
A sharp weighted transplantation theorem for Laguerre

function expansions∗

G. Garrigós, E. Harboure, T. Signes, J.L. Torrea, B. Viviani

October 5, 2006

Abstract

We find the sharp range of boundedness for transplantation operators associated
with Laguerre function expansions in Lp spaces with power weights. Namely, the oper-
ators interchanging {Lα

k} and {Lβ
k} are bounded in Lp(yδp) if and only if −ρ

2 − 1
p < δ <

1 − 1
p + ρ

2 , where ρ = min{α, β}. This improves a previous partial result by Stempak
and Trebels, which was only sharp for ρ ≤ 0. Our approach is based on new multiplier
estimates for Hermite expansions, weighted inequalities for local singular integrals and
a careful analysis of Kanjin’s original proof of the unweighted case. As a consequence
we obtain new results on multipliers, Riesz transforms and g-functions for Laguerre
expansions in Lp(yδp).

1 Introduction

In R+ = (0,∞), we consider the system of Laguerre functions defined by

Lα
k (y) = ck,α y

α
2 e−

y
2 L

(α)
k (y), k = 0, 1, 2, . . . (1.1)

where L
(α)
k (y) = (yα+ke−y)(k)/(k!yαe−y) is the usual Laguerre polynomial of degree k. For

each α > −1, this system is an orthonormal basis of L2(R+) when we choose the normalizing

constants

ck,α =
√

Γ(k + 1)/Γ(α + k + 1), k = 0, 1, 2, . . .
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(see e.g. [19]). This produces a formal expansion f =
∑∞

k=0〈f,Lα
k 〉Lα

k , which is convergent

in norm at least for f ∈ L2(R+).

A main object in the theory of Laguerre function expansions are the so-called transplan-

tation operators, defined for α, β > −1 and f ∈ L2(R+) by

Tα
β f =

∞∑

k=0

〈f,Lα
k 〉Lβ

k . (1.2)

The Lp boundedness of such operators was first established in a celebrated theorem of Kanjin

[10]. Namely Tα
β is bounded in Lp(R+) whenever |γ|

2 < 1
p < 1− |γ|

2 , where γ := min{α, β, 0}.
In particular, boundedness holds for all 1 < p < ∞ when α, β ≥ 0. We refer to Ch. 6 of [21]

for a discussion and several applications of transplantation in problems involving Laguerre

function expansions (see also [18, 8]).

In this paper we shall be interested in extensions of Kanjin’s result to power weighted

Lebesgue spaces Lp
δ = Lp(R+, y

δpdy). The main theorem in this setting is due to Stempak

and Trebels [18], which have established the boundedness of Tα
β in Lp

δ whenever

|γ|
2
− 1

p
< δ < 1− 1

p
− |γ|

2
, where γ := min{α, β, 0}. (1.3)

Power weighted estimates for Tα
β appear naturally in the study of multiplier and trans-

plantation theorems for several well-known variants of the Laguerre system, as noticed by

Thangavelu in [20] (see also [18, 1], and §6 below).

Our goal in this paper is to improve the result of Stempak and Trebels with a new

transplantation theorem in a range of weights strictly larger than (1.3), and which is in

fact optimal for the operators Tα
β . As we shall see, this result transfers to other systems,

producing as well optimal power weighted inequalities for the corresponding transplantation

and multiplier operators (see Corollary 6.19). More precisely, our main result can be stated

as follows.

THEOREM 1.4 Let −1 < α < β and 1 < p < ∞. Then the operators Tα
β and T β

α admit a

bounded extension to Lp
δ if and only if

−α

2
− 1

p
< δ < 1− 1

p
+

α

2
. (1.5)

We point out that (1.3) coincides with (1.5) precisely when min{α, β} ≤ 0 (see Figure

1.1). Such a constraint in p and δ for negative parameters is well known in Laguerre systems.

However, the fact that the range −1
p < δ < 1− 1

p can be improved for positive parameters

seems to come as a surprise.
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Figure 1.1: Region of Lp
δ boundedness for Tα

β when β > α, according to Theorem 1.4. The

region in dashed lines corresponds to earlier results for α > 0 in [18].

That such behavior should be possible was suggested to the authors by recent results

about Riesz transforms and other operators, which have a better behavior for special α’s

due to properties of Hermite function expansions (see [9, 12] or §5.1 below). In fact, a

phenomenon of similar type was recently discovered by Nowak and Stempak for the Hankel

transform transplantation operator [13].

We should nevertheless point out that the range in (1.5) is the natural one suggested

by examples. Indeed, it is straightforward to verify that this is precisely the range where

both Lα
k and Lβ

k belong to Lp
δ ∩Lp′

−δ, so that each of the individual summands 〈f,Lα
k 〉Lβ

k(y)

in (1.2) is well-defined in Lp
δ . An appropriate modification of this argument as in [8, §5] is

enough to obtain the necessity statement of Theorem 1.4. Moreover, it is also easy to see

that Tα
β does not admit (Lp

δ1
, Lp

δ2
) inequalities when δ1 6= δ2 (see Remark 6.20 below).

The main contribution of the paper is therefore the sufficient condition in the theorem,

which requires some new ideas compared to [18], plus a few refinements in certain estimates

of Kanjin’s original proof [10]. The key argument is a new multiplier theorem for Her-

mite function expansions in Rn, which can be stated as follows (see section 2 for a precise

definition of the Hermite functions hk):
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THEOREM 1.6 Let 1 < p < ∞ and m ∈ `∞(Nn) such that

|∆αm(k)| ≤ C (1 + |k|)−|α|, k ∈ Nn, ∀ |α| ≤ n + 1. (1.7)

Consider the operator Tmf =
∑

k m(k)〈f, hk〉hk, defined at least for f ∈ L2(Rn). Then, Tm

admits a bounded extension to Lp(w) whenever the weight w belongs to the Muckenhoupt

class Ap(Rn).

This improves a previous result in [8, Th. 3.1], where only Ap/2 for p ≥ 2 was obtained

(which in turn was an adaptation of an earlier argument by Thangavelu; see [21, Th. 4.2.1]).

We observe that this multiplier theorem can be transferred to Laguerre function expansions

for the special parameters α = n−2
2 , using the method developed in [7] (see also [8]). All

these results will be presented in section 2.

In section 3 we study the transplantation operators Tα+iθ
α introduced by Kanjin [10].

Appropriately modified with a multiplier, Kanjin found for these operators an explicit

expression, which can be further estimated by a positive operator (of Hardy type) and

a singular integral. Here we shall refine the estimates of the positive operator to show

boundedness in Lp
δ(R+) for all δ > −1

p − α
2 . On the other hand, the oscillating part is only

a local singular integral, so that, as noticed by Nowak and Stempak [13], it is a bounded

operator in Lp
δ(R+) for all δ ∈ R. Finally, the multiplier which appears in Kanjin’s explicit

expression of Tα+iθ
α can be handled with Theorem 1.6 for the special parameters α = n−2

2 .

With these ideas and complex interpolation we shall prove a new multiplier theorem for

Laguerre function expansions, which is the main result in section 3.

THEOREM 1.8 Let α > −1, 1 < p < ∞ and m ∈ C∞[0,∞) such that

|D`m(ξ)| ≤ C` (1 + ξ)−`, ξ ≥ 0, ` = 0, 1, 2, . . . (1.9)

Consider the operator Tmf =
∑

k≥0 m(k)〈f,Lα
k 〉Lα

k , defined at least for f ∈ L2(R+). Then,

Tm admits a bounded extension to Lp
δ whenever −α

2 − 1
p < δ < 1− 1

p + α
2 .

The range of power weights is sharp for each p and α, and improves the one given in the

multiplier theorem of Stempak and Trebels for all α > 0 (see Theorem 1.1 and Corollary

4.3 in [18]). We observe that the Mihlin-type version we have stated above suffices for our

applications, but the same conclusions hold with less smoothness required on the multiplier

m(ξ) (see Remark 3.24 below).

Armed with Theorem 1.8, it will be easy to conclude the proof of Theorem 1.4. Indeed,

we can now handle the multiplier which appears in Kanjin’s explicit expression of Tα+iθ
α for

any α > −1, and obtain as a consequence the boundedness of this operator in Lp
δ in the
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whole range −α
2 − 1

p < δ < 1 − 1
p + α

2 . Then, a clever use of complex interpolation with

three parameters (p, α and δ) will be enough to establish the desired result. It should be

observed that the use we make of complex interpolation produces in addition a simplification

of Kanjin’s original proof of the unweighted case, since there is no need to appeal to the

operators Tα+2
α . This program is carried out in section 4. As an illustration, we present in

section 5 an application of the above theorems to the boundedness of Riesz transforms and

Littlewood-Paley g-functions associated with the Laguerre system.

Finally, in section 6, we state the corresponding versions of the transplantation and

multiplier theorems for modified Laguerre systems (see Corollary 6.19).

Acknowledgements: This research was carried out during a visit of the first and third

authors to CONICET and the Institute of Mathematics of Universidad Nacional de Litoral,

Santa Fe, Argentina, in October 2005. We wish to thank people in both institutions for

their support and hospitality.

2 Multipliers for Hermite expansions

Following [21, Ch. 1], Hermite functions in Rn are defined by

hk(x) = dk,n e−|x|
2/2

n∏

i=1

Hki(xi) , k = (k1, . . . , kn), ki ≥ 0, (2.1)

where Hk(t) = (−1)ket2D(k)(e−t2) is the usual Hermite polynomial in R. Normalizing with

dk,n =
∏n

i=1(2
kiki!

