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ABSTRACT. We study N-term approximation for general fam-
ilies of sequence spaces, establishing sharp versions of Jackson
and Bernstein inequalities. The sequence spaces used are adapted
to provide characterizations of Triebel-Lizorkin and Besov spaces
by means of wavelet-like systems using general dilation matri-
ces, and thus they include spaces of anisotropic smoothness. As
an application, we characterize the N-term approximation spaces
when the error is measured in the first of the spaces mentioned
above.

1. INTRODUCTION

In recent years, several methods involving non-linear approximation have been
developed in the context of image compression and the numerical resolution of
partial differential equations. Particularly successful are the approximation meth-
ods in terms of wavelet bases [6, 7, 10, 27, 32]. One of the advantages of wavelets
is the simple characterization they provide for many classical function spaces. The
norms in these spaces, say ‖·‖F , can be expressed as weighted sums of the wavelet
coefficients, which for the purposes of compression considerably simplifies both,
the numerical algorithms and the theoretical machinery behind them.

A particular instance is the characterization of the so-called N-term approxi-
mation spaces associated with a given space F . These, usually denoted by Aγq(F),
consist of functions f ∈ F for which the error of approximation with just N basis
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coefficients:

σN(f)F := inf{‖f − S‖F : S has at most N non-null basis coefficients},

has a rate of decay quantified by:

[ ∞∑
N=1

(NγσN(f))q
1
N

]1/q
<∞, for fixed γ > 0 and 0 < q ≤ ∞.

A well-known procedure in approximation theory places the crucial point in prov-
ing two Jackson and Bernstein inequalities of the form

σN(f)F ≤ CN−ε‖f‖B and ‖S‖B ≤ CNε‖S‖F ,

for a suitable function space B and some ε > 0 (see, e.g., [10] or [7]). The
use of wavelets considerably simplifies this task, reducing matters to prove the
corresponding inequalities in respective sequence spaces f and b.

In this paper we shall establish sharp versions of such Jackson and Bernstein
inequalities for quite general families of sequence spaces. The purpose is to provide
a wide variety of choices for the norms measuring the error of approximation, as
well as introducing a general setting of sequence spaces which can be applied to
wavelet-like systems not necessarily of dyadic type.

We recall that Jackson inequalities related withN-term wavelet approximation
were first studied in [9], with errors measured in Lp-norms, 1 < p < ∞. Later
on, it was proposed by other authors to measure errors with Besov norms Bsp,p,
or Sobolev norms Hsp (see, e.g., [7, Chapter 4] or [20]). In these last cases one
would expect that, once the size of the error is fixed, a best approximation S will
capture better the smoothness of the original function f , while the number of
coefficients which have to be used must be quantified. In this sense, Jackson and
Bernstein inequalities reflect the precise interplay between quality and size of the
approximation for a given pair of smoothness spaces F and B.

For the results in this paper we shall use the sequence spaces fsp,r and bατ,q
introduced by Frazier and Jawerth [14, 15], with a further generalization which
allows anisotropic situations [13]. We shall prove sharp versions of the Jackson
and Bernstein inequalities measured in the first of these norms, and introduce a
transference principle leading to applications to N-term approximation in classical
smoothness spaces.

We remark that our transference principle is general enough to be applied to
many wavelet-like systems, including those whose dilations are given by powers of
integer matrices [3]. As we shall see, the use of such wavelet bases leads directly to
anisotropic smoothness spaces. Wavelet characterizations for these spaces, as well as
various applications, have been recently presented in [16, 19, 24, 25], although a
complete study involving non-linear approximation still remains to be done.
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Finally, we mention that only recently we became aware of the work of Kyr-
iazis [23], where some of these Jackson and Bernstein inequalities have been ob-
tained for the special case of isotropic homogeneous Besov and Triebel-Lizorkin
spaces. We also mention a very general setting for non-linear approximation in
Banach spaces introduced by Temlyakov et al. [21, 22, 32], from which some of
our results will be derived.

