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FURTHER RESULTS ON THE CONNECTIVITY
OF PARSEVAL FRAME WAVELETS

G. GARRIGÓS, E. HERNÁNDEZ, H. ŠIKIĆ, AND F. SORIA

(Communicated by David R. Larson)

Abstract. In a previous paper, the authors introduced new ideas to treat
the problem of connectivity of Parseval frames. With these ideas it was shown
that a large set of Parseval frames is arcwise connected. In this article we

exhibit a larger class of Parseval frames for which the arcwise connectivity is
true. This larger class fails to include all Parseval frames.

1. Introduction and main result

The connectivity on the set of orthonormal wavelets is an interesting problem
which remains open many years after it was proposed (see for instance [1, 10, 9, 5]).
The question has been extended to the larger class of Parseval frame wavelets
(see [7] and [3]). Even in this extended setting, the problem seems very difficult
and is still open. We recall that a function ψ ∈ L2(R) is said to be a Parseval
frame wavelet (or a normalized tight frame wavelet) if the collection {ψj,k(x) =
2j/2 ψ(2jx − k) : j ∈ Z, k ∈ Z} forms a tight frame (with constant 1) for L2(R).
When this is the case we shall write ψ ∈ PFW. It is well known (see [4, Ch.7])
that these functions are characterized by the two equations:∑

j∈Z

|ψ̂(2jξ)|2 = 1 a.e. ξ ∈ R,(A1)

tq(ξ; ψ) :=
∑∞

j=0
ψ̂(2jξ) ψ̂(2j(ξ + 2qπ)) = 0 a.e. ξ ∈ R, ∀ q ∈ 2Z + 1 .(A2)

This characterization is used in [3] to give a new approach to the connectivity of
the set PFW. In particular, in that paper we were able to construct explicit paths
for two large subclasses Kτ and Kd of PFW, defined by size conditions on the
spectrum (see section 3 below). Since each subclass in some sense takes care of one
of the basic transformations (translations and dilations), one may conjecture that
finding a condition that encompasses both would settle the problem completely.
Unfortunately, as we shall prove in this article, this is not necessarily so. We
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provide a new condition along that direction which defines an even larger class of
connected Parseval frame wavelets, but that it does not include the entire PFW.

We shall say that J ⊂ R is a Calderón set if the family {2jJ}j∈Z forms an a.e.
partition of R\{0}. A particular example is the Shannon set S = [−2π,−π)∪(π, 2π].
Observe that J is a Calderón set if and only if the function ψ̂ = χJ satisfies (A1).
By (A2), if in addition J ⊂ [−π, π], then ψ ∈ PFW. For sets A, K ⊂ R we shall
also use the following notation from [3]:

[A] =
⋃
j∈Z

2−jA, [A]− =
∞⋃

j=0

2−jA, and τK(A) =
⋃
k∈Z

k �=0

(A + 2kπ) ∩ K.

Definition 1.1. Let J0 be a bounded Calderón set and denote Jj = 2−jJ0, j ∈ Z.
We say that a measurable subset K ⊂ R is J0-admissible or that it belongs to the
class K(J0) whenever there exists M ∈ Z such that the set correspondence

I ⊂ [JM ]− =
∞⋃

�=M

2−�J0 �−→ L(I) = LK(I) = [τK(I)] ∩ S

is continuous in the sense of the measure algebras. That is, for each η > 0 there
exists δ > 0, such that ∀ I ⊂ [JM ]− with |I| < δ, we have |L(I)| < η.

It is easy to see that bounded sets belong to the class K(S). Indeed, in such a
case only finite unions of translates and dilates of I are involved in the definition of
LK(I), whenever I ⊂ (−π, π). The continuity then follows easily by subadditivity.
It is also easy to see from the definition that K(S) ⊂ K(J0) for any bounded
Calderón set J0. Indeed, the “domain” of the set correspondence in Definition 1.1
is always of the form (−ε, ε) for the class K(S), while for general classes K(J0) it
is only a subset of one such interval. We do not know whether K(S) = K(J0) for
general J0.

