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POINTWISE CONVERGENCE TO INITIAL DATA

OF HEAT AND LAPLACE EQUATIONS

GUSTAVO GARRIGÓS, SILVIA HARTZSTEIN, TERESA SIGNES, JOSÉ LUIS TORREA,
AND BEATRIZ VIVIANI

Abstract. Let L be either the Hermite or the Ornstein-Uhlenbeck operator
on Rd. We find optimal integrability conditions on a function f for the ex-

istence of its heat and Poisson integrals, e−tLf(x) and e−t
√
Lf(x), solutions

respectively of Ut = −LU and Utt = LU on R
d+1
+ with initial datum f . As a

consequence we identify the most general class of weights v(x) for which such
solutions converge a.e. to f for all f ∈ Lp(v), and each p ∈ [1,∞). Moreover,
if 1< p <∞ we additionally show that for such weights the associated local
maximal operators are strongly bounded from Lp(v) → Lp(u) for some other
weight u(x).

1. Introduction

In this paper we consider the heat and Poisson semigroups, e−tL and e−t
√
L,

associated with the following differential operators in Rd:

L ∈
{
−Δ , −Δ+R , −Δ+ |x|2

}
(with R > 0) or with the Ornstein-Uhlenbeck operator O = −Δ + 2x · ∇. We
consider the related partial differential equations

(H)

{
ut = −Lu, (t, x) ∈ (0, T)× Rd,
u(0) = f,

and

(P)

{
utt = Lu, (t, x) ∈ R

d+1
+ ,

u(0) = f,

where in the first case we allow 0 < T ≤ ∞.
We want to find minimal conditions on the initial datum f such that

(i) u(t, x) = e−tLf(x) exists ∀ t ∈ (0, T) and x ∈ Rd (as an absolutely
convergent integral), and satisfies (H),

(ii) lim
t→0

u(t, x) = f(x), for a.e. x ∈ R
d.
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The same is asked when u(t, x) = e−t
√
Lf(x) with respect to (P).

It is well known that these properties hold when f ∈ Lp(Rd), and more generally,
when f ∈ Lp(w) and w ∈ Ap(R

d), 1 ≤ p < ∞. Indeed, these are classically obtained
from the Lp(w)-boundedness of the corresponding maximal operators

(1.1) h∗f(x) = sup
t>0

∣∣e−tLf(x)
∣∣ , P ∗f(x) = sup

t>0

∣∣e−t
√
Lf(x)

∣∣
(see e.g. [19]). However, one expects that (i) should hold for more general functions
(growing at infinity below a certain critical order), while (ii) should only be related
with the boundedness of the local maximal operators

(1.2) h∗
af(x) = sup

0<t<a

∣∣e−tLf(x)
∣∣ , P ∗

a f(x) = sup
0<t<a

∣∣e−t
√
Lf(x)

∣∣ ,
for a sufficiently small a > 0.

The goals of this paper are the following:
(I) Find the most general conditions in a function f such that properties (i)+(ii)

hold.
(II) Find the most general conditions in a weight v such that (i)+(ii) hold for all

f ∈ Lp(v).
(III) Show that, for all weights v as in (II), the local maximal operators h∗

a and
P ∗
a map Lp(v) → Lp(u) for some other weight u.
When L = −Δ these questions have recently been investigated by three of the

authors in [7], although parts of it can be traced back to the classical literature
[20–22]. For example, for the heat equation, (i) and (ii) hold for a function f if and
only if ∫

Rd

|f(y)|e−
|y|2
4t dy < ∞, ∀ t ∈ (0, T).

In the Poisson equation the necessary and sufficient condition becomes

(1.3)

∫
Rd

|f(y)|
(1 + |y|)d+1

dy < ∞,

and in this case (P) holds in the whole range of t ∈ (0,∞). These properties
are elementary and can actually be proved by direct methods without resorting to
maximal operators. Then, by a duality argument, the weights v in question (II)
are characterized by

(1.4)
∥∥v(y)− 1

p e−
|y|2
4t

∥∥
p′ < ∞, ∀ t ∈ (0, T), or

∥∥∥ v(y)−
1
p

(1 + |y|)d+1

∥∥∥
p′

< ∞.

Question (III), however, is more elaborate. It is known that, from abstract Nikishin
theory, the a.e. -existence of pointwise limits implies the weak boundedness of h∗

a

and P ∗
a from Lp(v) into Lp,∞(u) for some weight u = u(a) (see [11] or [6, Ch. VI]).

The strong boundedness requires deeper arguments and is related to a version of
the two-weight problem studied by Carleson-Jones [5] and Rubio de Francia [13] in
the 80s. Thus, a main contribution of [7] was precisely to show that (III) holds for
the class of weights in (1.4), making use of the vector-valued approach developed
by Rubio de Francia [13].

In this paper we shall investigate similar questions for the differential operators
L ∈ {−Δ+R , −Δ+ |x|2 , −Δ+ 2x · ∇ }. All of them have explicit heat kernels,
from which we derive the necessary integrability conditions one must require on f .
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POINTWISE CONVERGENCE OF HEAT AND LAPLACE EQUATIONS 6577

The results are summarized in Table 1, with a precise statement in the theorem
below.

Table 1. Necessary and sufficient conditions on f for the existence

of e−tLf and e−t
√
Lf .

L heat Poisson

−Δ+ R

∫
Rd

|f(y)| e−
|y|2
4s dy < ∞
∀ s ∈ (0, T)

∫
Rd

|f(y)| e
−
√
R
√

1+|y|2

(1 + |y|)
d
2
+1

dy < ∞

−Δ+ |x|2
∫
Rd

|f(y)| e−
|y|2
4s dy < ∞

∀ s ∈ (0, th (2T)/2)

∫
Rd

|f(y)| e−|y|2/2

(1 + |y|)
d
2 [ln(e+ |y|)]3/2

dy < ∞

−Δ+ 2x · ∇
∫
Rd

|f(y)| e−( 1
s
+2)

|y|2
4 dy < ∞

∀ s ∈ (0, th (2T)/2)

∫
Rd

|f(y)| e−|y|2

[ln(e+ |y|)]1/2
dy < ∞

Theorem 1.1. Let 0 < T ≤ ∞ (and T = ∞ in the Poisson case). Let f : Rd → C

be a measurable function such that one of the conditions in Table 1 holds. Then,
the corresponding heat or Poisson integral, denoted u(t, x), defines an absolutely
convergent integral such that

(i) u ∈ C∞((0, T)× Rd) and satisfies the corresponding pde (H) or (P),
(ii) limt→0+ u(t, x) = f(x), for a.e. x ∈ R

d.

Conversely, if a function f ≥ 0 is such that one of the following holds:

• e−tLf(xt) < ∞, for each t ∈ (0, T) and some xt ∈ R
d, or

• e−t
√
Lf(x) < ∞ for some (t, x) ∈ (0,∞)× Rd,

then f must necessarily satisfy the corresponding condition in Table 1.

For completeness we have stated the results for both the heat and Poisson equa-
tions, although in the heat setting some of the results are already known; see [1].
Our main contribution concerns the Poisson equation. The main issue here is that
the Poisson kernel is not so explicit, but defined via a subordination formula

(1.5) e−t
√
L =

t√
4π

∫ ∞

0

e−
t2

4u e−uL du

u3/2
, t > 0

(see e.g. [15, p. 46]). The characterization will be obtained from very precise
estimates on this kernel, which seem new in the literature and we think are of
independent interest (see §4.1 below). We refer to recent work of Liu and Sjögren
[10] for different and more general bounds of the Poisson kernel related with the
Ornstein-Uhlenbeck operator O.

We include a few comments about Theorem 1.1. First, the conditions required on
f for the existence of Poisson integrals are always stronger than for heat integrals,
in fact strong enough to guarantee the existence of the latter in the whole upper-half
plane (0,∞) × Rd (as is perhaps expected from the subordination formula (1.5)).
Also, unlike the classical case in (1.3), exponential growth of f is allowed in Poisson
integrals, as it is already apparent when L = −Δ+R, with1 R > 0.

1Observe that the condition for L = −Δ + R in Table 1 can equivalently be written as∫
Rd |f(y)|(1 +

√
R|y|)

d
2 (1 + |y|)−(d+1) e−

√
R
√

1+|y|2 dy < ∞, which for R = 0 recovers (1.3).
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As illustrative examples, in the Hermite case L = −Δ+ |x|2, a Gaussian initial

datum f(y) = e|y|
2/2 is admissible for the existence of e−tLf for all t > 0, while

the existence of e−t
√
Lf requires a slightly slower growth, such as f(y) = e|y|

2/2/
(1 + |y|)d/2. Similarly, in the Ornstein-Uhlenbeck setting, e−tOf is well defined

for all t > 0 when f(y) = (1 + |y|)Ne|y|
2

and N ∈ N, even if these functions are
not in2 L1(dγ). Thus we can cover more functions than the classes considered

in [8, §3]. The same applies to the Poisson integrals, since e−t
√
Of exists when

f(y) = e|y|
2

/[(1 + |y|)d ln(e+ |y|)], which is not in L1(dγ).
We now turn to the questions involving weighted spaces Lp(v). We wish to

describe the classes

Dheat
p (L) and DPois

p (L)

of all weights v : Rd → (0,∞) such that the corresponding properties (i)+(ii) hold
for all functions f ∈ Lp(v). These are easily characterized from Theorem 1.1.
Indeed, suppose we want to meet a condition in Table 1 written in the form∫

Rd

|f(y)|ϕ(y) dy < ∞

for a suitable ϕ and all f ∈ Lp(v). Then, a sufficient condition on the weight v is

v−
1
p ϕ ∈ Lp′

(Rd).