2. N-TERM APPROXIMATION IN SEQUENCE SPACES

We shall deal with a general setting of N-term approximation which can be de-
scribed as follows. Consider a vector space f consisting of sequences of complex
numbers s = {sI}I∈I defined over a fixed (countable) set of indices I. For each
I ∈ I, we denote by eI the sequence with entry 1 at I and 0 otherwise. Through-
out this paper we assume that f is a quasi-Banach space, endowed with a quasi-norm
‖ · ‖f satisfying the following properties:
(a) The set of all finite linear combinations of eI ’s is contained in f.
(b) Monotonicity: if t ∈ f and |sI| ≤ |tI|, ∀ I ∈ I, then s ∈ f and ‖{sI}‖f ≤

‖{tI}‖f;
(c) If s ∈ f, then limn→∞ ‖sIneIn‖f = 0, for some enumeration I = {I1, I2, . . . }.

It is easy to see that (b) implies ‖{sI}‖f = ‖{|sI|}‖f for all s ∈ f. Particular
examples will be spaces f for which {eI} is an unconditional basis of f, and also
some other situations which we present in Section 3 below.

Let ΣN denote the set of all sequences with at most N non-null entries. Given
s ∈ f, we define the N-term error of approximation to s in f by:

(2.1) σN(s)f := inf
t∈ΣN ‖s− t‖f, N = 0,1,2, . . . .

In applications, one is interested in an effective algorithm to determine se-
quences t which minimize (2.1). Such sequences, when they exist, are called best
N-term approximations to s in f. Given a fixed constant c ≥ 1 we shall say that
t ∈ ΣN is a near best N-term approximation to s (with constant c) if

(2.2)
1
c
‖s− t‖f ≤ σN(s)f.

Observe that we always have σN(s)f ≤ ‖s−t‖f, t ∈ ΣN , so the best approximation
corresponds to the constant c = 1.

In practice, the computational cost of best approximations may be too high,
so one is led to use simpler algorithms which provide near best approximations.
One such case are the so-called greedy algorithms [32]. A greedy algorithm of step
N is defined as a correspondence

s = {sI} ∈ f 7 -→ GN(s) :=
N∑
`=1

sI`eI` ∈ ΣN,
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for some enumeration of the index set I = {I`}∞`=1 so that

(2.3) ‖sI1eI1‖f ≥ ‖sI2eI2‖f ≥ ‖sI3eI3‖f ≥ · · · .

Observe that such non-decreasing rearrangements exist by assumption (c) above.
The following result, due to Konyagin and Temlyakov [22], characterizes the se-
quence spaces f for which greedy algorithms give near optimal best approxima-
tions. For completeness, we provide an elementary proof in our special setting.
Below we denote by

1̃Γ = 1̃Γ ,f = ∑
I∈Γ

eI
‖eI‖f

,

the (normalized) indicator sequence of a finite set of indices Γ ⊂ I.
Theorem 2.1. Let f be a sequence space satisfying (a)–(c) above. Then, the fol-

lowing are equivalent:
(i) There exists c ≥ 1 so that, for all s ∈ f and N = 0, 1, 2, . . . ,

(2.4)
1
c
‖s−GN(s)‖f ≤ σN(s)f;

(ii) There exists c ≥ 1 so that, for all finite sets Γ , Γ ′ ⊂ I with Card Γ = Card Γ ′,
(2.5)

1
c
‖1̃Γ ′‖f ≤ ‖1̃Γ‖f ≤ c‖1̃Γ ′‖f.

Proof. We prove first that (i) implies (ii). Take two finite sets Γ , Γ ′ ⊂ I with
cardinality N, and let s = 1̃Γ∪Γ ′ . If we assume first that Γ ∩ Γ ′ = ∅, then (i) gives

1
c
‖1̃Γ ′‖f = 1

c
‖s− 1̃Γ‖f ≤ σN(s)f ≤ ‖s− 1̃Γ ′‖f = ‖1̃Γ‖f.

