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Abstract

We compute the democracy functions associated with wavelet bases in general Lorentz spaces Λ
q
w and

Λ
q,∞
w , for general weights w and 0 < q < ∞.
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1. Introduction

The Lorentz space Λq
w(Rd) is defined as the set of all measurable f : Rd

→ C such that

‖ f ‖Λ
q
w

:=

[∫
∞

0
| f ∗(t)|qw(t)dt

]1/q

< ∞, (1.1)

where f ∗ is the decreasing rearrangement of f (with respect to the Lebesgue measure) and w is
a positive locally integrable function with the property


∞

0 w(s)ds = ∞. We shall assume that
q ∈ (0,∞).

Special examples include the classical L p,q(Rd) spaces (corresponding to w(t) = t
q
p −1),

and the so called Lorentz–Zygmund spaces L p,q(log L)r , r ∈ R, for which w(t) =
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t
q
p −1

(1 + | log t |)rq (see [1]). More general weights w give rise to larger families such as the
Lorentz–Karamata spaces, and various other examples considered in the literature (see e.g. [7]).

In this note we shall be interested in the efficiency of the greedy algorithm [9] for the N -
term wavelet approximation of functions in Λq

w. It is known that greedy algorithms with wavelet
bases are never optimal in rearrangement invariant spaces, except for the L p classes; see [10].
However, it is possible to quantify the efficiency of the algorithm in a space X by computing the
so called lower and upper democracy functions; that is,

hℓ(N ) = inf
#Γ=N


−
Q∈Γ

ψQ

‖ψQ‖


X

and hr (N ) = sup
#Γ=N


−
Q∈Γ

ψQ

‖ψQ‖


X

, (1.2)

where {ψQ} is a wavelet system indexed by the set D of all dyadic cubes of Rd . Indeed, a precise
expression for hℓ and hr gives rise to optimal inclusions for the approximation classes Aαs (X) in
terms of discrete Lorentz spaces (see [4]).

It is not always an easy matter to compute explicitly the democracy functions hℓ and hr in
non-democratic settings. We refer the reader to [3] for the case of Orlicz spaces LΦ , and to [5]
for the Lorentz spaces L p,q . The objective of this note is to present the computation of hℓ and hr
for the larger family of general Lorentz spaces Λq

w.
As usual, using wavelet theory one can transfer the problem to the discrete setting. We define

the space λq
w consisting of all sequences s = {sQ}Q∈D such that

‖s‖λq
w

:=


 −

Q∈D
|sQ |

2 1
|Q|

χQ(·)

1/2

Λ

q
w

< ∞. (1.3)

It is known that sufficiently regular wavelet bases in Rd give an isomorphism between Λq
w and λq

w

(when the Boyd indices of Λq
w are strictly between 0 and 1; see [8]). Thus studying the democracy

of wavelet bases in Λq
w is equivalent to determining

hℓ(N ) = inf
#Γ=N


−
Q∈Γ

eQ

‖eQ‖λ
q
w


λ

q
w

and hr (N ) = sup
#Γ=N


−
Q∈Γ

eQ

‖eQ‖λ
q
w


λ

q
w

,

where {eQ} denotes the canonical basis in λq
w. We shall assume in the rest of the paper that hℓ

and hr always refer to these quantities (which are comparable to the ones in (1.2) for X = Λq
w,

at least when the wavelet characterization holds).
To state our results we need some notation. We denote the primitive of w by

W (t) :=

∫ t

0
w(s)ds, t ≥ 0.

Recall that Λq
w is quasi-normed if and only if W is doubling (see e.g. [2, 2.2.13]), so we shall

always assume ourselves to be in this situation. Observe also that for all measurable sets E ⊂ Rd

we have

‖χE‖Λ
q
w

= W (|E |)1/q .
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That is, W (t)1/q is the fundamental function of the rearrangement invariant function space Λq
w.

We shall denote by H±

W (t) the dilation functions associated with W , that is

H+

W (t) := sup
s>0

W (ts)

W (s)
and H−

W (t) := inf
s>0

W (ts)

W (s)
.

Since W is doubling these are finite functions. Observe also that H−(t) = 1/H+(1/t). Finally
we denote by iW the lower dilation index of W (see [6] or (2.14) for a precise definition), which
we typically assume to be positive. Our results can be stated as follows.

