}(\mathcal{B}, \mathbb{B})
$$

$3 \Rightarrow 4 \quad$ This is trivial since $\mathscr{G}_{q}^{\alpha} \hookrightarrow \mathcal{A}_{q}^{\alpha}$.
$4 \Rightarrow 2$ This is trivial from (4.1).

Remark 4.3 Observe that $3 \Rightarrow 4 \Rightarrow 2 \Leftrightarrow 1$ hold with the weaker assumption $\left\{k^{\alpha} \eta(k)\right\} \in \mathbb{W}$.

Corollary 4.4 (Optimal inclusions of \mathcal{A}_{q}^{α} into ℓ_{ω}^{q}) Let \mathcal{B} be a (normalized) unconditional basis in \mathbb{B}. Fix $\alpha>0$ and $q \in(0, \infty]$.
(a) If $h_{\ell}(N)$ is doubling then $\mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B}) \hookrightarrow \ell_{k^{\alpha} h_{\ell}(k)}^{q}(\mathcal{B}, \mathbb{B})$.
(b) If for some $\omega \in \mathbb{W}$ we have $\mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B}) \hookrightarrow \ell_{\omega}^{q}(\mathcal{B}, \mathbb{B})$ then necessarily $\omega(k) \lesssim$ $k^{\alpha} h_{\ell}(k)$, and hence $\ell_{k^{\alpha} h_{\ell}(k)}^{q} \hookrightarrow \ell_{\omega}^{q}$.

Proof Part (a) is an application of $1 \Rightarrow 3$ in the theorem with $\eta=h_{\ell}$ (which under the doubling assumption satisfies $\left\{k^{\alpha} h_{\ell}(k)\right\} \in \mathbb{W}_{+}$for all $\alpha>0$). Part (b) is just a restatement of $3 \Rightarrow 1$ in the theorem, setting $\eta(k)=\omega(k) / k^{\alpha}$ and taking into account Remark 4.3.

5 Examples and applications

In this section we describe the democracy functions h_{ℓ} and h_{r} in various examples which can be found in the literature. Inclusions for $\mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$ and $\mathscr{G}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$ will be obtained inmediately from the results of Sections 3 and 4. The most interesting case appears when \mathcal{B} is a wavelet basis, and \mathbb{B} a function or distribution space in \mathbb{R}^{d} which can be characterized by such basis (eg, the general Besov or Triebel-Lizorkin spaces, $B_{p, q}^{\alpha}$ and $F_{p, q}^{s}$, and also rearrangement invariant spaces as the Orlicz and Lorentz classes, L^{Φ} and $\left.L^{p, q}\right)$. Such characterizations provide a description of each \mathbb{B} as a sequence space, so for simplicity we shall work in this simpler setting, reminding in each case the original function space framework.

Let $\mathcal{D}=\mathcal{D}\left(\mathbb{R}^{d}\right)$ denote the family of all dyadic cubes Q in \mathbb{R}^{d}, ie

$$
\mathcal{D}=\left\{Q_{j, k}=2^{-j}\left([0,1)^{d}+k\right): j \in \mathbb{Z}, k \in \mathbb{Z}^{d}\right\} .
$$

We shall consider sequences indexed by $\mathcal{D}, \mathbf{s}=\left\{s_{Q}\right\}_{Q \in \mathcal{D}}$, endowed with quasinorms of the following form

$$
\begin{equation*}
\left\|\left(\sum_{Q \in \mathcal{D}}\left(|Q|^{\gamma-\frac{1}{2}}\left|s_{Q}\right| \chi_{Q}(\cdot)\right)^{r}\right)^{1 / r}\right\|_{\mathbb{X}} \tag{5.1}
\end{equation*}
$$

where $0<r \leq \infty, \gamma \in \mathbb{R}$ and \mathbb{X} is a suitable quasi-Banach function space in \mathbb{R}^{d}, such as the ones we consider below. The canonical basis $\mathcal{B}_{c}=\left\{\mathbf{e}_{Q}\right\}_{Q \in \mathcal{D}}$ is formed by the sequences \mathbf{e}_{Q} with entry 1 at Q and 0 otherwise. In each of the examples below, the greedy algorithms and democracy functions are considered with respect to the normalized basis $\mathcal{B}=\left\{\mathbf{e}_{Q} /\left\|\mathbf{e}_{Q}\right\|_{\mathbb{B}}\right\}$. Similarly, when stating the corresponding results for the functional setting we shall write \mathcal{W} for the wavelet basis.

Example $5.1\left(\mathbb{X}=L^{p}\left(\mathbb{R}^{d}\right), 0<p<\infty\right)$ In this case, it is customary to consider the sequence spaces $\mathfrak{f}_{p, r}^{s}, s \in \mathbb{R}, 0<r \leq \infty$, with quasi-norms given by

$$
\|\mathbf{s}\|_{f_{p, r}}:=\left\|\left(\sum_{Q \in \mathcal{D}}\left(|Q|^{-\frac{s}{d}-\frac{1}{2}}\left|s_{Q}\right| \chi_{Q}(\cdot)\right)^{r}\right)^{1 / r}\right\|_{L^{p}\left(\mathbb{R}^{d}\right)} .
$$

It was proved in $[11,16,18]$ that, for all $s \in \mathbb{R}$ and $0<r \leq \infty$,

$$
\begin{equation*}
h_{\ell}\left(N ; \mathfrak{f}_{p, r}^{s}\right) \approx h_{r}\left(N ; \mathfrak{f}_{p, r}^{s}\right) \approx N^{1 / p} \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{A}_{q}^{\alpha}\left(f_{p, r}^{s}\right)=\ell^{\tau, q}\left(f_{p, r}^{s}\right)=\left\{\mathbf{s}: \quad\left\{s_{Q}\left\|e_{Q}\right\|_{f_{p, r}^{s}}\right\}_{Q} \in \ell^{\tau, q}\right\}, \tag{5.3}
\end{equation*}
$$

if $\frac{1}{\tau}=\alpha+\frac{1}{p}$, as asserted in Theorem 1.2.
It is well-known that $f_{p, r}^{s}$ coincides with the coefficient space under a wavelet basis \mathcal{W} of the (homogeneous) Triebel-Lizorkin space $\dot{F}_{p, r}^{s}\left(\mathbb{R}^{d}\right)$, defined in terms of Littlewood-Paley theory (see e.g. [10, 22, 26]). In particular, under suitable decay and smoothness on the wavelet family (so that it is an unconditional basis of the involved spaces) the statement in (5.3) can be translated into

$$
\mathcal{A}_{q}^{\alpha}\left(\mathcal{W}, \dot{F}_{p, r}^{s}\left(\mathbb{R}^{d}\right)\right)=\mathscr{G}_{q}^{\alpha}\left(\mathcal{W}, \dot{F}_{p, r}^{s}\left(\mathbb{R}^{d}\right)\right)=\dot{B}_{q, q}^{s+\alpha d}\left(\mathbb{R}^{d}\right)
$$

