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Abstract We find optimal decay estimates for the Poisson kernels associated with various
Laguerre-type operators L . From these, we solve two problems about the Poisson semigroup

e−t
√
L . First, we find the largest space of initial data f so that e−t

√
L f (x) → f (x) at a.e. x .

Secondly, we characterize the largest class of weights w which admit 2-weight inequalities
of the form ‖ sup0<t≤t0 |e−t

√
L f | ‖L p(v) � ‖ f ‖L p(w), for some other weight v.

Keywords Laguerre expansions · Poisson integral · Heat semigroup · 2-weight problem ·
Fractional laplacian

Mathematics Subject Classification 33C45 · 35C15 · 40A10 · 42C10 · 47D06

1 Introduction

In this paper, we continue the research, started in [6,7], about Poisson integrals associated
with certain differential operators L , say symmetric and positive in L2(�,μ). Namely, we
are interested in the behavior of

u(t, x) = e−t
√
L f (x)
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as a solution of the elliptic differential equation

(P)

{
utt − Lu = 0
u(0, x) = f (x),

in the half-plane (0,∞) × �.

We shall study two questions which are closely related

(i) find the largest class of functions f for which limt→0+ u(t, x) = f (x), a.e. x ∈ �;
(ii) establish 2-weight inequalities of the form

∥∥ sup
0<t≤t0

|u(t, x)| ∥∥L p(v)
� ‖ f ‖L p(w)

for the largest class of weights w for which a suitable v with this property exists.

In [6], we considered these questions in full detail when L is the Hermite operator. In this
paper, we intend to do the same for the various Laguerre operators. We remark that to solve
(i) or (ii) we shall need optimal decay estimates of the Poisson kernels e−t

√
L(x, y), at least

in the y variable. These are new in the literature and in particular produce new results on
a.e. convergence compared to those of Muckenhoupt [10] and Stempak [15], and also larger
weight classes compared to those of Nowak in [11]. The kernel estimates may also have an
independent interest in other problems; see, e.g., recent work by Liu and Sjögren [9].

We now state our results. For α > −1 (fixed throughout the paper), we first consider the
(Hermite-type) Laguerre operator in L2(R+) := L2((0,∞), dy) given by

L = −∂yy +
[
y2 + α2 − 1

4

y2

]
+ 2μ, where μ ≥ −(α + 1). (1.1)

The parameterμwill be useful later, when transferring the results to other Laguerre operators;
see Table 1. We shall also consider a slightly more general family of partial differential
equations, namely {

utt + 1−2ν
t ut = Lu

u(t, 0) = f,
where ν > 0. (1.2)

These pde’s appear in relation to the fractional powers of L , f 	→ Lν f (see, e.g., [16]).
When ν = 1/2, we recover the original equation (P).

As discussed in [16], a candidate solution to (1.2) is given by the Poisson-like integral

Pt f (x) := t2ν
4ν�(ν)

∫ ∞

0
e− t2

4u
[
e−uL f

]
(x)

du

u1+ν
, t > 0, (1.3)

which is subordinated to the “heat” semigroup {e−uL }u>0. Our first goal is to find the most
general conditions on a function f : R+ → C so that Pt f is a meaningful solution of (1.2).
These are determined by the following key function

�(y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yα+ 1
2 e− y2

2

(1 + y)μ+α+1[ln(e + y)]1+ν
if μ > −(α + 1)

yα+ 1
2 e− y2

2

[ln(e + y)]ν if μ = −(α + 1).

(1.4)

We write L1(�) for the space of measurable functions f in R+ with
∫
R+ | f |� < ∞.
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A.e. convergence and 2-weight inequalities for Poisson. . .

Theorem 1.1 Let α > −1, ν > 0, L as in (1.1) and� as in (1.4). Then, for every f ∈ L1(�)

the function u(t, x) = Pt f (x) in (1.3) is defined by an absolutely convergent integral such
that

(i) u(t, x) ∈ C∞((0,∞) × R+) and satisfies the pde (1.2)
(ii) limt→0+ u(t, x) = f (x) at every Lebesgue point x of f .

Conversely, if a function f ≥ 0 is such that the integral in (1.3) is finite for some (t, x) ∈
(0,∞) × R+, then f must necessarily belong to L1(�).

Our second question concerns more “quantitative” bounds for the solutions of (1.2),
expressed in terms of the following local maximal operators

P∗
t0 f (x) := sup

0<t≤t0

∣∣Pt f (x)∣∣ , with t0 > 0 fixed. (1.5)

We shall prove estimates of the Poisson kernels, as in (1.9) below, which lead to local bounds
of the form

P∗
t0 : L1(�) → Ls

loc if s < 1, and P∗
t0 : L1(�) ∩ L p

loc → L p
loc if p > 1.

However, our main interest is to obtain global bounds in x , which we shall phrase through
the following problem.

Problem 1 A 2-weight problem for the operator P∗
t0 . Given 1 < p < ∞, characterize the

class of weights w(x) > 0 such that P∗
t0 maps L

p(w) → L p(v) boundedly, for some other
weight v(x) > 0.

Our second main result gives a complete answer to Problem 1. For p ∈ (1,∞), we define
the class of weights

Dp(�) =
{
w(y) > 0 : ∥∥w− 1

p �
∥∥
L p′ (R+)

< ∞
}
. (1.6)

Observe that L p(w) ⊂ L1(�) if and only if w ∈ Dp(�), so in view of Theorem 1.1, this is
a necessary condition for Problem 1. Our second theorem shows that it is also sufficient.

Theorem 1.2 Let 1 < p < ∞ and t0 > 0 be fixed. Then, for a weight w(x) > 0 the
condition w ∈ Dp(�) is equivalent to the existence of some other weight v(x) > 0 such that

P∗
t0 : L p(w) → L p(v) boundedly. (1.7)

Moreover, for every ε > 0, we can choose an explicit weight v ∈ Dp+ε(�) satisfying (1.7).

We remark that Problem 1 is only a “one-side” problem, in contrast to the (more difficult)
question of characterizing all pairs ofweights (w, v) forwhich (1.7) holds.One-side problems
were considered in the early 80s by Rubio de Francia [13] and Carleson and Jones [2] for
various classical operators. Here, we shall follow the approach by the latter, which has the
advantage of giving explicit expressions for the second weight v(x) (see Remark 6.2 below).
This is also a novelty compared to [6], which was based on the non-constructive method of
Rubio de Francia.

We can now briefly describe our approach to the proofs in this paper. Most of our work
will be employed in deriving precise decay estimates for the kernel Pt (x, y) of the operator
in (1.3). First, we shall show that, for fixed t and x

c1(t, x)�(y) ≤ Pt (x, y) ≤ c2(t, x)�(y), (1.8)
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for suitable c1 and c2; see Proposition 5.1. In a second step, we give more precise bounds,
uniform in t (see Proposition 5.2), which lead to the following control of the operator P∗

t0

P∗
t0 f (x) � C(x)

[
Mloc( f �)(x) +

∫
R+

| f | �
]
, (1.9)

for a reasonably well behaved C(x). Here,Mloc = Mloc
M denotes a local Hardy–Littlewood

maximal operator in R+, given by

Mloc
M f (x) := sup

r>0

1

|I (x, r)|
∫
I (x,r)

| f (y)| χ{ x2 ≤y≤Mx} dy (1.10)

for a suitable M > 1. We also use the notation I (x, r) = (x − r, x + r) ∩ R+.
Concerning the kernel estimates, they are necessarily more technical than in the Hermite

setting treated in [5,6] (which is essentially the case α = −1/2). The term 1/y2 in (1.1)
produces an additional singularity when y → 0 which must be handled separately from
y → ∞. This dual behavior already appears in the Bessel function Iα which is part of the
kernel expression of e−uL ; see (2.2). New difficulties also arise when α ∈ (−1,−1/2),
related to the fact that the associated Laguerre functions blow up when y → 0.

Finally, we consider the same problem for other classical families of Laguerre operators.
These are listed in Table 1 below, together with their eigenfunctions. As we shall see in
Sect. 7, using suitable transformations (as, e.g., in [1]) we can “transfer” the statements of
Theorems 1.1 and 1.2 from L to each of these differential operators, provided we choose the
function � as in Table 1. More precisely, we have the following

Theorem 1.3 Let α > −1, μ ≥ −(α + 1) and ν > 0. Then, if L is replaced by any of
the operators listed in Table 1, both Theorems 1.1 and 1.2 hold with the expression of the
function � given in the table.

Table 1 Table of Laguerre-type operators, and their corresponding �-functions

Differential operators (for μ ≥ −α − 1) Orthonormal eigenfunctions Functiona �

L = −∂yy + y2 + α2− 1
4

y2
+ 2μ

in L2(dy)

⎫⎬
⎭ ϕα

n (y)=√
2yα+ 1

2 e− y2

2 Lα
n (y2)

yα+ 1
2 e−y2/2

(1 + y)1+α+μ [ln(e + y)]1+ν

L = −y∂yy − ∂y + 1
4

[
y + α2

y

]
+ μ

2

in L2(dy)

}
Lα

n (y) = y
α
2 e− y

2 Lα
n (y)

y
α
2 e−y/2

(1 + y)
1+α+μ

2 [ln(e + y)]1+ν

L = −y∂yy − (α + 1)∂y + y
4 + μ

2
in L2(yαdy)

}
�α
n (y) = e− y

2 Lα
n (y)

yαe−y/2

(1 + y)
1+α+μ

2 [ln(e + y)]1+ν

� = −∂yy − 2α+1
y ∂y + y2 + 2μ
in L2(y2α+1dy)

}
ψα
n (y) = √

2e− y2

2 Lα
n (y2)

y2α+1 e−y2/2

(1 + y)1+α+μ [ln(e + y)]1+ν

L = −y ∂yy − (α + 1 − y) ∂y + μ+α+1
2

in L2(yαe−ydy)

}
Lα
n (y)

yαe−y

(1 + y)
1+α+μ

2 [ln(e + y)]1+ν

a We shall use the agreement, as in (1.4), that in the extremal case μ = −(α + 1) the logarithmic factor in the
denominator becomes [ln (e + y)]ν
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As an application, in the case of the standard Laguerre operator L, with m = 0 and
ν = 1/2, we recall that Muckenhoupt, in his classical paper [10], proved the pointwise
convergence of Pt f for all data f in the space L1(yαe−y dy). Our results show that one can
enlarge the space to

L1(yαe−y/
√
ln (e + y) dy),

and include new initial data such as f (y) = ey/[(1 + y)α+1ln (e + y)].
The outline of the paper will be the following. In Sect. 2, we consider a version of Theorem

1.1 for heat integrals u(t, x) = e−t L f (x), which are solutions of the equation

ut + Lu = 0 in (0,T) × R+, with u(0, x) = f (x).

Heat integrals are easier to handle, and the explicit expression of the heat kernel, e−t L (x, y),
makes more transparent the behavior we shall later encounter in Poisson kernels. In Sect. 3,
we study 2-weight inequalities for the local maximal operator Mloc. In Sect. 4, we apply
these to prove a version of Theorem 1.2 for heat integrals. In Sect. 5, we take up the study
of Poisson integrals, splitting in various subsections the detailed kernel estimates leading to
(1.9). In Sect. 6, we shall give the proof of Theorems 1.1 and 1.2 for the operator L . Finally,
in Sect. 7 we show how to transfer the results to each of the Laguerre operators in Table 1.