Theorem 1.4. Assume iW > 0. Then for all N ∈ N we have

hℓ(N ) ≈ inf


−

j∈Z

W (n j 2 jd)

W (2 jd)

1/q

: n j ∈ N ∪ {0} with
−

j

n j = N

 (1.5)

and

hr (N ) ≈ sup


−

j∈Z

W (n j 2 jd)

W (2 jd)

1/q

: n j ∈ N ∪ {0} with
−

j

n j = N

 , (1.6)

where the constants involved in “≈” are independent of N .

Our second result gives a more explicit expression for weights which are monotonic near 0
and ∞, that is, in intervals (0, a) and (b,∞), for some a ≤ b. Observe that most examples
arising in practice do actually satisfy this property.

Theorem 1.7. Assume that w is monotonic near 0 and ∞, and that iW > 0. Then for all N ∈ N

hℓ(N ) ≈ min


N , H−

W (N )
1/q

and hr (N ) ≈ max


N , H+

W (N )
1/q

. (1.8)

In particular:

(a) w increasing implies hℓ(N ) ≈ N 1/q and hr (N ) ≈ H+

W (N )
1/q ;

(b) w decreasing implies hℓ(N ) ≈ H−

W (N )
1/q and hr (N ) ≈ N 1/q .

Finally, we consider the weak versions of the Lorentz spaces Λq
w. We write Λq,∞

w (Rd) for the
set of all f such that

‖ f ‖Λ
q,∞
w

:= sup
t>0

tw{ f ∗ > t}1/q
= sup

s>0
f ∗(s)W (s)1/q < ∞, (1.9)

where 0 < q < ∞. The corresponding sequence space λq,∞
w is defined as in (1.3) with Λq,∞

w in
place of Λq

w. Then we have the following:

Theorem 1.10. Assume iW > 0. Then for all N ∈ N we have

hℓ(N ; λq,∞
w ) ≈ 1 and hr (N ; λq,∞

w ) ≈ H+

W (N )
1/q .

Section 2 contains some preliminaries about Λq
w spaces. The proofs of the theorems are

presented, respectively, in Sections 3–5. Finally, Section 6 contains some examples.
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2. Preliminaries

We need a few elementary properties for the spaces Λq
w. First of all, it is well known that the

(quasi-)norm in Λq
w can also be written as

‖ f ‖Λ
q
w

=

[∫
∞

0
qtq−1W


λ f (t)


dt

]1/q

(2.1)

where λ f (t) = meas {x ∈ Rd
: | f (x)| ≥ t} (see e.g. [2, Prop 2.2.5]). From here it is clear that

f ≤ g H⇒ ‖ f ‖Λ
q
w

≤ ‖g‖Λ
q
w
. (2.2)

We also need discretized versions of (2.1). Let A denote the collection of all sequences {a j }
∞

j=−∞

of positive real numbers such that

inf
a j+1

a j
> 1 and sup

a j+1

a j
< ∞. (2.3)

Clearly {a j
} j∈Z with a > 1 satisfies these requirements, but we shall make use of more general

examples later on. Observe that, in particular, the left condition in (2.3) implies

lim
j→−∞

a j = 0 and lim
j→+∞

a j = +∞. (2.4)

Lemma 2.5. Let {a j } ∈ A. Then

‖ f ‖Λ
q
w

≈

−
j∈Z

aq
j W


λ f (a j )

1/q

. (2.6)

Proof. Define m = inf
a j+1

a j
and M = sup

a j+1
a j

. Then, from (2.1) we obtain

‖ f ‖
q
Λ

q
w

=

−
j∈Z

∫ a j+1

a j

qtq−1W

λ f (t)


dt ≤

−
j∈Z

∫ a j+1

a j

qtq−1dtW

λ f (a j )


=

−
j∈Z


aq

j+1 − aq
j


W


λ f (a j )


≤ (Mq

− 1)
−
j∈Z

aq
j W


λ f (a j )


.

For the converse inequality one argues similarly:

‖ f ‖
q
Λ

q
w

≥

−
j∈Z


aq

j+1 − aq
j


W


λ f (a j+1)


≥ (1 − m−q)

−
j∈Z

aq
j+1W


λ f (a j+1)


. �

In the next lemma we need to use the doubling property W (2t) ≤ cW (t). Since W is
increasing, this property is equivalent to the subadditivity of W (with the same constant c):

W (s + t) ≤ c(W (s)+ W (t)), ∀s, t > 0.