when $\frac{1}{q}=\alpha+\frac{1}{p}$. We refer to $[5,11,16,17]$ for details and further results.
Example 5.2 (Weighted Lebesgue spaces $\left.\mathbb{X}=L^{p}(w), 0<p<\infty\right)$ For weights $w(x)$ in the Muckenhoupt class $A_{\infty}\left(\mathbb{R}^{d}\right)$, one can define sequence spaces $f_{p, r}^{s}(w)$ with the quasi-norm

$$
\|\mathbf{s}\|_{f_{p, r}(w)}:=\left\|\left(\sum_{Q \in \mathcal{D}}\left(|Q|^{-\frac{s}{d}-\frac{1}{2}}\left|s_{Q}\right| \chi_{Q}(\cdot)\right)^{r}\right)^{1 / r}\right\|_{L^{p}\left(\mathbb{R}^{d}, w\right)} .
$$

Similar computations as in the previous case in this more general situation will also lead to the identities in (5.2) and (5.3), with $\mathfrak{f}_{p, r}^{s}$ replaced by $f_{p, r}^{s}(w)$. We refer to [21, 27] for details in some special cases.

When \mathcal{W} is a (sufficiently smooth) orthonormal wavelet basis and w is a weight in the Muckenhoupt class $A_{p}\left(\mathbb{R}^{d}\right), 1<p<\infty$, then $\mathfrak{f}_{p, 2}^{0}(w)$ becomes the coefficient space of the weighted Lebesgue space $L^{p}(w)$ (see e.g. [1]). One then obtains as special case

$$
h_{\ell}\left(N ; \mathcal{W}, L^{p}(w)\right) \approx h_{r}\left(N ; \mathcal{W}, L^{p}(w)\right) \approx N^{\frac{1}{p}}
$$

Moreover, if $\omega \in A_{\tau}\left(\mathbb{R}^{d}\right)$,

$$
\mathcal{A}_{\tau}^{\alpha}\left(\mathcal{W}, L^{p}(w)\right) \approx \mathscr{G}_{\tau}^{\alpha}\left(\mathcal{W}, L^{p}(w)\right) \approx \dot{B}_{\tau, \tau}^{\alpha d}\left(w^{\tau / p}\right), \quad \text { if } \frac{1}{\tau}=\alpha+\frac{1}{p}
$$

where $\dot{B}_{\tau, q}^{\alpha}(w)$ denotes a weighted Besov space (see [27] for details).

Example 5.3 (Orlicz spaces $\mathbb{X}=L^{\Phi}\left(\mathbb{R}^{d}\right)$) Following [12], we denote by \mathfrak{f}^{Φ} the sequence space with quasi-norm

$$
\|\mathbf{s}\|_{f^{\Phi}}:=\left\|\left(\sum_{Q \in \mathcal{D}}\left(\left|s_{Q}\right| \frac{\chi Q(\cdot)}{|Q|^{1 / 2}}\right)^{2}\right)^{1 / 2}\right\|_{L^{\Phi}\left(\mathbb{R}^{d}\right)}
$$

where L^{Φ} is an Orlicz space with non-trivial Boyd indices. If we denote by $\varphi(t)=1 / \Phi^{-1}(1 / t)$, the fundamental function of L^{Φ}, then it is shown in [12] that

$$
h_{\ell}\left(N ; \mathfrak{f}^{\Phi}\right) \approx \inf _{s>0} \frac{\varphi(N s)}{\varphi(s)} \quad \text { and } \quad h_{r}\left(N ; \mathfrak{f}^{\Phi}\right) \approx \sup _{s>0} \frac{\varphi(N s)}{\varphi(s)},
$$

with the two expressions being equivalent iff $\varphi(t)=t^{1 / p}$ (ie, iff $L^{\Phi}=L^{p}$). Thus, these are first examples of non-democratic spaces, with a wide range of possibilities for the democracy functions. The theorems in Sections 3 and 4 recover the embeddings obtained in [12] for the approximation classes $\mathcal{A}_{q}^{\alpha}\left(\mathfrak{f}^{\Phi}\right)$ and $\mathscr{G}_{q}^{\alpha}\left(\mathfrak{f}^{\Phi}\right)$ in terms of weighted discrete Lorentz spaces. When using suitable wavelet bases, these lead to corresponding inclusions for $\mathcal{A}_{q}^{\alpha}\left(\mathcal{W}, L^{\Phi}\right)$ and $\mathscr{G}_{q}^{\alpha}\left(\mathcal{W}, L^{\Phi}\right)$, some of which can be expressed in terms of Besov spaces of generalized smoothness (see [12] for details).

Example 5.4 (Lorentz spaces $\left.\mathbb{X}=L^{p, q}\left(\mathbb{R}^{d}\right), 0<p, q<\infty\right)$ Consider sequence spaces ${ }^{p, q}$ defined by the following quasi-norms

$$
\|\mathbf{s}\|_{\mid p, q}:=\left\|\left(\sum_{Q \in \mathcal{D}}\left(\left|s_{Q}\right| \frac{\chi Q(\cdot)}{|Q|^{1 / 2}}\right)^{2}\right)^{1 / 2}\right\|_{L^{p, q}\left(\mathbb{R}^{d}\right)}
$$

Their democracy functions have been computed in [14], obtaining

$$
h_{\ell}\left(N ; \mathfrak{l}^{p, q}\right) \approx N^{\frac{1}{\max (p, q)}} \quad \text { and } \quad h_{r}\left(N ; \mathfrak{l}^{p, q}\right) \approx N^{\frac{1}{\min (p, q)}} .
$$

These imply corresponding inclusions for the classes $\mathcal{A}_{s}^{\alpha}\left({ }^{p}, q\right)$ and $\mathscr{G}_{s}^{\alpha}\left({ }^{p}, q\right)$ in terms of discrete Lorentz spaces $\ell^{\tau, s}$ (as described in the theorems of Sections 3 and 4). The spaces $\mathfrak{l}^{p, q}$ characterize, via wavelets, the usual Lorentz spaces $L^{p, q}\left(\mathbb{R}^{d}\right)$ when $1<p<\infty$ and $1 \leq q<\infty$ [32]. Hence inclusions for $\mathcal{A}_{s}^{\alpha}\left(\mathcal{W}, L^{p, q}\right)$ and $\mathscr{G}_{s}^{\alpha}\left(\mathcal{W}, L^{p, q}\right)$ can be obtained using standard Besov spaces.