That this condition is also necessary follows by a simple duality argument (see
[4, p. 10]). To write this in a unified way, we give precise definitions of ϕ in Table
2.

Table 2. Integrability factors ϕs and ϕ, for each operator L.

L heat Poisson

−Δ+R ϕs(y) = e−
|y|2
4s , 0<s<T∗ = T ϕ(y) =

e−
√

R
√

1+|y|2

(1 + |y|)
d
2
+1

−Δ+ |x|2 ϕs(y) = e−
|y|2
4s , 0<s<T∗ = th 2T

2
ϕ(y) =

e−|y|2/2

(1 + |y|)
d
2 [ln(e+ |y|)]3/2

−Δ+ 2x · ∇ ϕs(y) = e−
|y|2
4

( 1
s
+2), 0<s<T∗ = th 2T

2
ϕ(y) =

e−|y|2

[ln(e+ |y|)]1/2

Corollary 1.2. Let 1 ≤ p < ∞. Then, with the notation in Table 2,

(1.6) v ∈ Dheat
p (L) ⇔

∥∥v− 1
p ϕs

∥∥
Lp′ (Rd)

< ∞, ∀ s ∈ (0, T∗),

and

(1.7) v ∈ DPois
p (L) ⇔

∥∥v− 1
p ϕ

∥∥
Lp′ (Rd)

< ∞.

Our next result concerns the strong boundedness from Lp(v) to some Lp(u) of
the local maximal operators defined in (1.2).

2Here dγ(y) = e−|y|2dy is the Gaussian measure.
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Theorem 1.3. Let 0 < T ≤ ∞ (or T = ∞ in the Poisson case) and 1 < p < ∞.
• If v ∈ Dheat

p (L), then, for every a ∈ (0, T), there exists a weight u = u(a) such
that

(1.8) h∗
a : Lp(v) → Lp(u) boundedly.

Moreover, there exists σ0 = σ0(a, T
∗) ∈ (0, 1) such that, for any σ < σ0, the weight

u can be chosen such that, in addition, uσ ∈ Dheat
p (L).

Conversely, if (1.8) holds for some weight u(a) and each a ∈ (0, T), then v ∈
Dheat

p (L).

• If v ∈ DPois
p (L), then there exists a weight u such that, for every a > 0,

(1.9) P ∗
a : Lp(v) → Lp(u) boundedly.

If σ < 1 we can find u such that, in addition, uσ ∈ DPois
p (L).

Conversely, if (1.9) holds for some a > 0 and some weight u, then v ∈ DPois
p (L).

As in the classical case, proving, say, (1.9) is much harder than proving the weak
boundedness of P ∗

a : Lp(v) → Lp,∞(U) for some weight U (although both turn out
to be equivalent). For the latter, if v ∈ DPois

p (L), then the existence of pointwise
limits in (ii) for all f ∈ Lp(v) implies that

P ∗
a f(x) < ∞, a.e. x ∈ R

d, ∀ f ∈ Lp(v).

Then, the assertion follows from Nikishin’s theorem as stated in [6, Corollary
VI.2.7]. The existence of a weight u guaranteing strong convergence is more difficult
and requires the use of the vector-valued machinery of Rubio de Francia [13]. In
fact, we need to prove new local versions of his results, which are stated separately
in §2. We finally remark that although this method gives no explicit expression
for the weight u, we are able to show that it is “almost” in the same Dp class as
v; namely, for every ε > 0 we can choose a weight u such that u1−ε ∈ Dp (this is
always the case in the Poisson setting and also in the heat setting if a is sufficiently
small or T∗ = ∞; see Remark 3.6). This result is new, even in the special cases
already considered in the literature [1, 7].

The paper is structured as follows. In §2 we extend the two-weight theorem of
Rubio de Francia to local maximal functions. In §3 we prove in detail Theorems
1.1 and 1.3 for the heat equation associated with L = −Δ + |x|2. In §4 we do
the same for the Poisson equation. In §§5 and 6, respectively, we prove Theorems
1.1 and 1.3 for the operators −Δ+ R and O. Finally, in §7 we state some further
remarks. Throughout the paper A � B means that A ≤ cB for some constant
c, which may depend on fixed parameters (such as d, p, a or R), but not on the
variables t, x, y. Dependence on the variables is stressed by the notation Cx, Ct,x,
etc. Finally, A ≈ B will denote both A � B and B � A.

2. A two-weight problem for the local Hardy-Littlewood operator

Let R > 1, which we assume fixed throughout this section. We consider the
following local Hardy-Littlewood maximal function:

(2.1) Mloc
R f(x) := sup

r>0

1

|Br|

∫
Br(x)

f(y)χ{|y|≤Rmax(|x|,1)}(y) dy.

We shall adapt the arguments given by Rubio de Francia in [13] (see also [6, Ch.
VI.6]) to prove the following.
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6580 G. GARRIGÓS, S. HARZSTEIN, T. SIGNES, J. TORREA, AND B. VIVIANI

Theorem 2.1. If 1 < p < ∞ and v−
1
p ∈ Lp′

loc(R
d), then there exists a weight u

such that

(2.2) Mloc
R : Lp(v) → Lp(u) boundedly.

Moreover, if we assume that ‖v− 1
p e−A|y|2‖p′ < ∞, for all A > A0 (and some fixed

A0 ≥ 0), then for every σ < 1 and b > 1 we can choose the weight u such that, in
addition,

(2.3)
∥∥u− σ

p e−A|y|2‖p′ < ∞, ∀ A > A0σR
2b2.

In particular, if A0 = 0 or σ ≤ 1/(bR)2, then (2.3) holds for all A > A0.

Proof. Following the strategy in [13], one first proves, for every s < 1, a vector-
valued estimate

(2.4)
∥∥∥( ∑

j

|Mloc
R fj |p)

1
p

∥∥∥
Ls(Ek)

≤ Ck

( ∑
j

∥∥fj∥∥p

Lp(v)

) 1
p

,

for a suitable partition of Rd =
⋃∞

k=0Ek and some constants Ck (which may depend
on v and of course on p, s and R). This inequality implies, by the factorization
theorem of Rubio de Francia (see [6, Thm. VI.4.2]), the existence of some weight
Uk, supported in Ek, such that ‖U−1

k ‖
L

s
p−s

≤ 1 and∫
Ek

∣∣Mloc
R f

∣∣p Uk(x) dx ≤ Cp
k ‖f‖

p
Lp(v).

In such case, to obtain (2.2) it suffices to consider the weight u defined by

(2.5) u(x) =
∞∑
k=0

1

(2γkCk)p
Uk(x)χEk

(x),

for some γ > 0. We now prove (2.4), with a precise expression for Ck which later
will lead to the bound in (2.3). Consider

E0 = {|x| < 1} and Ek = {bk−1 ≤ |x| < bk}, k = 1, 2, . . . ,

where b > 1 is as in the statement. For fixed k ∈ N ∪ {0}, we split

f = fχ{|y|≤Rbk} + fχ{|y|>Rbk} = f ′ + f ′′.

It is clear that
Mloc

R f ′′(x) = 0, ∀ x ∈ Ek.

Next, using Kolmogorov’s inequality [6, p. 485], followed by the Fefferman-Stein
estimate for the standard Hardy-Littlewood maximal operator M [17, p. 56] gives∥∥∥(∑

j

|Mloc
R fj |p)

1
p

∥∥∥
Ls(Ek)

≤ cs|Ek|
1
s−1

∥∥∥( ∑
j

|Mf ′
j |p)

1
p

∥∥∥
L1,∞

≤ cs,p |Ek|
1
s−1

∥∥∥( ∑
j

|f ′
j |p)

1
p

∥∥∥
L1

≤ cs,p |Ek|
1
s−1

( ∑
j

‖fj‖pLp(v)

) 1
p

Vk.

The last step follows by Hölder’s inequality if we set

Vk =
( ∫

|y|<Rbk
v−

p′
p

) 1
p′
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(we also used that f ′
j are supported in {|y|<Rbk}). Thus we have shown (2.4) with

Ck = cs,p|Ek|
1
s−1Vk, which are finite numbers since v−

1
p ∈ Lp′

loc.
We now turn to prove (2.3) under the assumption

‖v‖Dp,A
:=

∥∥v− 1
p e−A|y|2∥∥

p′ < ∞ ,

for all A > A0. For any such A, we can bound the constants Vk by

Vk =
∥∥v− 1

p e−A|y|2eA|y|2 χ{|y|<Rbk}
∥∥
p′ ≤ ‖v‖Dp,A

eA|Rbk|2 .