Denote by DW the smallest such constant, that is

DW = sup
s,t>0

W (s + t)

W (s)+ W (t)
. (2.7)
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Also, for a fixed m > 1, we shall denote by Am the subset of all sequences in A with

inf
j∈Z

a j+1

a j
≥ m. (2.8)

Lemma 2.9. Let {a j } ∈ Am with m > D1/q
W . If f ∈ Λq

w then

‖ f ‖Λ
q
w

≈

−
j∈Z

aq
j W


λ f (a j : a j+1)

1/q

, (2.10)

where λ f (a j : a j+1) = meas {x ∈ Rd
: a j ≤ | f (x)| < a j+1}.

Proof. Using λ f (a j ) = λ f (a j : a j+1)+ λ f (a j+1) and the subadditivity of W we obtain

W

λ f (a j )


≤ DW


W


λ f (a j : a j+1)


+ W


λ f (a j+1)


. (2.11)

Define

I =

−
j∈Z

aq
j W


λ f (a j )

 1
q

and I I =

−
j∈Z

aq
j W


λ f (a j : a j+1)

 1
q

.

Clearly I I ≤ I . For the converse, using (2.11) and inf a j+1/a j ≥ m, we see that

I q
≤ DW I I q

+ DW

−
j∈Z

aq
j W


λ f (a j+1)


≤ DW I I q

+ DW

−
j∈Z

aq
j+1

mq W

λ f (a j+1)


= DW I I q

+
DW

mq I q .

Since we are assuming that mq > DW it follows that
1 −

DW

mq


I q

≤ DW I I q .

Thus I ≈ I I and the result follows from Lemma 2.5. �

A similar argument gives:

Lemma 2.12. Let {a j } ∈ Am with m > D1/q
W . If f ∈ Λq,∞

w then

‖ f ‖Λ
q,∞
w

≈ sup
j∈Z

a j W

λ f (a j : a j+1)

1/q
. (2.13)

Recall from [6, p. 53] that the lower dilation index of W is defined by

iW := sup
0<t<1

log H+

W (t)

log t
= lim

t→0

log H+

W (t)

log t
= lim

u→∞

log H−

W (u)

log u
. (2.14)

In this paper we will assume that iW > 0, which implies that for all ϵ > 0

W (su) ≥ Cϵu
iW −ϵW (s), ∀s > 0, ∀u ≥ 1, (2.15)
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for some Cϵ > 0. In Section 3 we shall be interested in applying Lemma 2.9 to the sequence
a j = W (2− jd)−1/q . This sequence clearly satisfies (2.4) (since we assume that


∞

0 w(s)ds =

∞), but the validity of (2.3) depends on the growth of W . We show below how to handle this
under the assumption iW > 0.

Proposition 2.16. Assume that iW > 0. Then the norm equivalences in (2.6), (2.10) and
(2.13) hold for the sequence

a j =
1

W (2− jd)1/q
, j ∈ Z.

The proposition will be an easy consequence of the following lemma.

Lemma 2.17. Assume that iW > 0 and fix m > D1/q
W . Then there exists L0 ∈ N such that for

every subsequence {k j } j∈Z with the property

k j+1 = k j + L0, ∀ j ∈ Z,

the sequence {W (2−k j d)−1/q
} j∈Z belongs to Am .

Proof. Define b j = W (2−k j d)−1/q . By the monotonicity of W and (2.15) we see that
b j+1

b j

q

=
W (2−k j d)

W (2−d(k j +L0))
≥ Cϵ


2d L0

iW −ϵ

.