Example 5.5 (Hyperbolic wavelets) For $0<p<\infty$, consider now the sequence space

$$
\|\mathbf{s}\|_{f_{\text {hyp }}^{p}}:=\left\|\left(\sum_{R}\left(\left|s_{R}\right| \frac{\chi_{R}(\cdot)}{|R|^{1 / 2}}\right)^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

where R runs over the family of all dyadic rectangles of \mathbb{R}^{d}, that is $R=$ $I_{1} \times \ldots \times I_{d}$, with $I_{i} \in \mathcal{D}(\mathbb{R}), i=1, \ldots, d$. This gives another example of nondemocratic basis. In fact, the following result is proved in [38, Proposition 11] (see also [34]):
(a) If $0<p \leq 2$,

$$
h_{\ell}\left(N ; \mathfrak{f}_{\mathrm{hyp}}^{p}\right) \approx N^{1 / p}(\log N)^{\left(\frac{1}{2}-\frac{1}{p}\right)(d-1)} \quad \text { and } \quad h_{r}\left(N ; \mathfrak{f}_{\mathrm{hyp}}^{p}\right) \approx N^{1 / p}
$$

(b) If $2 \leq p<\infty$,

$$
h_{\ell}\left(N ; \mathfrak{f}_{\mathrm{hyp}}^{p}\right) \approx N^{1 / p} \quad \text { and } \quad h_{r}\left(N ; \mathfrak{f}_{\mathrm{hyp}}^{p}\right) \approx N^{1 / p}(\log N)^{\left(\frac{1}{2}-\frac{1}{p}\right)(d-1)}
$$

If \mathcal{H}_{d} denotes the multidimensional (hyperbolic) Haar basis, then $\mathfrak{f}_{\text {hyp }}^{p}$ becomes the coefficient space of the usual $L^{p}\left(\mathbb{R}^{d}\right)$ if $1<p<\infty$ (and the dyadic Hardy space $H^{p}\left(\mathbb{R}^{d}\right)$ if $\left.0<p \leq 1\right)$. In this case, one obtains corresponding inclusions for the classes $\mathcal{A}_{q}^{\alpha}\left(\mathcal{H}_{d}, L^{p}\right)$ and $\mathscr{G}_{q}^{\alpha}\left(\mathcal{H}_{d}, L^{p}\right)$ (see also [19, Theorem 5.2]), some of which could possibly be expressed in terms of Besov spaces of bounded mixed smoothness [6, 19].

Example 5.6 (Bounded mean oscillation) Let bmo denote the space of sequences $\mathbf{s}=\left\{s_{I}\right\}_{I \in \mathcal{D}}$ with

$$
\begin{equation*}
\|\mathbf{s}\|_{b m o}=\sup _{I \in \mathcal{D}}\left(\frac{1}{|I|} \sum_{J \subset I, J \in \mathcal{D}}\left|s_{J}\right|^{2}|J|\right)^{1 / 2}<\infty \tag{5.4}
\end{equation*}
$$

This sequence space gives the correct characterization of $B M O(\mathbb{R})$ for sufficiently smooth wavelet bases appropriately normalized(see [10, 16, 37]). Their democracy functions are determined by

$$
\begin{equation*}
h_{\ell}(N ; b m o) \approx 1, \quad h_{r}(N ; b m o) \approx(\log N)^{1 / 2} \tag{5.5}
\end{equation*}
$$

The first part of (5.5) is easy to prove, and the second follows, for instance, by an argument similar to the one presented in the proof of [28, Lemma 3]. Our results of Sections 3 and 4 give in this case the inclusions:

$$
\begin{equation*}
\ell_{k^{\alpha} \sqrt{\log k}}^{q} \hookrightarrow \mathscr{G}_{q}^{\alpha}(b m o) \hookrightarrow \mathcal{A}_{q}^{\alpha}(b m o) \hookrightarrow \ell_{k^{\alpha}}^{q}=\ell^{1 / \alpha, q} \tag{5.6}
\end{equation*}
$$

However, this is not the best one can say for the approximation classes \mathcal{A}_{q}^{α}. A result proved in [30] (see also Proposition 11.6 in [16]) shows that one actually has

$$
\mathcal{A}_{q}^{\alpha}(b m o)=\mathcal{A}_{q}^{\alpha}\left(\ell^{\infty}\right)=\ell^{1 / \alpha, q}
$$

for all $\alpha>0$ and $q \in(0, \infty]$. For $0<r<\infty$ one can define the space $b m o_{r}$ replacing the 2 by r in (5.4); it can then be shown that $h_{r}\left(N ; b m o_{r}\right) \approx(\log N)^{1 / r}$ and $\mathcal{A}_{q}^{\alpha}\left(b m o_{r}\right)=\ell^{1 / \alpha, q}$.

6 Democracy functions for $\mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$ and $\mathscr{G}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$

As usual, we fix a (normalized) unconditional basis $\mathcal{B}=\left\{e_{j}\right\}_{j=1}^{\infty}$ in \mathbb{B}. In this section we compute the democracy functions for the spaces $\mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$ and
$\mathscr{G}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$, in terms of the democracy functions in the ambient space \mathbb{B}. To distinguish among these notions we shall use, respectively, the notations

$$
h_{\ell}\left(N ; \mathcal{A}_{q}^{\alpha}\right), \quad h_{\ell}\left(N ; \mathscr{G}_{q}^{\alpha}\right) \quad \text { and } \quad h_{\ell}(N ; \mathbb{B}),
$$

and similarly for h_{r} (recall the definitions in Section 2.5). Since we shall use the embeddings in Sections 3 and 4, observe first that

$$
\begin{equation*}
h_{\ell}\left(N ; \ell_{\omega}^{q}(\mathcal{B}, \mathbb{B})\right) \approx h_{r}\left(N ; \ell_{w}^{q}(\mathcal{B}, \mathbb{B})\right) \approx \omega(N) \tag{6.1}
\end{equation*}
$$

for all $\omega \in \mathbb{W}_{+}$and $0<q \leq \infty$. This is immediate from the definition of the spaces $\ell_{\omega}^{q}(\mathcal{B}, \mathbb{B})$ and Lemma 2.3.

Proposition 6.1 Fix $\alpha>0$ and $0<q \leq \infty$. If $h_{\ell}(\cdot ; \mathbb{B})$ is doubling then
(a) $h_{\ell}\left(N ; \mathscr{G}_{q}^{\alpha}\right) \approx N^{\alpha} h_{\ell}(N ; \mathbb{B})$.
(b) $h_{r}\left(N ; \mathscr{G}_{q}^{\alpha}\right) \approx N^{\alpha} h_{r}(N ; \mathbb{B})$.