√
π)−1/2, {hk}k≥0 is an orthonormal basis of L2(Rn) and a complete

system of eigenvectors for the Hermite operator −∆ + |x|2.

2.1 Proof of Theorem 1.6

In order to prove Theorem 1.6, we follow the usual approach adapted from the Euclidean

case [15]. Most steps are contained in Ch. 4 of [21], so we only sketch them here.

We define respectively the Hermite g-function and g∗-function by

g`(f)(x) =
[∫ ∞

0

∣∣s` ∂`
sTsf(x)

∣∣2 ds

s

] 1
2
, ` = 1, 2, . . .

g∗λ(f)(x) =
[∫

Rn

∫ ∞

0

s−
n
2

(1 + |x−y|√
s

)nλ

∣∣s ∂sTsf(y)
∣∣2 dsdy

s

] 1
2
, λ > 1,

where Ts = e−s(−∆+|x|2) denotes the Hermite heat semigroup. We shall denote the kernel of
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Ts by Ts(y, z), so that we can write

s` ∂`
sTsf(y) =

∫

Rn

s`[∂
`Ts(y,z)

∂s` ] f(z) dz.

For convenience, we shall change variables s = t2 in the definition of g and g∗, and denote

by Qt(y, z) the new (normalized) kernels t2`[∂
`Ts(y,z)

∂s` ]|s=t2 for ` ≥ 1. It is well known that

these kernels are symmetric and satisfy the estimates

(a) |Qt(y, z)| ≤ CN
t−n

(
1 + |y − z|/t

)N

(b) |Qt(y + h, z)−Qt(y, z)| ≤ CN
|h|
t

t−n

(
1 + |y − z|/t

)N
, ∀ |h| ≤ t

(2.2)

for some CN > 0 and any positive integer N (see e.g. [21, p. 87]). From these estimates

and the theory of vector-valued singular integrals it is not difficult to obtain the following

proposition (see e.g. [21, Th. 4.1.2]).

PROPOSITION 2.3 Let 1 < p < ∞, ` = 1, 2, . . . and w ∈ Ap(Rn). Then, there exists

C > 0 such that

C−1 ‖g`(f)‖Lp(w) ≤ ‖f‖Lp(w) ≤ C ‖g`(f)‖Lp(w).

The second required result is the following pointwise estimate, that can be found in [21,

p. 91].

PROPOSITION 2.4 Let λ > 1 and m be a bounded sequence so that (1.7) holds for all

|α| ≤ dλn/2e = min{k ∈ N : k ≥ λn/2}. Then, for all ` ≥ λn/2 + 1 we have

g`(Tmf)(x) ≤ C ′ g∗λ(f)(x), a.e. x ∈ Rn.

At this point, combining the previous two results we have, for f ∈ Cc(Rn),

‖Tmf‖Lp(w) ≤ C ‖gn+2(Tmf)‖Lp(w) ≤ C ′‖g∗λ(f)‖Lp(w),

provided condition (1.7) is satisfied and λ is bigger but close enough to 2. The only re-

maining step to establish Theorem 1.6 is the Lp(w) boundedness of the g∗-function for Ap

weights. This result seems to be new in the literature, so we shall state and prove it in

detail in the next subsection.
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2.2 Weighted inequalities for g∗-functions

THEOREM 2.5 Let 1 < p < ∞ and w ∈ Ap(Rn). Then, for each λ > 2 there is a constant

C > 0 so that

‖g∗λ(f)‖Lp(w) ≤ C ‖f‖Lp(w).

REMARK 2.6 The unweighted version of this theorem for p ≥ 2 can be found in [21, Th.

4.1.3]. In the weighted case, a variant of the previous for p ≥ 2 and w ∈ Ap/2(Rn) appears

in [8, Lemma 3.3]. We shall make use of these facts later on.

REMARK 2.7 As we will see in the proof, this theorem is actually valid for any kernel

Qt(x, y) satisfying the estimates (a) and (b) in (2.2) above. Thus, it will hold as well for

semigroups with more general potentials −∆ + V (x) (see e.g. [5]).

To prove the theorem it is convenient to look at g∗ as a vector-valued singular integral.

Let X denote the Hilbert space L2(R+× Rn, dtdy/tn+1), and consider the operator G :

L2(Rn) → L2
X(Rn) defined by

Gf(x) =
∫

Rn

K(x, z)f(z) dz,

where K(x, z) is the X-valued kernel

K(x, z) =
{

(1 + |x−y|
t )−

nλ
2 Qt(y, z)

}
(t,y)

.

Observe that |Gf(x)|X = g∗λ(f)(x). Therefore, the boundedness of g∗λ in Lp(w) is equivalent

to the boundedness of G from Lp(w) into Lp
X(w). Moreover, by Remark 2.6 boundedness

holds in the unweighted case at least for 2 ≤ p < ∞. The crucial estimate to establish the

theorem is contained in the following lemma.

LEMMA 2.8 Let λ > 2. Then, there exists δ > 0 such that

|K(x, z)−K(x, z0)|X ≤ C
|z − z0|δ
|x− z|n+δ

, whenever |z − z0| < 1
2 |x− z|.

This lemma says that G is a Calderón-Zygmund vector-valued operator with a variable

kernel satisfying a strong Hörmander condition in the second variable. Hence the classical

theory applies (see e.g. [14, p. 30]), and G admits a bounded extension from Lp(Rn;w(x)dx)

into Lp
X(Rn;w(x)dx) for all 1 < p < ∞ and all w ∈ Ap(Rn). We observe that the Lp

boundedness of G for p ≥ 2 asserted in Remark 2.6 is used strongly in order to obtain the

full weighted result (see the hypotheses of Th. III.1.2 in [14]).
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At this point Theorem 2.5 is completely proved except for Lemma 2.8. We devote the

rest of the section to obtain this estimate.

PROOF of Lemma 2.8:

Throughout the proof we shall use the fact that |x− z| ∼ |x− z0|, meaning that c1|x− z| ≤
|x − z0| ≤ c2|x − z| for some constants c1, c2 > 0 which can be estimated by the triangle

inequality.

The main difficulty is to split the domain of integration into a relevant number of regions.

We do this as follows:

|K(x, z)−K(x, z0)|2X =
∫ ∞

0

∫

Rn

(
1 + |x−y|

t

)−nλ ∣∣ Qt(y, z)−Qt(y, z0)
∣∣2 dydt

tn+1

=
∫ |z−z0|/2

0

∫

|y−z|> 2
3
|x−z|

+
∫ ∞

|z−z0|/2

∫

|y−z|> 2
3
|x−z|

+

+
∫ |z−z0|/2

0

∫

|y−z|≤ 2
3
|x−z|

+
∫ 2

3
|x−z|

|z−z0|/2

∫

|y−z|≤ 2
3
|x−z|

+
∫ ∞

2
3
|x−z|

∫

|y−z|≤ 2
3
|x−z|

= I + II + III + IV + V.

We start with the first two integrals. Observe that in this region y ∈ Rn \ B 2
3
|x−z|(z), and

therefore |y − z| ∼ |y − z0|. For the first integral we use the crude estimate in (a) of (2.2)

and disregard the factor raised to λ:

I ≤
∫ |z−z0|

2

0

∫

|y−z|> 2
3
|x−z|

∣∣Qt(y, z)−Qt(y, z0)
∣∣2 dydt

tn+1

.
∫ |z−z0|

2

0

∫

|y−z|> 2
3
|x−z|

t−2n
(
1 + |y−z|

t

)−N dydt
tn+1

≤
∫ |z−z0|

2

0
tN−3n

∫

|y−z|> 2
3
|x−z|

|y − z|−N dy dt
t

= c
|z − z0|N−3n

|x− z|N−n
≤ c

|z − z0|2δ

|x− z|2n+2δ
,

provided we take N > 3n+2δ. To compute the second integral we still disregard the factor



9

raised to λ, but use instead the estimate (b) in (2.2):

II ≤
∫ ∞

|z−z0|
2

∫

|y−z|> 2
3
|x−z|

( |z−z0|
t

)2
t−2n

(
1 + |y−z|

t

)−N dydt
tn+1

(choose N = 3n + 1) ≤ |z − z0|2
∫ ∞

|z−z0|
2

t−1

∫

|y−z|> 2
3
|x−z|

|y − z|−(3n+1) dy dt
t

= c
|z − z0|

|x− z|2n+1
≤ c

|z − z0|2δ

|x− z|2n+2δ
,

for any δ ≤ 1/2. Passing to integrals III, IV and V , observe that in these regions y ∈
B 2

3
|x−z|(z) and therefore |x − y| ∼ |x − z|. So, we shall estimate (1 + |x−y|

t

)−nλ ∼ (1 +
|x−z|

t

)−nλ, which can be taken outside the integral in dy. As before for III we use estimate

(a) to obtain:

III .
∫ |z−z0|

2

0

( t

|x− z|
)nλ

∫

|y−z|≤ 2
3
|x−z|

t−2n
[
(1 + |y−z|

t )−N + (1 + |y−z0|
t )−N

] dydt
tn+1 .