Concerning the connectivity of PFW, the main result in this paper is the fol-
lowing.

Theorem 1.2. Let J0 ⊂ [−π, π] be a Calderón set. Then, for every ψ ∈ PFW such
that Supp ψ̂ belongs to the class K(J0), there exists a continuous path {ψt}0≤t≤1

inside PFW such that

ψ0 = ψ, ψ1 = (χJ0 )̌ and Supp ψ̂t ⊂ Supp ψ̂ ∪ [J0]− .

In particular, the set of all ψ ∈ PFW with Supp ψ̂ ∈ K(J0) is arcwise connected
in L2(R).

Since bounded Calderón sets belong to K(S), Theorem 1.2 applied to ψ̂ = χJ0

shows that χ̌J0 and χ̌S can be continuously connected within PFW. Thus, as a
corollary we obtain that the class of all PFW’s with spectrum in K(J0) for some J0

is arcwise connected. Moreover, the proof of Theorem 1.2 shows that the subclass
of MSF Parseval frames is arcwise connected, recovering in a different way a result
from [7].

The paper is structured as follows. The proof of Theorem 1.2 is given in section
2. In section 3 we show the relation between the class K(S) and the classes Kτ

and Kd from the previous paper [3]. Finally, in sections 4 and 5 we show that
R �∈ K(J0) for every Calderón set J0, as well as the connections of this result with
number theory.
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2. The proof of the theorem

The following elementary properties about the class K(J0) are easily verified:
(1) For any j ∈ Z, K(J0) = K(2jJ0). Thus, there is no loss in assuming

J0 ⊂ [−π, π].
(2) If K1, K2 belong to K(J0), then so do K1∪K2 and any subset of K1 or K2.
(3) In Definition 1.1, the Shannon set S can be replaced by any Calderón set

H, provided it has finite measure. More precisely, given any fixed set E in
R the map

(2.1) I ⊂ E �−→ L(H)(I) := [τK(I)] ∩ H

is continuous if and only if I ⊂ E �→ L(S)(I) is continuous. This is an
elementary consequence of the following lemma.

Lemma 2.1. Let H1, H2 be two Calderón sets with finite Lebesgue measure. Then,
∀ η > 0, ∃ δ > 0 such that ∀A ⊂ R : |[A] ∩ H1| < δ =⇒ |[A] ∩ H2| < η.

Proof. Define the set function: µ(F ) = |[F ] ∩ H2|, F ⊂ H1. From the Calderón
property of H1 one easily checks that µ is a well-defined measure in H1. Moreover,
it is clear that µ is finite and absolutely continuous with respect to the Lebesgue
measure dx|H1

. Then, the usual characterization of absolutely continuous measures
applied to F = [A] ∩ H1 establishes the lemma (see [8, Th.6.11]). �

Proof of Theorem 1.2. Let ψ ∈ PFW be so that its spectrum, K = Supp ψ̂, is
J0-admissible. Let us choose a large positive integer M = M(K, J0) so that the
map I ⊂ [JM ]− �→ LK(I) is continuous (by the K(J0) condition). Since J0 and
JM = 2−MJ0 are trivially connected with the continuous path {tJ0}t∈[2−M ,1], we
may assume through the rest of the proof that M = 0. Following the ideas in [3],
we divide the proof in three parts.

Step 1 (Construction of new PFW’s). As in [3], we present a general procedure
to construct new PFW’s starting from a given one ψ and an arbitrary interval I
in J0. The dynamics of the construction is the following: suppose I = I0 is an
arbitrary subset of J0, hence contained in [−π, π]. Construct by induction the
following sequence of subsets of [−π, π]:

I1 = ([τK(I0)] \ [I0]) ∩ J1,

I2 = ([τK(I1)] \ [I0 ∪ I1]) ∩ J2,

...
...

IN+1 = ([τK(IN )] \ [I0 ∪ . . . ∪ IN ]) ∩ JN+1.