In particular, \mathcal{B} is democratic in $\mathscr{G}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$ if and only if \mathcal{B} is democratic in \mathbb{B}.
Proof The inequalities " \gtrsim " in (a), and " \lesssim " in (b) follow immediately from the embeddings

$$
\ell_{k^{\alpha} h_{r}(k)}^{q}(\mathcal{B} ; \mathbb{B}) \hookrightarrow \mathscr{G}_{q}^{\alpha}(\mathcal{B}, \mathbb{B}) \hookrightarrow \ell_{k^{\alpha} h_{\ell}(k)}^{q}(\mathcal{B} ; \mathbb{B})
$$

and the remark in (6.1). Thus we must show the converse inequalities. To establish (a), given $N=1,2,3, \ldots$ choose Γ with $|\Gamma|=N$ and so that $\left\|1_{\Gamma}\right\|_{\mathbb{B}} \leq$ $2 h_{\ell}(N ; \mathbb{B})$. Then, using the trivial bound in (4.1) we obtain

$$
h_{\ell}\left(N ; \mathscr{G}_{q}^{\alpha}\right) \leq\left\|1_{\Gamma}\right\|_{\mathscr{G}_{q}^{\alpha}} \lesssim N^{\alpha}\left\|1_{\Gamma}\right\|_{\mathbb{B}} \approx N^{\alpha} h_{\ell}(N ; \mathbb{B})
$$

We now prove " \gtrsim " in (b). Given $N=1,2, \ldots$, choose first Γ with $|\Gamma|=N$ and $\left\|1_{\Gamma}\right\|_{\mathbb{B}} \geq \frac{1}{2} h_{r}(N ; \mathbb{B})$, and then any Γ^{\prime} disjoint with Γ with $\left|\Gamma^{\prime}\right|=N$. Then

$$
h_{r}\left(2 N ; \mathscr{G}_{q}^{\alpha}\right) \geq\left\|1_{\Gamma \cup \Gamma^{\prime}}\right\|_{\mathscr{G}_{q}^{\alpha}} \gtrsim N^{\alpha} \gamma_{N}\left(1_{\Gamma \cup \Gamma^{\prime}} ; \mathbb{B}\right) \gtrsim N^{\alpha}\left\|1_{\Gamma}\right\|_{\mathbb{B}} \approx N^{\alpha} h_{r}(N ; \mathbb{B}) .
$$

The required bound then follows from the doubling property of h_{r}.
Proposition 6.2 Fix $\alpha>0$ and $0<q \leq \infty$, and assume that $h_{\ell}(\cdot ; \mathbb{B})$ is doubling. Then
(a) $h_{\ell}\left(N ; \mathcal{A}_{q}^{\alpha}\right) \approx N^{\alpha} h_{\ell}(N ; \mathbb{B})$.
(b) $h_{r}\left(N ; \mathcal{A}_{q}^{\alpha}\right) \lesssim N^{\alpha} h_{r}(N ; \mathbb{B})$.

In particular, if \mathcal{B} is democratic in \mathbb{B} then \mathcal{B} is democratic in $\mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$.
Proof As before, " \gg " in (a), and " \lesssim " in (b) follow immediately from the embeddings

$$
\ell_{k^{\alpha} h_{r}(k)}^{q}(\mathcal{B} ; \mathbb{B}) \hookrightarrow \mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B}) \hookrightarrow \ell_{k^{\alpha} h_{\ell}(k)}^{q}(\mathcal{B} ; \mathbb{B}) .
$$

The converse inequality in (a) follows from the previous proposition and the trivial inclusion $\mathscr{G}_{q}^{\alpha} \hookrightarrow \mathcal{A}_{q}^{\alpha}$.

As shown in Example 5.6, the converse to the last statement in Proposition 6.2 is not necessarily true. The space $\mathbb{B}=b m o$ is not democratic, but their approximation classes $\mathcal{A}_{q}^{\alpha}(b m o)=\ell^{1 / \alpha, q}$ are democratic. Moreover, this example shows that the converse to the inequality in (b) does not necessarily hold, since

$$
h_{r}\left(N ; \mathcal{A}_{\alpha}^{q}(b m o)\right)=N^{\alpha} \quad \text { but } \quad N^{\alpha} h_{r}(N ; b m o) \approx N^{\alpha}(\log N)^{1 / 2}
$$

Nevertheless, we can give a sufficient condition for $h_{r}\left(N ; \mathcal{A}_{q}^{\alpha}\right) \approx$ $N^{\alpha} h_{r}(N ; \mathbb{B})$, which turns out to be easily verifiable in all the other examples presented in §5.

Property (H) We say that \mathcal{B} satisfies the Property (H) if for each $n=$ $1,2,3, \ldots$ there exist $\Gamma_{n} \subset \mathbb{N}$, with $\left|\Gamma_{n}\right|=2^{n}$, satisfying the property

$$
\left\|1_{\Gamma^{\prime}}\right\|_{\mathbb{B}} \approx h_{r}\left(2^{n-1} ; \mathbb{B}\right), \quad \forall \Gamma^{\prime} \subset \Gamma_{n} \quad \text { with } \quad\left|\Gamma^{\prime}\right|=2^{n-1}
$$

Proposition 6.3 Assume that \mathcal{B} satisfies the Property (H). Then, for all $\alpha>0$ and $0<q \leq \infty$

$$
h_{r}\left(N ; \mathcal{A}_{q}^{\alpha}\right) \approx N^{\alpha} h_{r}(N ; \mathbb{B})
$$

Proof We must show " \gtrsim ", for which we argue as in the proof of Proposition 6.1. Given $N=2^{n}$, select Γ_{n} as in the definition of Property (H). Then,

$$
h_{r}\left(N ; \mathcal{A}_{q}^{\alpha}\right) \geq\left\|1_{\Gamma_{n}}\right\|_{\mathcal{A}_{q}^{\alpha}} \gtrsim N^{\alpha} \sigma_{N / 2}\left(1_{\Gamma_{n}}\right) .
$$

Now, the property (H) (and the remark in (2.4)) give

$$
\sigma_{N / 2}\left(1_{\Gamma_{n}}\right)=\inf \left\{\left\|1_{\Gamma^{\prime}}\right\|_{\mathbb{B}}: \quad \Gamma^{\prime} \subset \Gamma,\left|\Gamma^{\prime}\right|=N / 2\right\} \approx h_{r}(N / 2 ; \mathbb{B}) \approx h_{r}(N ; \mathbb{B})
$$

Combining these two facts the proposition follows for $N=2^{n}$. For general N use the result just proved and the doubling property of h_{r}.

As an immediate consequence, the property (H) allows to remove the possible logarithmic loss for the embedding $\ell_{k^{\alpha} h_{r}(k)}^{q}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$ discussed in Corollary 3.9.