This is relevant when we construct the weight u as in (2.5), for which we have
freedom to choose s < 1 and b > 1. Given σ < 1, we first select s < 1 such that
σp′

p = s
p−s . Then,

‖uσ‖p
′

Dp,B
=

∫
Rd

u(y)−
σp′
p e−p′B|y|2 dy(2.6)

=

∞∑
k=0

(
2γkCk

)σp′
∫
Ek

Uk(y)
− s

p−s e−p′B|y|2 dy

≤ c

∞∑
k=0

(
2γk|Ek|

1
s−1 eA|Rbk|2

)σp′

e−p′B|bk−1|2 ,

where in the last line we have used that ‖U−1
k ‖

L
s

p−s
≤ 1. Now, this series is

convergent provided that

B > b2 AR2σ,

and this is always the case if B > A0R
2σb2 and we select A close enough (but

larger) than A0. �

Remark 2.2. The theorem continues to hold if we replace the condition in the

weight by ‖v− 1
p e−A|y|‖p′ < ∞, for all A > A0. Indeed, in such case the same proof

as above would give, for every σ < 1, a weight u such that ‖u− σ
p e−A|y|‖p′ < ∞,

∀A > A0Rσb. This version of Theorem 2.1 (with A0 = 0) will be used in §5 below.

Remark 2.3. Theorem 2.1 cannot be true for p = 1, at least if one expects “reason-
able” weights u and v, say, such that L1(u) ⊂ L1

loc(R
d) and v is essentially constant

near some point x0. Indeed, in such case the function

f(x) = |x− x0|−d[ln(e/|x− x0|)]−2χBε(x0) ∈ L1(v)

for some ε > 0, but

Mloc
R f(x) � |x− x0|−d[ln(e/|x− x0|)]−1 near x0,

which is not locally integrable.

3. The heat equation for the Hermite operator L = −Δ+ |x|2

This case was studied earlier in [1], although from a slightly different perspective.
Namely, in that paper the authors seek minimal conditions on a function f so
that there exists some ε > 0 for which e−tLf(x) is well defined up to time ε and
e−tLf(x) → f(x) for a.e. x. This is satisfactory if one only cares about pointwise
convergence to the initial data, but does not guarantee that the candidate solution
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e−tLf actually exists in a fixed band of time t ∈ (0, T). In our approach, we first
fix T > 0 and the corresponding pde{

ut = −Lu, t ∈ (0, T),
u(0) = f

and search for minimal assumptions in f so that u(t, x) = e−tLf(x) solves the
equation in the full band t ∈ (0, T), and secondly, it satisfies e−tLf(x) → f(x) a.e.
This more precise approach is also slightly more general than [1], since their class of
admissible initial data f will coincide with the union of our classes as T > 0 varies.

3.1. Kernel estimates. The kernel ht(x, y) of e
−tL (usually called Mehler kernel)

has a well-known explicit expression which we shall write in the form

(3.1) ht(x, y) =
(1− s2

4πs

) d
2

e−
1
4 (

|x−y|2
s +s|x+y|2) with s = th t.

We shall use the following estimates.

Lemma 3.1. Given M > 1, t > 0 and x ∈ Rd, there exists some C = Cx,t,M > 0
such that

(3.2) 1
C e−

|x−y|2
4 [ 1s+s(M+1

M−1 )
2] ≤ ht(x, y) ≤ C e−

|x−y|2
4 [ 1s+s(M−1

M+1 )
2], ∀ y ∈ R

d,

where we have set s = th t.

Proof. Assume first that |y| ≥ M |x|. Then, an elementary use of triangle inequali-
ties gives M−1

M |y| ≤ |x± y| ≤ M+1
M |y|, and therefore

M−1
M+1 |x− y| ≤ |x+ y| ≤ M+1

M−1 |x− y|.
Inserting these inequalities into the Mehler kernel (3.1) one easily obtains (3.2).

If we assume |y| ≤ M |x|, then the function y �→ ht(x, y)e
|x−y|2

4 [ 1s+s(M+1
M−1 )

2] is con-
tinuous and non-vanishing, and hence bounded from below in the compact set
|y| ≤ M |x| by a constant c(x, t,M) > 0. One argues similarly for the upper
bound. �

Remark 3.2. Observe that every f ≥ 0 which has e−tLf(x) < ∞, for some x and
t > 0, is necessarily locally integrable. Indeed, if y belongs to compact set K,
then ht(x, y) is bounded below by some c = c(t, x,K) > 0, and hence

∫
K
|f | ≤

1
c

∫
ht(x, y)|f(y)|dy < ∞.

3.2. Proof of Theorem 1.1 for the Hermite heat equation. Theorem 1.1,
in the setting considered in this section, is a direct consequence of the next three
propositions. Our argument is more direct than that in [1] and also valid in greater
generality.

Proposition 3.3. Let T > 0 be fixed (possibly T = ∞). Then, the following are
equivalent:

(i)

∫
Rd

ht(x, y)|f(y)|dy < ∞, for all t ∈ (0, T) and x ∈ Rd;

(ii)

∫
Rd

ht(xt, y)|f(y)|dy < ∞, for all t ∈ (0, T) and some xt ∈ Rd;

(iii)

∫
Rd

|f(y)| e−
|y|2
4s dy < ∞, for all s ∈ (0, th (2T )/2).
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Proof. Clearly (i) implies (ii). We show that (ii) implies (iii). Pick any t0 < T and
x such that ∫

Rd

ht0(x, y)|f(y)|dy < ∞.

Call s0 = th t0, and take any s < th (2t0)/2 = (th t0+
1

th t0
)−1, that is, 1

s > s0+
1
s0
.

Then there must exist some large M > 1 so that 1
s > 1

s0
+ s0(

M+1
M−1 )

2. The lower

bound in (3.2) then gives

e−
|x−y|2

4s ≤ e−
|x−y|2

4 [ 1
s0

+s0(
M+1
M−1 )

2] ≤ Cx,t0,M ht0(x, y).

Hence

(3.3)

∫
Rd

e−
|x−y|2

4s |f(y)|dy < ∞, ∀ s < th (2t0)/2.

Using the similar but more elementary estimate

(3.4) 1
c e

− |y|2
4s (M+1

M )2 ≤ e−
|x−y|2

4s ≤ c e−
|y|2
4s (M−1

M )2 , y ∈ R
d,

with some c = c(x, s,M) > 0, one can place x = 0 in (3.3). Since t0 < T is arbitrary,
one obtains the assertion in (iii).

Next we show that (iii) implies (i). Pick t0 < T and x ∈ R
d. Setting s0 =

th (2t0)/2, we see that (iii) (suitably combined with (3.4)) implies that

(3.5)

∫
Rd

|f(y)| e−
|x−y|2

4s0 dy < ∞.

Take any t < t0 and let s = th t < th t0. Then 1
s + s > 1

th t0
+ th t0 = 1

s0
. Thus,

there is some large M such that 1
s + s(M−1

M+1 )
2 > 1

s0
, so the upper bound in (3.2)

gives

ht(x, y) ≤ C e−
|x−y|2

4 [ 1s+s(M−1
M+1 )

2] ≤ C e−
|x−y|2

4s0 .

Then (i) follows from (3.5). �

Proposition 3.4. If f satisfies the conditions in Proposition 3.3, then

u(t, x) =

∫
Rd

ht(x, y)f(y) dy ∈ C∞((0, T)× R
d).

Proof. It suffices to prove that, for each x and t,

(3.6)

∫
Rd

∣∣∂L
t Δ

M
x [ht(x, y)]

∣∣ |f(y)| dy < ∞, ∀ L,M ≥ 0.

Since ht(x, y) satisfies the Hermite equation, we can assume that M = 0. Since
s = th t is a diffeomorphism, we may just prove (3.6) replacing ∂t by ∂s. Now, from
the explicit formula (3.1), this would be a consequence of

(3.7)

∫
Rd

|x± y|2L ht(x, y) |f(y)| dy < ∞, ∀ L ≥ 0.

But if f satisfies (i) of Proposition 3.3, so does |x ± y|2Lf(y), so (3.7) is indeed
true. �

Proposition 3.5. If f satisfies the conditions in Proposition 3.3, then

(3.8) lim
t→0+

e−tLf(x) = f(x), a.e. x ∈ R
d.
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Proof. It suffices to show (3.8) for a.e. |x| ≤ n and every fixed n ∈ N. Split

f = fχ{|y|≤2n} + fχ{|y|>2n} = f1 + f2.

We first show that limt→0 e
−tLf2(x) = 0 for all |x| ≤ n. Indeed, if |y| > 2n we must

have |x− y| ≥ |y|/2, and therefore, from the explicit formula (3.1),

(3.9) ht(x, y) ≤ e−
|x−y|2

4s

(4πs)d/2
≤ e−

|y|2
16s

(4πs)d/2
≤ e−

|y|2
32s − |y|2

4s0

(4πs)d/2
≤ cd s

−d/2 e−
n2

8s e−
|y|2
4s0

if we assume s = th t ≤ s0/8 and say s0 = th (2T)/4. Now, since e−
|y|2
4s0 f(y) ∈

L1(Rd) and lims→0 s
−d/2 e−

n2

8s = 0, we obtain

(3.10) |e−tLf2(x)| ≤ cd s
−d/2 e−

n2

8s

∫
Rd

|f(y)| e−
|y|2
4s0 dy → 0, as t → 0.