Define EI =
⋃∞

N=0 IN and note that by construction this union is disjoint (we shall
denote this by the symbol

⊎
). Moreover, using the fact

[I�] =
⊎
j∈Z

2jI� = [τK(I�−1)] \ (
�−1⋃
N=0

[IN ]),

it is easy to verify that:
(1) [EI ] =

⋃∞
�=0[I�], with disjoint union;

(2) {2jEI}j∈Z is a disjoint family;
(3) [τK(EI)] =

⋃∞
N=0[τK(IN )] ⊂

⋃∞
N=0(

⋃N+1
�=0 [I�]) = [EI ].
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Since we also have EI ⊂ [−π, π], we conclude from Proposition 2.1 of [3] that
ψEI

∈ PFW, where ψ̂EI
(ξ)= ψ̂(ξ) if ξ ∈ R \ [EI ], and ψ̂EI

(ξ)=χEI
(ξ) if ξ ∈ [EI ].

Step 2 (Construction of the path). Since J0 is a Calderón set, there is a bijective
measurable mapping Γ : ξ ∈ J0 �−→ 2j(ξ)ξ ∈ S. Define the following family of
subsets of J0: I(t) = Γ−1 ({π < |ξ| ≤ (1 + t)π}), t ∈ [0, 1]. Observe that I(0) = ∅
and I(1) = J0. Consider the family ψt = ψEI(t) inside PFW obtained from the
sets EI(t) as in the previous step. Observe that

(2.2) ψ̂t = ψ̂EI(t) =
{

ψ̂, if t = 0,
χJ0 , if t = 1,

while Supp ψ̂t ⊂
(
Supp ψ̂ \ [EI(t)]

)
∪EI(t) ⊂ Supp ψ̂∪[J0]−. Finally, since bounded

sets always belong to K(J0), we have [J0]− ⊂ [−π, π] ∈ K(J0). Therefore, using
Supp ψ̂ ∈ K(J0) and the properties at the beginning of section 2, we conclude that
Supp ψ̂t ∈ K(J0). Thus, we have constructed a path t ∈ [0, 1] �→ ψt ∈ PFW with
the properties required in the theorem, and it only remains to show the L2(R)-
continuity of such a path.

Step 3 (Continuity of the path). By Proposition 2.2 of [3], a path of the form
{ψE(t)}0≤t≤1 inside PFW is continuous provided we can show

lim
t→t0

t∈[0,1]

|E(t)∆E(t0)| = lim
t→t0

t∈[0,1]

|Ẽ(t)∆Ẽ(t0)| = 0, ∀ t0 ∈ [0, 1],

where Ẽ = [E] ∩ S, E ⊂ R \ {0}. Now, observe that when t ↘ t0 we have

|I(t)∆I(t0)| =
∣∣Γ−1 ({(1 + t0)π < |ξ| ≤ (1 + t)π})

∣∣ −→ |Γ−1(∅)| = 0,

and when t ↗ t0 we have

|I(t)∆I(t0)| =
∣∣Γ−1 ({(1 + t)π < |ξ| ≤ (1 + t0)π})

∣∣ → ∣∣Γ−1 ({|ξ| = (1 + t0)π})
∣∣ = 0

in this last case since Γ−1 preserves null sets. Thus, for the continuity of our path
t → ψt it suffices to show that

(2.3) |EI∆EI′ | + |ẼI∆ẼI′ | −→ 0, as |I∆I ′| → 0.

We shall deduce this from our key assumption: K = Supp ψ̂ ∈ K(J0). That is,
the set mapping I ⊂ [J0]− �→ L(I) is continuous in the sense of measure algebras.
Now, by continuity, for every η > 0 there exists an integer M0 = M0(η) ≥ 0 such
that ∣∣∣ [

τK

(
[J0]− ∩ (− π

2M0 , π
2M0 )

)]
∩ S

∣∣∣ < η.