Corollary 6.4 (More about optimality for inclusions into \mathcal{A}_{q}^{α}) Assume that $(\mathbb{B}, \mathcal{B})$ satisfies property (H). If for some $\alpha>0, q \in(0, \infty]$ and $\omega \in \mathbb{W}$ + we have $\ell_{\omega}^{q}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$, then necessarily $\omega(k) \gtrsim k^{\alpha} h_{r}(k)$, and therefore $\ell_{\omega}^{q} \hookrightarrow$ $\ell_{k^{\alpha} h_{r}(k)}^{q}$.

The following examples show that Property (H) is often satisfied.
Example 6.1 Wavelet bases in Orlicz spaces $L^{\Phi}\left(\mathbb{R}^{d}\right)$ satisfy the property (H). Indeed, recall from [12, Theorem 1.2] (see also Example 5.3) that

$$
\begin{equation*}
h_{r}\left(N ; L^{\Phi}\right) \approx \sup _{s>0} \varphi(N s) / \varphi(s) \tag{6.2}
\end{equation*}
$$

Moreover, any collection Γ of N pairwise disjoint dyadic cubes with the same fixed size $a>0$ satisfies

$$
\begin{equation*}
\left\|1_{\Gamma}\right\|_{L^{\triangleright}} \approx \varphi(N a) / \varphi(a), \tag{6.3}
\end{equation*}
$$

(see eg [12, Lemma 3.1]). Thus, for each $N=2^{n}$, we first select $a_{n}=2^{j_{n} d}$ so that $h_{r}\left(2^{n} ; L^{\Phi}\right) \approx \varphi\left(2^{n} a_{n}\right) / \varphi\left(a_{n}\right)$, and then we choose as Γ_{n} any collection of 2^{n} pairwise disjoint cubes with constant size a_{n}. Then, any subfamily $\Gamma^{\prime} \subset \Gamma_{n}$ with $\left|\Gamma^{\prime}\right|=N / 2$, satisfies

$$
\left\|1_{\Gamma^{\prime}}\right\|_{L^{\Phi}} \approx \varphi\left((N / 2) a_{n}\right) / \varphi\left(a_{n}\right) \approx \varphi\left(N a_{n}\right) / \varphi\left(a_{n}\right) \approx h_{r}(N) \approx h_{r}(N / 2)
$$

by (6.3) and the doubling property of φ and h_{r}.
Example 6.2 Wavelet bases in Lorentz spaces $L^{p, q}\left(\mathbb{R}^{d}\right), 1<p, q<\infty$. These also satisfy the property (H). Indeed, it can be shown that any set Γ consisting of N disjoint cubes of the same size has

$$
\left\|1_{\Gamma}\right\|_{L^{p, q}} \approx N^{\frac{1}{p}},
$$

while sets Δ consisting of N disjoint cubes all having different sizes satisfy

$$
\left\|1_{\Delta}\right\|_{L^{p, q}} \approx N^{\frac{1}{q}} .
$$

(see $\left[14,(3.6)\right.$ and (3.8)]). Since $h_{r}(N) \approx N^{1 /(p \wedge q)}$, we can define the Γ_{n} 's with sets of the first type when $p \leq q$, and with sets of the second type when $q<p$, to obtain in both cases a collection satisfying the hypotheses of property (H).

Example 6.3 The hyperbolic Haar system in $L^{p}\left(\mathbb{R}^{d}\right)$ from Example 5.5 also satisfies property (H). In this case, again, any set Γ consisting of N disjoint rectangles has

$$
\left\|1_{\Gamma}\right\|_{L^{p}\left(\mathbb{R}^{d}\right)}=N^{\frac{1}{p}}
$$

On the other hand, if Δ_{n} denotes the set of all the dyadic rectangles in the unit cube with fixed size 2^{-n}, then

$$
\begin{equation*}
\left\|1_{\Delta_{n}}\right\|_{L^{p}\left(\mathbb{R}^{d}\right)} \approx 2^{n / p} n^{(d-1) / 2} \approx\left|\Delta_{n}\right|^{1 / p}\left(\log \left|\Delta_{n}\right|\right)^{(d-1)\left(\frac{1}{2}-\frac{1}{p}\right)} \tag{6.4}
\end{equation*}
$$

Moreover, it is not difficult to show that any $\Delta^{\prime} \subset \Delta_{n}$ with $\left|\Delta^{\prime}\right|=\left|\Delta_{n}\right| / 2$ also satisfies (6.4) (with Δ_{n} replaced by Δ^{\prime}). Hence, combining these two cases and using the description of $h_{r}(N)$ in Example 5.5, one easily establishes the property (H).

7 Counterexamples for the classes $\mathscr{G}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$

7.1 Conditions for $\mathscr{G}_{q}^{\alpha} \neq \mathcal{A}_{q}^{\alpha}$

Recall from Section 2.3 that $\mathscr{G}_{q}^{\alpha}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathcal{A}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$, with equality of the spaces when \mathcal{B} is a greedy basis. It is known that there are some conditional
democratic bases for which $\mathscr{G}_{q}^{\alpha}=\mathcal{A}_{q}^{\alpha}$ (see [13, Remark 6.2]). For unconditional bases, however, one could ask whether non-democracy necessarily implies that $\mathscr{G}_{q}^{\alpha} \neq \mathcal{A}_{q}^{\alpha}$. We do not know how to prove such a general result, but we can show that the inclusion $\mathcal{A}_{q}^{\alpha} \hookrightarrow \mathscr{G}_{q}^{\alpha}$ must fail whenever the gap between $h_{\ell}(N)$ and $h_{r}(N)$ is at least logarithmic (and even less than that). More precisely, we have the following.

Proposition 7.1 Let \mathcal{B} be an unconditional basis in \mathbb{B} and $\alpha>0$. Suppose that there exist integers $p_{N} \geq q_{N} \geq 1, N=1,2, \ldots$ such that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{p_{N}}{q_{N}}=\infty \quad \text { and } \quad \frac{h_{r}\left(q_{N}\right)}{h_{\ell}\left(p_{N}\right)} \gtrsim\left(\frac{p_{N}}{q_{N}}\right)^{\alpha} \tag{7.1}
\end{equation*}
$$

Then the inclusion $\mathcal{A}_{\tau}^{\alpha}(\mathcal{B}, \mathbb{B}) \hookrightarrow \mathscr{G}_{\tau}^{\alpha}(\mathcal{B}, \mathbb{B})$ does not hold for any $\tau \in(0, \infty]$.
Proof For each N, choose $\Gamma_{l}, \Gamma_{r} \subset \mathbb{N}$ with $\left|\Gamma_{l}\right|=p_{N},\left|\Gamma_{r}\right|=q_{N}$, and such that

$$
\begin{equation*}
\left\|1_{\Gamma_{l}}\right\|_{\mathbb{B}} \leq 2 h_{\ell}\left(p_{N}\right), \quad\left\|1_{\Gamma_{r}}\right\|_{\mathbb{B}} \geq \frac{1}{2} h_{r}\left(q_{N}\right) \tag{7.2}
\end{equation*}
$$