It suffices to choose ϵ = iW /2 and L0 large enough so that the right hand side is ≥ mq . The
bound from above follows from the doubling property of W . �

Proof of Proposition 2.16. We shall only prove (2.10), since the other cases are similar. Let
L0 be as in the previous lemma. Then, for each r ∈ {0, . . . , L0 − 1}, the sequence a(r) =
a j L0+r = W (2−( j L0+r)d)−1/q


j∈Z belongs to Am . Thus, for each such r , Lemma 2.9 implies

that

‖ f ‖Λ
q
w

≈

−
j∈Z

aq
j L0+r W


λ f (a j L0+r : a( j+1)L0+r )

1/q

, (2.18)

for every f ∈ Λq
w. We first show the inequality “.” for which we choose r = 0 in (2.18). By the

subadditivity of W , there is a constant C = C(W, L0) such that

W

λ f (a j L0 : a( j+1)L0)


≤ C

L0−1−
s=0

W

λ f (a j L0+s : a j L0+s+1)


.

Inserting this into (2.18) (with r = 0) and using a j L0 ≈ a j L0+s (by the doubling property of W )
we easily obtain

‖ f ‖
q
Λ

q
w

.
L0−1−
s=0

−
j∈Z

aq
j L0+s W


λ f (a j L0+s : a j L0+s+1)


=

−
k∈Z

aq
k W


λ f (ak : ak+1)


.

Conversely, since L0 is a finite constant, (2.18) implies that

‖ f ‖
q
Λ

q
w

≈

L0−1−
r=0

−
j∈Z

aq
j L0+r W


λ f (a j L0+r : a( j+1)L0+r )
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&
L0−1−
r=0

−
j∈Z

aq
j L0+r W


λ f (a j L0+r : a j L0+r+1)


=

−
k∈Z

aq
k W


λ f (ak : ak+1)


. �

Finally we state a key “linearization” lemma which holds when iW > 0.

Lemma 2.19. Suppose iW > 0. For every finite collection Γ ⊂ D, and every x ∈ ∪Q∈Γ Q, it
holds that −

Q∈Γ

χQ(x)

W (|Q|)
2
q

1/2

≈
χQx (x)

W (|Qx |)
1
q

(2.20)

where Qx denotes the smallest cube in Γ containing x.

Such linearization arguments have been used by various authors in the context of N -term wavelet
approximation. For an elementary proof and references see e.g. [3, Section 4.2.1].

3. Proof of Theorem 1.4

Let Γ ⊂ D with #Γ = N . We use the notation

1Γ =

−
Q∈Γ

eQ

‖eQ‖λ
q
w

and SΓ (x) =

 −
Q∈Γ

χQ(x)

W (|Q|)
2
q

1/2

.

Observe from (1.3) that

‖eQ‖λ
q
w

= |Q|
−1/2

‖χQ‖Λ
q
w

= |Q|
−1/2W (|Q|)1/q ,

so we are led to estimate the expression

‖1Γ ‖λ
q
w

=


 −

Q∈Γ

χQ(x)

W (|Q|)
2
q

1/2

Λ

q
w

= ‖SΓ ‖Λ
q
w
.

Using (2.6) we see that

‖1Γ ‖λ
q
w

≈

−
j∈Z

aq
j W


|{|SΓ | ≥ a j }|

1/q

.

We choose a j = W (2− jd)−1/q and define Γ j = {Q ∈ Γ : |Q| = 2− jd
}, j ∈ Z. Clearly

SΓ (x) ≥ a j for all x ∈ ∪Q∈Γ j Q, which implies

‖1Γ ‖λ
q
w

&

−
j∈Z

W

| ∪Q∈Γ j Q|


W (2− jd)

1/q

=

−
j∈Z

W (2− jd#Γ j )

W (2− jd)

1/q

.

For the estimate from above we use Lemma 2.19 and denote by FΓ (x) the function on the right
hand side of (2.20). Then (2.10) gives

‖1Γ ‖λ
q
w

≈ ‖FΓ ‖Λ
q
w

≈

−
j∈Z

aq
j W


|{a j ≤ |FΓ | < a j+1}|

1/q

,
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where as before we set a j = W (2− jd)−1/q . Then the condition a j ≤ FΓ (x) < a j+1 implies that
x ∈ ∪Q∈Γ j Q, and therefore

‖1Γ ‖λ
q
w

.

−
j∈Z

W (2− jd#Γ j )

W (2− jd)

1/q

.

We conclude that

‖1Γ ‖λ
q
w

≈

−
j∈Z

W (2− jd#Γ j )

W (2− jd)

1/q

, (3.1)

and since
∑

#Γ j = #Γ = N , this clearly implies (1.6).