For the integration in dy it is enough to enlarge the domain to Rn, which easily gives

III . |x− z|−nλ

∫ |z−z0|
2

0
tnλ−2n dt

t

(use λ > 2) = c
|z − z0|n(λ−2)

|x− z|nλ
≤ c

|z − z0|2δ

|x− z|2n+2δ
,

provided we choose δ ≤ n(λ/2− 1). To treat IV we can also enlarge the integration in dy

to Rn, which using (b) instead of (a) leads to:

IV .
∫ 2

3
|x−z|

|z−z0|
2

tn(λ−2)

|x− z|nλ

( |z − z0|
t

)2
∫

u∈Rn

(
1 + |u|)−N dudt

t

(use |z − z0| < 2t) ≤ c
|z − z0|2δ

|x− z|nλ

∫ 2
3
|x−z|

0
tn(λ−2)−2δ dt

t = c′
|z − z0|2δ

|x− z|2n+2δ
,

provided we choose δ < n(λ/2 − 1). Finally, V is estimated with (b) but disregarding the

λ-factor, which gives

V .
∫ ∞

2
3
|x−z|

∫

|y−z|≤ 2
3
|x−z|

( |z−z0|
t

)2
t−2n

(
1 + |y−z|

t

)−N dydt
tn+1

= |z − z0|2
∫ ∞

2
3
|x−z|

t−2n−2

∫

|u|≤ 2
3
|x−z|

t

(1 + |u|)−N du dt
t

. |z − z0|2
∫ ∞

2
3
|x−z|

t−2n−2
( |x−z|

t

)n dt
t = c

|z − z0|2
|x− z|2n+2

,

which is smaller than the desired expression when δ ≤ 1. The lemma is now proved with

any positive δ < min{n(λ/2− 1), 1/2}.
2
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2.3 Laguerre multipliers for special α’s

Theorem 1.6 has an immediate counterpart for Laguerre expansions when α = n
2 − 1, by

using the same transference principle as in [8, Cor. 3.4]. Since it is an important step in

this paper, we describe the procedure in some detail in this subsection. The key point is

the following formula which relates Laguerre and Hermite functions (see [7, Lemma 1.1]).

Below, we use the notation |k| = k1 + . . . + kn for every multi-index k = (k1, . . . , kn) ∈ Nn.

LEMMA 2.9 Let α = n−2
2 where n ∈ Z+. Then, for some constants ak ∈ R the following

formula holds

Lα
k (|z|2) =

∑

|k|=k

ak h2k(z) |z|α, ∀ z ∈ Rn, k = 0, 1, 2, . . . (2.10)

We shall also use the following elementary fact.

LEMMA 2.11 For every f ∈ L1(0,∞) we have
∫

Rn

f(|z|2) |z|−(n−2) dz = cn

∫ ∞

0
f(t) dt. (2.12)

PROOF: Use first polar coordinates |z| = r, and then change variables r2 = t.
2

COROLLARY 2.13 Theorem 1.8 holds when α = n−2
2 and n is a positive integer.

PROOF: Let m(ξ) be as in the statement of Theorem 1.8. The function M(ξ) = m((ξ1 +

. . . + ξn)/2) restricted to the lattice Nn defines a multiplier {M(k)} which satisfies the

smoothness conditions in (1.7). This is in fact an easy consequence of the following lemma.

LEMMA 2.14 Let M ∈ CL([0,∞)n). Then for each ` ∈ Nn with |`| ≤ L we have

|∆`M(k)| ≤ sup
ξi∈(ki,ki+`i)

|D(`)M(ξ)|, ∀ k ∈ Nn. (2.15)

PROOF: When n = 1 one has the formula

∆`M(k) =
∫ 1

0

∫ s1+1

s1

· · ·
∫ s`−1+1

s`−1

D(`)M(s` + k) ds` . . . ds1, k ≥ 0, (2.16)

which can be easily verified by induction on `. In Rn, by repeated composition of (2.16) one

can represent ∆`M(k) in terms of a similar integral, from which (2.15) is obtained easily.
2



11

Continuing with the proof of Corollary 2.13, we can use (2.10) to write

(Tmf)(|z|2) =
∞∑

k=0

∑

|k|=k

m(k) 〈f,Lα
k 〉 ak h2k(z) |z|α, z ∈ Rn.

Then, changing variables as in (2.12) and using (2.10) we have

‖Tmf‖p
Lp(w) =

∫ ∞

0
|(Tmf)(t)|p w(t) dt

= cn

∫

Rn

∣∣
∞∑

k=0

∑

|k|=k

M(2k) 〈f,Lα
k 〉 ak h2k(z)

∣∣p |z|αp−(n−2) w(|z|2) dz

≤ c′
∫

Rn

∣∣
∞∑

k=0

∑

|k|=k

〈f,Lα
k 〉 ak h2k(z)

∣∣p |z|(n−2)( p
2
−1) w(|z|2) dz

= c′′ ‖f‖p
Lp(w).

Of course, in the inequality we are using Theorem 1.6, for which we have the required

smoothness on {M(k)} but we also need

|z|(n−2)( p
2
−1) w(|z|2) ∈ Ap(Rn).

Now it is well-known that |z|γ ∈ Ap(Rn) if and only if −n < γ < n(p − 1). Recall that

we are interested in the case w(y) = ypδ. Therefore, writing γ = (n − 2)(p
2 − 1) + 2pδ we

easily see that the above condition is equivalent to −α
2 − 1

p < δ < 1 − 1
p + α

2 , establishing

the result.
2

REMARK 2.17 Observe from Theorem 1.6 that, letting α = n−2
2 the corollary also holds

for multipliers m ∈ C2α+3[0,∞) which satisfy the hypothesis (1.9) whenever ` ≤ 2α + 3.

3 Multipliers for Laguerre expansions

In this section we prove Theorem 1.8. Recall that the cases α ≤ 0 in Theorem 1.8 were

already proved by Stempak and Trebels (see Theorem 1.1 and Corollary 4.3 in [18]). We

shall concentrate mainly in α > 0, which is also what produces the new results in Theorem

1.4 (see however Remark 3.23). For later use of complex interpolation, it is important to

fix throughout the paper the inner product notation 〈f, g〉 =
∫

f g.

The strategy is to obtain the result from the special cases in Corollary 2.13, by interpo-

lation of the analytic family of operators

T z
mf =

∞∑

k=0

mk〈f,Lz
k〉 Lz

k, where z ∈ C with <e z > −1. (3.1)
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In order to give a precise meaning to this expression and make the whole argument work,

we first need to recall the definition of Kanjin’s operators Tα+iθ
α and extend its boundedness

to the full range of Lp
δ(R+).

Throughout this section we shall use the following notation from [10]. We write M(θ)

for any function of the form M(θ) = (1 + |θ|)N ec|θ| for suitably large constants N and c.

Other constants appearing in the paper such as C, c or N may depend (continuously) on α,

p and δ, but are independent of θ ∈ R. Finally, it is also convenient to denote the admissible

range of indices by

A =
{
(1

p , α, δ) ∈ (0, 1)× (−1,∞)× R : − α
2 − 1

p < δ < 1− 1
p + α

2

}
(3.2)

(see Figure 1.1).

3.1 Boundedness of Tα+iθ
α in Lp

δ(R+) for special α’s

Recall from [10, p. 539] that Laguerre polynomials can be extended to complex parameters

z ∈ C with <e z > −1 by the formula

L
(z)
k (y) =

D
(k)
y [yz+ke−y]
k! yz e−y

=
k∑

j=0

Γ(k + z + 1)
Γ(k − j + 1)Γ(j + z + 1)

(−y)j

j!
, y > 0,

and likewise for the corresponding Laguerre functions

Lz
k(y) =

( Γ(k+1)
Γ(z+k+1)

) 1
2 yz/2 e−y/2 L

(z)
k (y), y > 0.

Moreover, the following lemma due to Kanjin holds (see [10, Lemma 1]).

LEMMA 3.3 Let α > −1 and f ∈ C∞
c (0,∞). Then, for each N ≥ 1 there exist constants

C > 0 and k0 ∈ N (depending on N , f and α) such that
∣∣ 〈f,Lα+iθ

k 〉∣∣ ≤ C (1 + |θ|)4N+α e
π
2
|θ| (1 + |k|)−N , k ≥ k0, (3.4)

for all θ ∈ R.

Using this lemma one can define the complex transplantation operators

T z
αf =

∞∑

k=0

〈f,Lz
k〉 Lα

k , <e z > −1, α > −1,

at least for functions f ∈ C∞
c (R+). Kanjin has shown the boundedness of Tα+iθ

α in Lp(R+)

for all 1 < p < ∞ and α ≥ 0 (see [10, Prop. 2]). Stempak and Trebels extended the result

to the weighted spaces Lp
δ for α ≥ 0 and max{−1

p ,−1
2} < δ < min{1− 1

p , 1
2} (see [18, Prop.

4.2]). The purpose of this section is to improve the range of validity of such result to all

α > −1 and all admissible weights −α
2 − 1

p < δ < 1− 1
p + α

2 .
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THEOREM 3.5 Let α > −1 and θ ∈ R. Then, Tα+iθ
α can be boundedly extended to Lp

δ(R+)

for all 1 < p < ∞ and −α
2 − 1

p < δ < 1 − 1
p + α

2 . Moreover, there exist constants C, c > 0

and N ∈ N (depending only on α, p, δ) so that

‖Tα+iθ
α f‖Lp

δ
≤ C (1 + |θ|)N ec|θ| ‖f‖Lp

δ
, ∀ θ ∈ R. (3.6)

The proof of the theorem will follow the scheme proposed by Kanjin in [10], except for

a few refinements leading to the new results. For every α > −1 and θ ∈ R we define a

multiplier by

λ(ξ) = λα,θ(ξ) =
(Γ(ξ + α + 1 + iθ)

Γ(ξ + α + 1)

) 1
2
, ξ ≥ 0. (3.7)

Observe that λ is an analytic function of ξ when <e ξ > −1 − α. The following result is a

slight modification of Lemma 2 in [10], which is valid with exactly the same proof.