Throughout the paper α > −1 is fixed, as are the parameters μ ≥ −(α + 1) and ν > 0
in the differential operators. The notation A � B will mean A ≤ c B, for a constant c > 0
which may depend on α,μ, ν and other parameters like p, M, t0, ε, but not on t, x, y. If
needed, we shall stress the latter dependence by c(x), c(t, x), ... Finally, if 1 < p < ∞ we
set p′ = p/(p − 1).

2 The simpler model of heat integrals

In this section, we set μ = 0 in (1.1) and consider

L = −∂yy +
[
y2 + α2 − 1

4

y2

]
. (2.1)

The corresponding eigenfunctions {ϕα
n }∞n=0 satisfy

Lϕα
n = (4n + 2α + 2)ϕα

n , n = 0, 1, 2, . . .

and form an orthonormal basis of L2(0,∞); see [17, (5.1.2)]. The kernel of the associated
heat semigroup e−t L , in terms of the new variable s = th t , has the explicit expression1

e−t L(x, y) =
∞∑
n=0

e−(4n+2α+2)tϕα
n (x)ϕα

n (y)

=
√
1 − s2

2s
Īα

(
(1 − s2)xy

2s

)
e− (x−y)2

4s e− s(x+y)2

4 . (2.2)

Here, we have used the convenient notation Īα(z) = √
ze−z Iα(z), so that from known

properties of the Bessel functions Iα (see, e.g., [8, (5.7.1), (5.11.10)]), we have Īα(z) ≈
〈z〉α+ 1

2 , with 〈z〉 = min{z, 1}.
1 This formula is easily derived from the more classical [17, (5.1.15)] or [8, (4.17.6)]; see, e.g., [3, p. 341].
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2.1 A.e. convergence of heat integrals

We wish to establish the pointwise convergence of e−t L f (x) with the weakest possible
conditions on f . We claim that

e−t L(x, y) �
〈 xy
s

〉α+ 1
2 e− (x−y)2

4s√
s

e− sy2

4 . (2.3)

To produce this bound from (2.2), one disregards x in the last exponential and uses 1−s2 ≤ 1
when α ≥ − 1

2 . If α ∈ (−1,− 1
2 ), note that 〈λz〉 ≥ λ〈z〉 for λ ≤ 1, so one can leave outside

a power (1 − s2)α+1 ≤ 1.

Theorem 2.1 Let α > −1 be fixed, and f be such that∫ ∞

0
| f (y)|e−ay2〈y〉α+ 1

2 dy < ∞, for some (possibly large) a > 0. (2.4)

Then,

lim
t→0+ e−t L f (x) = f (x), a.e. x ∈ R+.

Proof For each fixed N ≥ 2, it suffices to show that limt→0+ e−t L f (x) = f (x) for a.e. x ∈
(1/N , N ). We split

f = f χ{0<y≤2N } + f χ{y>2N } = f1 + f2.

The function f1 has bounded support and belongs to L1(yα+ 1
2 e− y2

2 dy), so we can apply the
results of Muckenhoupt [10] (with a suitable change of variables2, as indicated by Stempak
[15]) to obtain

lim
t→0+ e−t L f1(x) = f1(x) = f (x), a.e. x ∈ [ 1

N , N
]
.

Next, we shall show that, under the hypothesis (2.4),

lim
t→0+ e−t L f2(x) = 0, ∀x ∈ [ 1

N , N
]
.

Since t → 0, we may assume that s = th t ≤ s0 for some s0 < 1
10 (which we shall make

precise below). Note that 1
N ≤ x ≤ N and y > 2N imply that

〈 xy
s

〉α+ 1
2 = 1, ∀s < 1.

So, by (2.3), in this region we have a gaussian bound for the kernel

e−t L(x, y) � s− 1
2 e− (x−y)2

4s ≤ s− 1
2 e− y2

16s ,

using in the last step that |x − y| ≥ y/2. Choosing s0 < 1
32a (with a as in (2.4)), we see that

for all y > 2N ,

e−t L(x, y) � s− 1
2 e− y2

32s e−ay2 ≤ s− 1
2 e− N2

8s e−ay2

2 See also Sects. 7.2 and 7.4 below for the explicit change of variables.
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A.e. convergence and 2-weight inequalities for Poisson. . .

and therefore

e−t L f2(x) � s− 1
2 e− N2

8s

∫
y>2N

| f (y)| e−ay2 dy −→ 0, as s → 0+.

��
2.2 Heat kernel estimates

The elementary bound (2.3) was enough for Theorem 2.1. Below, in order to handle maximal
operators, we shall need the following more precise bound.

Proposition 2.2 Let α > −1. Then, for every γ > 1 there is some M = Mγ > 1 such that

e−t L (x, y) ≤ Cγ

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e− |x−y|2
4s√
s

〈 xy
s

〉α+ 1
2

if x
2 ≤ y ≤ Mx

c(x) 〈y〉α+ 1
2 e− y2

2γ th (2t) if y < x
2 or y > Mx

, (2.5)

for all x, y ∈ R+ and s = th t ∈ (0, 1). Here we can set c(x) = 1/〈x〉α+ 3
2 .

Proof Clearly, (2.3) implies the estimate in the local part y ∈ [ x2 , Mx], so we shall look at
the complementary range. Given x, y and s, for simplicity we write z = xy

s , so that (2.3)
becomes

e−t L(x, y) � 〈z〉α+ 1
2 s− 1

2 e− (x−y)2

4s e− sy2

4 . (2.6)

Below we shall show that

As(x, y) := 〈z〉α+ 1
2
e− (x−y)2

4s√
s

≤ Cγ

〈y〉α+ 1
2

〈x〉α+ 3
2

e− y2

4γ s , if y <
x

2
or y > Mx, (2.7)

for some M = Mγ . This estimate inserted into (2.6) establishes (2.5), since

e− y2

4γ s e− sy2

4 ≤ e
− y2

4γ

(
s+ 1

s

)
= e− y2

2γ th (2t) ,

as s + s−1 = 2/th (2t) when s = th t .
To prove (2.7), we need to separate the cases z ≤ 1 and z ≥ 1. We begin with z ≥ 1. In

the region y > Mx , we may use |x − y| ≥ (1 − 1
M )y to obtain

As(x, y) � e
−
(
M−1
M

)2 y2

4s

√
s

≤ cM
e
−
(
M−1
M

)3 y2

4s

y
≤ cM e− y2

4sγ
〈y〉α+ 1

2

〈x〉α+ 3
2

, (2.8)

where in the last step we select M = Mγ sufficiently large so that ( M
M−1 )

3 ≤ γ , and have
used the trivial estimate

1

y
≤ 〈y〉α+ 1

2

〈y〉α+ 3
2

≤ 〈y〉α+ 1
2

〈x〉α+ 3
2

, if y ≥ x . (2.9)

On the other hand, if y < x/2 we have |x − y| ≥ x/2, which leads to

As(x, y) � e− (x/2)2

4s√
s

≤ cγ

e− (x/2)2

4sγ

x
≤ cγ

e− y2

4γ s

x
. (2.10)
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In the case α ∈ (−1,− 1
2 ), this can be combined with

1

x
≤ 〈x〉α+ 1

2

〈x〉α+ 3
2

≤ 〈y〉α+ 1
2

〈x〉α+ 3
2

, since x ≥ y. (2.11)

If on the contrary α ≥ − 1
2 , we can insert 1 ≤ zα+ 1

2 in the first step of (2.10) to obtain

As(x, y) � e− (x/2)2

4s√
s

( xy
s

)α+ 1
2 = ( x2

s

)α+1
e− (x/2)2

4s
yα+ 1

2

xα+ 3
2

≤ cγ e− y2

4sγ
〈y〉α+ 1

2

〈x〉α+ 3
2

, (2.12)

where in the last step we have used

yα+ 1
2

xα+ 3
2

≤ 〈y〉α+ 1
2

〈x〉α+ 3
2

, if x ≥ y

(this is clear if y ≤ 1, and follows from yα+ 1
2 /xα+ 3

2 ≤ 1/y ≤ 1 if y ≥ 1). This completes
the proof of (2.7) when z ≥ 1.

We turn to the case z ≤ 1, for which we have to estimate

As(x, y) = s− 1
2 e− (x−y)2

4s zα+ 1
2 . (2.13)

When α ≥ − 1
2 , the last factor helps, so some of the previous arguments also lead to (2.7);

namely one can disregard z in the region y > Mx , and must keep it when y < x
2 and argue

as in (2.12). We are left with the case α ∈ (−1,− 1
2 ), which makes zα+ 1

2 ≥ 1. In the region
y > Mx , this can be absorbed by the exponentials as follows

As(x, y) �
( xy

s

)α+ 1
2 s− 1

2 e
−
(
M−1
M

)2 y2

4s = ( y2
s

)α+1
e
−
(
M−1
M

)2 y2

4s
xα+ 1

2

yα+ 3
2

≤ cM e
−
(
M−1
M

)3 y2

4s
xα+ 1

2

yα+ 3
2

≤ cM e− y2

4sγ
〈y〉α+ 1

2

〈x〉α+ 3
2

,

where in the last step we first argue as in (2.8), and then use the elementary inequalities

xα+ 1
2

yα+ 3
2

≤ 〈x〉α+ 1
2 〈y〉α+ 1

2

〈y〉2α+2 ≤ 〈x〉α+ 1
2 〈y〉α+ 1

2

〈x〉2α+2 , if y ≥ x

(the first one should be clear if x ≤ 1, and follows from xα+ 1
2 /yα+ 3

2 ≤ 1/x ≤ 1 if x ≥ 1).
Finally, in the region y < x

2 the inequalities in (2.12) remain also valid, so we have completed
the proof of (2.7), and hence of Proposition 2.2. ��

Using the local Hardy–Littlewoodmaximal functionMloc
M defined in (1.10), we can easily

deduce from Proposition 2.2 the following

Corollary 2.3 Let α > −1 and γ > 1. Then, there is some M = Mγ > 1 such that

sup
0<t≤t0

∣∣e−t L f (x)
∣∣ � Mloc

M f (x) + c(x)
∫
R+

| f (y)| 〈y〉α+ 1
2 e

− y2

2γ th (2t0) dy, (2.14)

for every x, t0 > 0 and c(x) = 1/〈x〉α+ 3
2 .
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Proof Let f = f1 + f2 with f1 = f χ[ x2 ,Mx]. From Proposition 2.2, (2.14) is clear for f2. To

treat f1, we first assume s = th t ≤ x2. Then, z = xy
s � 1 (since x ≈ y when y ∈ supp f1),

so the first bound in (2.5) and a standard slicing argument easily lead to

∣∣e−t L f1(x)
∣∣ � 1√

s

∫
R+

e− (x−y)2

4s | f (y)|χ{ x
2 ≤y≤Mx} dy � Mloc

M f (x) .

If we assume instead s = th t ≥ x2, then using again x ≈ y and (2.5) we have

∣∣e−t L f1(x)
∣∣ � x2α+1

sα+1

∫ Mx

x
2

| f (y)| dy � x2α+1

x2α+2

∫ Mx

x
2

| f (y)| dy � Mloc
M f (x).

��
Remark 2.4 An estimate quite similar to (2.14), with a slightly worse bound for the expo-
nential inside the integral, was obtained by Chicco-Ruiz and Harboure in [3, §5].

3 2-weight inequalities for Mloc

In this section, we prove 2-weight inequalities for the local maximal operator in R+

Mloc f (x) := sup
r>0

1

|I (x, r)|
∫
I (x,r)

| f (y)| χ{ x2 <y<Mx} dy,

where M > 1 is a fixed parameter (which for simplicity we avoid in the notation). The
1-weight theory of (a related version of) this operator was considered in [12, §6].