In general, if Γ ∩ Γ ′ 6= ∅, then the quasi-triangle inequality and the previous case
give us

‖1̃Γ ′‖f = ‖1̃Γ ′\Γ + 1̃Γ ′∩Γ‖f ≤ C(‖1̃Γ ′\Γ‖f + ‖1̃Γ ′∩Γ‖f)

≤ C(c‖1̃Γ\Γ ′‖f + ‖1̃Γ ′∩Γ‖f) ≤ (c + 1)C‖1̃Γ‖f,

since Card Γ \ Γ ′ = Card Γ ′ \ Γ , and in the last step we use monotonicity.
We turn to the converse: (ii) implies (i). If ∆ is any index subset of I and

s ∈ f, we shall denote the truncation by ∆ as

sχ∆ = {sIχ∆}I∈I =
{
sI if I ∈ ∆,
0 otherwise.
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We first observe that monotonicity yields the following simplification

(2.6) σN(s)f := inf
t∈ΣN ‖s− t‖f = inf

CardΓ=N ‖{sIχΓ c}‖f.

Indeed, for any t ∈ ΣN , if Γt = Supp t, then

‖s− t‖f = ‖{(sI − tI)χΓt} + {sIχΓ ct }‖f

≥ ‖{sIχΓ ct }‖f ≥ ‖{sIχΓ c}‖f,

where Γ is any set containing Γt with cardinality exactlyN. From here (2.6) follows
immediately. Now, if we call Γ0 = SuppGN(s), (i) reduces to show

(2.7) ‖{sIχΓ c}‖f ≥ 1
c′
‖{sIχΓ c0 }‖f, ∀ Γ : Card Γ = N.

Starting from the right-hand side and using the quasi-triangular inequality,

‖{sIχΓ c0 }‖f ≤ C(‖{sIχΓ c0 ∩Γ }‖f + ‖{sIχΓ c0 ∩Γ c}‖f).

Clearly, by monotonicity, the second summand is smaller than ‖{sIχΓ c}‖f, so we
just need to estimate the first term. Now, a new use of monotonicity, together
with (ii) and the definition of the set Γ0 yields

‖{sIχΓ c0 ∩Γ }‖f ≤ max
I∈Γ c0 ∩Γ |sI| ‖eI‖f ‖1̃Γ c0 ∩Γ‖f

≤ c min
I∈Γ0∩Γ c |sI| ‖eI‖f ‖1̃Γ0∩Γ c‖f

≤ c‖{|sI|χΓ0∩Γ c}‖f

≤ c‖{sIχΓ c}‖f.

Thus, ‖{sIχΓ c0 }‖f ≤ (c + 1)C‖{sIχΓ c}‖f, establishing the theorem. ❐

Remark 2.2. When {eI} is a Schauder basis of f (hence unconditional, by
(b)), the previous theorem states that {eI} is a greedy basis (i.e., (2.4) holds) if and
only if {eI} is democratic (i.e., (2.5) holds). This result (and terminology) was first
introduced in a more general context of Banach spaces in [22]. Our proof follows
the lines of [20].

Remark 2.3. Some examples concerning condition (2.5) are the following.
For any 0 < p <∞, the space `p(Z) satisfies ‖1̃Γ‖`p = (Card Γ)1/p, for all Γ ⊂ Z.
On the other hand, this condition fails for mixed normed spaces `q(`p), with
norm given by

‖{sj,k}‖`q(`p) =
[ ∑
j∈Z

( ∑
k∈Z

|sj,k|p
)q/p]1/q

, and p 6= q.
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Indeed, in this case Γ = {(1,0), . . . , (N,0)} and Γ ′ = {(0,1), . . . , (0, N)} lead
respectively to ‖1̃Γ‖`q(`p) = N1/q and ‖1̃Γ ′‖`q(`p) = N1/p. For a discussion on
non-greedy algorithms for N-term approximation in such situations we refer to
[20, Section 11.6]

Using the terminology in [20], for 0 < p < ∞ we say that f is a p-space if

(2.8)
1
c
(Card Γ)1/p ≤ ‖1̃Γ‖f ≤ c(Card Γ)1/p, for all finite Γ ⊂ I.