LEMMA 3.8 Let α > −1. Then the function λ(ξ) defined in (3.7) belongs to C∞[0,∞)

and satisfies

sup
ξ∈[0,∞)

(1 + |ξ|)` |D`λ(ξ)| ≤ C` (1 + |θ|)`, ∀ θ ∈ R, ` = 0, 1, 2, . . .

where the constant C` is independent of θ.

We shall prove Theorem 3.5 under the following assumption on (1
p , α, δ).

Assumption (A): The point (1
p , α, δ) ∈ A is so that the multiplier operator Tλf =∑∞

k=0 λ(k)〈f,Lα
k 〉Lα

k , with λ = λα,θ as in (3.7), is bounded on Lp
δ(R+) and moreover

‖Tλf‖Lp
δ
≤ C (1 + |θ|)N ec|θ| ‖f‖Lp

δ
, ∀ θ ∈ R (A)

for some constants C, c, N > 0.

REMARK 3.9 Observe that, by Corollary 2.13 and Lemma 3.8, Assumption (A) is already

known to hold for parameters in A of the form (1
p , n−2

2 , δ), whenever n ∈ Z+. Moreover,

the assumption also holds trivially for (1
2 , α, 0) and all α > −1, while by duality it holds

for a fixed (1
p , α, δ) if and only if it does for ( 1

p′ , α,−δ). Finally, as we observed before,

Assumption (A) holds for all (1
p , α, δ) ∈ A with α ≤ 0, by the results of Stempak and

Trebels in [18].

Clearly, under Assumption (A) it suffices to show (3.6) with Tα+iθ
α replaced by the

operator

T̃α+iθ
α f =

∞∑

k=0

( Γ(k+α+1)
Γ(k+α+1+iθ)

) 1
2 〈f,Lα+iθ

k 〉Lα
k .
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This new write up of Tα+iθ
α is due to Kanjin and it leads to a remarkable explicit formula

in terms of an oscillatory integral. More precisely, following [10, §3] we can define for ε > 0

the operators

Gθ,ε(f) =
∞∑

k=0

( Γ(k+α+1)
Γ(k+α+1+ε+iθ)

) 1
2 〈f,Lα+ε+iθ

k 〉Lα
k

so that T̃α+iθ
α f(x) = limε→0 Gθ,εf(x), for all x > 0, at least when f ∈ C∞

c (0,∞) (by

Lemma 3.3). Moreover, the following remarkable formula holds [10, (3.10)]:

Gθ,εf(x) = 1
Γ(ε+iθ)

∫ ∞

x
f(t) e−

t−x
2

(
1− x

t

)ε−1+iθ (
x
t

)α
2 t

ε+iθ
2 dt

t . (3.10)

The rest of this section is devoted to the proof of the following proposition.

PROPOSITION 3.11 Let α > −1 and p, δ so that δ > −1
p − α

2 . Then, there exist constants

C, c > 0 and N ∈ N (depending only on α, p, δ) so that

‖Gθ,εf‖Lp
δ
≤ C (1 + |θ|)N ec|θ| ( ‖f(x)x

ε
2 ‖Lp

δ
+ ‖f(x)x−

ε
2 ‖Lp

δ

)
, (3.12)

for all θ ∈ R and all 0 < ε ≤ 1.

REMARK 3.13 We remark that under Assumption (A), Theorem 3.5 follows immediately

from the last proposition and Fatou’s lemma. Indeed, using these facts we have

‖Tα+iθ
α f‖Lp

δ
= ‖TλT̃α+iθ

α f‖Lp
δ

. M(θ) ‖T̃α+iθ
α f‖Lp

δ

≤ M(θ) lim
ε→0

‖Gθ,εf‖Lp
δ

. M(θ) lim
ε→0

(‖f(x)x
ε
2 ‖Lp

δ
+ ‖f(x)x−

ε
2 ‖Lp

δ

)

= M(θ) ‖f‖Lp
δ
, f ∈ C∞

c (0,∞),

where in the last step we have implicitly used that the constants in Proposition 3.11 are

independent of ε.

PROOF of Proposition 3.11:

As noticed by Kanjin, |Γ(ε + iθ)|−1 . (1 + |θ|)eπ|θ|
2 (see [10, p. 547]), so in the rest of the

proof we only look at the integral defining Gθ,εf(x) in (3.10). We shall prove (3.12) by

splitting this integral into “local” and “global” parts:
∫ 2x
x and

∫∞
2x . The last part can be

crudely estimated by a positive operator, since no singularity is present there:
∣∣∣
∫ ∞

2x
f(t) e−

t−x
2

(
1− x

t

)ε−1+iθ (
x
t

)α
2 t

ε+iθ
2 dt

t

∣∣∣ ≤ C x
α
2 ex/2

∫ ∞

2x
|f(t)| e−t/2 t

ε−α
2 dt

t

=: G1
εf(x),

where we used t > 2x to control 1− x
t ≥ 1

2 . The next lemma takes care of this part.
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LEMMA 3.14 Let δ > −1
p − α

2 . Then there exists a constant C > 0, independent of

ε ∈ (0, 1], so that

∥∥G1
εf

∥∥
Lp

δ
≤ C

∥∥∥f(x)xε/2

1 + x

∥∥∥
Lp

δ

, ∀f ∈ C∞
c (0,∞). (3.15)

PROOF:

Let γ ∈ R be a fixed number to be specified later. Multiplying and dividing by tγ inside

the integral defining G1
εf(x), and using Hölder’s inequality we have

∥∥G1
εf

∥∥p

Lp
δ
≤

∫ ∞

0
x(α

2
+δ)p e

px
2

∫ ∞

2x
|f(t)|p tγp e−

t
2 t

ε−α
2 dt

t

[∫ ∞

2x
s−γp′ e−

s
2 s

ε−α
2 ds

s

] p
p′

dx.

The integral inside the brackets can easily be estimated (separating the cases x ≥ 1 and

x ≤ 1) by

cε x−γp′ x
ε−α

2
e−x/2

1 + x
,

provided we have −γp′ + ε−α
2 < 0. Observe that growth of the constant cε is of the order

1/(γp′− ε−α
2 ). Inserting this expression to the power p/p′ in the above inequality, and using

Fubini we have

∥∥G1
εf

∥∥p

Lp
δ

.
∫ ∞

0
|f(t)|p tγp e−

t
2 t

ε−α
2

∫ t/2

0
x−γp x

ε−α
2

p
p′ e

x
2

(1+x)p−1 x(α
2
+δ)p dx dt

t

=
∫ 1

0
. . . dt

t +
∫ ∞

1
. . . dt

t = I1 + I2. (3.16)

In the first case we can easily estimate the integral in dx, provided that the exponent

κ := −γp + ε−α
2

p
p′ + (α

2 + δ)p + 1 > 0. This leads to

I1 ≤ c′ε

∫ 1

0
|f(t)|p tγp t

ε−α
2

[
t
−γp+ ε−α

2
p
p′+(α

2
+δ)p+1 ] dt

t

= c′ε

∫ 1

0
|f(t) t

ε
2
+δ|p dt.

Here the constant c′ε is of the order 1/κ. We can estimate I2 similarly, except that the

integral in dx takes a different form, leading to

I2 ≤ c′′ε

∫ ∞

1
|f(t)|p tγp e−

t
2 t

ε−α
2

[
t
−γp+ ε−α

2
p
p′+(α

2
+δ)p et/2

(1 + t)p−1

] dt

t

≤ 2c′′ε

∫ ∞

1

∣∣∣f(t)
t

ε
2
+δ

1 + t

∣∣∣
p
dt,

again provided κ > 0 and with c′′ε . 1/κ. Therefore, for all these computations to be valid

we only need to choose γ ∈ R so that

ε−α
2

1
p′ < γ < ε−α

2
1
p′ + (α

2 + δ) + 1
p .
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This is clearly always possible when δ > −1
p − α

2 . Moreover, choosing γ close to the right

hand point all the constants cε, c′ε and c′′ε are bounded by C independently of ε. Thus,

inserting the previous estimates for I1 and I2 in (3.16) we obtain (3.15).
2

Going back to (3.12), it remains to look at the part of Gθ,εf(x) defined by the local

integral
∫ 2x
x . Proceeding as in [10, p. 547], we add and subtract 1 to the factor (x

t )
α
2 , so

that we can write
∣∣∣
∫ 2x

x
. . . dx

∣∣∣ ≤
∫ 2x

x
e−

t−x
2 |f(t)| ∣∣1− x

t

∣∣ε−1 ∣∣(x
t )

α
2 − 1

∣∣ t
ε
2 dt

t +

+
∣∣∣
∫ 2x

x
f(t) e−

t−x
2 (t− x)ε−1+iθ t−

ε+iθ
2 dt

∣∣∣
=: G2

εf(x) +
∣∣G3

εf(x)
∣∣ . (3.17)

Using the Taylor expansion (1+w)γ = 1+γw+O(|w|2), valid for all γ ∈ R when |w| ≤ 1/2,

we must have that

(
x
t

)α
2 − 1 = α

2

(
x
t − 1

)
+ O

(
x
t − 1

)2
, t ∈ (x, 2x).