On the other hand, every f verifying the conditions in Proposition 3.3 is lo-
cally integrable (by Remark 3.2), so by the standard pointwise convergence for L1

functions we have

(3.11) lim
t→0

e−tLf1(x) = f(x), a.e. |x| ≤ n.

�

3.3. Proof of Theorem 1.3 for the Hermite heat equation. This requires a
more detailed proof, as the estimate in the weight u is new. Let 1 < p < ∞ and

a < T be fixed. For a weight v such that ‖v− 1
p e−

|y|2
4s ‖p′ < ∞ for all s < th (2T)/2,

we need to show that the maximal operator

h∗
af(x) = sup

0<t<a

∫
Rd

ht(x, y)|f(y)| dy

maps boundedly Lp(v) → Lp(u) for some weight u. Moreover, if σ ≤ σ0 (for a

suitable σ0 to be chosen) we must find a weight u such that ‖u− σ
p e−

|y|2
4s ‖p′ < ∞

for all s < th (2T)/2.
To do so, we fix M > 1 (to be chosen later) and split the operator h∗

a into two
parts:

h∗
af(x) ≤ sup

0<t<a

∫
|y|≤M max{|x|,1}

ht(x, y)|f(y)| dy

+ sup
0<t<a

∫
|y|>M max{|x|,1}

ht(x, y)|f(y)| dy

= Af(x) + Bf(x).

For the operator B we estimate the kernel as in (3.9), but with a slightly more
precise computation. Now we assume |y| > M max{|x|, 1}, so we have |x ± y| ≥
M−1
M |y|. Thus, if s = th t,

ht(x, y) ≤
e−(M−1

M )2(s+1/s) |y|2
4

(4πs)d/2
≤ cM

|y|d e
−(M−1

M )3(s+1/s) |y|2
4

≤ c′M
max{1, |x|d} e−(M−1

M )3(s+1/s) |y|2
4 .
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We pick M large enough so that ( M
M−1 )

3(s+ 1/s)−1 ≤ s0 := ( M
M−1 )

3 th (2a)
2 < T∗ =

th (2T)/2. Then, Hölder’s inequality gives

Bf(x) ≤ c′M
max{1, |x|d} ‖f‖Lp(v)

∥∥v− 1
p e−

|y|2
4s0

∥∥
p′ < ∞.

So, we will have ‖Bf‖Lp(u) � ‖f‖Lp(v) if we choose any u(x) ≤ 1. We now pass to
the operator Af(x). Since |y| ≤ M max{|x|, 1}, an elementary computation slicing
into dyadic shells (of radii 2j

√
s, j ∈ N) gives

Af(x) ≤ sup
0<t<a

∫
|y|≤M max{|x|,1}

|f(y)| e
− |x−y|2

4s

(4πs)d/2
dy � Mloc

M f(x),

whereMloc
M f is the local Hardy-Littlewood maximal function defined in (2.1). Thus

by Theorem 2.1, if we set σ0 = σ0(a, T
∗) = 1/M2 ∈ (0, 1), then for every σ < σ0

there exists a weight U such that ‖Af‖Lp(U) � ‖f‖Lp(v) and ‖U− σ
p e−

|y|2
4s ‖p′ < ∞

for all s < th (2T)/2. Finally, to combine the estimates for Af and Bf we can just
take

u(x) = min
{
U(x), 1

}
,

which satisfies the required properties.

Remark 3.6. In the previous proof we chose σ0(a, T
∗) = 1/M2, with M so that

( M
M−1 )

3 th 2a
2 < T∗. In general, we cannot let M ↘ 1 (and hence σ0 ↗ 1), but we

could always do so if we start with a parameter a sufficiently small (depending on
T ∗).

4. The Poisson equation for the Hermite operator

4.1. Kernel estimates. We denote by pt(x, y) the kernel of the operator e−t
√
L.

By the subordination formula (1.5), and using the explicit expression for ht(x, y)
in (3.1), the kernel can be written as

pt(x, y) =
t√
4π

∫ ∞

0

e−
t2

4u hu(x, y)
du

u3/2

=
t

(4π)
d+1
2

∫ 1

0

e
− t2

2 ln 1+s
1−s (1− s2)

d
2−1 e−

1
4 (

|x−y|2
s +s|x+y|2)

s
d
2

(
1
2 ln

1+s
1−s

)3/2 ds,(4.1)

after the change of variables s = thu (or equivalently u = 1
2 ln

1+s
1−s ). These long

expressions are difficult to handle, but we obtain here very precise decay estimates
which will be enough for our purposes. The next two lemmas are key results in this
section.

Lemma 4.1. Given t > 0 and x ∈ R
d, there exists some Ct,x > 0 such that

(4.2)
C−1

t,x e−
|y|2
2

(1 + |y|) d
2 [ln(e+ |y|)] 32

≤ pt(x, y) ≤ Ct,x e−
|y|2
2

(1 + |y|) d
2 [ln(e+ |y|)] 32

, ∀ y ∈ R
d.

Proof. We may assume that |y| ≥ M max{|x|, 1}, for a fixed sufficiently large M ,
since otherwise y would belong to a compact set, and upper and lower bounds with
a constant Ct,x would be obvious.
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We start with the upper bound. In the integral expression for pt(x, y) in (4.1),
we first look at the range 0 < s < 1/2, namely

(4.3)

I0 = t

∫ 1/2

0

e
− t2

2 ln 1+s
1−s (1− s2)

d
2−1 e−

1
4 (a

2s+ b2

s )

s
d
2

(
ln 1+s

1−s

)3/2 ds

� t

∫ 1/2

0

e−c t2/s e−
1
4 (a

2s+ b2

s )

s
d+3
2

ds,

where we have used the elementary estimate

ln
(1 + s

1− s

)
= ln

(
1 +

2s

1− s

)
≈ s, s ∈ [0, 1/2],

and the notation

(4.4) a = |x+ y| and b = |x− y|.

We turn to estimating the crucial exponential factor

(4.5) exp
(
−1

4
(sa2 + b2

s )
)
.

If 0 < s < 1/2, by monotonocity we have s+ 1
s ≥ 5

2 , while the assumption |y| ≥ M |x|
implies that a2, b2 ≥ (M−1

M )2|y|2. Thus, the exponential term in (4.5) is controlled
by

exp
(
− 1

4 (sa
2 + b2

s )
)
≤ exp(− 5

8 (
M−1
M )2|y|2) ≤ exp(− 6

10 |y|
2),

if M is chosen large enough. Inserting this bound into (4.3) and changing variables
v = t2/s in the remaining integral we obtain

(4.6) I0 � e−
6
10 |y|

2

t−d

∫ ∞

2t2
e−cv v

d+1
2

dv

v
≤ c′ t−d e−

6
10 |y|

2

.

Thus, this part has a better decay than the right hand side of (4.2).
We now pass to the range 1/2 ≤ s < 1, which disregarding irrelevant terms is

given by the integral

(4.7) I1 = t

∫ 1

1
2

(1− s)
d
2−1

(ln 1
1−s )

3
2

e−
1
4 (sa

2+ b2

s ) ds.

Here we need a finer estimate on the exponential (4.5). Completing squares, we
can write the exponent as

sa2 +
b2

s
=

(√
sa− b√

s

)2
+ 2ab = a2

s

(
s− b

a

)2
+ 2ab.

Since ab = |x+ y| |x− y| ≥ (y + x) · (y − x) = |y|2 − |x|2, we have

(4.8) e−
1
4 (sa

2+ b2

s ) ≤ e
|x|2−|y|2

2 e−
a2

4s (s− b
a )2 .

We shall estimate the last exponential as follows. First note that, by the triangle
inequality, |b− a| =

∣∣|x− y| − |x+ y|
∣∣ ≤ 2|x|. Therefore

∣∣s− b

a

∣∣ ≥ ∣∣1− s
∣∣ − ∣∣ b

a − 1
∣∣ ≥ 1− s− 2|x|

a .
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So when we consider the range 1/2 ≤ s < 1− 4|x|
a , we have |s− b

a | ≥ (1− s)/2, and
hence

I10 =

∫ 1− 4|x|
a

1
2

· · · ≤ t e
|x|2−|y|2

2

∫ 1− 4|x|
a

1/2

(1− s)
d
2−1

(ln 1
1−s )

3
2

e−
a2(1−s)2

16 ds

≤ t e
|x|2−|y|2

2 a−d/2

∫ a/2

0

v
d
2−1

(ln a
v )

3
2

e−
v2

16 dv,

where in the last line we have changed variables v = a(1 − s) and have slightly
enlarged the set of integration. Now, it is easy to see that, in the last integral,
the main contribution happens when v ≈ 1, and hence the integral is controlled by
c(ln a)−3/2. Since a = |x+ y| ≥ M−1

M |y|, this part meets the required bound on the
right hand side of (4.2).