4. Proof of Theorem 1.10

The proof for the spaces Λq,∞
w is similar. First observe from the norm definitions that

‖eQ‖λ
q,∞
w

= |Q|
−1/2

‖χQ‖Λ
q,∞
w

= |Q|
−1/2W (|Q|)1/q ,

so we are led to estimate the expression

‖1Γ ‖λ
q,∞
w

=


 −

Q∈Γ

χQ(x)

W (|Q|)
2
q

1/2

Λ

q,∞
w

= ‖SΓ ‖Λ
q,∞
w

.

The lower bound hℓ(N ) ≥ 1 is trivial. To see the optimality, choose Γ formed by pairwise
disjoint cubes all of different sizes. Using (2.13) with a j = W (2− jd)−1/q we easily see that

‖1Γ ‖λ
q,∞
w

≈ sup
j∈Z

a j W

|{a j ≤ SΓ (x) < a j+1}|

1/q
= 1,

which proves the assertion.
To obtain bounds for hr (N ), we use again (2.13) with a j = W (2− jd)−1/q , together with

Lemma 2.19, so

‖1Γ ‖λ
q,∞
w

≈ sup
j∈Z

a j W

|{a j ≤ FΓ (x) < a j+1}|

1/q
≤ sup

j∈Z


W (2− jd#Γ j )

W (2− jd)

 1
q

≤ sup
j∈Z

H+

W (#Γ j )
1/q

≤ H+

W (N )
1/q .

This proves that hr (N ) . H+

W (N )
1/q . For the converse, choose Γ consisting of N pairwise

disjoint cubes all of the same size, say s0. Then,

‖1Γ ‖λ
q,∞
w

=

 1

W (s0)1/q
χ∪Q∈Γ Q


Λ

q,∞
w

=
W (Ns0)

1/q

W (s0)1/q
.

We can select s0 such that the last quantity is comparable to H+

W (N )
1/q , concluding the proof.
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5. Proof of Theorem 1.7

We say that W is of type (A) if for some c ≥ 0 and C > 0 it holds that
W (t0)

t0
≤ C

W (t1)

t1
, for 0 < t0 < t1 ≤ 2c (A1)

W (t1)

t1
≤ C

W (t0)

t0
, for c/2 < t0 < t1 < ∞. (A2)

We say that W is of type (B) if for some c ≥ 0 and C > 0,
W (t1)

t1
≤ C

W (t0)

t0
, for 0 < t0 < t1 ≤ 2c (B1)

W (t0)

t0
≤ C

W (t1)

t1
, for c/2 < t0 < t1 < ∞. (B2)

These conditions can easily be phrased in terms of convexity of W . Namely, when c > 0, type
(A) is the same as W being quasi-convex for small t and quasi-concave for large t , and similarly
for type (B), with opposite convexities in W . Observe that the exact value of the constant c > 0
is irrelevant, since we are assuming that W is doubling. By allowing the case c = 0 we consider
also the situations when W is everywhere quasi-concave (type A), or everywhere quasi-convex
(type B) in the half-line (0,∞).

Lemma 5.1. If w is monotonic near 0 and ∞, then W is either of type (A) or of type (B) for
some c ≥ 0.

Proof. The proof is standard, using the inequalities

min
 x

u
,

y

v


≤

x + y

u + v
≤ max

 x

u
,

y

v


, x, y, u, v > 0.

Indeed, assume that w is increasing in (0, a). Then for 0 < t0 < t1 < a,

W (t1)

t1
=

 t0
0 w(s)ds +

 t1
t0
w(s)ds

t0 + (t1 − t0)

≥ min


1
t0

∫ t0

0
w(s)ds,

1
t1 − t0

∫ t1

t0
w(s)ds


=

W (t0)

t0
,

where in the last step we use that, by the monotonicity of w,

1
t1 − t0

∫ t1

t0
w(s)ds ≥ w(t0) ≥

1
t0

∫ t0

0
w(s)ds.