3.1 The Carleson–Jones theorem for Mloc

For each p ∈ (1,∞), we consider the following class of weights in R+

Dloc
p =

{
W (x) > 0 :

∫
J
W− p′

p < ∞, ∀ J � (0,∞)
}
.

Associated with each W ∈ Dloc
p , we define a collection of weights {Vε}ε>0 by

Vε(x) = V (x) ρε

[
V (x)

]
, where V (x) :=

[
Mloc

(
W− p′

p

)
(x)

]− p
p′

, (3.1)

and we set ρε(x) := min
{
xε, x−ε

}
. Observe that Vε2 ≤ Vε1 ≤ V ≤ W if ε1 ≤ ε2. This

is a slight variant of the weight family used by Carleson and Jones in [2] (for the classical
Hardy–Littlewood operator).

Theorem 3.1 Let 1 < p < ∞ and W ∈ Dloc
p . Then, for every ε > 0

Mloc : L p(W ) → L p(Vε) boundedly,

where Vε is defined as in (3.1).

Proof We use the ideas in [2], with some modifications required for the local operatorMloc;

see also [5, Prop. 4.2]. Call En = {x ∈ R+ : Mloc(W− p′
p )(x) < 2n}, n ∈ Z, and define

the operators

Tng(x) := χEn Mloc
(
W− p′

p g

)
(x). (3.2)
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Note that Tn : L1(W− p′
p ) → L1,∞, with a uniform bound in n, since

∣∣∣{Tng(x) > R
}∣∣∣ ≤

∣∣∣{M
(
W− p′

p g

)
(x) > R

}∣∣∣ ≤ c0
R

∫
R+

W− p′
p |g|, (3.3)

using in the last step the weak-1 boundedness of the classical Hardy–Littlewood maximal

operator M. Similarly, Tn : L∞(W− p′
p ) → L∞ with ‖Tn‖ ≤ 2n , since

∥∥Tng∥∥∞ = sup
x∈En

∣∣Mloc
(
W− p′

p g

)
(x)

∣∣ ≤ 2n ‖g‖∞. (3.4)

Thus, by the Marcinkiewicz interpolation theorem we obtain∫
En

|Tn(g)|p ≤ cp 2
np
p′
∫
R+

|g|p W− p′
p , n ∈ Z. (3.5)

Setting g = f W
p′
p in the above inequality, this is the same as∫

En

|Mloc( f )|p ≤ cp 2
np
p′
∫
R+

| f |p W, n ∈ Z. (3.6)

Now, modulo null setsR+ = ∪n∈Z
[
En \ En−1

]
(since 0 < Mloc(W− p′

p )(x) < ∞ at a.e. x),
and we have

Vε(x) ≈ 2
− np

p′ 2
− ε|n|p

p′ , if x ∈ En \ En−1.

Therefore, we obtain∫
R+

|Mloc f |p Vε �
∑
n∈Z

2
− np

p′ 2
− ε|n|p

p′
∫
En

|Mloc f |p

(by (3.6)) �
(∑
n∈Z

2
− ε|n|p

p′
) ∫

R+
| f |pW,

as we wished to show. ��
3.2 Properties of the weights Vε

The weights Vε inherit some of the integrability behavior of W if ε is sufficiently small.

Proposition 3.2 Let 1 < p < ∞ and W ∈ Dloc
p . Then, for each ε ∈ (0, 1), the weight

defined in (3.1) satisfies Vε ∈ Dloc
q for all q > p + εp/p′.

Proof Observe that, for each x ∈ R+,

Vε(x)
− q′

q = max±

[
Mloc

(
W− p′

p

)
(x)

] p−1
q−1 (1±ε)

. (3.7)

The assumption q > p+ εp
p′ implies that s = (p−1)(1+ε)

q−1 < 1. Then, given J = [a, b] � R+,
∫
J

[
Mloc

(
W− p′

p

)]s
� |J |1−s

∥∥∥∥M
(
W− p′

p χJ∗
)∥∥∥∥

s

L1,∞

� cJ

(∫
J∗

W− p′
p

)s

< ∞,
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with J ∗ = [a/2, Mb] � (0,∞). The same applies if we set s = (p−1)(1−ε)
q−1 (which is also

< 1), so we deduce from (3.7) that
∫
J V

−q ′/q
ε < ∞. ��

Our later applications suggest to define the following classes of weights

D0
p(β) =

{
W ∈ Dloc

p :
∫ 1

0
W− p′

p (y) 〈y〉βp′
dy < ∞

}
, for β > −1,

Dexpλ
p (a) =

{
W ∈ Dloc

p :
∫ ∞

1
W− p′

p (y) e−ayλ p′
dy < ∞

}
, for a, λ > 0.

Proposition 3.3 Let 1 < p < ∞, ε ∈ (0, 1) and q > p + εp/p′. Then, for β, β1 > −1
and a, a1, λ > 0 we have the following

(i) W ∈ D0
p(β) implies Vε ∈ D0

q(β1), provided q >
1+β
1+β1

p + ε
p
p′

|1+βp′|
1+β1

(ii) W ∈ Dexpλ
p (a) implies Vε ∈ Dexpλ

q (a1), provided q > p(1 + ε)Mλa/a1.

Proof With the same notation in the proof of Proposition 3.2, we set s = (p−1)(1+ε)
q−1 < 1.

Then, denoting I j = [2− j−1, 2− j ], we have
∫ 1

0

[
Mloc

(
W− p′

p

)]s
〈y〉β1q ′

dy �
∞∑
j=0

2− jβ1q ′ |I j |1−s
∥∥∥∥M

(
W− p′

p χI ∗
j

)∥∥∥∥
s

L1,∞

�
∞∑
j=0

2− jβ1q ′
2− j (1−s)

(∫ M2− j

2− j−2
W− p′

p

)s

�
∞∑
j=0

2− j[β1q ′−βp′s+1−s]
(∫ M

0
W− p′

p (y) 〈y〉βp′
dy

)s

.

This is a finite expression when W ∈ D0
p(β), provided

β1q
′ − βp′s + 1 − s > 0 .

Using the value of s = (p−1)(1+ε)
q−1 and solving for q , this is equivalent to

q >
1 + β

1 + β1
p + εp(1 + βp′)

p′(1 + β1)
.

In order to have
∫ 1
0 V−q ′/q

ε 〈y〉β1q ′
dy < ∞, the previous relation must also hold with ε

replaced by −ε, so a sufficient condition is

q >
1 + β

1 + β1
p + εp |1 + βp′|

p′(1 + β1)
,

as we wished to show.
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We now prove (ii). Let γ > 1 (to be precised later), and as before set I j = [γ j , γ j+1]
and s = (p−1)(1+ε)

q−1 < 1. Then

∫ ∞

1

[
Mloc

(
W− p′

p

)]s
e−a1 yλq ′

dy

�
∞∑
j=0

e−a1γ λ j q ′
γ (1−s) j

∥∥∥∥M
(
W− p′

p χI ∗
j

)∥∥∥∥
s

L1,∞

�
∞∑
j=0

e−a1γ λ j q ′
γ (1−s) j

(∫ Mγ j+1

γ j /2
W− p′

p dy

)s

≤
∞∑
j=0

γ (1−s) j e−γ λ j [a1q ′−p′aMλγ λs]
(∫ ∞

1/2
W− p′

p e−p′ayλ

dy

)s

.

This is now a finite expression provided

a1q
′ > p′aMλγ λs,

which using the value of s and solving for q gives

q > p(1 + ε)Mλγ λa/a1.

Clearly, we can choose a γ > 1 with this property under the assumption

q > p(1 + ε)Mλa/a1.

Since this also implies the validity of the estimates with ε replaced by −ε, we may conclude
that Vε ∈ Dexpλ

q (a1), as desired. ��

4 2-weight inequalities for local maximal heat operators

Let L be as in (2.1), and for each t0 > 0, consider

h∗
t0 f (x) := sup

0<t≤t0

∣∣e−t L f (x)
∣∣.

ByCorollary 2.3, given anyT > t0, this operator is well defined for all functions f ∈ L1(ϕT),
where

ϕT(y) = 〈y〉α+ 1
2 e− y2

2th (2T) .

We wish to study 2-weight inequalities for h∗
t0 over subspaces L

p(w) ⊂ L1(ϕT). By duality,
the class of weights for which such inclusion holds is given by

Dp(ϕT) :=
{
w > 0 :

∥∥∥w− 1
p ϕT

∥∥∥
p′ < ∞

}
.

Here, we show that for all such weights the operator h∗
t0 satisfies a 2-weight inequality.

Theorem 4.1 Let T > t0 > 0 and 1 < p < ∞. Then, for every w ∈ Dp(ϕT) there exists
another weight v(x) > 0 such that

h∗
t0 : L p(w) → L p(v), boundedly.
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Moreover, if q > p and t0 is sufficiently small (depending on q/p and T), then we can select
v ∈ Dq(ϕT).

Remark 4.2 The second weight v(x) will be constructed explicitly; see (4.2), (4.5) and (4.6)
below. Observe that v depends on α, p, t0,T and of course w.

Proof of Theorem 4.1 The crucial estimate was already given in Corollary 2.3. We shall use
it with the parameter γ = th (2T)/th (2t0) > 1, which produces a suitable M = Mγ > 1
such that

h∗
t0 f (x) � Mloc

M f (x) + c(x)
∫ ∞

0
| f (y)| ϕT(y) dy. (4.1)

The last integral is bounded by ‖ f ‖L p(w)‖w− 1
p ϕT‖p′ , so the second term will be fine for any

weight v(x) such that c(x) = 1/〈x〉α+ 3
2 ∈ L p(v). For instance, we may take

v2(x) = 〈x〉
(
α+ 3

2

)
p−1

[ln (e/〈x〉)]2 (1 + x)p
(4.2)

which clearly satisfies∫ ∞

0
|c(x)|p v2(x) dx =

∫ ∞

0

dx

〈x〉[ln (e/〈x〉)]2 (1 + x)p
< ∞.

Further, we claim that v2 ∈ Dq(ϕT) iff q > p. Indeed, since ϕT(x) decays exponentially, it
suffices to check the integrability for x near 0. Writing β = α + 1

2 so that

ϕT(x) ≈ 〈x〉β and v2(x) ≈ 〈x〉(β+1)p−1

[ln (e/〈x〉)]2 ,

we easily see that
∫ 1

0
v2(x)

− q′
q 〈x〉βq ′

dx ≈
∫ 1

0

[ln (e/x)]2q ′/q

x
1−q ′(β+1)

(
1− p

q

) dx < ∞. (4.3)

For the first term in (4.1), we shall use the results in Sect. 3. We first note that

w ∈ Dp(ϕT) ⇐⇒ w ∈ D0
p(α + 1

2 ) ∩ Dexp2
p (a), with a = 1/(2 th 2T), (4.4)

where the weight classes D0
p(β) and Dexp2

p (a) were defined in §3.2. Then, for every ε > 0
Theorem 3.1 gives ∥∥Mloc

M f
∥∥
L p(v1,ε)

�
∥∥ f ∥∥L p(w)

,

provided

v1,ε(x) = V (x)ρε

(
V (x)

)
, where V (x) =

[
Mloc

M

(
w

− p′
p

)
(x)

]− p
p′

(4.5)

(or v1,ε = Vε in the notation of (3.1)). Hence, setting

v(x) = min{v1,ε(x), v2(x)} (4.6)

with v1,ε and v2 defined as in (4.5) and (4.2), we have proved that h∗
t0 : L p(w) → L p(v).