Set $x_{N}=\mathbf{1}_{\Gamma_{r}}+2 \cdot \mathbf{1}_{\Gamma_{l}-\Gamma_{l} \cap \Gamma_{r}}$. Since $\#\left(\Gamma_{l}-\Gamma_{l} \cap \Gamma_{r}\right) \geq p_{N}-q_{N}$, when $k \in$ $\left[1, p_{N}-q_{N}\right.$] we have

$$
\left\|x_{N}-G_{k}\left(x_{N}\right)\right\|_{\mathbb{B}} \geq\left\|1_{\Gamma_{r}}\right\|_{\mathbb{B}} \geq \frac{1}{2} h_{r}\left(q_{N}\right) .
$$

Therefore, using $p_{N}-q_{N}>p_{N} / 2$ (since $p_{N} / q_{N}>2$ for N large), we obtain that

$$
\begin{equation*}
\left\|x_{N}\right\|_{\mathscr{G}_{\tau}^{\alpha}(\mathcal{B}, \mathbb{B})} \geq \frac{1}{2}\left[\sum_{k=1}^{p_{N} / 2}\left(k^{\alpha} h_{r}\left(q_{N}\right)\right)^{\tau} \frac{1}{k}\right]^{\frac{1}{\tau}} \gtrsim h_{r}\left(q_{N}\right) p_{N}^{\alpha} . \tag{7.3}
\end{equation*}
$$

On the other hand, we can estimate the norm of x_{N} as follows:

$$
\begin{equation*}
\left\|x_{N}\right\|_{\mathbb{B}} \lesssim\left\|1_{\Gamma_{r}}\right\|_{\mathbb{B}}+\left\|1_{\Gamma_{l}-\Gamma_{l} \cap \Gamma_{r}}\right\|_{\mathbb{B}} \leq h_{r}\left(q_{N}\right)+2 h_{\ell}\left(p_{N}\right) \lesssim h_{r}\left(q_{N}\right) \tag{7.4}
\end{equation*}
$$

where the last inequality is true for N large due to (7.1). Thus

$$
\begin{equation*}
\sigma_{k}\left(x_{N}\right) \leq\left\|x_{N}\right\|_{\mathbb{B}} \lesssim h_{r}\left(q_{N}\right) . \tag{7.5}
\end{equation*}
$$

Next, if $k \geq q_{N}$, by (7.2)

$$
\begin{equation*}
\sigma_{k}\left(x_{N}\right) \leq 2\left\|1_{\Gamma_{l}-\Gamma_{l} \cap \Gamma_{r}}\right\|_{\mathbb{B}} \leq 2\left\|1_{\Gamma_{l}}\right\|_{\mathbb{B}} \lesssim h_{\ell}\left(p_{N}\right) . \tag{7.6}
\end{equation*}
$$

Combining (7.4), (7.5) and (7.6) we see that

$$
\begin{align*}
\left\|x_{N}\right\|_{\mathcal{A}_{\tau}^{\alpha}(\mathcal{B}, \mathbb{B})} & \lesssim h_{r}\left(q_{N}\right)+\left[\sum_{k=1}^{q_{N}-1}\left(k^{\alpha} h_{r}\left(q_{N}\right)\right)^{\tau} \frac{1}{k}+\sum_{k=q_{N}}^{p_{N}+q_{N}}\left(k^{\alpha} h_{\ell}\left(p_{N}\right)\right)^{\tau} \frac{1}{k}\right]^{\frac{1}{\tau}} \\
& \lesssim h_{r}\left(q_{N}\right)+\left[h_{r}\left(q_{N}\right)^{\tau}\left(q_{N}\right)^{\alpha \tau}+h_{\ell}\left(p_{N}\right)^{\tau}\left(p_{N}\right)^{\alpha \tau}\right]^{\frac{1}{\tau}} \\
& \lesssim h_{r}\left(q_{N}\right)+h_{r}\left(q_{N}\right)\left(q_{N}\right)^{\alpha} \lesssim h_{r}\left(q_{N}\right)\left(q_{N}\right)^{\alpha} \tag{7.7}
\end{align*}
$$

where in the second inequality we have used the elementary fact $\sum_{k=a}^{a+b} k^{\gamma-1} \lesssim$ b^{γ} if $b \geq a$, and the third inequality is due to (7.1). Therefore, from (7.3) and (7.7) we deduce

$$
\frac{\left\|x_{N}\right\|_{\mathscr{G}_{\tau}^{\alpha}}}{\left\|x_{N}\right\|_{\mathcal{A}_{\tau}^{\alpha}}} \gtrsim \frac{h_{r}\left(q_{N}\right)\left(p_{N}\right)^{\alpha}}{h_{r}\left(q_{N}\right)\left(q_{N}\right)^{\alpha}}=\left(\frac{p_{N}}{q_{N}}\right)^{\alpha} \longrightarrow \infty
$$

as $N \rightarrow \infty$. This shows the desired result.
Corollary 7.2 Let \mathcal{B} be an unconditional basis such that $h_{\ell}(N) \lesssim N^{\beta_{0}}$ and $h_{r}(N) \gtrsim N^{\beta_{1}}$, for some $\beta_{1}>\beta_{0} \geq 0$. Then, $\mathscr{G}_{q}^{\alpha} \neq \mathcal{A}_{q}^{\alpha}$ for all $\alpha>0$ and all $q \in$ $(0, \infty]$.

Proof Choose $r, s \in \mathbb{N}$, such that $\frac{\alpha+\beta_{0}}{\alpha+\beta_{1}}<\frac{r}{s}<1$. Take $p_{N}=N^{s}$ and $q_{N}=N^{r}$. Then, $\lim _{N \rightarrow \infty} \frac{p_{N}}{q_{N}}=\lim _{N \rightarrow \infty} N^{s-r}=\infty$ and

$$
\frac{h_{r}\left(q_{N}\right)}{h_{\ell}\left(p_{N}\right)} \gtrsim \frac{N^{r \beta_{1}}}{N^{s \beta_{0}}}>N^{\alpha(s-r)}=\left(\frac{N^{s}}{N^{r}}\right)^{\alpha}=\left(\frac{p_{N}}{q_{N}}\right)^{\alpha}
$$

which proves (7.1) in this case, so that we can apply Proposition 7.1.
Corollary 7.3 Let \mathcal{B} be an unconditional basis such that for some $\beta \geq 0$ and $\gamma>0$ we have either
(i) $\quad h_{r}(N) \gtrsim N^{\beta}(\log N)^{\gamma}$ and $h_{\ell}(N) \lesssim N^{\beta}$, or
(ii) $\quad h_{r}(N) \gtrsim N^{\beta}$ and $h_{\ell}(N) \lesssim N^{\beta}(\log N)^{-\gamma}$.