Thus, in the first integral we can kill the singularity, since

∣∣1− x
t

∣∣ε−1 ∣∣(x
t )

α
2 − 1

∣∣ ≤ α
2

∣∣1− x
t

∣∣ε + O
(
1− x

t

)1+ε ≤ C, t ∈ (x, 2x).

Bounding as well the exponential by 1 we obtain

G2
εf(x) .

∫ 2x

x
|f(t)| t ε

2
−1 dt . x

ε
2
−1

∫ 2x

x
|f(t)| dt.

It is now easy to compute the Lp
δ-norm of these expressions:

∫ ∞

0

∣∣G2
εf(x) xδ

∣∣p dx .
∫ ∞

0

∣∣∣x ε
2
−1+δ

∫ 2x

x
|f(t)| dt

∣∣∣
p
dx

(by Hölder) ≤
∫ ∞

0
x( ε

2
−1+δ)p

∫ 2x

x
|f(t)|p dt xp/p′ dx

(by Fubini) ≤
∫ ∞

0
|f(t)|p

∫ t

t/2
x( ε

2
−1+δ)p xp−1 dx dt

.
∫ ∞

0
|f(t)|p t(

ε
2
+δ)p dt.

As noticed by Kanjin, the remaining term G3
εf(x) in (3.17) can be expressed in terms of a

singular integral kernel. Namely, letting

Kε,θ(u) = e−
|u|
2 |u|ε−1+iθχ(−∞,0)(u), u ∈ R,
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it is easily verified that

|Kε,θ(u)| ≤ C

|u| and |K ′
ε,θ(u)| ≤ C

1 + |θ|
|u|2 , ∀ u 6= 0,

with a constant C independent of θ ∈ R and ε ∈ (0, 1]. Moreover, letting g(t) = f(t)t−
ε+iθ

2 ,

we can write

G3
εf(x) =

∫ 2x

x
g(t) Kε,θ(x− t) dt, x > 0. (3.18)

The right hand side of (3.18) will then be a local Calderón-Zygmund operator in R+ (in the

sense of Nowak and Stempak [13]) if we can show the following lemma.

LEMMA 3.19 There exists a constant C independent of ε ∈ (0, 1] so that
[∫ ∞

0

∣∣∣
∫ 2x

x
g(t) Kε,θ(x− t) dt

∣∣∣
2
dx

] 1
2 ≤ C (1 + |θ|)eπ

2
|θ| ‖g‖2, ∀ g ∈ C∞

c (0,∞).

Assuming the lemma, we can use Theorem 4.3 in [13] to obtain
∥∥G3

εf
∥∥

Lp
δ

=
[∫ ∞

0

∣∣∣
∫ 2x

x
g(t) Kε,θ(x− t) dt

∣∣∣
p
xpδ dx

] 1
p

. M(θ) ‖g‖Lp
δ

= M(θ)
∥∥f(t)t−

ε
2

∥∥
Lp

δ
.

This argument is valid for all δ ∈ R and 1 < p < ∞, since power weights xδ always belong

to the local Muckenhoupt classes Ap
loc(0,∞) (see [13]). Thus, the proof of Proposition 3.11

will be finished once we establish Lemma 3.19.

PROOF of Lemma 3.19:

For each x > 0 we write∫ 2x

x
g(t) Kε,θ(x− t) dt =

∫ ∞

x
. . . dt −

∫ ∞

2x
. . . dt =: T1g(x) + T2g(x).

Observe that T1g(x) = g ∗Kε,θ(x), and as was shown by Kanjin [10, p. 547] we have

sup
ξ∈R

∣∣K̂ε,θ(ξ)
∣∣ ≤ C e

π
2
|θ|.

Thus, extending g ≡ 0 in (−∞, 0) and using Plancherel, it immediately follows that

‖T1g‖2 ≤ C e
π
2
|θ| ‖g‖2.

To estimate the term T2g(x), we use Lemma 3.14 with α = 0 to obtain∫ ∞

0

∣∣T2g(x)
∣∣2 dx ≤

∫ ∞

0

∣∣∣
∫ ∞

2x
|g(t)| e− t−x

2 (t− x)ε−1 dt
∣∣∣
2
dx

(since t− x ≥ t/2) .
∫ ∞

0

∣∣∣
∫ ∞

2x
|t ε

2 g(t)| e− t−x
2 t

ε
2
−1 dt

∣∣∣
2
dx

(Lemma 3.14 with α = 0) ≤ C
∥∥∥ tεg(t)

1 + t

∥∥∥
2

2
≤ C ‖g‖2

2,

whenever ε ≤ 1.
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2

3.2 Proof of Theorem 1.8

We may assume α > 0, since the cases α ≤ 0 are contained in [18]. We shall obtain

Theorem 1.8 by complex interpolation from Corollary 2.13 and the knowledge we presently

have of Theorem 3.5. That is, the Lp
δ boundedness of Tα+iθ

α when α = n−2
2 , and also the

L2 boundedness for all α > −1 (see Remarks 3.9 and 3.13).

LEMMA 3.20 Let P0 = ( 1
p0

, α0, δ0) and P1 = ( 1
p1

, α1, δ1) be two fixed points in A for which

Theorem 1.8 is known to hold∗. Then the theorem must also hold for all points P = (1
p , α, δ)

of the form

P = (1− t)P0 + tP1, t ∈ (0, 1). (3.21)

PROOF: We shall use the convenient notation

α(z) = (1− z)α0 + zα1 and δ(z) = (1− z)δ0 + zδ1,

for complex z = s+ iθ such that 0 ≤ s ≤ 1. Recall that M(θ) denotes a function of the form

M(θ) = (1 + |θ|)N ec|θ| for suitably large constants N and c. Also, observe from Lemma 3.3

and Remarks 3.9 and 3.13 that the operator

T σ+iτ
m f =

∞∑

k=0

m(k)〈f,Lσ−iτ
k 〉 Lσ+iτ

k = (T σ+iτ
σ )∗ T σ

m T σ−iτ
σ f

is well-defined and bounded at least when f ∈ L2(R+). We define an analytic family of

operators by letting

SzF (y) = yδ(z) T α(z)
m (F (x)x−δ(z))(y),

at least for F ∈ L2
c(0,∞). We must show that {Sz} satisfies the conditions of Stein’s inter-

polation theorem (see [3]). First of all, given any two subsets E1, E2 compactly contained

in (0,∞), the function

z 7−→ Φ(z) = 〈Sz(χE1), χE2〉,

defined whenever 0 ≤ <e z ≤ 1, satisfies

∣∣Φ(z)
∣∣ ≤ ∥∥T α(z)

m (x−δ(z)χE1)
∥∥

2

∥∥yδ(z)χE2

∥∥
2

(3.22)

≤ CE2

∥∥(Tα(s)+i(α1−α0)θ
α(s) )∗ T α(s)

m T
α(s)−i(α1−α0)θ
α(s) (x−δ(z)χE1)

∥∥
2

≤ CE2 M(θ)
∥∥x−δ(z)χE1

∥∥
2
≤ CE1 CE2 M(θ),

∗These may be any of points we discussed in Remark 3.9
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by the L2 boundedness of T σ+iτ
σ , ∀ σ > −1. We next show that Φ is holomorphic in a

neighborhood of the strip S := {0 ≤ <e z ≤ 1}. Since ‖T α(z)
m ‖L2→L2 is uniformly bounded

in compact sets of S, by a standard approximation argument (with estimates similar to

(3.22)) it will suffice to show the holomorphy of z 7→ 〈SzF, G〉 for all F, G ∈ C∞
c (0,∞).

Now, if we denote f(x) = x−δ(z)F (x), g(y) = yδ(z)G(y) and α(z) = σ + iτ , we can write

〈SzF,G〉 = 〈T α(z)
m (f), g〉 = 〈T (σ)

m T σ−iτ
σ (f), T σ+iτ

σ (g)〉
=

∑

k

mk 〈f,Lσ−iτ
k 〉 〈g,Lσ+iτ

k 〉

=
∑

k

mk 〈x−δ(z)F,Lα(z)
k 〉 〈yδ(z)G,Lα(z)

k 〉 .

Since, by Lemma 3.4, the series converges uniformly when z belongs to a compact set of S,

it suffices to show the holomorphy of the map

z ∈ S 7→ 〈x±δ(z)F,Lα(z)
k 〉 =

∫ ∞

0
x±δ(z)F (x)Lα(z)

k (x) dx,

for all F ∈ C∞
c (0,∞). But this is simple a consequence of the holomorphy and uniform

boundedness of the integrand in the (compact) support of F .

Combining this with (3.22) we see that Φ is holomorphic in the strip {0 < <e z < 1},
continuous in the closure and has admissible growth for complex interpolation. To verify

the conditions of Stein’s interpolation theorem we only need to show the boundedness of

the operator Sz at the limiting bands

Siθ : Lp0(R+) −→ Lp0(R+) and S1+iθ : Lp1(R+) −→ Lp1(R+).

When <e z = 0 we use the assumption that Theorem 1.8 (and hence Assumption (A) in

§3.1) hold for the point P0. Then, both T α0
m and Tα0+iτ

α0
are bounded in Lp0

δ0
(and in L

p′0
−δ0

,

by Remark 3.9), which implies

‖SiθF‖p0 =
∥∥(Tα0+i(α1−α0)θ

α0
)∗ T α0

m Tα0−i(α1−α0)θ
α0

(x−δ(iθ)F )
∥∥

L
p0
δ0

≤ M(θ) ‖x−δ0−i(δ1−δ0)θF (x)‖L
p0
δ0

= M(θ) ‖F‖p0 .