We may assume that M0 is large enough so that |(− π
2M0 , π

2M0 )| = 2π
2M0 < η. There-

fore, for all M ≥ M0, and for all I ⊂ J0 we have
∞⋃

N=M

IN ⊂ [J0]− ∩ (− π
2M0 , π

2M0 ) and

∞⋃
N=M+1

ĨN =
∞⋃

N=M

[IN+1]∩S ⊂
∞⋃

N=M

[τK(IN )]∩S = [τK(
∞⋃

N=M

IN )]∩S = L(
∞⋃

N=M

IN ).
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Thus,

(2.4)
∣∣∣ ∞⋃

N=M+1

IN

∣∣∣ +
∣∣∣ ∞⋃

N=M+1

ĨN

∣∣∣ < 2η, ∀M ≥ M0.

Let us now show that the second term in the sum (2.3) converges to 0. Observe
that, for all M ≥ 0,

ẼI∆ẼI′ =
( ∞⋃

N=0

ĨN

)
∆

( ∞⋃
N=0

Ĩ ′N

)

⊂
M⋃

N=0

(ĨN∆Ĩ ′N ) ∪
( ∞⋃

N=M+1

ĨN

)
∪

( ∞⋃
N=M+1

Ĩ ′N

)
.(2.5)

Therefore, if we are able to show that for I, I ′ ⊂ J0

(2.6) |ĨN∆Ĩ ′N | −→ 0, as |I∆I ′| → 0, ∀N = 0, 1, 2, . . . ,

then, combining (2.5) with (2.4) it will follow that |ẼI∆ẼI′ | → 0, as |I∆I ′| → 0.
Now, to show (2.6) we first consider the case N = 0: since I, I ′ ⊂ J0 we have

(2.7) Ĩ∆Ĩ ′ = ([I]∆[I ′]) ∩ S = [I∆I ′] ∩ S.

Then, by Lemma 2.1 the measure of this set goes to 0 as |I∆I ′| = |[I∆I ′] ∩
J0| → 0. For the general case we proceed as in Lemma 4.4 of [3]: write ĨN+1 =
[IN+1]∩S =

(
[τK(IN )] \ [

⋃N
�=0 I�]

)
∩S, and use standard Boolean algebra to obtain

ĨN+1∆Ĩ ′N+1 ⊂
(
[τK(IN∆I ′N )] ∪

(⋃N
�=0[I�∆I ′�]

) )
∩ S. Then, we proceed by induc-

tion: for N = 0 we have |Ĩ1∆Ĩ ′1| ≤ |[τK(I∆I ′)] ∩ S| + |[I∆I ′] ∩ S| , for which the
first summand goes to 0 by the continuity assumption (as |I∆I ′| → 0, I, I ′ ⊂ J0),
and the second one by (2.7). Suppose now that we have shown

|Ĩ�∆Ĩ ′�| −→ 0, as |I∆I ′| → 0, ∀ 	 = 0, . . . , N.

Again, by Lemma 2.1 we have that

(2.8) |I�∆I ′�| = |[I�∆I ′�] ∩ Jk�
| −→ 0, as |[I�∆I ′�] ∩ S| = |Ĩ�∆Ĩ ′�| → 0.

Then, using the induction hypothesis and the continuity assumption we obtain

|ĨN+1∆Ĩ ′N+1| ≤ |[τK(IN∆I ′N )] ∩ S| +
N∑

�=0

|Ĩ�∆Ĩ ′�| −→ 0, as |I∆I ′| → 0,

establishing our claim, and concluding the proof of (2.6). To completely establish
(2.3), it remains to show that |EI∆EI′ | → 0 as |I∆I ′| → 0. This follows from our
previous arguments since

|EI∆EI′ | ≤
M∑

N=0

|IN∆I ′N | +
∣∣∣∣∣

⋃
N=M+1

IN

∣∣∣∣∣ +

∣∣∣∣∣
⋃

N=M+1

I ′N

∣∣∣∣∣ ,

so we just need to combine (2.4) with (2.8). �
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3. Sufficient conditions

3.1. The Kτ condition. We recall from [3] that a set K ⊂ R is said to belong to
the class Kτ whenever there exists ε ∈ (0, π] such that

(3.1)
∑
|n|≥1

1
|n|

∣∣K ∩ (2nπ + (−ε, ε))
∣∣ < ∞.

Proposition 3.1. Kτ ⊂ K(S).