Similarly, if we assume that w is decreasing in (b,∞) then for t1 > t0,

W (t1)

t1
≤ max


1
t0

∫ t0

0
w(s)ds,

1
t1 − t0

∫ t1

t0
w(s)ds


,

so if we take t0 > 2b the monotonicity of w gives

1
t1 − t0

∫ t1

t0
w(s)ds ≤ w(t0) ≤

1
t0 − b

∫ t0

b
w(s)ds ≤

2
t0

∫ t0

0
w(s)ds = 2

W (t0)

t0
.
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Using the doubling property of W , these inequalities can be extended respectively to the larger
intervals (0, 4b) and (a/4,∞), perhaps with multiplicative constants, from which it follows that
W is of type (A). The other cases are proved similarly. �

The main result in this section is the following.

Proposition 5.2. Assume that W is of type (A) or (B) for some c ≥ 0. Then for all N and
n j ∈ N ∪ {0} such that

∑
j∈Z n j = N we have

min


N , H−

W (N )


.
−
j∈Z

W (n j 2 jd)

W (2 jd)
. max


N , H+

W (N )

, (5.3)

with the constants involved independent on N and n j .

Observe that the upper and lower bounds in (5.3) are best possible. Indeed, taking all
n j ∈ {0, 1} the middle expression is exactly equal to N . On the other hand, taking n j0 = N
and n j = 0 for j ≠ j0, an appropriate choice of j0 makes the middle expression comparable
to H±

W (N ). Thus, Theorem 1.7 is a consequence of Theorem 1.4 and Proposition 5.2 (see also
Remarks 5.6 and 5.7).

5.1. Proof of Proposition 5.2

Assume first that W is of type (A) for some c > 0. For simplicity, throughout the proof we
shall write λ j = 2 jd . Define the sets of indices

J+ =


j ∈ Z: n jλ j ≥ c/2


and J− =


j ∈ Z: n jλ j < c/2

. (5.4)

Then using (A2) in the first inequality,

C
−
j∈J+

W (n jλ j )

W (λ j )
≥

−
j∈J+

n j W (Nλ j )

N W (λ j )
≥ H−(N )

−
j∈J+

n j/N .

Similarly, using (A1) one obtains

C
−
j∈J−

W (n jλ j )

W (λ j )
≥

−
j∈J−

n j .

Since either
∑

j∈J+
n j ≥ N/2 or

∑
j∈J−

n j ≥ N/2, it follows that−
j∈Z

W (n jλ j )

W (λ j )
≥

1
2C

min


N , H−(N )

.

To prove the upper bounds we need three sets of indices:

Ja =


j : λ j ≥ c

, Jb =


j : λ j < c/N


, Jc =


j : c/N ≤ λ j < c


. (5.5)

As before, using respectively (A2) and (A1) we see that−
j∈Ja

W (n jλ j )

W (λ j )
≤ C

−
j∈Ja

n j and

−
j∈Jb

W (n jλ j )

W (λ j )
≤ C

−
j∈Jb

n j W (Nλ j )

N W (λ j )
≤ C H+(N )

−
j∈Jb

n j/N .
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For indices j ∈ Jc we use the cruder estimate

sup
t>0

W (t)/t ≤ CW (c)/c,

which together with (A1) in the second step leads to−
j∈Jc

W (n jλ j )

W (λ j )
≤ C

−
j∈Jc

n jλ j W (c)

cW (λ j )
≤ C2

−
j∈Jc

n j W (c)

N W (c/N )
≤ C2 H+(N )

−
j∈Jc

n j/N .

Combining the three cases we see that−
j∈Z

W (n jλ j )

W (λ j )
≤ C2 

N + H+(N )


. max


N , H+(N )

.

Remark 5.6. The proof just given is also valid for W of type (A) with c = 0. In fact, in this case
the sets J−, Jb and Jc are empty, so one actually obtains

H−(N ) .
−
j∈Z

W (n jλ j )

W (λ j )
. N .

This corresponds to the case of w decreasing, as stated in (b) of Theorem 1.7.

We now turn to the case where W is of type (B), assuming for simplicity c > 0. Using the
same sets J± as in (5.4) together with (B2) and (B1), respectively, we obtain−

j∈J+

W (n jλ j )

W (λ j )
≤ C

−
j∈J+

n j W (Nλ j )

N W (λ j )
≤ C H+(N )

−
j∈J+

n j/N and

−
j∈J−

W (n jλ j )

W (λ j )
≤ C

−
j∈J−

n j .

Summing, we get−
j∈Z

W (n jλ j )

W (λ j )
≤ 2C max


N , H+(N )


.