It remains to consider the range 1− 4|x|/a ≤ s < 1, in which we shall disregard
the last exponential in (4.8). That is,

I11 =

∫ 1

1− 4|x|
a

· · · ≤ t e
|x|2−|y|2

2

∫ 1

1− 4|x|
a

(1− s)
d
2−1

(ln 1
1−s)

3
2

ds ≤ t e
|x|2−|y|2

2

∫ c |x|
|y|

0

u
d
2−1

(ln 1
u )

3
2

du,

where in the last step we changed varibles u = 1− s and used a = |x+ y| ≥ M−1
M |y|

(so one can choose c = 4M/(M − 1)). Now, in this range of integration we have

log(1/u) ≥ log |y|
c|x| , so the right hand side can be estimated by

(4.9) I11 � t e
|x|2−|y|2

2

( |x|
|y|

)d/2 [
log |y|

c|x|
]− 3

2 .

If say |x| ≤
√
M/c, using |y| ≥ M we have log |y|

c|x| ≥
1
2 log |y|. If |x| ≥

√
M/c (and

M is sufficiently large) we can use the elementary inequality

log |y| = log |y|
c|x| + log

(
c|x|

)
≤ log |y|

c|x| · log
(
c|x|

)
,

which implies log |y|
c|x| ≥ log |y|/ log(c|x|). Inserting these estimates of the logarith-

mic term into (4.9) we finally obtain

I11 � t cx e
− |y|2

2 |y|−d/2
[
log |y|

]− 3
2 ,

with constant cx = e
|x|2
2 (1 + |x|)d/2

[
log

(
e + |x|

)]3/2
. Combining the bounds for

I10 and I11 we conclude that

(4.10) I1 ≤ t cx e
−|y|2

2 (1 + |y|)−d/2
[
log

(
e+ |y|

)]−3/2
,

when |y| ≥ M(|x| ∨ 1), with the same value of cx.
3

We finally prove the lower bound. The main contribution for the integral defining
pt(x, y) will appear when 1 − s ≈ 1/|y|. To show this, notice that since 1+s

1−s is

increasing when 1/2 ≤ s < 1, we can bound

exp
(
− t2

2 ln 1+s
1−s

)
≥ exp

(
− t2

2 ln 3

)
.

3This value of cx will play a role later.
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Thus

pt(x, y) ≥ ct

∫ 1

1− 1
|y|

(1− s)
d
2−1

(ln 2
1−s )

3
2

e−
1
4 (sa

2+ b2

s ) ds,

where as before a = |x+ y| and b = |x− y|. Changing variables 1− s = u, we are
led to consider

I =

∫ 1/|y|

0

u
d
2−1

(ln 2
u )

3
2

e−
1
4 ((1−u)a2+ b2

1−u ) du.

This time we write the terms in the exponential expression as

(1− u)a2 +
b2

1− u
= a2 + b2 − (a2 − b2)u

1− u
+

a2u2

1− u
.

Thus, since a2 + b2 = 2(|x|2 + |y|2) and a2 − b2 = 4x · y, we see that

exp(− 1
4 ((1−u)a2+

b2

1−u )) = exp(− |x|2+|y|2
2 ) exp( u

1−u x · y) exp(− a2u2

4(1−u) )

≥ exp(− |x|2+|y|2
2 ) exp(− |x||y|u

1−u ) exp(−2|y|2u2),

where in the last line we used that 1− u ≥ 1/2 and a = |x+ y| ≤ 2|y|. Thus,

I ≥ e−
|x|2+|y|2

2

∫ 1/|y|

0

u
d
2−1

(ln 2
u )

3
2

e−2|x||y|u e−2|y|2u2

du.

Finally, since u|y| ≤ 1, we can bound from below:
(4.11)

I ≥ e−
|x|2+|y|2

2 e−2|x| e−2

∫ 1/|y|

0

u
d
2

(ln 2
u )

3
2

du

u
� e−

|x|2
2 −2|x| e−

|y|2
2

(1 + |y|) d
2 [ln(e+ |y|)] 32

,

as we wished to prove. �

The previous lemma essentially suffices for the proof of Theorem 1.1. For The-
orem 1.3, however, a more precise bound is needed. Below we write pΔt (x− y) for
the usual Poisson kernel

pΔt (x− y) =
cd t

(t2 + |x− y|2) d+1
2

.

Lemma 4.2. There exists a constant γ ≥ 2 such that
(4.12)

pt(x, y) ≤ Cx

[
pΔt (x− y) e−

|y|2
2 χ{

|y|≤γ max{|x|,1}
} +

t e−
|y|2
2

(1 + |y|) d
2 [ln(e+ |y|)] 32

]
,

where Cx = C (1 + |x|)de|x|2/2, for some constant C > 0.

Proof. As before, we split the integral in (4.1), which defines pt(x, y) as

pt(x, y) =

∫ 1
2

0

. . . +

∫ 1

1
2

. . . ≤ I0 + I1

with I0 and I1 given in (4.3) and (4.7), respectively. We have already shown in
(4.10) that

I1 � cx
t e−

|y|2
2

(1 + |y|) d
2 [ln(e+ |y|)] 32

, if |y| ≥ M(|x| ∨ 1),
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with cx ≤ Cx (see footnote 3). For |y| ≤ M(|x| ∨ 1) we shall use a cruder bound:
keeping the notation in (4.4) and disregarding the last exponential factor in (4.8)

we see that exp(− 1
4 (sa

2 + b2

s )) ≤ e
|x|2
2 e−

|y|2
2 . Inserting this into (4.7) we obtain

I1 ≤ t e
|x|2
2 e−

|y|2
2

∫ 1

1
2

(1− s)
d
2−1

(ln 1
1−s)

3
2

ds ≤ Cx
t e−

|y|2
2

(1 + |y|) d
2 [ln(e+ |y|)] 32

.

We now turn to estimate I0, for which we need a slightly different argument to in-
troduce pΔt . Starting from (4.6), we can write, for a small η > 0 (to be determined),

I0 ≤ t

∫ ∞

2

e−(ct2+ η
4 b

2)v e−
1
4 (

a2

v +b2(1−η)v)v
d+1
2

dv

v
.

Now, if |y| ≥ M max{|x|, 1}, we use as before that a2, b2 ≥ (M−1
M )2|y|2 and the

monotonicity of 1
v + v to obtain

e−
1
4 (

a2

v +b2(1−η)v) ≤ e−
1
4 (1−η)(M−1

M )2( 1
v+v)|y|2 ≤ e−

5
8 (1−η)(M−1

M )2|y|2 .

So, setting η = 1/M and fixing M large enough such that 5
8 (

M−1
M )3 ≥ 6

10 , we
conclude that

I0 ≤ cM t e−
6
10 |y|

2

∫ ∞

2

e−(ct2+ η
4 b

2)v v
d+1
2

dv

v

≤ c′M
t e−

6
10 |y|

2

(t2 + |x− y|2) d+1
2

≤ c′′M
t e−

6
10 |y|

2

|y|d+1
,

using in the last step the assumption |y| ≥ M max{|x|, 1}. This can clearly be
absorbed into the right hand side of (4.12).

So we are left with I0 in the region |y| ≤ M max{|x|, 1}. We now write

I0 ≤ t

∫ ∞

2

e−
1
4 (ct

2+b2)v e−
a2

4v v
d+1
2

dv

v

� t

(ct2 + b2)
d+1
2

∫ ∞

ct2+b2

2

e−u e−
a2(ct2+b2)

16u u
d+1
2

du

u
,(4.13)

where we have changed variables u = (ct2 + b2)v/4. In the last integral we can
disregard t and estimate it crudely by

J =

∫ ∞

0

e−u e−
a2b2

16u u
d+1
2

du

u
.

This integral is not difficult to estimate by hand, but we can also quote the litera-
ture, since it resembles a Bessel potential kernel

(4.14) Gα(x) = cα,d

∫ ∞

0

e−u e−
|x|2
4u u

α−d
2

du

u

[16, p. 132]. Indeed, modulo a multiplicative constant J = cd G2d+1(ab/2) and from
well-known estimates of the Bessel potential kernel (see e.g. [3, p. 417]) we obtain

J � (1 + ab)
d
2 e−

ab
2 .

Now, ab ≥ |〈x+ y, x− y〉| ≥ −|x|2 + |y|2, so using the assumption |y| ≤ M |x| we
obtain

J � e
|x|2
2 e−

|y|2
2 (1 + |x+ y| |x− y|) d

2 ≤ cM (1 + |x|)d e
|x|2
2 e−

|y|2
2 .
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Inserting this into (4.13) we obtain the bound asserted in the statement of the
lemma. �

4.2. Proof of Theorem 1.1 for the Hermite-Poisson equation. As we did
before, the result will follow directly from the next three propositions. The first
one is a direct consequence of the kernel estimates in Lemma 4.1.

Proposition 4.3. The following properties are equivalent:

(i)

∫
Rd

pt(x, y)|f(y)|dy < ∞, for all t > 0 and x ∈ R
d;

(ii)

∫
Rd

pt0(x0, y)|f(y)|dy < ∞, for some t0 > 0 and some x0 ∈ Rd;

(iii)

∫
Rd

|f(y)| e−
|y|2
2 (1 + |y|)− d

2 [ln(e+ |y|)]− 3
2 dy < ∞.