Proof. Let K ∈ Kτ and choose ε as in (3.1). Given H = [−ε,−ε/2) ∪ (ε/2, ε], it
suffices to show that I ⊂ (−ε, ε) �→ L(H)(I) (as in (2.1)) is continuous in measure.
By Lemma 4.3 in [3], there exists a constant C > 0 such that for each such I∣∣[τK(I)] ∩ H

∣∣ ≤ C ε
∑
|n|≥1

1
|n| |K ∩ (2nπ + I)| = C ε

∫
I

∑
n≥1

1
|n|χK+2nπ(ξ) dξ .

Since K ∈ Kτ the right-hand side of this equalities is finite. The result follows by
an application of the Lebesgue dominated convergence theorem. �

3.2. The Kd condition. Next we turn to the condition Kd in [3]. We say that a
set K belongs to such class whenever there exists ε ∈ (0, π] such that

(3.2)
∣∣ lim sup

n→∞

1
2n

(K ∩ 2nSε)
∣∣ = 0 , where Sε := [−ε,−ε/2) ∪ (ε/2, ε].

If we define Lm = L
(ε)
m =

⋃∞
n=m

1
2n (K∩2nSε), condition (3.2) is the same as saying

that |Lm| → 0 as m → ∞ . By simple Boolean algebra, Lm = [K ∩ (
⋃∞

n=m 2nSε)]∩
Sε. Since

⋃∞
n=m 2nSε = ±( 2mε

2 ,∞), we see that (3.2) is actually equivalent to

(3.3)
∣∣ [K ∩

(
(−∞,−R) ∪ (R,∞)

)
] ∩ Sε

∣∣ → 0 as R → ∞ .

Proposition 3.2. Kd ⊂ K(S).

Proof. Let K ∈ Kd and ε as in (3.2). Take any η > 0 and I ⊂ (−ε, ε). By (3.3),
there exists R0 > 0 such that

(3.4) |[K ∩
(
(−∞,−R0) ∪ (R0,∞)

)
] ∩ Sε| <

η

2
.

Let k0 be such that 2k0π > R0 + 2π, so that if |n| > k0 we have (2nπ + I) ∩ K ⊂
K ∩ (−∞,−R0) ∪ (R0,∞). Then,

[τK(I)] ∩ Sε =
[ ⋃

n∈Z, n�=0

(2nπ + I) ∩ K
]
∩ Sε

⊂
{ ⋃

0<|n|≤k0

[(2nπ + I) ∩ K] ∩ Sε
}
∪

{
[K ∩

(
(−∞,−R0) ∪ (R0,∞)

)
] ∩ Sε

}
.

Thus, by (3.4) and Lemma 5.6 in [3]

|τK(I) ∩ Sε| <
η

2
+

∑
0<|n|≤k0

∣∣ [(2nπ + I) ∩ K] ∩ Sε
∣∣ ≤ η

2
+ k0|I| .

Choosing δ < η
2k0

we obtain |τK(I)∩ Sε| < η
2 + η

2 if |I| < δ . This shows that L(Sε)
K

is continuous and hence that K ∈ K(S). �
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3.3. Other examples. The following examples show that Kτ ∪ Kd
⊂
�=K(S), that

is, there exist sets K which are admissible according to Definition 1.1, but are not
contained in the setting of our previous paper [3]. In fact, it will suffice to consider
K = K1 ∪ K2, where K1 ∈ Kτ \ Kd and K2 ∈ Kd \ Kτ . Indeed, when this is the
case, we necessarily have that K /∈ Kτ ∪ Kd, while from the second observation at
the beginning of section 2 (and Propositions 3.1 and 3.2) we see that K ∈ K(S).

Example 3.3. Let K1 =
⋃

|n|≥1(
1
2S + 2πn). Then K1 ∈ Kτ \ Kd.