It remains to verify the last statement in Theorem 4.1. We already know that, for every
q > p, we have v2 ∈ Dq(ϕT). Concerning v1,ε, from the equivalence in (4.4) it suffices to
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prove that Vε ∈ D0
q(α + 1

2 ) ∩ Dexp2
q (a) for a sufficiently small ε and a = 1/(2th 2T). The

first assertion is immediate from (i) in Proposition 3.3. However, (ii) in the same proposition
only gives Vε ∈ Dexp2

ρ (a) if ρ > p(1 + ε)M2, where M = Mγ is the parameter obtained in

Proposition 2.2 by the rule
(

M
M−1

)3 = γ = th (2T)/th (2t0). If we allow both ε and t0 to be

sufficiently small (so that M becomes close enough to 1), then we can set ρ = q and hence
conclude that v1,ε ∈ Dq(ϕT) as desired. ��

5 Poisson kernel estimates

In this section, we fix α > −1 and μ ≥ −(α + 1) and recall that

L = −∂yy +
[
y2 + α2 − 1

4

y2

]
+ 2μ. (5.1)

The eigenfunctions {ϕα
n }∞n=0 form an orthonormal basis of L2(0,∞), and satisfy

Lϕα
n = (4n + 2(α + 1 + μ)) ϕα

n , n = 0, 1, 2, . . .

They can be expressed in terms of the (normalized) Laguerre polynomials Lα
n by

ϕα
n (y) = √

2 yα+ 1
2 e− y2

2 Lα
n (y2), (5.2)

although we shall not use this formula here. The kernel of the associated heat semigroup,
e−t L , can be written explicitly in various forms

e−t L(x, y) =
∞∑
n=0

e−[4n+2(α+1+μ)]tϕα
n (x)ϕα

n (y)

(r = e−2t ) = rμ
√

2r
1−r2

Īα

(
2r xy

1 − r2

)
e
− (x−ry)2

1−r2 e
x2−y2

2 (5.3)

(s = th t) =
(
1−s
1+s

)μ
√

1−s2
2s Īα

(
(1 − s2)xy

2s

)
e− (x−y)2

4s e− s(x+y)2

4 (5.4)

where as before we have set Īα(z) = √
ze−z Iα(z). Thus, using the notation 〈z〉 = min{z, 1},

we shall have Īα(z) ≈ 〈z〉α+ 1
2 . Both expressions of the heat kernel will be useful in our later

computations. For instance, (5.3) is good when r ≈ 0, as it isolates correctly the decaying

factor 〈y〉α+ 1
2 e−y2/2. On the other hand, (5.4) will be useful when s ≈ 0 (hence r ≈ 1),

since it makes transparent the gaussian behavior of the singularity s− 1
2 e− (x−y)2

4s .
Using the subordination formula in (1.3), the Poisson-like kernel associated with L

becomes

Pt (x, y) := t2ν
4ν�(ν)

∫ ∞

0
e− t2

4u

[
e−uL (x, y)

] du

u1+ν
, t > 0. (5.5)

Changing variables r = e−2u (i.e., u = 1
2 ln

1
r ), one sees that

Pt (x, y) ≈ t2ν e
x2−y2

2

∫ 1

0
e
− t2

2 ln 1
r rμ+ 1

2
e
− (x−ry)2

1−r2√
1 − r

〈
r xy
1−r2

〉α+ 1
2

(
ln 1

r

)1+ν

dr

r
.
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We shall consider two regions of integration according to the behavior of z := r xy

1 − r2
. The

regions will be separated by the number

r0(xy) =
{ 1

2xy , if xy ≥ 1
1 − xy

2 , if xy ≤ 1.

Indeed, it is elementary to check that

(1) If 0 < r ≤ r0(xy) then z ≤ 1.
(2) If r0(xy) ≤ r < 1 then z ≥ 1/2.

Thus we can write

Pt (x, y) ≈ t2ν e
x2−y2

2

[∫ r0(xy)

0
· · ·

(
r xy

1 − r2

)α+ 1
2 dr

r
+

∫ 1

r0(xy)
· · · dr

r

]

= Bt (x, y) + At (x, y),

where in At (x, y) we have used that 〈z〉α+ 1
2 ≈ 1. The next two propositions summarize the

estimates we shall need to handle these kernels. We shall make extensive use of the function
� in (1.4), which we can equivalently write as

�(y) ≈ 〈y〉α+ 1
2 e−y2/2

(1 + y)μ+ 1
2 [ln (y + e)]1+ν

, (5.6)

with the agreement that in the extreme case μ = −(α + 1) the logarithm in the denominator
is just [ln (y+e)]ν . The first result gives, for fixed t and x , the optimal decay of y 	→ Pt (x, y)
in terms of the function �(y).

Proposition 5.1 Given t, x > 0, there exist c1(t, x) > 0 and c2(t, x) > 0 such that

c1(t, x)�(y) ≤ Pt (x, y) ≤ c2(t, x)�(y) , y ∈ R+. (5.7)

The second result is a refinement of the upper bound in (5.7) with a few advantages: it is
uniform in the variable t , isolates in the “local part” the singularities of the kernel Pt (x, y),
and finally provides “reasonable” bounds for the constant’s dependence on x .

Proposition 5.2 There exists M > 1 such that the following holds for all t, x, y > 0

Pt (x, y) � C1(x)
t2ν e−y2/2

(
t + |x − y|)1+2ν χ{ x

2 <y<Mx
} + C2(x) (t ∨ 1)2ν �(y), (5.8)

where C1(x) = (1 + x)2νe
x2
2 and C2(x) = [ln (e + x)]1+ν (1 + x)|μ+ 1

2 | e x2
2 /〈x〉α+ 3

2 .

If we consider, for fixed M > 1, the local maximal operator Mloc
M in (1.10), then we may

express (5.8) as follows.

Corollary 5.3 Let t0 > 0 be fixed. Then, there is some M > 1 such that

P∗
t0 f (x) � C1(x)Mloc

M

(
f e− y2

2
)
(x) + C2(x)

∥∥ f ∥∥L1(�)
, x ∈ R+, (5.9)

with C1(x) and C2(x) as in Proposition 5.2.

This is the key estimate from which we shall deduce the theorems claimed in Sect. 1 for
the operator L . The reader willing to skip the technical proofs of the propositions in the next
subsections may pass directly to Sect. 6 for the proof of the theorems.
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5.1 Estimates from below for Bt(x, y)

Recall that

Bt (x, y) ≈ t2ν (xy)α+ 1
2 e

x2−y2

2

∫ r0(xy)

0

rα+μ+1

(1 − r)α+1 (ln 1
r )

1+ν
e
− t2

2 ln 1
r e

− (x−ry)2

1−r2
dr

r
.

(5.10)
The lower bound in Proposition 5.1 will be a consequence of Pt (x, y) � Bt (x, y) and the
estimate in the next lemma.

Lemma 5.4 For fixed t, x > 0, it holds

Bt (x, y) ≥ c1(t, x)�(y), y ∈ R+,

for a suitable function c1(t, x) > 0.

Proof Wefirst look at y < x∧ 1
x . Then, xy < 1, and hence r0(xy) > 1/2. So,we can estimate

Bt (x, y) by an integral over 0 < r < 1
2 , which disregarding irrelevant terms becomes

Bt (x, y) � t2ν (xy)α+ 1
2 e

x2−y2

2

∫ 1
2

0

rα+μ+1

(ln 1
r )1+ν

e
− t2

2 ln 1
r e

− (x−ry)2

1−r2
dr

r
.

We can get rid of the first two exponentials using

e
x2−y2

2 ≥ 1 (since y ≤ x) and e
− t2

2 ln 1
r ≥ e− t2

2 ln 2

(
since r ≤ 1

2

)
.

For the last exponential, notice that 0 < x − ry ≤ x , and hence e
− (x−ry)2

1−r2 ≥ e− 4
3 x

2
. This

leaves a convergent integral in r , so we conclude that

Bt (x, y) � c1(t, x) 〈y〉α+ 1
2 ,

with c1(t, x) = t2νxα+ 1
2 e− t2

2 ln 2 e− 4
3 x

2
. Notice that y ≤ 1 in this range, so we find the required

expression for �(y).
Suppose now that y ≥ x ∨ 1

x . Then, xy ≥ 1, and hence r0(xy) = 1
2xy ≤ 1/2. Arguing as

before, we can estimate Bt (x, y) by

Bt (x, y) � t2ν (xy)α+ 1
2 e− y2

2 e− t2
2 ln 2

∫ 1
2xy

0

rα+μ+1

(
ln 1

r

)1+ν
e
− (x−ry)2

1−r2
dr

r
.

This time, we get rid of the exponential inside the integral using

|x − ry| ≤ x + ry ≤ x + 1

2x

(
since r ≤ 1

2xy

)
,

which implies e
− (x−ry)2

1−r2 ≥ e− 4
3 (x+ 1

x )2 . We can easily compute the integral
∫ 1

2xy

0

rα+μ+1

(
ln 1

r

)1+ν

dr

r
≈ 1

(xy)α+μ+1 [ln 2xy]1+ν
, if α + μ + 1 > 0,

with the right hand side becoming 1/[ln 2xy]ν in the extreme case α + 1 + μ = 0. Since
y > max{x, 1}, note that

ln (2xy) ≤ ln (2y2) ≈ ln (y + e).
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Thus, combining all the previous estimates we conclude that

Bt (x, y) � c1(t, x)
e− y2

2

yμ+ 1
2 [ln (y + e)]1+ν

,

which, since y ≥ 1, is the required expression for �(y) (with the usual agreement when

μ + α + 1 = 0). In this part we have set c1(t, x) = t2νe− t2
2 ln 2 x−(μ+ 1

2 ) e− 4
3 (x+ 1

x )2 .
Finally, since the function y 	→ Bt (x, y)/�(y) is continuous and positive, it is also

bounded from below by some c1(t, x) when y belongs to the compact set [x ∧ 1
x , x ∨ 1

x ]. ��
5.2 Estimates from above for Bt(x, y)

The next lemma, combined with the previous one, shows that for fixed t and x , the function
Bt (x, y) essentially behaves like �(y).

Lemma 5.5 For every t, x, y > 0, it holds

Bt (x, y) � c(x) max{t2ν, 1}�(y), (5.11)

with c(x) = 1/〈x〉α+ 3
2 .

Proof We first notice that the two exponential factors in (5.3) can be written as

e
− (x−ry)2

1−r2 e
x2−y2

2 = e
− 1+r2

1−r2
x2+y2

2 e
2r xy
1−r2 � e− x2+y2

2 , (5.12)

since 1+r2

1−r2
≥ 1 and in the region of integration of Bt (x, y) the exponent z = 2r xy

1−r2
� 1. We

now separate cases.
(i) Case xy ≥ 1: then r0(xy) = 1

2xy ≤ 1
2 and

Bt (x, y) � t2ν (xy)α+ 1
2 e− x2+y2

2

∫ 1
2xy

0

rα+μ+1

(
ln 1

r

)ν+1

dr

r
. (5.13)

The last integral is approximately given by

∫ 1
2xy

0

rα+μ+1

(
ln 1

r

)ν+1

dr

r
≈

(
1

xy

)α+μ+1 1

[ln (2xy)]1+ν

(with the usual convention when α + μ + 1 = 0 of reducing one power of the logarithm).
This is a good estimate if we assume that x ≥ 1/2, since we may use

ln (2xy) � ln (y ∨ 2) ≈ ln (y + e),

and overall obtain

Bt (x, y) � t2ν x−(μ+ 1
2 ) e− x2

2
yα+ 1

2 e−y2/2

yα+μ+1[ln (y + e)]1+ν
� t2ν �(y).