For the smoothness of the solution one argues similarly to Proposition 3.4.

Proposition 4.4. If f satisfies the conditions in Proposition 4.3, then

u(t, x) =

∫
Rd

pt(x, y)f(y) dy ∈ C∞((0,∞)× R
d).

Proof. It suffices to prove that, for each x and t,

(4.15)

∫
Rd

∣∣∂L
t Δ

M
x [pt(x, y)]

∣∣ |f(y)| dy < ∞, ∀ L,M ≥ 0.

Since the Poisson kernel satisfies Δxpt(x, y) = |x|2pt(x, y) − ∂tt[pt(x, y)], we can
assume M = 0. Now, taking derivatives with respect to t in the explicit formula
(4.1), matters are reduced to checking that, for each 
 ≥ 0,

∫ 1

0

e
− t2

2 ln 1+s
1−s (1− s2)

d
2−1 e−

1
4 (

|x−y|2
s +s|x+y|2)

s
d
2

(
1
2 ln

1+s
1−s

)3/2+�
ds < ∞.

But the same proof we gave in Lemma 4.1 shows that this is equivalent to∫
Rd

|f(y)| e−
|y|2
2 (1 + |y|)− d

2 [ln(e+ |y|)]−( 3
2+�) dy < ∞,

which holds under the assumptions of the proposition. �

For the pointwise limits we shall also need the estimates in Lemma 4.2.

Proposition 4.5. If f satisfies the conditions in Proposition 4.3, then

(4.16) lim
t→0+

e−t
√
Lf(x) = f(x), a.e. x ∈ R

d.

Proof. We argue as in the proof of Proposition 3.5. We shall show (4.16) for
a.e. |x| ≤ n and every fixed n ∈ N. Split

f = fχ{|y|≤γn} + fχ{|y|>γn} = f1 + f2

(γ is the constant in Lemma 4.2). Using Lemma 4.2 we see that, for every |x| ≤ n,

(4.17)
∣∣e−t

√
Lf2(x)

∣∣ ≤ Cn0
t

∫
Rd

|f(y)| e− |y|2
2 dy

(1 + |y|) d
2 [ln(e+ |y|)] 32

.

Since the last integral is finite we obtain limt→0 e
−t

√
Lf2(x) = 0 for all |x| ≤ n.
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On the other hand, f1 ∈ L1(Rd), so the standard pointwise convergence of
Hermite-Poisson integrals of L1 functions gives

(4.18) lim
t→0

e−t
√
Lf1(x) = f(x), a.e. |x| ≤ n.

�

4.3. Proof of Theorem 1.3. Let v ∈ DPois
p (L), that is,

(4.19) ‖v‖Dp
:= ‖v− 1

pϕ‖Lp′ (Rd) < ∞,

where we denote ϕ(y) = e−
|y|2
2 (1 + |y|)− d

2 [ln(e+ |y|)]− 3
2 . For every a > 0 and

σ < 1, we must show the boundedness of the maximal operator

P ∗
a f(x) = sup

0<t<a

∫
Rd

pt(x, y) |f(y)| dy

from Lp(v) → Lp(u) for some other weight u such that uσ ∈ Dp.
We again use Lemma 4.2 to split the maximal function as

P ∗
a f(x) ≤ Cx sup

0<t<a

∫
|y|≤γ max{|x|,1}

pΔt (x, y) |f(y)|e−
|y|2
2 dy

+Cx a

∫
Rd

|f(y)|ϕ(y) dy

= P ∗,0
a f(x) + P ∗,1

a f(x),

where we recall that Cx = c (1 + |x|)d exp(|x|2/2). Clearly, by Hölder’s inequality,

P ∗,1
a f(x) ≤ Cx a ‖f‖Lp(v) ‖v‖Dp

,

so we will have ‖P ∗,1
a f‖Lp(u) � ‖f‖Lp(v) provided we choose

u(x) ≤ u1(x) :=
1

Cp
x (1 + |x|)d+1

= c′ e−
p
2 |x|

2

(1 + |x|)−d(p+1)−1.

Observe that ‖u− σ
p

1 ϕ‖p′ < ∞ for every σ < 1.
On the other hand, when |y| ≤ γmax{|x|, 1}, a standard argument slicing the

integral into shells gives

P ∗,0
a f(x) � Cx sup

t>0

∫
|y|≤γ max{|x|,1}

t |f(y)| e− |y|2
2

(t+ |x− y|)d+1
dy � Cx Mloc

γ

(
fe−

|y|2
2

)
(x),

with Mloc
γ defined in (2.1). Now, the new function f̃(y) = f(y)e−

|y|2
2 ∈ Lp(ṽ) for

the weight ṽ(y) = v(y)e
p
2 |y|

2

. By (4.19), this weight satisfies∥∥ṽ− 1
p e−ε|y|2∥∥

p′ =
∥∥v− 1

p e−( 1
2+ε)|y|2∥∥

p′ < ∞, ∀ ε > 0,

so we can apply Theorem 2.1 to find, for each σ < 1, a weight Ũ such that

‖Mloc
γ+1f̃‖Lp(Ũ) � ‖f̃‖Lp(ṽ) = ‖f‖Lp(v) and ‖Ũ− σ

p e−ε|y|2‖p′ < ∞, ∀ε > 0.

Then, setting

u0(x) =
Ũ(x)

Cp
x

= c′ Ũ(x) e−
p
2 |x|

2

(1 + |x|)−dp,

we see that

‖P ∗,0
a f‖Lp(u0) � ‖f‖Lp(v) and ‖u−σ

p

0 ϕ‖p′ ≤ ‖Ũ− σ
p (1 + |x|)dσ e−

1−σ
2 |x|2‖p′ < ∞.
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Finally, we can combine the estimates for P ∗,0
a f and P ∗,1

a f by taking

u(x) = min
{
u0(x), u1(x)

}
,

which satisfies the required properties. �

5. The perturbed Laplacian L = −Δ+R with R > 0

This operator can often be seen as a toy model for the study of the Hermite
operator. We think that the results obtained in this case are interesting in them-
selves, so we present them here in some detail. Throughout this section, R > 0 is
fixed.

5.1. Heat equation for L = −Δ + R. This case is a direct consequence of the
corresponding results for the classical heat equation, since

(5.1) e−tLf(x) = e−tR etΔf(x) = e−tR (Wt ∗ f)(x),
where Wt(x) = (4πt)−d/2 exp(−|x|2/(4t)) is the Gauss-Weierstrass kernel. Indeed,
the factor e−tR is irrelevant for the questions asked here, so the characterizations
will be the same for both operators L = −Δ+R and L = −Δ.

We remark that for the classical heat equation, both Theorems 1.1 and 1.3 are
known or can be obtained with the same methods we carried out in §3, so we do
not include the proofs here. For example, the results stated in Theorem 1.1 can
be found in [21, pp. 64-67] or [22] or, alternatively, can be proved arguing exactly
as in §3.2 (with a few obvious modifications). The same applies to Theorem 1.3,
basically reading line by line the proof given in §3.3 or checking the reference [7]
(our formulation is slightly more general, but the ideas are similar).

5.2. Poisson equation for L = −Δ+R. This case requires a formal proof, since it
cannot be deduced from the classical setting. In fact, the characterizing conditions
are different for −Δ and −Δ+R; see (1.3) and Table 1. Our method will be similar
to the one presented in §4 for the Hermite case.

The Poisson kernel in this case is of convolution type pt(x, y) = pt(x− y). From
the subordination formula (1.5) and the factorization in (5.1), the kernel takes the
form

pt(x) =
t

(4π)
d+1
2

∫ ∞

0

e−
t2+|x|2

4u e−uR u− d+3
2 du(5.2)

=
t

[π(t2 + |x|2)] d+1
2

∫ ∞

0

e−v e−
R(t2+|x|2)

4v v
d+1
2 dv,(5.3)

where in the last line we have changed variables v = (t2+|x|2)/(4u). One recognizes
in this expression the standard Poisson kernel pΔt (x) and the Bessel potential kernel
defined in (4.14), so that we can write

pt(x) = cd p
Δ
t (x)G2d+1

(√
R(t2 + |x|2)

)
,

for a suitable constant cd. Since we only care about approximate expressions, using
the asymptotics of Gα(x) mentioned already in §4.1 we obtain

(5.4) pt(x− y) ≈
t
(
1 +

√
R(t+ |x− y|)

) d
2 e−

√
R(t2+|x−y|2)

(t+ |x− y|)d+1
.

To derive a less complicated expression for this kernel we need an elementary lemma.
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Lemma 5.1. For every t > 0 and x ∈ Rd we have

(5.5) c1(t, x) e
−
√

R(1+|y|2) ≤ e−
√

R(t2+|x−y|2) ≤ c2(x) e
−
√

R(1+|y|2), ∀ y ∈ R
d,

for some c1(t, x) > 0 and c2(x) = cR exp(
√
R|x|).

Proof. For the left inequality notice that√
t2 + |x− y|2 ≤ t+ |x|+ |y| ≤ t+ |x|+

√
1 + |y|2.