Proof. From the definition we see that K1 is disjoint with 2πm+(−π
2 , π

2 ) for every
m ∈ Z. This trivially implies that K1 ∈ Kτ . Next we see that K1 /∈ Kd. Given any
ε > 0 and any large integer m we have∣∣L(ε)

m

∣∣ ≥
∣∣∣ ∞⋃
�=m

1
2� {K1 ∩ 2�[ ε

2 , ε) }
∣∣∣ ≥ 2−m

∣∣ K1 ∩ 2m[ ε
2 , ε)

∣∣.
Now, if m is large enough we have∣∣ K1 ∩ 2m[ ε

2 , ε)
∣∣ ≥

∑
n∈Z

2m−1ε<2πn<2mε−π

∣∣2πn + [π
2 , π)

∣∣ ≥ c 2mε,

for some constant c > 0. Thus, limm→∞ |L(ε)
m | ≥ c ε > 0, showing that K1 /∈ Kd. �

Example 3.4. Let K2 =
⋃

n≥1

[
2nπ, 2nπ(1 + 1

n )
)
. Then K2 ∈ Kd \ Kτ .

Proof. This time we have, for all m ≥ 1,∣∣L(π)
m+1

∣∣ =
∣∣∣ ∞⋃
�=m

1
2�+1 {K2 ∩ 2�+1[π

2 , π)}
∣∣ =

∣∣∣ ∞⋃
�=m

1
2� [2�π, 2�π(1 + 1

� ))
∣∣ =

π

m
.

Since this number tends to 0 as m → ∞, we have established that K2 ∈ Kd. On
the other hand, for any ε > 0 and for integers m = 2n + r (with n large enough),
we have

∣∣∣K2 ∩ {2π(2n + r) + (−ε, ε)}
∣∣∣ = 2ε, at least when 0 < r < c2n

n , for some
universal constant c > 0. This implies∑

m≥1

1
m

∣∣∣K2 ∩ {2πm + (−ε, ε)}
∣∣∣ ≥ ∞∑

n=1

1
2n+1

∑
0≤r<2n

∣∣∣K2 ∩ {2π(2n + r) + (−ε, ε)}
∣∣∣

≥ c
∞∑

n=1

1
2n+1

2n

n
ε = ∞,

and therefore K2 cannot belong to Kτ . �

4. Nonadmissibility of R

In this section we show the following theorem.

Theorem 4.1. For all sets A ⊂ R of positive Lebesgue measure we have

(4.1)
∣∣ R \

⋃
�∈Z

⋃
k �=0

2−�(A + k)
∣∣ = 0.

As a consequence we have [τR(I)] = R a.e. for any set I with positive measure.
This implies that |LR(I)| = 2π for such sets, and therefore, R /∈ K(J0) for any
bounded Calderón set J0. Hence, our results on connectivity do not apply to the
full class of PFW’s. As we shall see the proof of Theorem 4.1 is not completely
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trivial, and has an unexpected connection with number theory which we shall make
clear in the next section. For convenience, throughout these two sections we shall
replace the number 2π by 1.

Proof. Set S = [−1, −1/2) ∪ [1/2, 1). It suffices to show that

(4.2)
∣∣ S \

⋃
�∈Z

⋃
k �=0

2−�(A + k)
∣∣ = 0

for all sets A ⊂ R of positive Lebesgue measure. By symmetry first and then by
rescaling, we may assume with no loss of generality that A ⊂ [0, 1). Moreover, (4.2)
will follow from the statement:

For all dyadic intervals I ⊂ [0, 1)

(4.3)
∣∣ [1/2, 1) \

⋃
�≥L+1

⋃
k≥1

2−�(I + k)
∣∣ = 0, ∀ L = 0, 1, 2, . . . .

To see this, given any set A ⊂ [0, 1) of positive Lebesgue measure and δ > 0, take
a dyadic interval I such that

(4.4) 1 − δ ≤ |I ∩ A|
|I| ≤ 1 .

By the statement (4.3) with L = 0 and the nesting property of the family of dyadic
intervals I�,k = 2−�(I + k), we can write [1/2, 1) as a disjoint union

⊎
(�,k)∈D I�,k

(a.e.), for a certain index set D ⊂ Z+ × Z+. If we denote A�,k ≡ 2−�(A + k), we
also have∣∣ [1/2, 1) \

⋃
�≥1

⋃
k≥1

2−�(A + k)
∣∣ ≤ ∑

(�,k)∈D
|I�,k − A�,k| =

∑
(�,k)∈D

|I�,k| − |I�,k ∩ A�,k| .