When x ≤ 1/2, we need a refinement to obtain the c(x) in the statement of the lemma. We
split the integral bounding Bt (x, y) in (5.13) as

Bt (x, y) � t2ν (xy)α+ 1
2 e− x2+y2

2

[∫ 2x
y

0
· · · +

∫ r0(xy)

2x
y

· · ·
]

= I + I I, (5.14)
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noticing that the partition point 2x
y ≤ r0(xy) = 1

2xy . Since x ≤ 1
2 and xy ≥ 1, we also have

y ≥ 2. Now, the first summand can be bound as above by

I � t2ν (xy)α+ 1
2 e− x2+y2

2

(
x

y

)α+μ+1 1[
ln

( y
2x

)]1+ν

� t2ν 〈x〉α+ 1
2 xα+μ+1 e− x2

2
e−y2/2

yμ+ 1
2 [ln y]1+ν

� t2ν 〈x〉α+ 1
2 �(y).

since in this range y ≥ 2. This implies the stated estimate because 〈x〉α+ 1
2 ≤ 1/〈x〉α+ 3

2 =
c(x). To handle I I , we need a different bound for the exponentials in (5.12), noticing that

r > 2x
y ⇒ |x − ry| = ry − x ≥ r y

2 ⇒ e
− (x−ry)2

1−r2 ≤ e− r2 y2

4 . (5.15)

Thus

I I � t2ν (xy)α+ 1
2 e

x2−y2

2

∫ 1
2

2x
y

rα+μ+1 e− (ry)2

4(
ln 1

r

)ν+1

dr

r
. (5.16)

Changing variables ry = u, the latter integral can be estimated by

y−(α+μ+1)
∫ y

2

0

uα+μ+1 e− u2
4(

ln y
u

)ν+1

du

u
≈ 1

yα+μ+1 [ln y]1+ν

since the major contribution happens when u ≈ 1 (with the usual convention of reducing one
power of the logarithm if α + μ + 1 = 0). Inserting this into (5.16) (and using y ≥ 2 and
x ≤ 1/2), we obtain once again

I I � t2ν 〈x〉α+ 1
2 �(y).

This concludes the proof of the case xy ≥ 1.
(ii) Case xy ≤ 1: this time r0(xy) = 1 − xy

2 ≥ 1
2 , so we can write

Bt (x, y) � t2ν (xy)α+ 1
2 e− x2+y2

2

[∫ 1
2

0
· · · +

∫ r0(xy)

1
2

· · ·
]

= B1 + B2

The first term can be handled essentially as in the previous case. Namely, if y ≤ 2 we use a
similar bound to (5.13)

B1 � t2ν (xy)α+ 1
2 e− x2+y2

2

∫ 1
2

0

rα+μ+1

(
ln 1

r

)ν+1

dr

r
≈ t2ν xα+ 1

2 e− x2
2 〈y〉α+ 1

2

� t2ν 〈x〉α+ 1
2 �(y).

If y ≥ 2, then x ≤ 1
2 and 2x

y ≤ 1
2 , so we may split

B1 ≤
∫ 2x

y

0
· · · +

∫ 1
2

2x
y

· · ·

and exactly the same computations we used in (5.14), give us the bound

B1 � t2ν 〈x〉α+ 1
2 �(y).
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Thus we are left with the integral corresponding to B2, that is the range 1
2 < r < 1 − xy

2 .
First of all, observe that

ln
1

r
≈ 1 − r, r ∈ [1/2, 1] ⇒ e

− t2

2 ln 1
r ≤ e− ct2

1−r ,

for a suitable c > 0. Next, we need once again more precise bounds for the exponentials in
(5.12). We claim that if r ∈ [1/2, 1], then

e
− 1+r2

1−r2
x2+y2

2 ≤ e−γ
x2+y2

1−r e−(1+γ )
x2+y2

2

for a small constant γ > 0. This is easily obtained using the fact that 1+r2

1−r2
≥ 5

3 in this
interval. With these exponential bounds, we can control the integral B2 as follows

B2 � t2ν (xy)α+ 1
2 e−(1+γ )

x2+y2

2

∫ 1− xy
2

1/2

e− ct2+γ (x2+y2)
1−r

(1 − r)α+ν+1

dr

1 − r

� t2ν (xy)α+ 1
2

[t2 + x2 + y2]α+ν+1 e−(1+γ )
x2+y2

2

∫ ∞

0
e−u uα+ν+1 du

u
, (5.17)

after changing variables u = [ct2 +γ (x2 + y2)]/(1− r). The last integral is a finite constant
(because α + ν + 1 > 0), so we observe two possible cases:

(1) if max{y, t, x} ≥ 1, we can disregard the denominator and obtain

B2 � t2ν (xy)α+ 1
2 e−(1+γ )

x2+y2

2 � t2ν 〈x〉α+ 1
2 �(y),

since the exponential decay in y is actually better than �(y).
(2) if max{y, t, x} ≤ 1, we bound the denominator in the two obvious ways to obtain

B2 � t2ν (xy)α+ 1
2

t2ν x2(α+1)
= 〈y〉α+ 1

2

〈x〉α+ 3
2

, (5.18)

which is precisely the upper bound stated in (5.11). Observe that when x → 0 this piece
gives the largest contribution to Bt (x, y).

��

Remark 5.6 It is also possible to obtain a bound

Bt (x, y) � c′(x) t2ν �(y), (5.19)

with perhaps a worse function c′(x), but without the loss produced by max{1, t2ν}. This loss
appeared when t, x, y ≤ 1 in (5.18) above. Looking at (5.17), we may replace that bound
by

B2 � t2ν (xy)α+ 1
2

x2(α+ν+1)
,

which implies (5.19) with c′(x) = 1/〈x〉α+ 3
2+2ν . This estimate will also be useful later.
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5.3 Upper estimates for At(x, y): integrals over r ≤ 1/2

Recall that

At (x, y) ≈ t2ν e
x2−y2

2

∫ 1

r0(xy)

rμ+ 1
2

√
1 − r

(
ln 1

r

)1+ν
e
− t2

2 ln 1
r e

− (x−ry)2

1−r2
dr

r
. (5.20)

It will be convenient to split

At (x, y) =
∫ 1

2

r0(xy)∧ 1
2

· · · +
∫ 1

r0(xy)∨ 1
2

· · · = A1 + A2.

When xy < 1, since r0(xy) = 1 − xy
2 > 1

2 , we have A1 = 0 (and At (x, y) = A2). When
xy ≥ 1, since r0(xy) = 1

2xy ≤ 1
2 , both terms A1 and A2 play a role. In this section, we shall

only estimate A1.

Lemma 5.7 If xy ≥ 1, then

A1 � t2ν e
x2−y2

2

∫ 1
2

1
2xy

rμ+ 1
2(

ln 1
r

)1+ν
e
− (x−ry)2

1−r2
dr

r
� c(x) t2ν �(y), (5.21)

where c(x) = [ln (e + x)]ν+1 (1 + x)|μ+ 1
2 | exp(x2/2).

Proof We shall distinguish cases

(i) Case y ≤ 4x . In this region, we essentially disregard the exponential factor e
− (x−ry)2

1−r2

inside the integral, and directly estimate

A1 � t2ν e
x2−y2

2

∫ 1
2

1
2xy

rμ+ 1
2

(ln 1
r )

1+ν

dr

r
. (5.22)

Notice however that when y ≤ x such exponential produces an additional gain, due to

ry ≤ x
2 ⇒ |x − ry| ≥ x

2 ⇒ e
− (x−ry)2

1−r2 ≤ e− x2
4 . (5.23)

In particular, we can use it when y ≤ 1 (since then x ≥ xy ≥ 1) to control some of the
powers of x appearing below.

We now evaluate the integral in (5.22), depending on the sign of μ + 1
2 .

(1) If μ + 1
2 ≥ 0 the integral is bounded by a constant, and hence

A1 � t2ν e
x2−y2

2 .

We shall enlarge this value to match (5.21) as follows. Since xy ≥ 1, in this range we
have x ≥ 1/2. So if 1 ≤ y ≤ 4x we may use

1 � (1 + x)μ+ 1
2 [ln (e + x)]ν+1

(1 + y)μ+ 1
2 [ln (e + y)]ν+1

.

If 1
x ≤ y ≤ 1, we use instead

1 � max
{
xα+ 1

2 , 1
}

〈y〉α+ 1
2 ,
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which in this region can be combined with the extra exponential in factor in (5.23). In
both cases, we obtain A1 � t2νc(x)�(y), as wished.

(2) If μ + 1
2 < 0, the integral diverges near 0, but we still obtain

∫ 1
2

1
2xy

rμ+ 1
2(

ln 1
r

)1+ν

dr

r
� 1

(xy)μ+ 1
2 (ln 2xy)ν+1

.

Thus, using the inequality ln (2xy) � max {ln y, ln 2} we arrive at

A1 � t2ν e
x2−y2

2
(1 + x)|μ+ 1

2 |

(1 + y)μ+ 1
2 [ln (e + y)]ν+1

≤ t2νc(x)�(y), if 1 ≤ y ≤ 4x

A1 � t2ν
e

x2
4 yα+ 1

2

xμ+ 1
2 yμ+α+1

≤ t2ν e
x2
4 xα+ 1

2 〈y〉α+ 1
2 ≤ t2νc(x)�(y), if

1

x
≤ y ≤ 1,

after inserting in the first step of this last case the additional exponential gain in (5.23).

(ii) Case y ≥ 4x . This is the same as 2x
y ≤ 1

2 , and remember from (5.15) that when

r ∈
[
2x
y , 1

2

]
a better bound for the exponential is available, namely

e
− (x−ry)2

1−r2 ≤ e− r2 y2

4 . (5.24)

Thus we may consider two subcases, depending on whether 2x
y is above or below r0(xy).

• Subcase 2x
y ≤ r0(xy) = 1

2xy ≤ 1
2 . Using (5.24) we obtain

A1 � t2ν e
x2−y2

2

∫ 1
2

1
2xy

rμ+ 1
2 e− (ry)2

4

(ln 1
r )1+ν

dr

r

(ry = u) = t2ν e
x2−y2

2

yμ+ 1
2

∫ y/2

1
2x

uμ+ 1
2 e− u2

4(
ln y

u

)1+ν

du

u

Observe that x ≤ 1
2 (and y ≥ 2), so the latter integral reaches its major contribution at

u = 1
2x

∫ y/2

1
2x

uμ+ 1
2 e− u2

4(
ln y

u

)1+ν

du

u
� (1/x)μ− 1

2 e−c/x2

(ln 2xy)1+ν
� 1

(ln y)1+ν
,

using in the last step the elementary bound of logarithms

ln (2xy) � ln (y + e)

ln
( 1
x + e

) , if y ≥ max{1, 1/x},

which is easily verified considering the cases x > 1/
√
y and x ≤ 1/

√
y. Thus we conclude

that

A1 � t2ν e
x2
2 �(y).