Hence

e−
√

R(t2+|x−y|2) ≥ c1(t, x) e
−
√

R(1+|y|2)

with c1(t, x) = exp(−
√
R(t+ |x|)).

To prove the right inequality in (5.5), assume first that |y| ≥ 1. Then

(5.6) e−
√
R
√

t2+|x−y|2 ≤ e−
√
R |x−y| ≤ e

√
R |x| e−

√
R |y|.

Now, using first the assumption |y| ≥ 1, followed by the elementary inequality
1 + a

2 ≥
√
1 + a, we obtain

|y| ≥ |y|
(
1 +

1

2|y|2
)
− 1

2
≥ |y|

√
1 +

1

|y|2 − 1

2
=

√
1 + |y|2 − 1

2
.

Inserting this into (5.6) we obtain

e−
√
R
√

t2+|x−y|2 ≤ e
√
R(|x|+ 1

2 ) e−
√

R(1+|y|2).

Finally, if |y| ≤ 1 one trivially has

e−
√
R
√

t2+|x−y|2 ≤ 1 = e
√

R(1+|y|2)e−
√

R(1+|y|2) ≤ e
√
2Re−

√
R(1+|y|2).

Combining the last two estimates we obtain (5.5) with c2(x) = exp(
√
R(|x|+2)). �

Lemma 5.2. The following inequality holds for every t > 0 and x, y ∈ Rd:

pt(x− y) ≤ Cx

[
max{t, 1} d

2
pΔt (x− y)

e
√

R(1+|y|2)
χ{

|y|≤2max{1,|x|}
} +

t e−
√

R(1+|y|2)

(1 + |y|) d
2+1

]
,

where Cx = cR (1 + |x|)d/2 e
√
R|x|.

Proof. The proof is an easy estimation combining (5.4) with Lemma 5.1. �

Theorem 1.1 will then be a consequence of the next three propositions.

Proposition 5.3. The following properties are equivalent:

(i)

∫
Rd

pt(x, y)|f(y)|dy < ∞, for all t > 0 and x ∈ R
d;

(ii)

∫
Rd

pt0(x0, y)|f(y)|dy < ∞, for some t0 > 0 and some x0 ∈ Rd;

(iii)

∫
Rd

|f(y)| e−
√

R(1+|y|2)(1 + |y|)−( d
2+1) dy < ∞.

Proof. It is clear that (i)⇒(ii). To see that (ii)⇒(iii), one uses the left inequality
in Lemma 5.1, which inserted into (5.4) easily leads to

pt0(x0 − y) ≥ c1(t0, x0) e
−
√

R(1+|y|2)(1 + |y|)−( d
2+1), if |y| > 2max{|x0|, 1}.

Since (ii) also implies that f is locally integrable, the statement in (iii) follows.
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Finally, to see that (iii)⇒(i), one can again restrict to |y| > 2max{|x|, 1}, and
then the assertion is a consequence of the right inequality in Lemma 5.1. �

Proposition 5.4. If f satisfies the conditions in Proposition 5.3, then

(5.7) u(t, x) =

∫
Rd

pt(x− y)f(y) dy ∈ C∞((0,∞)× R
d).

Proof. We only sketch the proof, as the argument is similar to that in Proposition
4.4. It suffices to consider derivatives with respect to t, and one sees from (5.2)
that this amounts to studying the decay of the kernels

pt,�(x) =

∫ ∞

0

e−
t2+|x|2

4u e−uR u− d+3+2�
2 du, ∀ 
 ∈ N.

Changing variables as in (5.3) and using the asymptotics of the Bessel potentials
(now G2d+2�+1(x)) one sees that

pt,�(x) ≈
t
(
1 +

√
R(t+ |x|)

) d
2+�

e−
√

R(t2+|x|2)

(t+ |x|)d+1+2�
,

which as expected have a better decay than the original kernel. The integrability
conditions assumed in f then suffice to give (5.7). �

Proposition 5.5. If f satisfies the conditions in Proposition 5.3, then

lim
t→0+

e−t
√
Lf(x) = f(x), a.e. x ∈ R

d.

Proof. Once Proposition 5.3 has been established, the proof is entirely analogous
to that of Proposition 4.5. We leave the details to the reader. �

5.3. Proof of Theorem 1.3 for the Poisson equation. Using Lemma 5.2 and
arguing as in §4.3, we see that

(5.8) P ∗
a f(x) � Cx a

d
2

[
Mloc

2

(
fe−

√
R(1+|y|2))(x) + a ‖f‖Lp(v)‖v−

1
pϕ‖p′

]
,

with Cx = cR(1 + |x|) d
2 e

√
R|x| and ϕ(y) = e−

√
R(1+|y|2)(1 + |y|)−( d

2+1). The right
hand term will belong to Lp(u) provided we choose

u(x) ≤ u1(x) :=
1

Cp
x (1 + |x|)d+1

= c′ e−p
√
R|x| (1 + |x|)−

pd
2 −d−1.

Observe that ‖u− σ
p

1 ϕ‖p′ < ∞ for every σ < 1.

For the left hand term in (5.8), the new function f̃(y) = f(y)e−
√

R(1+|y|2) ∈
Lp(ṽ) for the weight ṽ(y) = v(y)ep

√
R(1+|y|2). This weight satisfies∥∥ṽ− 1

p e−ε|y|∥∥
p′ =

∥∥v− 1
p e−ε|y| e−

√
R
√

1+|y|2∥∥
p′ < ∞, ∀ ε > 0,

so we can apply Theorem 2.1 (and Remark 2.2) to find, for each σ < 1, a weight Ũ
such that

‖Mloc
2 f̃‖Lp(Ũ) � ‖f̃‖Lp(ṽ) = ‖f‖Lp(v) and ‖Ũ− σ

p e−ε|y|‖p′ < ∞, ∀ε > 0.

Then, setting

u0(x) =
Ũ(x)

Cp
x

= c′ Ũ(x) e−p
√
R|x| (1 + |x|)−dp/2
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and calling Af(x) the first summand in (5.8), we see that ‖Af‖Lp(u0) � ‖f‖Lp(v)

and

‖u− σ
p

0 ϕ‖p′ ≤ ‖Ũ− σ
p (1 + |x|) dσ

2 e−(1−σ)
√
R|x|‖p′ < ∞.

Thus, we can finally choose

u(x) = min
{
u0(x), u1(x)

}
,

which satisfies the required properties.

6. The Ornstein-Uhlenbeck operator

It is well known that the Ornstein-Uhlenbeck operator O = −Δ+ 2x · ∇ in Rd

is closely related to a small perturbation of the Hermite operator

(6.1) L = −Δ+ |x|2 − d, in R
d.

Indeed, if we set ũ(x)=e−|x|2/2u(x), then it is easily seen thatOu(x)=e|x|
2/2[Lũ](x).

Thus,

(6.2) e−tOf(x) = e
|x|2
2 e−tLf̃(x) and e−t

√
Of(x) = e

|x|2
2 e−t

√
Lf̃(x),

so that the convergence properties of O can be obtained from those of L via the
mapping f �→ f̃ ; see e.g. [1, (3.1)]. We sketch below the arguments needed to
deal with the operator L in (6.1), and hence obtain Theorems 1.1 and 1.3 for the
operator O.

6.1. Proof of Theorem 1.1. Consider first the heat equation associated with
L = −Δ+ |x|2 − d and datum f̃ , whose solution can be written as

e−tLf̃(x) = etde−tHf̃(x), with H = −Δ+ |x|2.
Clearly (i) and (ii) hold, requiring in f̃ the same conditions as for the operator H
in Table 1. This in turn implies that Theorem 1.1 holds for u(t, x) = e−tOf(x)
provided that ∫

Rd

|f(y)| e−
|y|2
4 ( 1

s+2) dy < ∞, ∀ s ∈
(
0, th (2T)/2

)
.

This is exactly the statement in Table 1 for the operator O.
We now move to the Poisson semigroup associated with L = −Δ+ |x|2− d. The

subordination formula in this case takes the form

e−t
√
L =

t√
4π

∫ ∞

0

e−
t2

4u e−uH eud
du

u3/2
.

Hence, the substitution s = thu (i.e. u = 1
2 ln

1+s
1−s ) gives the integral expression

(6.3)

pt(x, y) =
t

(4π)
d+1
2

∫ 1

0

e
− t2

2 ln 1+s
1−s (1− s2)

d
2−1 e−

1
4 (

|x−y|2
s +s|x+y|2)

s
d
2

(
1
2 ln

1+s
1−s

)3/2
(1 + s

1− s

) d
2

ds.

This is quite similar to the Poisson-Hermite kernel in (4.1), except that the power
(1 − s)d/2 in the numerator now cancels out with the new term appearing from
the factor eud. At this point one can apply the same arguments as in the proof of
Lemma 4.1, which produce the estimate

(6.4) pt(x, y) ≈ e−|y|2/2

[ln(e+ |y|)] 12
, ∀ y ∈ R

d
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(modulo multiplicative constants C = Ct,x). We do not carry out the details of
(6.4), but these are easily traced looking at the expression for I1 in (4.7) (now
without the factor (1 − s)d/2) and its estimates in (4.11) and (4.10). The loss in
the logarithmic power is due to the fact that

∫ 1/|y|

0

du

(ln 2
u )

3
2 u

≈ 1

[ln(e+ |y|)] 12
and

∫ |y|
2

0

e−cv2

dv

(ln |y|
v )

3
2 v

≈ 1

[ln(e+ |y|)] 12
.