This condition is also referred to in the literature as the p-Temlyakov property (see,
e.g. [21]). A natural family of spaces satisfying (2.8) are the discrete Lorentz spaces
`p,r (I), 0 < p < ∞. When 0 < r < ∞, these consist of sequences s = {sI} for
which lim sI = 0 and

‖s‖`p,r :=
[ ∞∑
k=1

(k1/p|sIk|)r
1
k

]1/r
<∞,

for some enumeration of the index set I = {Ik}∞k=1 so that |sI1| ≥ |sI2| ≥ · · · .
When r = ∞, `p,∞ is the discrete weak-`p space consisting of sequences so that

‖s‖`p,∞ := sup
λ>0
λ(Card{I : |sI| ≥ λ})1/p = sup

k∈N
k1/p|sIk| < ∞.

In this paper, given a sequence space f we define

`p,r (f) :=
{
s ∈ CI : {‖sIeI‖f} ∈ `p,r (I)

}
, and

‖s‖`p,r (f) :=
[ ∞∑
k=1

(k1/p‖sIkeIk‖f)r
1
k

]1/r
,

where ‖sIkeIk‖f are ordered decreasingly as in (2.3). These are quasi-Banach spaces
which are isomorphic to `p,r (I). Since

‖1̃Γ‖`p,r (f) =
( ∑
k≤Card Γ k

r/p−1
)1/r ∼ (Card Γ)1/p,

it follows that `p,r (f) is also a p-space for any sequence space f and any indices
0 < r ≤ ∞ and 0 < p < ∞.

The following result shows that p-spaces are precisely those f’s which can be
embedded in between two such Lorentz spaces (compare with Theorem 3.11 in
[30, Chapter 5], or 11.19 in [20]). We shall assume that f↩ CI , that is,

lim
n→∞ s

(n) = s, in f⇒ lim
n→∞ s

(n)
I = sI , ∀ I ∈ I.
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Theorem 2.4. Let 0 < p <∞, and f↩ CI be a sequence space satisfying (a)-(b)
above. Then, f is a p-space if and only if for some r > 0 we have

(2.9) `p,r (f)↩ f↩ `p,∞(f).

Moreover, if f satisfies the ρ-triangular inequality ‖s+ t‖ρf ≤ ‖s‖ρf + ‖t‖ρf , then one
can take r = ρ.

Proof. The sufficiency of (2.9) follows easily from the fact that `p,r (f) are
p-spaces for all 0 < r ≤ ∞ and 0 < p < ∞. For the necessity, let us first show the
right inclusion in (2.9). Given s = {sI} ∈ f and λ > 0, define the set of indicesΓλ = {I : ‖sIeI‖f ≥ λ}. Then, the p-space assumption on f and the monotonicity
imply that this set must be finite and, moreover,

λ(Card Γλ)1/p ≤ c∥∥∥ ∑
I∈Γλ sIeI

∥∥∥
f
≤ c‖s‖f.

Taking the supremum in λ > 0 we obtain the desired inclusion. For the left
hand inclusion in (2.9), let s = {sI} ∈ `p,ρ(f) and define s(j) = ∑1≤k<2j sIkeIk ,
with the coefficients ‖sIkeIk‖f rearranged decreasingly as in (2.3). We claim that
{s(j)}∞j=1 converges to s in f. Indeed, by the ρ-triangular inequality, the mono-
tonicity and the p-space property,

∥∥s(j+m) − s(j)∥∥ρf ≤ j+m∑
`=j

∥∥∥ ∑
2`≤k<2`+1

sIkeIk
∥∥∥ρ

f
(2.10)

≤ c
j+m∑
`=j

∥∥sI2`eI2`∥∥ρf (2`)ρ/p
≤ c

∞∑
`=0

(2`/p‖sI2`eI2`‖f)ρ.