• Subcase r0(xy) < 2x
y ≤ 1

2 . Here we split

A1 =
∫ 1

2

2x
y

· · · +
∫ 2x

y

r0(xy)
· · · = I + I I.
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The first term is similar to the previous subcase, except that now x > 1
2 (and y ≥ 4x ≥ 2)

I � t2ν e
x2−y2

2

yμ+ 1
2

∫ y/2

2x

uμ+ 1
2 e− u2

4(
ln y

u

)1+ν

du

u

and the last integral is bounded by constant times

xμ− 1
2 e−cx2

(
ln y

2x

)1+ν
� xμ− 1

2 e−cx2 [ln (e + x)]1+ν

[ln (e + y)]1+ν
� 1

[ln (e + y)]1+ν
.

Finally, we consider I I . Here, there is no exponential gain, and similarly to (5.22) we have

I I � t2ν e
x2−y2

2

∫ 2x
y

1
2xy

rμ+ 1
2(

ln 1
r

)1+ν

dr

r
= t2ν e

x2−y2

2

yμ+ 1
2

∫ 2x

1
2x

uμ+ 1
2(

ln y
u

)1+ν

du

u
.

Now, the last integral can easily be analyzed (depending on the sign of μ + 1
2 ) to obtain

∫ 2x

1
2x

uμ+ 1
2(

ln y
u

)1+ν

du

u
� x |μ+ 1

2 |[ln (x + e)]1+ν

[ln (y + e)]1+ν
.

Thus, overall we conclude that in this subcase

A1 � I + I I � t2ν (1 + x)|μ+ 1
2 |[ln (x + e)]1+ν e

x2
2 �(y).

��
5.4 Upper estimates for A2 when y ≤ x/2 or y ≥ Mx

In view of the previous subsection, it only remains to estimate

A2 ≈ t2ν e
x2−y2

2

∫ 1

max
{
r0(xy),

1
2

} e
− t2

2 ln 1
r

√
1 − r

(
ln 1

r

)1+ν
e
− (x−ry)2

1−r2 dr

� t2ν e
x2−y2

2

∫ 1

max
{
1− xy

2 , 12

} e− ct2
1−r

(1 − r)ν+ 3
2

e
− (x−ry)2

1−r2 dr (5.25)

noticing that ln 1
r ≈ 1 − r when r ∈ [ 12 , 1]. In this region, however, it is more convenient to

use the write-up for the heat kernel in (5.4), in terms of the parameter s. This gives a more
reasonable expression for the exponentials, namely

e
x2−y2

2 e
− (x−ry)2

1−r2 = e
− 1

4

[
(x−y)2

s +s(x+y)2
]
.

Since the parameters r and s are related by s = 1−r
1+r (or r = 1−s

1+s ), either from (5.4) or
directly from (5.25), we obtain that

A2 � t2ν
∫ min

{
1
3 ,

xy
3

}

0

e− ct2
s e

− 1
4

[
(x−y)2

s +s(x+y)2
]

sν+ 3
2

ds, (5.26)

after perhaps slightly enlarging the range of integration. Our first result shows that when y
is far from x this can also be controlled by the function �(y).
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Lemma 5.8 There exists M > 1 such that, if y ≤ x
2 or y ≥ Mx , then

A2 � t2ν
∫ min

{
1
3 ,

xy
3

}

0

e− ct2
s e

− 1
4

[
(x−y)2

s +s(x+y)2
]

sν+ 3
2

ds � c(x) max{t2ν, 1}�(y),

with c(x) = 1/〈x〉α+ 3
2 .

Proof We claim that, in the assumed range of x and y, there is some γ > 0 such that

A2 � t2ν e
−
(
1
2+γ

)
y2

∫ min
{
1
3 ,

xy
3

}

0
e−γ

t2+(x−y)2

s s−(ν+ 3
2 ) ds. (5.27)

This is just a bound of the exponentials. Indeed, if we distinguish the two cases

(1) case y ≥ Mx : this implies |y − x | ≥ (1 − 1
M )y, so for any η < 1 we have

e− ct2
s e

− 1
4

[
(x−y)2

s +s(x+y)2
]

≤ e− ct2+ η
4 (x−y)2

s e
− 1−η

4

(
M−1
M

)2( 1
s +s

)
y2

which implies the required assertion using that 1
s + s ≥ 10

3 , when s ∈ (0, 1
3 ), and

choosing M sufficiently large and η sufficiently small.
(2) case y ≤ x/2: this time |x − y| ≥ x

2 ≥ y, so we have

e− ct2
s e

− 1
4

[
(x−y)2

s +s(x+y)2
]

≤ e− ct2+ η
4 (x−y)2

s e− 1−η
4 ( 1s +s)y2

which again implies the assertion using 1
s + s ≥ 10

3 and choosing η sufficiently small.

Thus (5.27) is proven, and we may change variables γ [t2 + (x − y)2]/s = u to obtain

A2 � t2ν e
−
(
1
2+γ

)
y2

[t2 + (x − y)2]ν+ 1
2

∫ ∞

3γ [t2+(x−y)2]max
{
1, 1

xy

} uν+ 1
2 e−u du

u
(5.28)

� t2ν e
−
(
1
2+γ

)
y2

(t + x + y)2ν+1

∫ ∞

γ ′[x2+y2]max
{
1, 1

xy

} uν+ 1
2 e−u du

u
, (5.29)

since in the selected range of x, y we have |x − y| � x + y. To finish the proof, we must
distinguish some cases.

Case y ≥ 1: then bounding the denominator and the integral in (5.29) by a constant we
immediately see that

A2 � t2ν e
−
(
1
2+γ

)
y2 � t2ν �(y)

since the exponential has a better decay.
Case y ≤ 1 and y ≥ Mx : we again bound the integral by a constant and estimate the

fraction in (5.29) as follows

A2 � t2ν

t2ν y
= 〈y〉α+ 1

2

yα+ 3
2

≤ cM
〈y〉α+ 1

2

〈x〉α+ 3
2

. (5.30)

Case y ≤ 1 and y ≤ x
2 : this is a relevant case, since the integral in (5.29) plays actually

a role. To compute the integral, we must distinguish the two subcases
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(1) If xy ≤ 1, then since also x
y ≥ 2,

A2 � t2ν

t2νx

∫ ∞

γ ′ x
y

uν− 1
2 e−u du ≈ 1

x

(
x

y

)ν− 1
2

e−c x
y (5.31)

� 1

x

( y
x

)α+ 1
2 ≤ 〈y〉α+ 1

2

〈x〉α+ 3
2

.

(2) If xy ≥ 1, then we have x ≥ 1
y ≥ 1 and

A2 � t2ν

x1+2ν

∫ ∞

γ ′ x2
uν− 1

2 e−u du � t2ν x−2 e−c x2 .

Now, since 1
x ≤ y ≤ 1 we can insert the estimate

1 � 〈y〉α+ 1
2 max

{
xα+ 1

2 , 1
}

,

to obtain A2 � t2ν 〈y〉α+ 1
2 . ��

Remark 5.9 As mentioned earlier in Remark 5.6, here it is also possible to obtain a bound

A2 � c′(x) t2ν �(y), (5.32)

with c′(x) = 1/〈x〉α+ 3
2+2ν . The loss produced by max{1, t2ν} can be corrected in (5.30)

and (5.31) by replacing the factor t2ν in the denominator by x2ν , as one readily notices from
(5.29). As mentioned before, this estimate will play a role later.

5.5 Upper estimates for A2 in the local part x
2 < y < Mx

As in the previous subsection, our starting point is the formula (5.26), whichwemust estimate
in the local region x

2 < y < Mx . A sufficient bound for us is stated in the next lemma.

Lemma 5.10 If x
2 < y < Mx , then

A2 � t2ν
∫ min

{
1
3 ,

xy
3

}

0

e
− ct2

s − 1
4

[
(x−y)2

s +s(x+y)2
]

sν+ 3
2

ds � C(x)
t2ν e− y2

2(
t + |x − y|)1+2ν ,

(5.33)

where C(x) = (1 + x)2νe
x2
2 .

Proof We shall crudely enlarge the integral in (5.33) to the range
∫ 1/3
0 . This last integral was

already estimated in [6] and [5], by a similar procedure to the one used in the last subsection.
More precisely, from the estimates in [5, Lemma 3.2], formula (3.16), it follows that

t2ν
∫ 1

2

0

e
− ct2

s − 1
4

[
(x−y)2

s +s(x+y)2
]

sν+ 3
2

ds � t2ν (1 + x)2ν e
x2−y2

2(
t + |x − y|)1+2ν ,

which agrees with (5.33). ��
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5.6 Proof of Propositions 5.1 and 5.2

Proposition 5.2 follows by putting together Lemmas 5.5, 5.7, 5.8 and 5.10. Concerning
Proposition 5.1, the lower bound was shown in Lemma 5.4, while the upper bound also
follows from Lemmas 5.5, 5.7 and 5.8, at least when y < x

2 or y > Mx . This actually
implies the asserted result for all x and y, since when y belongs to the compact set [ x2 , Mx],
the continuous function y → Pt (x, y)/�(y) is bounded above by a constant c2(t, x). ��
5.7 Proof of Corollary 5.3

By Proposition 5.2, observe that

Pt f (x) � C1(x)

t

∫
R+

g(y) dy(
1 + |x−y|

t

)1+2ν + C2(x)(1 ∨ t0)
2ν
∥∥ f ∥∥L1(�)

, (5.34)

where g(y) = f (y)e− y2

2 χ{ x2 <y<Mx}. The first term is then controlled by the Hardy–
Littlewood maximal function by a standard slicing argument. ��
Remark 5.11 We wrote in (1.9) a different version of (5.9) with Mloc( f �) in place of

Mloc
(
f e− y2

2

)
. Since x ≈ y,

Mloc( f �)(x) ≈ 〈x〉α+ 1
2

[ln (e+x)]1+ν (1+x)μ+ 1
2
Mloc

(
f e− y2

2

)
(x),

so they are actually equivalent modulo x-constants. The write-up in (1.9) has the advantage
of remaining valid for other Laguerre systems; see Sect. 7 below.

6 Proofs

As indicated in Sect. 1, we present the proof of Theorems 1.1 and 1.2 for the differential
operator L in (1.1) and the function� in (1.4). We postpone to Sect. 7 the proof of the results
for the other systems mentioned in Table 1.

6.1 Proof of Theorem 1.1

First of all, it is an immediate consequence of Proposition 5.1 that Pt | f |(x) < ∞ for some
(or all) t, x > 0 if and only if f ∈ L1(�). This justifies that f ∈ L1(�) is the right setting for
this problem. Notice also that taking derivatives of the kernel Pt (x, y) in (5.5) with respect to
t does not worsen its decay in y, so Pt f (x) automatically becomes infinitely differentiable
in the t-variable when f ∈ L1(�). Notice, moreover, that the kernel satisfies3

[
∂xx − x2 − α2− 1

4
x2

− 2μ + ∂t t + 1−2ν
t ∂t

]
Pt (x, y) = 0.

Thus, the (distributional) derivatives ∂2mx [Pt f ] are transformed into t-derivatives, and hence
are continuous functions. Since this is valid for all m, it implies that (t, x) 	→ Pt f (x) is a

3 See, e.g., [5, §2] for an explicit computation.
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C∞ function. We have thus completed the proof of paragraph (i) and the last statement in
Theorem 1.1. We shall now prove the statement in (ii), namely that for f ∈ L1(�)

lim
t→0+ Pt f (x) = f (x), ∀ x ∈ L f (6.1)

where L f denotes the set of Lebesgue points of f . When f (x) = 0, this is easily obtained
from the kernel estimates in Proposition 5.2. Indeed,

Pt f (x) � C1(x)
∫ Mx

x
2

t2ν | f (y)| dy
(t + |x − y|)1+2ν + C ′

2(x) t
2ν

∫
R+

| f |�,

where in the second term we have replaced (t ∨ 1)2ν by t2ν in view of Remarks 5.6 and 5.9.
Thus, this second term vanishes as t → 0 (actually for all x ∈ R+). Concerning the first
term, it is given by convolution of | f (y)|χ{ x2 <y<Mx} ∈ L1

c(R+) with a radially decreasing
approximate identity, so from well-known results (see, e.g., [14, p. 112]), it must vanish as
t → 0 at every Lebesgue point x of f with f (x) = 0.