One proves similarly the boundedness for <e z = 1. Thus, by Stein’s theorem Ss must be

bounded in Lps(R+) for 1
ps

= 1−s
p0

+ s
p1

and all s ∈ (0, 1). Letting s = t and using (3.21) we

see that pt = p, α(t) = α and δ(t) = δ. Moreover such boundedness translates into
∥∥T α

mf
∥∥

Lp
δ

=
∥∥ yδ(t) T α(t)

m (xδ(t)f(x) x−δ(t))
∥∥

Lp =
∥∥St(xδ(t)f(x))

∥∥
Lp

≤ M
∥∥ xδ(t)f(x)

∥∥
Lp = M ‖f‖Lp

δ
.

Thus Theorem 1.8 holds for the point P = (1
p , α, δ), which establishes the lemma.
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n−1
α α

n

δ
1

0
δ

1−1/p

−1
−1/p

.

1/2−1/p

P

α

δ

α

δ

1/p

1/2

−1

Figure 3.2: Interpolation diagram for points P ∈ A, when α > 0 or α < 0.

2

End of the proof of Theorem 1.8:

We need to show that T α
m is bounded in Lp

δ for every fixed P = (1
p , α, δ) ∈ A. We may

assume that α > 0 (otherwise see [18]), and α 6= αn := n−2
2 (by Corollary 2.13). Let n be the

integer so that αn−1 < α < αn. Then it is an elementary exercise to find two points in A of

the form P0 = (1
p , αn−1, δ0), P1 = (1

p , αn, δ1) and some t ∈ (0, 1) so that P = (1− t)P0 + tP1

(see left hand side of Figure 3.2). Now, Theorem 1.8 holds for P0 and P1 by Corollary 2.13,

and therefore it must also hold for P by Lemma 3.20.
2

REMARK 3.23 It should be noted that, when −1 < α < 0, one can choose α0 close enough

to −1 and interpolate between the points P0 = (1
2 , α0, 0) and P1 = ( 1

p1
, 0, δ1) without making

use of the results in [10] or [18] (see Remark 3.9). In the unweighted case δ = δ1 = 0 this

fills the admissible range of indices |α|
2 < 1

p < 1− |α|
2 , and therefore can be used to simplify

Kanjin’s original proof of the transplantation theorem (see Remark 4.2 below). In the

weighted case, however, this only fills a star-shaped region with vertex at (1
2 ,−1, 0) (see

right hand side of Figure 3.2).

REMARK 3.24 Observe also that the above proof works as well requiring less smoothness

on m(ξ). Indeed, when n−3
2 < α ≤ n−2

2 we have only used Corollary 2.13, which in view of

Remark 2.17 holds provided that m ∈ Cd2αe+3[0,∞) and D`m(ξ) satisfies the hypothesis

(1.9) for ` ≤ d2αe+ 3, where d2αe = min{k ∈ N : k ≥ 2α}.
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End of the proof of Theorem 3.5:

By Lemma 3.8 all multipliers λ = λα,θ in (3.7) satisfy the conditions of Theorem 1.8.

Hence, Assumption (A) is satisfied for all (1
p , α, δ) ∈ A, and Theorem 3.5 follows from

Remark 3.13.
2

4 Proof of the transplantation theorem

As announced in the introduction, the proof will be directly obtained from the boundedness

of Tα+iθ
α , without appeal to the operators Tα+2

α used by Kanjin in [10]. The procedure is

based on complex interpolation, as we did in section 3.2 to establish the multiplier theorem.

We shall also use the following elementary result, which is an easy consequence of the

boundedness of Tα+iθ
α .

LEMMA 4.1 Let α > −1 and z = σ + iτ with σ > −1. Then the operator T z
α is bounded

in L2(R+).

PROOF:

Let f ∈ C∞
c (0,∞), so that T z

αf =
∑

k〈f,Lz
k〉Lα

k is well defined by Lemma 3.4. Then,

using orthogonality we have

∥∥T σ+iτ
α f

∥∥2

2
=

∞∑

k=0

∣∣〈f,Lσ+iτ
k 〉∣∣2 =

∥∥
∞∑

k=0

〈f,Lσ+iτ
k 〉 Lσ

k

∥∥2

2

=
∥∥T σ+iτ

σ f
∥∥2

2
≤ M(τ) ‖f‖2

2,

where in the last step we have used Theorem 3.5.
2

Now we fix β > α0 > −1 so that −α0
2 − 1

p < δ < 1 − 1
p + α0

2 . By condition (1.5) we

need to show that T β
α0 and Tα0

β are bounded in Lp
δ(R+). We let P := (1

p , β, δ), which clearly

belongs to A. It is not difficult to see that there exists two other points in A of the form

P0 = ( 1
p0

, α0, δ0) and P1 = (1
2 , α1, 0) and some t ∈ (0, 1) such that P = (1 − t)P0 + tP1

(see Figure 1.1). This can be done explicitly if α1 is chosen sufficiently large, by taking

δ0 = δ/(1 − t) and t = β−α0

α1−α0
. As in §3.2 we use the notation α(z) = (1 − z)α0 + zα1 and

δ(z) = (1− z)δ0 for z ∈ C.

By Lemma 4.1 we can define the analytic family of operators

Sz(y) = yδ(z) Tα(z̄)
α0

(F (x)x−δ(z))(y), 0 ≤ <e z ≤ 1,
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at least for F ∈ L2
c(0,∞). Then, exactly the same reasoning as in §3.2 shows that Sz

satisfies the conditions of Stein’s theorem, where the boundedness of

Siθ : Lp0(R+) −→ Lp0(R+) and S1+iθ : L2(R+) −→ L2(R+),

follows this time from, respectively, Theorem 3.5 and Lemma 4.1. Thus, St must be bounded

in Lpt = Lp, which translates into
∥∥T β

α0
f
∥∥

Lp
δ

=
∥∥St(x(1−t)δ0f(x))

∥∥
Lp ≤ M

∥∥ x(1−t)δ0f(x)
∥∥

Lp = M ‖f‖Lp
δ
.

This proves the required Lp
δ boundedness for the operators T β

α0 , and any β > α0 > −1.

The boundedness of Tα0
β follows by duality. Indeed, if (1

p , α0, δ) ∈ A, then an elementary

algebraic manipulation shows that also ( 1
p′ , α0,−δ) ∈ A, where 1

p′ = 1 − 1
p . Then, for all

f ∈ C∞
c (0,∞) we have

∥∥Tα0
β f

∥∥
Lp

δ
= sup

‖g‖p′=1

∣∣∣
∫ ∞

0
Tα0

β f(x) xδ g(x) dx
∣∣∣

= sup
‖g‖p′=1

∣∣∣
∫ ∞

0
f(y)T β

α0

(
xδ g(x)

)
dx

∣∣∣

≤ ∥∥yδf(y)
∥∥

Lp sup
‖g‖p′=1

∥∥T β
α0

(xδ g)
∥∥

Lp′
−δ

(previous case) ≤ ∥∥f
∥∥

Lp
δ
M sup

‖g‖p′=1

∥∥xδ g
∥∥

Lp′
−δ

= M ‖f‖Lp
δ
.

The proof of Theorem 1.4 is now complete.
2

REMARK 4.2 We point out that this approach to obtain the Lp
δ-boundedness of Tα

β only

depends on the corresponding result for the operators Tα+iθ
α when (1

p , α, δ) ∈ A. In par-

ticular, as was observed in Remark 3.23, it does not make use of the results in [10] or [18]

when α ≥ 0, or when α < 0 and (1
p , α, δ) belongs to the region on the right of Figure 3.2.

Therefore, in the unweighted situation studied by Kanjin, our approach gives a slightly

simpler and self-contained proof which avoids dealing with the operators Tα+2
α .

5 Some applications

5.1 Riesz transforms for the Laguerre semigroup

Consider the Laguerre differential operator L = L(α) = −y d2

dy2 − d
dy + y

4 − α2

4y , which is non

negative and symmetric in L2(0,∞). For every α > −1, the Laguerre functions {Lα
k}k≥0

form a complete system of eigenvectors for L(α), with eigenvalues given by

L(α)(Lα
k ) = (k + α+1

2 )Lα
k , k = 0, 1, 2, . . . (5.1)
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The Laguerre operator can be factored as L(α) = d∗d + α+1
2 I, where

d = d(α) =
√

y d
dy + 1

2

(√
y − α√

y

)
.

Following [8], this leads to a definition of Riesz transform as:

R = R(α) = d ◦ L−1/2 , when α > −1.

In [8, Th. 4.2] it was shown that these operators are bounded in Lp
δ whenever −γ

2 − 1
p < δ <

1− 1
p + γ

2 , where γ = min{α, 0}. The proof was based on transplantation from the special

cases α = n−2
2 . In those cases the result was obtained from the boundedness of the Riesz

transforms associated with the Hermite semigroup in Rn (due to Stempak and Torrea; see

[17]). However, as was pointed out in [8, Cor. 2.29], the Hermite setting implies a larger

range of indices in these special Laguerre cases, namely −n−2
4 − 1

p < δ < 1− 1
p + n−2

4 , which

suggests that in the general case one could replace γ by α. We show here that this is indeed

the case.

COROLLARY 5.2 Let α > −1 and 1 < p < ∞. Then, the Riesz transform R(α) is bounded

in Lp
δ(0,∞) if and only if −α

2 − 1
p < δ < 1− 1

p + α
2 .