Now, by a simple rescaling of (4.4), we see that |I�,k| − |I�,k ∩ A�,k| ≤ δ|I�,k| and,
therefore, we obtain∣∣ [1/2, 1) \

⋃
�≥1

⋃
k≥1

2−�(A + k)
∣∣ ≤ ∑

(�,k)∈D
δ |I�,k| = δ

∣∣ ⊎
(�,k)∈D

I�,k

∣∣ =
δ

2
.

Since δ is arbitrary, the left-hand side equals 0. By symmetry,∣∣ (−1, −1/2] \
⋃
�≥1

⋃
k≤−1

2−�(A + k)
∣∣ = 0,

which gives (4.2). It then remains to prove (4.3).
The result is clearly true for the particular case I = [0, 1) since

2−(L+1)
2L+1−1⋃
k=2L

(I + k) = 2−(L+1)[2L, 2L+1) = [1/2, 1).

The key step to finishing the proof of Theorem 4.1 is contained in the following
lemma.

Lemma 4.2. If the inclusion in (4.3) is true for a given dyadic interval I ⊂ [0, 1),
then it is true for its two dyadic sons I+ and I−, I = I+ ∪ I−, and therefore, for
all its descendants.
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Proof. Take L ∈ N. From the hypothesis, there exist positive integers kj , 	j , with
	j > L, so that the intervals Ij = 2−�j (I+kj) are mutually disjoint, for j = 1, 2, . . . ,
and [1/2, 1) =

⊎
j≥1 Ij , a.e. If we set I±j = 2−�j (I± + kj), then |I+

j | = 1
2 |Ij | and

so the sequence {I+
j }j “covers” 1

2 of the size of [1/2, 1). Now fix j ∈ N and take
Lj = 	j + 1 > L so that 2−Lj |I| = |I−j |. Then, from the hypothesis again we can
cover [1/2, 1) by disjoint intervals of the form 2−�(I +k) with 	 > Lj . In particular,
those intersecting I−j are necessarily contained in I−j (since they are smaller). Thus,
for this j, there are positive integers kj,i, 	j,i, with 	j,i > Lj , so that the intervals
Ij,i = 2−�j,i(I + kj,i) are mutually disjoint, for i = 1, 2, . . . , and I−j =

⊎
i≥1 Ij,i a.e.

Hence

[1/2, 1) =

⎛
⎝⊎

j≥1

⊎
i≥1

Ij,i

⎞
⎠ ⊎⎛

⎝⊎
j≥1

I+
j

⎞
⎠ .

Call I+
j,i = 2−�j,i(I+ + kj,i). Then {I+

j , I+
j,i : j = 1, 2, . . . ; i = 1, 2, . . . } covers 3

4 of
[1/2, 1). By a straightforward induction process, we obtain the result for I+ and,
similarly, for I−.

5. Connections to number theory

We begin with an elementary observation. The statement of Theorem 4.1 is
equivalent to

(A) There exists a null set E ⊂ [0, 1) so that for all x ∈ [0, 1) \ E the sequence
of points { 2�x (mod 1) : 	 ≥ 1 } is dense in [0, 1).

Suppose (A) holds and let L ≥ 0 be a fixed integer. If I is any dyadic interval
in [0, 1) and x ∈ [0, 1) \ E, by density of { 2�x (mod 1) : 	 > L } there must exist
integers 	 > L, k ∈ N so that 2�x − k ∈ I. Thus |[0, 1) \

⋃
�>L,k≥1 I�,k| = 0 which

implies (4.3). For the converse, if Theorem 4.1 holds we also have∣∣ [0, 1) \
⋃
�≥1

⋃
k≥1

2−�(I + k)
∣∣ = 0,

for every dyadic interval I ⊂ [0, 1). Since the number of dyadic intervals is count-
able, we can define a set of Lebesgue measure zero by

E =
⋃

I dyadic

{
[0, 1) \

⋃
�≥1

⋃
k≥1

2−�(I + k)
}

.