It remains to prove (6.1) when f (x) is not necessarily 0. To show this, we first notice that
the first eigenfunction ϕ = ϕα

0 (with eigenvalue λ = 2(μ + α + 1)) satisfies

Ptϕ = Ft (λ)ϕ, with lim
t→0

Ft (λ) = 1.

Indeed, setting u = t2/(4v) in (1.3), gives

Ft (λ) = (t/2)2ν

�(ν)

∫ ∞

0
e− t2

4u −λu du

u1+ν
= 1

�(ν)

∫ ∞

0
e−v− t2λ

4v vν−1 dv −→ 1, as t → 0.

Therefore, we can write

Pt f (x) − f (x) = Pt f (x) − Ft (λ) f (x) + f (x)[Ft (λ) − 1], (6.2)

with the last term vanishing as t → 0. Since ϕ > 0, the first term can be rewritten as

Pt f (x) − f (x)
ϕ(x) Ptϕ(x) = Pt

(
f − f (x)

ϕ(x) ϕ
)

(x).

Setting g = f − f (x)
ϕ(x) ϕ, it is easily seen that g ∈ L1(�), g(x) = 0 and x is a Lebesgue point

of g. This last assertion follows from

−
∫
I (x,r)

|g(y)|dy ≤ −
∫
I (x,r)

| f (y) − f (x)|dy + | f (x)|
ϕ(x)

−
∫

I (x,r)
|ϕ(y) − ϕ(x)|dy,

which vanishes as r → 0. Thus we can apply our earlier case to g and conclude that
limt→0 Pt g(x) = 0. So the left-hand side of (6.2) goes to 0 as t → 0, establishing (6.1) and
completing the proof of Theorem 1.1. ��
Remark 6.1 A close look at the last part of the proof shows that when f ∈ C([a, b]) with
[a, b] � R+, the convergence of Pt f (x) → f (x) is uniform in x ∈ [a, b].
6.2 Proof of Theorem 1.2

We have to show that P∗
t0 maps L p(w) → L p(v), for some weight v(x) > 0, under the

assumption that

‖w‖Dp(�) :=
[∫

R+
w

− p′
p (x)�(x)p

′
dx

]1/p′

< ∞,
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with � as in (5.6). We shall use the bound for P∗
t0 in (5.9), namely

P∗
t0 f (x) � C1(x)Mloc

M

(
f e− y2

2

)
(x) + C2(x)

∫
R+

| f (y)| �(y) dy

= I (x) + I I (x), (6.3)

for a suitable M > 1, and C1(x),C2(x) given explicitly in Proposition 5.2. We first treat the
last term, which by Hölder’s inequality is bounded by

I I (x) ≤ C2(x) ‖ f ‖L p(w) ‖w‖Dp(�) .

Thus, it suffices to choose a weight v such that C2(x) = [ln (e + x)]1+ν (1 + x)|μ+ 1
2 | e x2

2 /

〈x〉α+ 3
2 belongs to L p(v) to conclude that

‖I I‖L p(v) ≤ ‖C2‖L p(v) ‖w‖Dp(�) ‖ f ‖L p(w) . (6.4)

For instance, we may take any v(x) ≤ v2(x) with

v2(x) := 〈x〉(α+ 3
2 )p−1

[ln (e/〈x〉)]2
e− p

2 x
2

(1 + x)N
(6.5)

for any N > 1 + p |μ + 1
2 |. We remark that v2 ∈ Dq(�) for all q > p. Indeed, the local

condition was already established in (4.3). For the global condition, notice that∫ ∞

1
v2(x)

− q′
q �(x)q

′
dx �

∫ ∞

1
e
−
(
1− p

q

)
q′
2 x2

(1 + x)
Nq′
q dx < ∞.

We now consider the term I (x) in (6.3). We define a new weight W (x) = w(x)e
p
2 x

2
and

observe that

w ∈ Dp(�) �⇒ W ∈ D0
p

(
α + 1

2

) ∩ Dexp2
p (a), ∀ a > 0, (6.6)

for the weight classes defined in Sect. 3.2. Indeed, the local estimate follows from �(x) ≈
〈x〉α+ 1

2 when x ∈ (0, 1), and the global estimate is a consequence of

∥∥W∥∥
D
exp2
p (a)

=
∫ ∞

1
w

− p′
p (x) e− p′

2 x2 e−ap′x2 dx ≤ C p′
a

∫ ∞

1
w

− p′
p (x)�(x)p

′
dx , (6.7)

with Ca = maxx≥1 |ln (e + x)|1+ν |1 + x |μ+ 1
2 e−ax2 .

We shall now set

v1,ε(x) = e− px2

2

(1 + x)2pν
V (x)ρε

(
V (x)

)
, where V (x) =

[
Mloc

M

(
w

− p′
p e− p′ y2

2

)
(x)

]− p
p′

(6.8)

(or v1,ε(x) = (1+x)−2pνe− px2

2 Vε(x) in the notation of (3.1)). Given f ∈ L p(w), we denote

f̃ (y) = f (y)e− y2

2 which is a function in L p(W ). Then, using the two-weight inequality for

Mloc
M in Theorem 3.1, and the expression for C1(x) = (1 + x)2νe

x2
2 , we see that, for any

v ≤ v1,ε, the term I (x) in (6.3) is controlled by

‖I (x)‖p
L p(v) ≤

∫
R+

C1(x)p e− p
2 x

2

(1 + |x |)2pν
∣∣Mloc

M f̃ (x)
∣∣p Vε(x) dx

� ‖ f̃ ‖p
L p(W ) = ‖ f ‖p

L p(w). (6.9)
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So, combining (6.3), (6.4) and (6.9), we have shown that ‖P∗
t0 f ‖L p(v) � ‖ f ‖L p(w), provided

v(x) = min{v1,ε(x), v2(x)}, (6.10)

with v1,ε(x) and v2(x) defined in (6.8) and (6.5).
We only have to verify that if q > p, then we can choose ε sufficiently small so that

v1,ε ∈ Dq(�) (which implies v ∈ Dq(�)). This actually follows from (6.6) and Proposition
3.3. Indeed, on the one hand, since W ∈ D0

p(α + 1
2 )∫ 1

0
v1,ε(x)

− q′
q �(x)q

′
dx �

∫ 1

0
Vε(x)

− q′
q 〈x〉(α+ 1

2 )q ′
dx, (6.11)

which is finite by (i) in the proposition (choosing ε sufficiently small). On the other hand,∫ ∞

1
v1,ε(x)

− q′
q �(x)q

′
dx �

∫ ∞

1
Vε(x)

− q′
q e

−q ′
(
1− p

q

)
x2
2 (1 + x)2νpq

′/q dx , (6.12)

and since W ∈ Dexp2
p (a) for all a > 0, we can apply part (ii) of Proposition 3.3 (for a

sufficiently small ε) to conclude that this is also a finite quantity. ��
Remark 6.2 Alternative expression for the second weight. A slight modification of the
above construction suggests to define a new weight by

v�,w
ε (x) := min

{
�(x)p

[
Mloc

(
w

− p′
p �p′

)
(x)

]− p
p′

ϒε(x),
〈x〉p−1

[ln (e/〈x〉)]2
�(x)p

(1 + x)N0

}

(6.13)
with

ϒε(x) = 〈x〉εN1

(1 + x)N2
ρε

([
Mloc

(
w

− p′
p �p′

)
(x)

]− p
p′
)

, ε ∈ (0, 1).

If N0, N1, N2 are sufficiently large, then similar arguments as above lead to the boundedness
of P∗

t0 : L p(w) → L p(v�,w
ε ) when w ∈ Dp(�) and ε ∈ (0, 1), and give also the property

that v�,w
ε ∈ Dq(�) if ε is sufficiently small.

We only sketch the proof for the first weight inside (6.13), namely

ṽ1,ε(x) := �(x)p
[
Mloc

(
w

− p′
p �p′

)
(x)

]− p
p′

ϒε(x). (6.14)

We claim that if N1, N2 are sufficiently large, then

v1,ε(x)
〈x〉εM1

(1 + x)M2
� ṽ1,ε(x) � v1,ε(x), ∀ ε ∈ (0, 1), (6.15)

for suitable M1, M2 > 0. Assuming this claim, it is not difficult to deduce that

(i) ‖I (x)‖L p(ṽ1,ε) � ‖w‖Dp(�)‖ f ‖L p(w).
(ii) Given q > p, then ṽ1,ε ∈ Dq(�), provided ε is sufficiently small.

Indeed, (i) is immediate from (6.9), while (ii) is not hard to obtain from (6.12) and (6.11)
(here using Proposition 3.3 (i) with some β1 < β). Finally, to justify (6.15), first notice that,
by the local restriction in the maximal function,

�(x)p
[
Mloc

(
w

− p′
p �p′

)
(x)

]− p
p′ ≈ e− px2

2 V (x),
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with the notation in (6.8). Moreover, using the trivial inequality
(
λ ∧ 1

λ

)ε
ρε(x) ≤ ρε(λx) ≤ (

λ ∨ 1
λ

)ε
ρε(x),

we obtain that

ϒε(x) ≤ 〈x〉εN1

(1 + x)N2

[
(1 + x)|μ+ 1

2 |[ln (e + x)]1+ν

〈x〉|α+ 1
2 |

]pε

ρε

(
V (x)

)
� ρε(V (x))

(1 + x)2νp
,

provided we choose N1 ≥ p|α + 1
2 | and N2 > 2νp + εp|μ + 1

2 |. Thus ṽ1,ε(x) � v1,ε(x).
On the other hand, the reverse estimate

ϒε(x) ≥ 〈x〉εN1

(1 + x)N2

[
〈x〉|α+ 1

2 |

(1 + x)|μ+ 1
2 |[ln (e + x)]1+ν

]pε

ρε

(
V (x)

)
,

implies the lower bound in (6.15) with M1 = N1 + p|α + 1
2 | and any M2 > N2 + εp|μ+ 1

2 |.
The new weight expression in (6.13) will have the advantage of being jointly valid for all

the Laguerre systems in Table 1 (with the corresponding � functions).

7 Transference to other Laguerre-type systems

In this section, we show how to transfer the results already proved for the system {ϕα
n } and

the operator L to the other Laguerre systems and operators in Table 1. This procedure is
completely general and has been used before in other instances (see, e.g., [1]).

7.1 Results for the system ψα
n

The starting point is the identity defining ψα
n , namely

ψα
n (y) = a(y) ϕα

n (y), with a(y) = y−α− 1
2 . (7.1)

Clearly, ϕα
n is an eigenvector of L if and only if ψα

n is an eigenvector of the operator

f 	−→ � f (x) = a(x)L[a−1 f ](x)
(with the same eigenvalue λn = 4n+ 2(α + 1+μ)). An elementary computation shows that
the differential operator� obtained in this fashion is exactly the one listed in Table 1. Remark
also that {ψα

n } becomes an orthonormal basis in L2 with the measure a−2(y)dy = y2α+1dy.
The identity in (7.1) leads to a pointwise relation of the corresponding heat kernels

e−t�(x, y) =
∞∑
n=0

e−λn tψα
n (x)ψα

n (y) = a(x) a(y) e−t L (x, y),

and by the subordination formula, also of the corresponding Poisson kernels

P�
t (x, y) = a(x) a(y) PL

t (x, y).