Since the last series is finite (and bounded by ‖s‖ρ`p,ρ(f)), it follows that {s(j)}∞j=1

is a Cauchy sequence in f, which by the assumption f ↩ CI must converge to s.
Considering j = 0 in the above inequalities and passing to the limit, we obtain
the desired estimate

‖s‖f = lim
m→∞‖s

(m)‖f ≤ c′‖s‖`p,ρ(f). ❐

Corollary 2.5. Let f ↩ CI be a p-space satisfying the ρ-triangular inequality
for some 0 < ρ ≤ 1. If either 0 < τ < p and 0 < r ≤ ∞, or τ = p and 0 < r ≤ ρ,
then

(2.11) `τ,r (f) = {s ∈ f : {sI‖eI‖f} ∈ `τ,r (I)}.
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Proof. This is a consequence of the left inclusion in (2.9) and the trivial em-
bedding `τ,r ↩ `p,ρ . ❐

3. GENERAL SEQUENCE SPACES ASSOCIATED WITH SMOOTHNESS

In this paper we shall be interested in the sequence spaces introduced by Frazier
and Jawerth in [14]: fsp,r and bατ,q. To allow a greater generality, and for later appli-
cations to anisotropic smoothness spaces in Rd, we adopt the following definitions
(see also [13, 24]).

We fix a real d×d-matrixM with |detM| > 1. We define the “M-adic” blocks

(3.1) Ij,k :=M−j([0,1)d + k), j ∈ Z, k ∈ Zd,

and a real number λ > 1 by the relation |detM| = λd. We shall regard the set I
of all M-adic blocks as an index set, which we shall identify, when necessary, with
Z× Zd.

Roughly speaking, and keeping in mind the functional setting, Ij,k gives the
space-localization of a wavelet ψIj,k(x) = ψj,k(x) = λjd/2ψ(Mjx−k). Observe
that, when M = 2I, one obtains the usual family of dyadic cubes. Other choices
of M, however, give rise to tilings of Rd by parallelograms, which in general will
not have the nesting property of dyadic intervals at different scales.

Having fixed one such matrix M, we are ready to define the associated se-
quence spaces of Besov and Triebel-Lizorkin type. We shall denote below χ(p)I =
χI/‖χI‖p = |I|−1/pχI .

Definition 3.1.
1. Given s ∈ R, 0 < p < ∞ and 0 < r ≤ ∞, we let fsp,r be the space of sequences
s = {sI}I∈I such that

(3.2) ‖s‖fsp,r =
∥∥∥[∑
I∈I
(|I|−s/d+1/p−1/2 |sI|χ(p)I (·))r

]1/r∥∥∥
Lp(Rd)

<∞.

2. Given α ∈ R, 0 < τ, q ≤ ∞, we let bατ,q be the space of sequences s = {sI}I∈I
such that

(3.3) ‖s‖bατ,q =
[ ∑
j∈Z

( ∑
|I|=λ−jd

(|I|−α/d+1/τ−1/2 |sI|)τ
)q/τ]1/q

<∞.

Of course, one takes the obvious modifications when r , τ, q = ∞. We avoid
the case p = ∞, which requires a different definition. It is clear that these are
quasi-Banach spaces satisfying properties (a) and (b) in Section 2. Property (c)
also holds for the whole family fsp,r , as a consequence of the right inclusion in
(2.9) and the p-space condition in our next proposition. Finally we observe that
{eI} is an unconditional basis for these spaces only when r , τ, q <∞.
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Proposition 3.2. Let s ∈ R, 0 < p < ∞ and 0 < r ≤ ∞. Then fsp,r is a
p-space. That is, there exists c > 0 so that

1
c
(Card Γ)1/p ≤ ‖1̃Γ‖fsp,r

≤ c(Card Γ)1/p, for all finite Γ ⊂ I.
Proof. The proof follows a similar argument as in [20, Theorem 11.2]. Since

‖s‖fsp,∞ ≤ ‖s‖fsp,r , for all r > 0, the left-hand estimate will follow from

(3.4)
1
c
(Card Γ)1/p ≤ ‖ sup

I∈Γ χ
(p)
I (x)‖Lp .