PROOF: The proof is exactly the same as Theorem 4.2 in [8], and follows by writing

R(α) = T β+1
α+1 ◦M ◦ R(β) ◦ Tα

β , where β = n−2
2 ≥ α and M is a certain multiplier operator

satisfying the hypothesis of Theorem 1.8. The boundedness of R(α) then follows from the

above remarks and Theorems 1.4 and 1.8.
2

5.2 Littlewood-Paley g-functions for the Laguerre semigroup

Consider the heat diffusion semigroup e−tL associated with the Laguerre operator L = L(α).

Following the classical approach in [16], g-functions of order ` = 1, 2, . . . can be defined by

g
(α)
` (f) =

{∫ ∞

0
|t` ∂`

∂t`
(e−tL(α)

f)|2 dt

t

}1/2
. (5.3)

When α ≥ 0, the semigroup e−tL(α)
is known to be contractive in Lp(0,∞) for all 1 ≤ p ≤ ∞

(see e.g. [6]), and therefore the Lp boundedness of g-functions can be obtained from the

classical theory in [16, 4]. However, this is not the case when −1 < α < 0, where e−tL(α)

is not even bounded in Lp unless 2
2−|α| < p < 2

|α| (see [12]). Different methods must be

used in such cases to study the corresponding g-functions, and moreover, no results seem

to appear in the literature concerning weighted inequalities, even when α ≥ 0 (see however,
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[18, Prop. 2.1]). The main result of this section covers this gap, and will be obtained as an

application of our transplantation Theorem 1.4 and the corresponding result of Thangavelu

for Hermite functions (see Proposition 2.3 above).

THEOREM 5.4 Let α > −1, 1 < p < ∞, and δ such that −1/p−α/2 < δ < 1−1/p+α/2.

Then for every ` = 1, 2, . . . , there is a constant c > 0 so that

1
c ‖f‖Lp

δ
≤ ‖g(α)

` (f)‖Lp
δ
≤ c ‖f‖Lp

δ
, f ∈ C∞

c (0,∞).

PROOF: We shall only prove the right hand inequality, since the left hand case follows

from the usual polarization argument. We first consider the case ` = 1. For simplicity we

write g(f) = g
(α)
1 (f), and drop the superscripts (α) when reference to such index is clear.

Also, recall that the kernel ht(x, y) of e−tL is explicitly given by the formula

ht(y, z) =
∞∑

k=0

e−t(k+α+1
2

)Lα
k (y)Lα

k (z)

(letting r = e−t) =
r1/2

1− r
exp{−1

2
1+r
1−r (y + z)} Iα

(2(ryz)1/2

1−r

)
, (5.5)

where Iα(s) = i−αJα(is) and Jα is the usual Bessel function of order α (see e.g. [12]).

First we claim that the theorem is true when α = n−2
2 . Indeed, denoting Φ(x) = |x|2,

from (2.10) one easily sees that e−tL(f)(|x|2) = e−
t
4
(−∆+|x|2)(f◦Φ

|·|α )(x), x ∈ Rn (see [12]).

Hence g(f)(|x|2) = 4g1(f◦Φ
|·|α )(x)|x|α, where g1 was defined at the beginning of section 2.

From here the claim can be obtained from Proposition 2.3, following exactly the same lines

as in the proof of Corollary 2.13.

At this point we would like to use transplantation to reach all indices α > −1 from

the known cases β = n−2
2 . This, however, will not be so simple since, as we shall see, an

undesired factor et(β−α) appears in the process. To deal with this, we split the operator

into two parts:

g](f) =
{∫ ∞

t0

|t ∂

∂t
(e−tLf)|2 dt

t

}1/2
and g](f) =

{∫ t0

0
|t ∂

∂t
(e−tLf)|2 dt

t

}1/2
, (5.6)

where t0 is a sufficiently large number to be chosen later. We begin with the first part, for

which we need the following lemma.

LEMMA 5.7 There exists a small number r0 ∈ (0, 1) and C = C(α, r0) > 0 such that

sup
0<r≤r0

∣∣∣ ∂

∂r
[hln 1/r(y, z)]

∣∣∣ ≤ C r
α−1

2
0 y

α
2 z

α
2 e−

y+z
8 , ∀ y, z > 0. (5.8)
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PROOF: Taking derivatives in the explicit expression for hln 1/r(y, z) in (5.5), and using

the relation I ′α(s) = α
s Iα(s) + Iα+1(s) (see [2]), we see that

∂

∂r
[hln 1/r(y, z)] = 1

2
1+r√

r (1−r)2
exp{−1

2
1+r
1−r (y + z)} Iα(2(ryz)1/2

1−r )

−
√

r
(1−r)3

(y + z) exp{−1
2

1+r
1−r (y + z)} Iα(2(ryz)1/2

1−r )

+ 1+r
(1−r)3

(yz)1/2 exp{−1
2

1+r
1−r (y + z)}

(
α(1−r)

2(ryz)1/2 Iα(2(ryz)1/2

1−r ) + Iα+1(
2(ryz)1/2

1−r )
)

=
4∑

i=1

Ki(r, y, z).

From the size estimates of Bessel functions (see e.g. [2]) we know that Iα(s) ∼ sα for s ≤ 1

and Iα(s) ∼ es

s1/2 for s ≥ 1, which gives the crude estimate

Iα(s) ≤ Cαsαe2s ∀ s > 0. (5.9)

Therefore, for all r ∈ (0, r0] we have

exp{−1
2

1+r
1−r (y + z)} Iα(2(ryz)1/2

1−r ) ≤ C rα/2yα/2zα/2

(1−r)α exp{−1
2

1+r
1−r (y + z) + 4

√
r

1−r y1/2z1/2},
≤ C rα/2yα/2zα/2e−

1
4
(y+z),

provided we choose r0 small enough so that
√

r0

1−r0
≤ 1/8. Thus, K1(r, y, z) and K3(r, y, z)

are readily estimated by the right hand side of (5.8). Similarly,

K2(r, y, z) ≤ C (y + z) rα/2yα/2zα/2e−
1
4
(y+z) ≤ C rα/2yα/2zα/2e−

1
8
(y+z)

and

K4(r, y, z) ≤ C
√

yz r
α+1

2 y
α+1

2 z
α+1

2 e−
1
4
(y+z) ≤ C (y + z)2 r

α+1
2 y

α
2 z

α
2 e−

1
4
(y+z),

from which a similar bound follows.
2

Going back to g](f), and choosing t0 large so that e−t0 = r0, we have

g](f)(y) ≤
{∫ ∞

t0

[∫

R+

∣∣ ∂
∂t [ht(y, z)]

∣∣ |f(z)|dz
]2

t dt
}1/2

(5.10)

≤
∫

R+

{∫ ∞

t0

∣∣ ∂
∂t [ht(y, z)]

∣∣2t dt
}1/2

|f(z)| dz =
∫

R+

Q(y, z) |f(z)| dz,

where, using (5.8) we have for all y, z > 0

Q(y, z) =
{∫ r0

0

∣∣ ∂
∂r [hln 1/r(y, z)]

∣∣2 r ln 1
r dr

}1/2
≤ C y

α
2 z

α
2 e−

y+z
8 . (5.11)
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Thus, taking Lp
δ norms in (5.10) and using Hölder’s inequality

∥∥g](f)
∥∥

Lp
δ
≤ C

[∫

R+

e−
py
8 y(α

2
+δ)p dy

]1/p [∫

R+

e−
p′z
8 z(α

2
−δ)p′dz

]1/p′ ∥∥f
∥∥

Lp
δ
,

and both integrals are finite since −1
p − α

2 < δ < 1− 1
p + α

2 . Thus, we have established the

following proposition.

PROPOSITION 5.12 Let α > −1, −1
p − α

2 < δ < 1 − 1
p + α

2 and g] defined as in (5.6).

Then,
∥∥g](f)

∥∥
Lp

δ
≤ C

∥∥f
∥∥

Lp
δ
.

We now turn to the operator g] in (5.6), which we need to write as a linear vector-valued

operator in order to use transplantation. We let H denote the Hilbert space L2((0,∞), dt
t )

and set G : L2(R+) → L2(R+; H) defined by

G(f) = G(α)(f) =
{

t
∂

∂t
(e−tL(α)

f)
}

t>0
, f ∈ L2(R+). (5.13)

Since g(f) =
∣∣G(f)

∣∣
H

, the Lp
δ boundedeness of g is equivalent to boundedness of G from

Lp
δ into Lp

δ(R+; H). We shall denote analogously

G](f) = G(α)
] (f) =

{
t
∂

∂t
(e−tL(α)

f) χ(0,t0](t)
}

t>0
.

Finally, we denote by Tα
β the obvious vector-valued extension of the transplantation operator

to L2(R+; H) as

Tα
β

({ft}t>0

)
=

{
Tα

β (ft)
}

t>0
, {ft}t>0 ∈ L2(R+; H).

By Krivine’s theorem (see e.g. [11]), the vector-valued operator Tα
β is bounded in Lp

δ(R+; H)

if and only if Tα
β is bounded in Lp

δ(R+). Similarly, we denote by M the vector-valued

extension of the multiplier operator Mf =
∑

k≥0 m(k)〈f,Lβ
k〉Lβ

k , where m(s) = 2s+α+1
2s+β+1 .

Observe that this multiplier trivially satisfies the conditions in (1.9).