In particular,

P�
t f (x) =

∫
R+

P�
t (x, y) f (y) a−2(y)dy = a(x) PL

t [a−1 f ](x). (7.2)
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From this relation, it is clear that Theorem 1.1 becomes true for the operator � with

��(y) = a(y)−1�L(y),

as listed in Table 1. From (7.2), it also follows that P∗,�
t0 maps L p(w) → L p(v) if and

only if P∗,L
t0 maps L p(a pw) → L p(a pv), and hence the necessary and sufficient condition

becomes

a pw ∈ Dp(�
L) ⇐⇒ ‖a−1w

− 1
p �L‖p′ < ∞ ⇐⇒ w ∈ Dp(�

�),

as was claimed in Theorem 1.2. For the assertions about the weight v, one may argue directly
as follows. Observe from (7.2) and Corollary 5.3 that we can write

P∗,�
t0 f (x) � C1(x) a(x)Mloc

M

(
f a−1e− y2

2

)
(x) + C2(x)a(x)

∫
R+

| f |��,

with a cancelation in the first term due to a(x)a(y)−1 ≈ 1 when x
2 < y < Mx . At this point,

we can apply the same arguments as in Sect. 6.2. Namely, we construct v = min{v1,ε, v2}
with the same choice of v1,ε, and with v2 in (6.5) now replaced by

v2(x) := 〈x〉(2α+2)p−1

[ln (e/〈x〉)]2
e− p

2 x
2

(1 + x)N
.

The sameproofwill give that, for anyq > p, there is a sufficiently small ε so that v ∈ Dq(�
�)

(the only difference being that, locally, this condition now becomes v ∈ D0
q(2α + 1)). We

remark that this part will work as well with the choice

v(x) = a−p(x) v�L ,a pw(x) = v��,w(x),

as defined in (6.13).

7.2 Results for the system Lα
n

Consider the following isometry of L2(R+, dy)

f 	−→ A f (x) = √
2x f (x2).

The systems Lα
n and ϕα

n are related by ϕα
n = ALα

n , or equivalently

Lα
n (y) = [A−1ϕα

n ](y) = (4y)−
1
4 ϕα

n

(√
y
)
. (7.3)

In particular, Lα
n is an eigenvector of the operator

L = 1

4
A−1 ◦ L ◦ A,

this time with eigenvalue λn/4 = n + (α + 1+ μ)/2. The factor 1
4 has been inserted so that

L coincides with the operator listed in Table 1.
The heat kernels are now related by

e−tL(x, y) =
∞∑
n=0

e−tλn/4Lα
n (x)Lα

n (y) = 1

2(xy)
1
4

e− t
4 L

(√
x,

√
y
)
,

and therefore, a substitution in the subordinated integral in (5.5) gives

PL
t (x, y) = (16xy)−

1
4 PL

t/2

(√
x,

√
y
)
.
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Thus, we obtain the formula

PL
t f (x) =

∫
R+

PL
t (x, y) f (y) dy = (4x)−

1
4 PL

t/2[A f ] (√x
)
. (7.4)

From this relation, one easily deduces Theorem 1.1 for the operator L, provided that

�L(y) = [A−1�L ](y), (7.5)

which is comparable to the function in Table 1.
To establish the second theorem, first observe from (7.4) and Corollary 5.3 that

P∗,L
t0 f (x) � C1(

√
x)

x1/4
Mloc

M

(√
y f (y2)e− y2

2

)
(
√
x) + C2

(√
x
)

x1/4

∫
R+

√
2y| f (y2)|�L(y).

We claim that this inequality can be rewritten as

P∗,L
t0 f (x) � C1

(√
x
) Mloc

1
4 ,M2

(
f e− y

2

)
(x) + C2

(√
x
)

x1/4

∫
R+

| f (u)|�L(u), (7.6)

where Mloc
1
4 ,M2 stands for the local maximal function in (1.10) with the cutoff replaced by

χ{ x4 ≤y≤M2x}. The expression for the second term is clear from (7.5) (after a change of variables

y2 = u). To handle the first term, notice that the local region now becomes
√
x
2 < y < M

√
x ,

which in particular gives x− 1
4
√
y ≈ 1. We also need the following lemma for the maximal

function.

Lemma 7.1 For every function g : R+ → C and every x ∈ R+, we have

M
(
g(y2)χ{

√
x
2 <y<M

√
x}

) (√
x
)

� M
(
g(u)χ{ x4 <u<M2x}

)
(x).

Moreover, x is a Lebesgue point of g if and only if
√
x is a Lebesgue point of g(y2).

Proof The first assertion follows essentially from the change of variables y2 = u,

LHS ≤ sup
r>0

1

r

∫
|y−√

x |<r
|g(y2)| χ{ x

4 <y2<M2x} dy

= sup
r>0

1

r

∫
|√u−√

x |<r
|g(u)| χ{ x

4 <u<M2x}
du

2
√
u

.

In this local range, we have
√
u ≈ √

x , so may take the denominator outside the integral.
The local behavior also implies that

|√u − √
x | =

∣∣∣∣
∫ u

x

ds

2
√
s

∣∣∣∣ ≈ |u − x |√
x

. (7.7)

Therefore, we conclude that

LHS � sup
r>0

1

r
√
x

∫
|u−x |<r

√
x
|g(u)| χ{ x4 <u<M2x} du � RHS.

For the last assertion, we only show that x ∈ Lg implies
√
x ∈ Lg̃ with g̃(y) = g(y2) (the

converse is similar). As before, the change in variables y = √
u gives

Ir (x) := 1

r

∫
|y−√

x |<r
|g̃(y) − g̃(

√
x)| dy = 1

r

∫
|√u−√

x |<r
|g(u) − g(x)| du

2
√
u

.
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If r is sufficiently small (e.g., r <
√
x/2), we have

√
u ≈ √

x and also |√u − √
x | ≈

|u − x |/√x , by (7.7). Thus,

Ir (x) � 1

r
√
x

∫
|u−x |≤c r

√
x
|g(u) − g(x)| du

which vanishes as r → 0 since x ∈ Lg . ��
Wehave thus shown (7.6). From here, one proves Theorem 1.2 (for the operatorL) arguing

once again as in Sect. 6.2. Remark that, in view of the new constants C1 and C2 in (7.6), the
weight v = min{v1,ε, v2} must be defined with

v1,ε(x) = e− px
2

(1 + x)pν
V (x)ρε

(
V (x)

)
and v2(x) = 〈x〉( α

2 +1)p−1

[ln (e/〈x〉)]2
e− p

2 x

(1 + x)N
,

where V (x) =
[
Mloc

1
4 ,M2

(
w

− p′
p e− p′x

2

)
(x)

]1−p

and N > 1 + p
2

(|μ + 1
2 | − 1

2

)
. Then, the

same proof as before gives that P∗,L
t0 : L p(w) → L p(v) if w ∈ Dp(�

L). One can also
establish (with a few obvious modifications, such as using the class D

exp1
p in Proposition 3.3

ii) that for every given q > p, there is a sufficiently small ε so that v ∈ Dq(�
L). Once again,

we may also replace this weight by v�L,w(x), as defined in (6.13).

7.3 Results for the system �α
n

Remember that these functions satisfy

�α
n (y) = a(y)Lα

n (y), with a(y) = y− α
2 . (7.8)

Thus, they are eigenvectors of the differential operator

f 	→ L f (x) = a(x)L[a−1 f ](x)
(with the same eigenvalues as Lα

n ) and constitute an orthonormal system in L2(a(y)−2dy).
One then derives Theorems 1.1 and 1.2 for the operatorL , from the known results about L,
by repeating exactly the same arguments that we gave in Sect. 7.1. We leave the details to
the reader.

7.4 Results for the Laguerre polynomials Lα
n

Since L is the most classical Laguerre operator, we shall give a few more details here. First
of all, recall that Lα

n and Lα
n are linked by

Lα
n (y) = a(y)Lα

n (y), with a(y) = y− α
2 ey/2. (7.9)

Thus, the functions Lα
n are orthonormal in L2(a(y)−2dy) = L2(yαe−ydy) and are also

eigenvectors of the differential operator

f 	→ L f (x) = a(x)L[a−1 f ](x),
with the same eigenvalues as Lα

n , namely n + (α + 1 + μ)/2. We remark that L coincides
with the operator in Table 1. Thus, the heat and Poisson kernels of these two operators are
related by

e−tL(x, y) =
∞∑
n=0

e
−
(
n+ α+μ+1

2

)
t
Lα
n (x)Lα

n (y) = a(x) a(y) e−tL(x, y),
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and

PL

t (x, y) = a(x) a(y) PL
t (x, y).

This implies the identity

PL

t f (x) =
∫
R+

PL

t (x, y) f (y) yαe−y dy = a(x) PL
t

[
f y

α
2 e− y

2

]
(x), (7.10)

from which one deduces the validity of Theorem 1.1 for the operator L, provided

�L(x) = y
α
2 e− y

2 �L(y) = yαe−y

(1 + y)
1+α+μ

2 [ln (e + x)]1+ν
.

Note that this coincides with the function in Table 1. Moreover, (7.10) combined with (7.6)
implies the estimate

P∗,L
t0 f (x) � CL

1 (x)Mloc
1
4 ,M2

(
f e−y)(x) + CL

2 (x)
∫
R+

| f (u)|�L(u) = I (x) + I I (x),

(7.11)
with the new constants

CL

1 (x) = (1 + x)νex and CL

2 (x) = [ln(1 + x)]1+ν (1 + x)

(
|μ+ 1

2 |−α− 1
2

)
/2
ex/〈x〉α+1.

We now apply the same arguments as in Sect. 6.2 to show that, for a suitable weight v, we
have ‖P∗,L

t0 f ‖L p(v) � ‖ f ‖L p(w), under the assumption w ∈ Dp(�
L). Indeed, to control the

second term I I (x) we choose a weight v2 such that CL

2 ∈ L p(v2), namely

v2(x) = 〈x〉(α+1)p−1

[ln (e/〈x〉)]2
e−px

(1 + x)N
,

with say N > 1+ p( 1+α+μ
2 + |α + 1

2 |). It is not difficult to verify that v2 ∈ Dq(�
L) for all

q > p. To control the first term, we set

v1,ε(x) = e−px

(1 + x)pν
V (x)ρε

(
V (x)

)
with V (x) =

[
Mloc

1
4 ,M2

(
w

− p′
p e−p′x

)
(x)

]1−p

.

That is, if W (x) = w(x)epx , then v1,ε(x) = (1 + x)−pνe−px Vε(x) with the notation in
(3.1). So we may use Theorem 3.1 to obtain

∥∥I∥∥L p(v1,ε)
�

[∫
R+

∣∣∣Mloc
1
4 ,M2

(
f e−y) (x)

∣∣∣p Vε(x)dx

] 1
p

� ‖ f e−y‖L p(W ) = ‖ f ‖L p(w).

Again, it is not difficult to verify that for a sufficiently small ε one has v1,ε ∈ Dq(�
L),

arguing as in the last part4 of Sect. 6.2. Thus, Theorem 1.2 holds with v = min{v1,ε, v2}.
Alternatively, with the notation in (6.13), one may as well choose the weight v�L,w(x).
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