Now, calling F(x) = supI∈Γ χ(p)I (x), which is a finite valued function, we have

∑
j∈Z
λjd|{F(x)p ≥ λjd}| =

∑
j∈Z
λjd

∑
`≥0

|{F(x)p = λ(j+`)d}|

=
∑
`≥0

∑
j∈Z
λ−`d

∫
{F(x)p=λ(j+`)d}

λ(j+`)d dx

=
( ∑
`≥0

λ−`d
)∫

Rd
F(x)p dx.

If we denote Γj = {I ∈ Γ : |I| = λ−jd}, then the disjoint union
⋃
I∈Γj I ⊂

{F(x)p ≥ λjd}, from which we conclude∫
Rd
F(x)p dx ≥ 1

c

∑
j∈Z
λjd

∑
I∈Γj |I| =

1
c

Card Γ ,
with the constant c = λd/(λd−1). Conversely, we need to estimate the Lp-norm
of [

∑
I∈Γ (χ(p)I (x))r ]1/r . Now, for each x ∈ ⋃I∈Γ I, let Ix be the smallest interval

in Γ containing x. Then we have the pointwise estimate

∑
I∈Γ(χ

(p)
I (x))r =

∑
j∈Z

∑
I∈Γj |I|

−r/pχI(x)

≤ c′|Ix|−r/pχIx(x)

≤ c′
(∑
I∈Γ |I|

−1χI(x)
)r/p

.
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Thus, raising to the power 1/r and taking the Lp-norm, we conclude

∥∥∥[∑
I∈Γ(χ

(p)
I )r

]1/r∥∥∥
Lp
≤ c′′

(∫
Rd

∑
I∈Γ |I|

−1χI(x)dx
)1/p

= c′′(Card Γ)1/p. ❐

4. JACKSON INEQUALITIES IN fsp,r -NORMS

In this section we study the validity of Jackson-type inequalities of the form

(4.1) σN(s)fsp,r ≤ C(N + 1)−ε‖s‖bατ,q , N = 0,1,2, . . . ,

where ε is a positive number. Observe that the case N = 0 just corresponds to the
embedding bατ,q ↩ fsp,r . Our first result gives a necessary relation which must be
satisfied by the “smoothness and integrability” indices s, α, p, τ.

Proposition 4.1. If Jackson’s inequality (4.1) holds for any N ≥ 0, then we must
have s/d− 1/p = α/d− 1/τ.

Proof. The proof follows from a simple homogeneity argument. We denote
by D the dilation operator mapping sequences s = {sI} into t = {tI = s(MI)}.
Observe that this just produces a shift in the indices {sj,k} , {tj,k = sj−1,k}. It
is immediate to verify that

(4.2)
‖Ds‖fsp,r = λd(s/d−1/p+1/2)‖s‖fsp,r ,

‖Ds‖bατ,q = λd(α/d−1/τ+1/2)‖s‖bατ,q .

Thus, since D preserves ΣN , if Jackson’s inequality (4.1) holds, we deduce

λd`(s/d−1/p+1/2)σN(s)fsp,r = σN(D`s)fsp,r ≤ C(N + 1)−ε‖D`s‖bατ,q

= C(N + 1)−ελd`(α/d−1/τ+1/2)‖s‖bατ,q ,

for any ` ∈ Z. This gives

0 <
(N + 1)εσN(s)fsp,r

C‖s‖bατ,q

≤ λd`((α−s)/d−1/τ+1/p),

at least for finitely supported (non-null) s. Now, if δ := (α−s)/d−1/τ+1/p 6= 0,
we may let ` → ±∞ (depending on the sign of δ), obtaining a contradiction. ❐

Next we establish a lower bound for the error decay in a given pair of smoothness
spaces fsp,r and bατ,q.
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Proposition 4.2. If Jackson’s inequality (4.1) holds for some ε > 0, all N ≥ 0
and s/d− 1/p = α/d− 1/τ, then necessarily

max{τ, q} < p and ε ≤ min

{
1
τ
− 1
p
,

1
q
− 1
p

}
.