Then, $\mathscr{G}_{q}^{\alpha} \neq \mathcal{A}_{q}^{\alpha}$ for all $\alpha>0$ and all $q \in(0, \infty]$.
Proof i) Choose $a, b \in \mathbb{N}$ such that $0<\frac{a}{b}<\frac{\gamma}{\alpha+\beta}$. Let $p_{N}=N^{a} 2^{N^{b}}$ and $q_{N}=$ $2^{N^{b}}$. Then, $\lim _{N \rightarrow \infty} \frac{p_{N}}{q_{N}}=\lim _{N \rightarrow \infty} N^{a}=\infty$ and

$$
\frac{h_{r}\left(q_{N}\right)}{h_{\ell}\left(p_{N}\right)} \gtrsim \frac{\left(2^{N^{b}}\right)^{\beta}\left(\log 2^{N^{b}}\right)^{\gamma}}{N^{a \beta}\left(2^{N^{b}}\right)^{\beta}} \approx \frac{N^{b \gamma}}{N^{a \beta}}=N^{b \gamma-a \beta}>N^{a \alpha}=\left(\frac{p_{N}}{q_{N}}\right)^{\alpha}
$$

which proves (7.1) in this case, so that we can apply Proposition 7.1 to conclude the result. The proof of ii) is similar with the same choice of p_{N} and q_{N}.
7.2 Non linearity of $\mathscr{G}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$

We conclude by showing with simple examples that $\mathscr{G}_{q}^{\alpha}(\mathcal{B}, \mathbb{B})$ may not even be a linear space when the basis \mathcal{B} is not democratic.

Let $\mathbb{B}=\ell^{p} \oplus_{\ell^{1}} \ell^{q}, 0<q<p<\infty$; that is, \mathbb{B} consists of pairs $(a, b) \in \ell^{p} \times$ ℓ^{q}, endowed with the quasi-norm $\|a\|_{\ell^{p}}+\|b\|_{\ell^{q}}$. We consider the canonical basis in \mathbb{B}.

Now, set $\beta=\alpha+\frac{1}{p}$ and $x=\left\{\left(k^{-\beta}, 0\right)\right\}_{k \in \mathbb{N}} \in \mathbb{B}$. For $N=1,2,3, \ldots$ we have

$$
\gamma_{N}(x)=\left(\sum_{k>N} \frac{1}{k^{\beta p}}\right)^{1 / p} \approx\left(\frac{1}{N^{\beta p-1}}\right)^{1 / p}=N^{-\alpha}
$$

This shows that $x \in \mathscr{G}_{\infty}^{\alpha}(\mathcal{B}, \mathbb{B})$. Similarly, if we let $\gamma=\alpha+\frac{1}{q}$, then $y=$ $\left\{\left(0, j^{-\gamma}\right)\right\}_{j \in \mathbb{N}}$ belongs to $\mathscr{G}_{\infty}^{\alpha}$. We will show, however, that $x+y \notin \mathscr{G}_{\infty}^{\alpha}$. In fact, we will find a subsequence N_{J} of natural numbers so that

$$
\begin{equation*}
\gamma_{N_{J}}(x+y) \approx \frac{1}{N_{J}^{\alpha \beta / \gamma}} \tag{7.8}
\end{equation*}
$$

(notice that $\beta<\gamma$ since we chose $q<p$). To prove (7.8) let $A_{1}=\{1\}$ and

$$
A_{j}=\left\{k \in \mathbb{N}: \frac{1}{j^{\gamma}} \leq \frac{1}{k^{\beta}}<\frac{1}{(j-1)^{\gamma}}\right\}, \quad j=2,3, \ldots
$$

The number of elements in A_{j} is

$$
\begin{equation*}
\left|A_{j}\right| \approx j^{\gamma / \beta}-(j-1)^{\gamma / \beta} \approx j^{\frac{\nu}{\beta}-1}, \quad j=1,2,3, \ldots \tag{7.9}
\end{equation*}
$$

For $J=2,3,4, \ldots$ let $N_{J}=\sum_{j=1}^{J}\left|A_{j}\right|+J$. From (7.9) we obtain

$$
N_{J} \approx \sum_{j=1}^{J} j^{\frac{\nu}{\beta}-1}+J \approx J^{\frac{\nu}{\beta}}+J \approx J^{\frac{\nu}{\beta}}
$$

since $\gamma>\beta$. Thus,

$$
\begin{aligned}
\gamma_{N_{J}}(x+y) & \approx\left(\sum_{k>J^{\nu} \beta} k^{-\beta p}\right)^{1 / p}+\left(\sum_{j>J} j^{-\gamma q}\right)^{1 / q} \approx\left[\left(J^{\gamma / \beta}\right)^{-\beta p+1}\right]^{1 / p}+\left[J^{-\gamma q+1}\right]^{1 / q} \\
& =J^{-\alpha \gamma / \beta}+J^{-\alpha} \approx J^{-\alpha} \approx\left(N_{J}\right)^{-\alpha \beta / \gamma},
\end{aligned}
$$

proving (7.8).
A simple modification of the above construction can be used to show that the set $\mathscr{G}_{s}^{\alpha}(\mathcal{B}, \mathbb{B})$ is not linear, for any $\alpha>0$ and any $s \in(0, \infty)$.

Note added in Proof C. Cabrelli and U. Molter have pointed out to us that the conditions in Proposition 7.1 hold for every $\alpha>0$ as long as $\lim _{N \rightarrow \infty} h_{r}(N) / h_{l}(N)=\infty$, or even if one only assumes $\lim \sup _{N \rightarrow \infty} h_{r}(N) / h_{l}(N)=\infty$ and h_{l} doubling. A proof of these facts will appear elsewhere.