From (6.4) a version of Theorem 1.1 for L = −Δ + |x|2 − d follows exactly as in

§4.2; that is, u(t, x) = e−t
√
Lf̃(x) satisfies (i)+(ii) if and only if∫

Rd

|f̃(y)| e−
|y|2
2 [ln(e+ |y|)]− 1

2 dy < ∞.

Using (6.2) this implies that the solution of the Poisson-Ornstein-Uhlenbeck equa-

tion u(t, x) = e−t
√
Of(x) satisfies the assertions in Theorem 1.1 if and only if∫

Rd

|f(y)| [ln(e+ |y|)]− 1
2 e−|y|2dy < ∞,

as stated in Table 1.

6.2. Proof of Theorem 1.3. We first consider the maximal heat operators asso-
ciated with L = −Δ+ |x|2 − d and O. Observe that they are related by

h∗,O
a f(x) = e

|x|2
2 h∗,L

a f̃(x) and h∗,L
a f̃(x) ≤ ead h∗,H

a f̃(x).

Clearly, h∗,L
a inherits the same boundedness properties of h∗,H

a , and we shall use
these to prove Theorem 1.3 for h∗,O

a .
Let v ∈ Dheat

p (O), which according to Corollary 1.2 means that

∥∥v− 1
p e−

|y|2
4 ( 1

s+2)
∥∥
p′ < ∞, ∀ s < th (2T)/2.

Then, the weight V (y) = v(y)e
p|y|2

2 belongs to Dheat
p (H). By Theorem 1.3 applied

to H, there is a σ0 = σ0(a, T
∗) ∈ (0, 1) such that, for any σ < σ0, there exists some

weight U such that h∗,H
a : Lp(V ) → Lp(U) and Uσ ∈ Dheat

p (H). Now consider the

weight u(x) = e−
p|x|2
2σ U(x). Clearly uσ ∈ Dheat

p (O), while

∥∥h∗,O
a f

∥∥
Lp(u)

=
∥∥e |x|2

2 h∗,L
a f̃(x) e−

|x|2
2σ

∥∥
Lp(U)

≤ ead
∥∥h∗,H

a f̃
∥∥
Lp(U)

� ‖f̃‖Lp(V ) = ‖f‖Lp(v).

We now pass to the maximal Poisson operators. As before we have

P ∗,O
a f(x) = e

|x|2
2 P ∗,L

a f̃(x) ,

so it suffices to work with the expression P ∗,L
a f̃ . To do so we need an estimate of

the Poisson kernel pLt (x, y) of L = −Δ+ |x|2 − d, of the form

pLt (x, y) ≤ Cx

[
pΔt (x− y) e−

|y|2
2 χ{

|y|≤γ max{|x|,1}
} + t ϕ(y)

]
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with ϕ(y) = [ln(e + |y|)]− 1
2 e−|y|2/2. This corresponds to formula (4.12) for the

Hermite-Poisson kernel and can be obtained with obvious modifications in the proof;
namely, the integral I1 must now be estimated by the right hand side of (6.4).

At this point one proceeds as in §4.3, with this new expression of ϕ(y), to obtain
that, for every weight V ∈ DPois

p (L), that is,

‖V − 1
pϕ‖Lp′ (Rd) < ∞,

and every σ < 1, there exists a weight U such that P ∗,L
a : Lp(V ) → Lp(U) and

Uσ ∈ DPois
p (L). Finally, let v ∈ DPois

p (O). By (6.2), the weight V (y) = v(y)e
p|y|2

2

belongs to DPois
p (L), so we can apply the previous result to obtain a weight U .

Next, consider u(x) = e−
p|x|2
2σ U(x), which satisfies uσ ∈ DPois

p (O), and

∥∥P ∗,O
a f

∥∥
Lp(u)

=
∥∥e |x|2

2 P ∗,L
a f̃(x) e−

|x|2
2σ

∥∥
Lp(U)

≤
∥∥P ∗,L

a f̃
∥∥
Lp(U)

� ‖f̃‖Lp(V ) = ‖f‖Lp(v).

This establishes Theorem 1.3 for the maximal Poisson-Ornstein-Uhlenbeck opera-
tor.

7. Further comments

7.1. An example. Consider the classical heat equation ut = Δu in (0, T) × Rd,

with initial datum f(y) = e|y|
2/(4T). An explicit solution is given by

ht ∗ f(x) = (1− t
T
)−d/2 e

|x|2
4(T−t) , t ∈ (0, T), x ∈ R

d.

Clearly, f ∈ Lp(v) with v(y) = (1 + |y|)−d−1e−p|y|2/(4T), which belongs to the class
Dheat

p associated with Δ in (0, T)× R
d as described in (1.6). However, notice that

the function ha ∗ f(x) has a much larger exponential growth than f (if a is close
to T). Hence if one expects ha ∗ f to belong to Lp(u), the weight u must satisfy
stronger conditions than v.

For example, one could choose u(x) = (1 + |x|)−d−1e−p|x|2/[4(T−a)], but then uσ

will only belong to Dheat
p if σ ≤ (T −a)/T . This shows the necessity of a restriction

in σ (depending on a and T) for the Lp(v) → Lp(u) boundedness of maximal heat
operators, as stated in Theorem 1.3.

7.2. Non-tangential convergence. For every α > 0, the statement of Theorem
1.1 can be improved to

lim
(t,x)→(0,x0)

|x−x0|2<αt

e−tLf(x) = f(x0) and lim
(t,x)→(0,x0)

|x−x0|<αt

e−t
√
Lf(x) = f(x0), a.e. x0 ∈ R

d.

Indeed, non-tangential convergence is known to hold for L1-functions [12], and
hence, going back to the proofs of Propositions 3.5 and 4.5, such result could be
applied to the “local” part of f , f1 = fχ{|y|≤2n} in formulas (3.11) and (4.18). The
remainder terms f2 = fχ{|y|>2n} would not be a problem, since their estimates in
(3.10) and (4.17) are uniform in x.
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Similarly, Theorem 1.3 will continue to hold if we replace h∗
a and P ∗

a by their
parabolic and non-tangential analogues, respectively,

h∗, α
a f(x0) = sup

0<t<a

|x−x0|2<αt

∣∣e−tLf(x)
∣∣ and P ∗, α

a f(x0) = sup
0<t<a

|x−x0|<αt

∣∣e−t
√
Lf(x)

∣∣,
and every fixed α > 0. The modifications are again standard and left to the reader.

7.3. Alternative approach to the Hermite heat operator. Propositions 3.3
and 3.5 can be proved in a slightly faster way using an alternative expression for
the Mehler kernel, which relates it directly to the classical heat kernel. Setting
s = th (2t)/2 one has

ht(x, y) = (1− 4s2)
d
4 e−s|x|2 e−|

√
1−4s2x−y|2/(4s)

(4πs)
d
2

= (1− 4s2)
d
4 e−s|x|2 Ws(

√
1− 4s2x− y)

(see [9] and also [2, 14]). For instance, Proposition 3.5 will then follow from the
pointwise non-tangential convergence of the classical heat equation. For the Poisson
equation, however, this approach does not seem to give easier formulas.

7.4. Global maximal functions. One may ask what would be the role of the
“global” maximal functions h∗f(x) and P ∗f(x) defined in (1.1). These are re-
lated to the characterization of the functions f whose heat or Poisson integrals, in
addition to (i) and (ii) (with T = ∞), also satisfy

∃ lim
t→∞

u(t, x), a.e. x ∈ R
d.

This is a different problem, which for the heat equation associated with the Ornstein-
Uhlenbeck operator was investigated in [8]. In the remaining cases, it seems to be
open.

7.5. Extensions to fractional Laplacian operators. The results obtained in
this paper for the Poisson equation (P) actually hold in a slightly more general
setting. Given σ > 0 consider the pde

(7.1) utt +
1− 2σ

t
ut = Lu in R

d+1
+ , with u(0) = f,

which for σ = 1/2 coincides with (P). A formal solution is given by

(7.2) u(t, x) = t2σ

4σΓ(σ)

∫ ∞

0

e−
t2

4u e−uLf(x)
du

u1+σ
, t > 0;

see [18, Thm. 1.1]. This example is relevant in the theory of fractional operators
since, under sufficiently good conditions on f , one can recover Lσ by

lim
t→0

t1−2σut(t, x) = cσL
σf(x).

Notice that (7.2) is only a slight generalization of (1.5), so estimates for the cor-

responding kernel p
(σ)
t (x, y) can be obtained exactly as in Lemma 4.1, with the

outcome

ϕ(σ)(y) = (1 + |y|)−d/2 [ln(e+ |y|)]−(1+σ) e−|y|2/2.

We leave a more detailed study of these operators for a subsequent work.
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Santa Fe, Argentina

E-mail address: shartzstein@santafe-conicet.gov.ar
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