Now, given α > −1 we choose β = n
2 − 1, for some positive integer n such that β ≥ α.

We claim that

G(α)
] = T β

α ◦Nβ−α ◦M ◦G(β) ◦ Tα
β , (5.14)

where Nβ−α stands for the pointwise multiplication operator defined by

Nβ−α

({ft}t>0

)
=

{
e

β−α
2

t χ(0,t0](t) ft

}
t>0

, {ft}t>0 ∈ L2(R+;H).
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Indeed, by density and linearity it suffices to check (5.14) for f = Lα
k , k = 0, 1, 2, . . .. But

this is an elementary exercise:

Lα
k

T α
β

−−−−→ Lβ
k

G(β)

−−−−→
{−t(k + β+1

2 )e−(k+β+1
2

)tLβ
k

}
t>0

M
−−−−→

{−t(k + α+1
2 )e−(k+β+1

2
)tLβ

k

}
t>0

Nβ−α
−−−−→

{−t(k + α+1
2 )e−(k+α+1

2
)t χ(0,t0](t)Lβ

k

}
t>0

T β
α−−−−→

{−t(k + α+1
2 )e−(k+α+1

2
)t χ(0,t0](t)Lα

k

}
t>0

= G(α)
]

(Lα
k

)
.

Finally the boundedness of each of such operators in Lp
δ or Lp

δ(R+; H) when −1
p − α

2 < δ <

1− 1
p + α

2 follows from Theorems 1.4 and 1.8, and the above mentioned remarks. Combining

this result with Proposition 5.12 completes the proof of Theorem 5.4 for ` = 1.

To conclude the proof of the theorem we turn to the Lp
δ-boundedness of g` when ` ≥ 2.

This will follow from a repeated use of Krivine’s theorem. Indeed, from the previous result

we know the boundedness of G : Lp
δ → Lp

δ(R+; H), which by Krivine’s theorem implies the

boundedness of the vector-valued extension G : Lp
δ(H) → Lp

δ(H ×H) given by

{
fs

}
s>0

7−→ {
Gfs

}
s>0

=
{
t ∂
∂t [e

−tLfs]
}

(t,s)

Thus, we obtain boundedness for the composition operator G ◦ G : Lp
δ −→ Lp

δ(H × H).

Now, the semigroup property of e−tL gives

t
∂

∂t

[
e−tL s ∂

∂s

(
e−sLf

) ]
= ts

∂2

∂u2

[
e−uLf

]
|u=s+t

.

Also, by changing of variables σ = s + t in the integrals below we see that

∣∣G ◦Gf
∣∣2
H×H

=
∫ ∞

0

∫ ∞

0
st

∣∣∣ ∂2

∂u2

[
e−uLf

]
|u=s+t

∣∣∣
2
ds dt

=
∫ ∞

0

∫ ∞

t
(σ − t) t

∣∣ ∂2

∂u2

[
e−uLf

]
|u=σ

∣∣2 dσ dt

=
∫ ∞

0

∣∣ ∂2

∂σ2

[
e−σLf

]∣∣2
∫ σ

0
(σ − t) t dt dσ = 1

6 g2(f)2.

Combining all these facts we obtain the wished estimate ‖g2(f)‖Lp
δ
≤ C ‖f‖Lp

δ
. Similar

arguments and induction will give the same result for g` and all ` ≥ 1, completing the proof

of Theorem 5.4.
2

6 Multipliers and transplantation for related systems

Throughout this section, given a measure µ we use the notation Lp
δ(µ) = Lp((0,∞), yδpdµ(y)).

For fixed α > −1 we consider the following orthonormal systems
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(i)
{
ϕα

k (y) :=
√

2yLα
k (y2)

}
k≥0

in L2(0,∞);

(ii)
{
`α
k (y) := y−α/2 Lα

k (y)
}

k≥0
in L2(µα), where dµα(y) = yαdy;

(iii)
{
ψα

k (y) :=
√

2 y−α Lα
k (y2)

}
k≥0

in L2(να), where dνα(y) = y2α+1dy.

These are complete eigenvector systems of certain modifications of the Laguerre operator,

for which multiplier and transplantation estimates have been studied by various authors

(see [6, 21, 18] and references therein). In this section we show how to obtain such results

from the power weighted estimates of the standard Laguerre system {Lα
k} (see also [1]). To

this end, we define the following operators:

V f(y) =
√

2y f(y2), Wαf(y) = y−α/2 f(y) and Zαf(y) =
√

2 y−α f(y2).

The proof of the next lemma is completely elementary and left to the reader.

LEMMA 6.15 Let α > −1, and γ, σ, ζ ∈ R.

(i) If δ = γ
2 + 1

4 − 1
2p , then ‖V f‖Lp

γ(dy) = 2
1
2
− 1

p ‖f‖Lp
δ
;

(ii) If δ = σ + α(1
p − 1

2), then ‖Wαf‖Lp
σ(µα) = ‖f‖Lp

δ
.

(iii) If δ = ζ
2 + α(1

p − 1
2) then ‖Zαf‖Lp

ζ(να) = 2
1
2
− 1

p ‖f‖Lp
δ
.

The following is an immediate corollary of the previous lemma and Theorem 1.8.

COROLLARY 6.16 Let α > −1, 1 < p < ∞ and consider a multiplier m ∈ C∞[0,∞) as

in Theorem 1.8. Then, there exists C > 0 so that, for every finite sequence {ck}

(i)
∥∥∑∞

k=0 m(k)ckϕ
α
k

∥∥
Lp

γ
≤ C

∥∥∑∞
k=0 ckϕ

α
k

∥∥
Lp

γ
, if −α− 1

2− 1
p < γ < 1

p′ + α+ 1
2 ;

(ii)
∥∥∑∞

k=0 m(k)ck`
α
k

∥∥
Lp

σ(µα)
≤ C

∥∥∑∞
k=0 ck`

α
k

∥∥
Lp

σ(µα)
, if −1+α

p < σ < 1+α
p′ ;

(iii)
∥∥∑∞

k=0 m(k)ckψ
α
k

∥∥
Lp

ζ(να)
≤ C

∥∥∑∞
k=0 ckψ

α
k

∥∥
Lp

ζ(να)
, if −2(1+α)

p < ζ < 2(1+α)
p′ .

REMARK 6.17 For the system {`α
k}, this result improves an earlier sufficient condition

−min{α+1
p , α+1

2 } < σ < min{α+1
p′ , α+1

2 }, obtained by Stempak and Trebels for α ≥ 0 under

weaker smoothness assumptions on the multiplier (see [18, Th1.1]). The condition on the

indices is also necessary, as is easily seen testing with m(0) = 1 and m(k) = 0, k ≥ 1.

We state below the corresponding optimal transplantation estimates, which follow com-

bining Lemma 6.15 with Theorem 1.4. We use 〈., .〉µ to denote the scalar product in L2(µ).
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DEFINITION 6.18 Given α, β > −1, we define the following transplantation operators:

τα
β f =

∞∑

k=0

〈f, ϕα
k 〉ϕβ

k , Tα
βf =

∞∑

k=0

〈f, `α
k 〉µα`β

k and Tα
βf =

∞∑

k=0

〈f, ψα
k 〉ναψβ

k .

COROLLARY 6.19 Let 1 < p < ∞ and −1 < α < β. Then:

(i) The operators τα
β and τβ

α admit a bounded extension to Lp
γ → Lp

γ if and only if

−α− 1
2
− 1

p
< γ <

1
p′

+ α +
1
2
.

(ii) Let σ0 ∈ R and σ1 = σ0 + (α − β)(1
p − 1

2). Then, Tα
β : Lp

σ0(µα) → Lp
σ1(µβ) and

Tβ
α : Lp

σ1(µβ) → Lp
σ0(µα) are bounded operators if and only if

−1 + α

p
< σ0 <

1 + α

p′
.

(iii) Let ζ0 ∈ R and ζ1 = ζ0 + 2(α − β)(1
p − 1

2). Then, Tα
β : Lp

ζ0
(να) → Lp

ζ1
(νβ) and

Tβ
α : Lp

ζ1
(νβ) → Lp

ζ0
(να) are bounded operators if and only if

−2(1 + α)
p

< ζ0 <
2(1 + α)

p′
.

PROOF: This is a straightforward consequence of Lemma 6.15, Theorem 1.4, and the

identities τα
β = V ·Tα

β ·V ∗, Tα
β = W β ·Tα

β · (Wα)∗ and Tα
β = Zβ ·Tα

β · (Zα)∗. We leave details

to the reader.
2

REMARK 6.20 The relation between σ0 and σ1 in (ii) of the previous corollary is also

a necessary condition. Indeed, in other case it would imply the boundedness of Tα
β from

Lp
δ1

into Lp
δ2

, for some numbers δ1 6= δ2. Such boundedness, however, can never hold when

(1
p , ρ, δi) ∈ A, since composition with T β

α : Lp
δ2
→ Lp

δ2
(which is bounded by Theorem 1.4),

would lead to a continuous inclusion Lp
δ1

↪→ Lp
δ2

, and hence a contradiction.
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Sz.-Nagy eds.), Birkhäuser-Verlag (Basel,1978), pp. 53-67.
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28049 Madrid, Spain Güemes 3450, 3000 Santa Fe, Argentina
gustavo.garrigos@uam.es harbour@ceride.gov.ar

joseluis.torrea@uam.es viviani@ceride.gov.ar

T. Signes
Dep. Mat. Aplicada. Fac. Informática
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