References

1. Aimar, H.A., Bernardis, A.L., Martín-Reyes, F.J.: Multiresolution approximation and wavelet bases of weighted Lebesgue spaces. J. Fourier Anal. Appl. 9(5), 497-510 (2003)
2. Bennett, C., Sharpley, R.: Interpolation of operators. Academic Press Inc (1988)
3. Bergh, J., Löfström, J.: Interpolation spaces. An introduction, no. 223. Springer-Verlag, New York (1976)
4. Carro, M.J., Raposo, J., Soria, J.: Recent developments in the theory of Lorentz spaces and weighted inequalities. Mem. Am. Math. Soc. 877, 187 (2007)
5. DeVore, R.A.: Nonlinear approximation. Acta Numer. 7, 51-150 (1998)
6. DeVore, R., Konyagin, S., Temlyakov, V.: Hyperbolic wavelet approximation. Constr. Approx. 14, 1-26 (1998)
7. DeVore, R., Popov, V.A.: Interpolation spaces and nonlinear approximation. Function Spaces and Applications (Lund, 1986). Lecture Notes in Math., vol. 1302. Springer, Berlin, pp. 191205 (1988)
8. DeVore, R.A., Temlyakov, V.N.: Some remarks on greedy algorithms. Adv. Comput. Math. 5(2-3), 113-187 (1996)
9. Dilworth, S.J., Kalton, N.J., Kutzarova, D., Temlyakov, V.N.: The thresholding greedy algorithm, greedy bases, and duality. Constr. Approx. 19, 575-597 (2003)
10. Frazier, M., Jawerth, B.: A discrete transform and decomposition of distribution spaces. J. Funct. Anal. 93, 34-170 (1990)
11. Garrigós, G., Hernández, E.: Sharp Jackson and Bernstein inequalities for n-term approximation in sequence spaces with applications. Indiana Univ. Math. J. 53, 1739-1762 (2004)
12. Garrigós, G., Hernández, E., Martell, J.M.: Wavelets, Orlicz spaces and greedy bases. Appl. Comput. Harmon. Anal. 24, 70-93 (2008)
13. Gribonval, R., Nielsen, M.: Some remarks on non-linear approximation with Schauder bases. East. J. Approx. 7(2), 1-19 (2001)
14. Hernández, E., Martell, J.M., de Natividade, M.: Quantifying democracy of wavelet bases in Lorentz spaces. Constr. Approx. 33, 1-14 (2011). doi:10.1007/s00365-010-9113-8
15. Hernández, E., Weiss, G.: A first course on wavelets. CRC Press, Boca Raton, FL (1996)
16. Hsiao, C., Jawerth, B., Lucier, B.J., Yu, X.M.: Near optimal compression of almost optimal wavelet expansions. Wavelets: Mathemathics and Applications, Stud. Adv. Math., vol. 133, pp. 425-446. CRC, Boca Raton, FL (1994)
17. Jawerth, B., Milman, M.: Wavelets and best approximation in Besov spaces. In: Interpolation Spaces and Related Topics (Haifa, 1990), pp. 107-112, Israel Math. Conf. Proc., vol. 5. Bar-Ilan University, Ramat Gan (1992)
18. Jawerth, B., Milman, M.: Weakly rearrangement invariant spaces and approximation by largest elements. In: Interpolation Theory and Applications, pp. 103-110, Contemp. Math., vol. 445. Amer. Math. Soc., Providence, RI (2007)
19. Kamont, A., Temlyakov, V.N.: Greedy approximation and the multivariate Haar system. Stud. Math. 161(3), 199-223 (2004)
20. Kerkyacharian, G., Picard, D.: Entropy, universal coding, approximation, and bases properties. Constr. Approx. 20, 1-37 (2004). doi:10.1007/s00365-003-0556-z
21. Kerkyacharian, G., Picard, D.: Nonlinear approximation and Muckenhoupt weights. Constr. Approx. 24, 123-156 (2006). doi:10.1007/s00365-005-0618-5
22. Kyriazis, G. Multilevel characterization of anisotropic function spaces. SIAM J. Math. Anal. 36, 441-462 (2004)
23. Konyagin, S.V., Temlyakov, V.N.: A remark on greedy approximation in Banach spaces. East. J. Approx. 5, 365-379 (1999)
24. Krein, S., Petunin, J., Semenov, E.: Interpolation of Linear Operators. Translations Math. Monographs, vol. 55. Amer. Math. Soc., Providence (1992)
25. Merucci, C.: Applications of interpolation with a function parameter to Lorentz, Sobolev and Besov spaces. Interpolation Spaces and Allied Topics in Analysis. Lecture Notes in Math., vol. 1070, pp. 183-201. Springer, Berlin (1984)
26. Meyer, Y.: Ondelettes et Operateurs. I: Ondelettes. Hermann, Paris, (1990). [English translation: Wavelets and Operators. Cambridge University Press (1992)]
27. de Natividade, M.: Best approximation with wavelets in weighted Orlicz spaces. Monatsh. Math. 164, 87-114 (2011). doi:10.1007/s00605-010-0244-6
28. Oswald, P.: Greedy algorithms and best m-term approximation with respect to biorthogonal systems. J. Fourier Anal. Appl. 7(4), 325-341 (2001)
29. Pietsch, A.: Approximation spaces. J. Approx. Theory 32, 113-134 (1981)
30. Rochberg, R., Taibleson, M.: An averaging operator on a tree. In: Harmonic analysis and partial differential equations (El Escorial, 1987), pp. 207-213, Lecture Notes in Math., vol. 1384. Springer, Berlin (1989)
31. Stechkin, S.B.: On absolute convergence of orthogonal series. Dokl. Akad. Nauk SSSR 102, 37-40 (1955)
32. Soardi, P.: Wavelet bases in rearrangement invariant function spaces. Proc. Am. Math. Soc. 125(12), 3669-3973 (1997)
33. Temlyakov, V.N.: The best m-term approximation and greedy algorithms. Adv. Comput. Math. 8, 249-265 (1998)
34. Temlyakov, V.N.: Nonlinear m-term approximation with regard to the multivariate Haar system. East. J. Approx. 4, 87-106 (1998)
35. Temlyakov, V.N.: Nonlinear methods of approximation. Found. Comput. Math. 3(1), 33-107 (2003)
36. Temlyakov, V.N.: Greedy approximation. Acta Numer., vol. 17, pp. 235-409, Cambridge University Press (2008)
37. Wojstaszczyk, P.: The Franklin system is an unconditional basis in H^{1}. Ark. Mat. 20, 293-300 (1982)
38. Wojstaszczyk, P.: Greedy algorithm for general biorthogonal systems. J. Approx. Theory 107, 293-314 (2000)
39. Wojstaszczyk, P.: Greediness of the Haar system in rearrangement invariant spaces. Banach Cent. Publ., Warszawa 72, 385-395 (2006)

[^0]: Communicated by Volodya Temlyakov.
 Research supported by Grants MTM2007-60952 and MTM2010-16518 (Spain). Research of M. de Natividade supported by Instituto Nacional de Bolsas de Estudos de Angola, INABE.
 G. Garrigós • E. Hernández (\boxtimes) • M. de Natividade

 Departamento de Matemáticas,
 Universidad Autónoma de Madrid, 28049, Madrid, Spain
 e-mail: eugenio.hernandez@uam.es
 G. Garrigós
 e-mail: gustavo.garrigos@uam.es
 M. de Natividade
 e-mail: maria.denatividade@uam.es

[^1]: ${ }^{1}$ Here, as in the rest of the paper, $X \hookrightarrow Y$ means $X \subset Y$ and there exists $C>0$ such that $\|x\|_{Y} \leq$ $C\|x\|_{X}$ for all $x \in X$. The equality of spaces $X=Y$ is interpreted as $X \hookrightarrow Y$ and $Y \hookrightarrow X$.