We turn to the lower bound, for which we use the sets Ja, Jb and Jc in (5.5). As before, the first
two sets are easily handled with (B2) and (B1):

C
−
j∈Ja

W (n jλ j )

W (λ j )
≥

−
j∈Ja

n j and

C
−
j∈Jb

W (n jλ j )

W (λ j )
≥

−
j∈Jb

n j W (Nλ j )

N W (λ j )
≥ H−(N )

−
j∈Jb

n j/N .

For indices j ∈ Jc we use

C inf
t>0

W (t)/t ≥ W (c)/c,

which together with (B1) in the second step leads to

C
−
j∈Jc

W (n jλ j )

W (λ j )
≥

−
j∈Jc

n jλ j W (c)

cW (λ j )
≥

1
C

−
j∈Jc

n j W (c)

N W (c/N )
≥

1
C

H−(N )
−
j∈Jc

n j/N .
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Now, since either
∑

j∈Ja
n j ≥ N/2 or

∑
j∈Jb∪Jc

n j ≥ N/2, it follows that−
j∈Z

W (n jλ j )

W (λ j )
≥

1

2C2 min


N , H−(N )

.

Remark 5.7. As before, the proof is also valid for c = 0; we obtain in this case

N .
−
j∈Z

W (n jλ j )

W (λ j )
. H+(N ).

This corresponds to the situation of w increasing, as stated in (a) of Theorem 1.7.

6. Examples

We illustrate some examples of Lorentz weights to which the results of Theorem 1.7 can be
applied. Consider the following general class of weights:

w(t) =


tα0−1 

log (e + 1/t)
β
, 0 < t ≤ 1

tα1−1 
log(e + t)

γ
, t ≥ 1

where α0, α1 > 0 and β, γ ∈ R. These are typical examples of piecewise monotonic weights
with different behaviors near 0 and ∞. Observe that

W (t) ≈


tα0


log (e + 1/t)

β
, 0 < t ≤ 1

tα1

log(e + t)

γ
, t ≥ 1.

From this expression it is not difficult to compute H±

W (N ). Indeed, a straightforward (but slightly
tedious) calculation gives:

(a) if a0 < α1 then H−(N ) ≈ Nα0/[log(e + N )]β+ and H+(N ) ≈ Nα1 [log(e + N )]γ+ ;
(b) if a0 = α1 then H−(N ) ≈ Nα0/[log(e + N )]β++γ− and H+(N ) ≈ Nα0 [log(e + N )]β−+γ+ ;
(c) if a0 > α1 then H−(N ) ≈ Nα1/[log(e + N )]γ− and H+(N ) ≈ Nα0 [log(e + N )]β− ;

where for a real number x we denote

x+ =


|x |, if x ≥ 0
0, if x < 0

and x− =


0, if x ≥ 0
|x |, if x < 0.

See e.g. [3, Section 3] for similar examples. In particular, setting α0 = α1 = q/p and
β = γ = rq we obtain for the Lorentz–Zygmund spaces L p,q(log L)r

hℓ(N ) ≈ min


N
1
q , N

1
p

log(e + N )

−|r |


and

hr (N ) ≈ max


N
1
q , N

1
p

log(e + N )

|r |

.

When r = 0 we recover the results for the classical L p,q spaces from [5].
A second class of weights to which Theorem 1.7 is applicable is

w(t) = tα−1 exp(| ln t |δ), α > 0 and δ ∈ (0, 1).
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Observe that the functions exp(| ln t |δ) grow faster than | ln t |N for all N but are smaller than any
power tε (for t near ∞) or 1/tε (for t near 0). It is not difficult to see that1

W (t) ≈ tα exp(| ln t |δ). (6.1)

From this, one easily computes

H+

W (t) ≈ tαe| ln t |δ and H−

W (t) ≈ tαe−| ln t |δ , t > 0.

In particular, if α = q/p we obtain for the corresponding space Λq
w

hℓ(N ) ≈ min


N
1
q , N

1
p e−

| ln N |
δ

q


and hr (N ) ≈ max


N

1
q , N

1
p e

| ln N |
δ

q


.

Observe that these spaces Λq
w are contained in all the Lorentz–Zygmund spaces L p,q(log L)r for

all r > 0 (and hence also in L p,q ).
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