Then, for every x ∈ [0, 1) \ E the sequence { 2�x (mod 1) : 	 ≥ 1 } touches each
dyadic interval I (in fact infinitely often), which clearly implies that this sequence
must be dense.

The assertion (A) has a number theoretic flavour. In fact, it is actually a conse-
quence of a stronger result related with “uniformly distributed sequences”. We say
that a sequence {a�}∞�=1 of real numbers in [0, 1) is uniformly distributed in [0, 1) if
for every interval I ⊂ [0, 1) we have

lim
n→∞

1
n

#
{
1 ≤ 	 ≤ n : a� ∈ I

}
= |I|.

Of course, every uniformly distributed sequence must be dense in [0, 1). A classical
theorem of H. Weyl et al. establishes that for all irrational numbers x ∈ [0, 1) the
sequence {	x}∞�=1 is uniformly distributed modulo 1 (see, e.g., [6, Th. 6.3]). There
exist several extensions of this result, based on Weyl’s celebrated characterization
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of uniformly distributed sequences in terms of limits of exponential sums. One of
these extensions establishes that for every strictly increasing sequence {a�}∞�=1 ⊂ N

and for a.e. x ∈ [0, 1), the sequence {a�x}∞�=1 is uniformly distributed modulo 1
(see, e.g., [2, p. 138]). If as a particular case we let a� = 2�, then we obtain a
stronger version of the result stated in (A).

There is another interpretation of (A) purely in terms of the intrinsic properties
of numbers. Indeed if we represent the number x ∈ [0, 1) in its binary expansion,
then the fact that the sequence {2�x}∞�=1 is dense modulo 1 in [0, 1) is the same
as saying that any arbitrary block of {0, 1}-digits “b1 . . . bk” is contained infinitely
often in the binary expansion of x. We shall call the numbers x ∈ [0, 1) with this
property weakly normal (to base 2). Then, in view of the previous discussion, the
statement of Theorem 4.1 is equivalent to saying that a.e. x ∈ [0, 1) is a weakly
normal number.

In relation with this concept, a stronger result is also known. We say that a
number x ∈ [0, 1) is normal to base r if any arbitrary block made of digits in
{0, 1, . . . , r − 1} of length k, say “Bk = b1b2 . . . bk”, is contained in the decimal
expansion of x in base r with frequency 1/rk. That is, if N(Bk, n) counts the
number of occurrences of the block Bk within the first n digits of the expansion of
x, then we must have

lim
n→∞

N(Bk, n)
n

=
1
rk

, ∀ Bk, ∀ k ≥ 1

(see, e.g., [6, Ch. 8] for this and other equivalent definitions). In particular, every
normal number to base 2 is weakly normal according to our previous definition.
Then, a classical theorem of E. Borel (Rend. Circ. Mat. Palermo 27 (1909), 247–
271) establishes that a.e. x ∈ [0, 1) is normal to every base r. This gives another
proof of (A), and hence of Theorem 4.1. In fact, the two notions we have introduced
are related by a theorem due to D. Wall which asserts that a number x ∈ [0, 1) is
normal to base r if and only if the sequence {r�x}∞�=1 is uniformly distributed modulo
1 (see [6, Th. 8.15]).

Finally we would like to point out that verifying one of the previous properties
for a specific number x can be a very hard question. For instance it is not known
whether such numbers as

√
2, e or π are normal to any base. In fact, the set of

numbers which are not normal to any base are of course dense (since it contains
the rationals) and can be shown to be uncountable [6, p. 116]. As a simple example
observe that the binary numbers of the form x = .0b10b20b3.... (for bi = 0, 1) are not
normal, nor even weakly normal to base 2. Thus, the exceptional set in assertion
(A) is a dense uncountable subset of [0, 1).
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Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid,

Spain

E-mail address: eugenio.hernandez@uam.es

Department of Mathematics, University of Zagreb, Bijenic̆ka 30, 10000 Zagreb, Croa-

tia

E-mail address: hsikic@math.hr
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