Proof. The result follows by testing with two simple examples of the form
s = 1̃Γ , for suitable choices of Γ . We first observe that, under the condition
1/τ = 1/p + (α − s)/d, we have ‖eI‖fsp,r = ‖eI‖bατ,q , for all I ∈ I, so we will
just write 1̃Γ = 1̃Γ ,fsp,r = 1̃Γ ,bατ,q . Now, using the notation s = {sj,k}, we can
choose Γ = {(1,0), . . . , (2N,0)}, so that a simple calculation, Theorem 2.1 and
Proposition 3.2 give

1
c
N1/p ≤ σN(1̃Γ )fsp,r ≤ CN−ε‖1̃Γ‖bατ,q = CN−ε(2N)1/q.

Since ε > 0, it follows that necessarily q < p and ε ≤ 1/q − 1/p. One proves
similarly the restrictions on τ by choosing Γ = {(0,1), . . . , (0,2N)}. ❐

Finally, we are ready to prove the main result of this section, which establishes
Jackson’s inequality for all the possible choices of indices. This extends a result in
[9], where such inequality was shown for the pair f0p,2, bατ,τ . Our approach to the
proof follows the lines of [11].

Theorem 4.3. Let s, α ∈ R, 0 < p, τ, q <∞ and 0 < r ≤ ∞ be so that

(4.3) max{τ, q} < p and
α
d
− 1
τ
= s
d
− 1
p
.

Then, for all s ∈ bατ,q we have

σN(s)fsp,r ≤ C(N + 1)−(1/(τ∨q)−1/p)‖s‖bατ,q , N = 0,1,2, . . . .

Proof. It suffices to show the theorem for τ = q. Indeed, under such assump-
tion the cases τ > q would follow from

σN(s)fsp,r ≤ C(N + 1)−(1/τ−1/p)‖s‖bατ,τ ,

and the inclusion bατ,q ↩ bατ,τ . On the other hand, if τ < q and we choose β ∈ R
so that β/d− 1/q = α/d− 1/τ = s/d− 1/p, then we will have

σN(s)fsp,r ≤ C(N + 1)−(1/q−1/p)‖s‖
b
β
q,q
,

which, together with the inclusion bατ,q ↩ b
β
q,q, gives the desired result.

We will deduce the theorem when τ = q from the following more general
result.
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Proposition 4.4. Let f ↩ CI be a p-space (as in Section 2). Then, for all
0 < τ < p, we have the embedding `τ,∞(f)↩ f and, moreover,

(4.4) σN(s)f ≤ CN−(1/τ−1/p)‖s‖`τ,∞(f), ∀ s ∈ `τ,∞(f), N = 1,2, . . . .

Proof. The first assertion follows from the trivial embedding of Lorentz spaces
`τ,∞(f) ↩ `p,ρ(f), whenever τ < p, and then an application of the left hand em-
bedding in (2.9).

In order to show (4.4) we may assume ‖s‖`τ,∞(f) = 1, while by monotonicity
of σN , it suffices to consider N = 2j , j = 0, 1, . . . . For each such j define
s(j) = ∑

1≤k<2j sIkeIk as in the proof of Theorem 2.4. Then, recalling that s(j)
converges to s in f and using the estimate in (2.10), we obtain

‖s− s(j)‖f ≤ c
[ ∞∑
`=j
(2`/p‖sI2`eI2`‖f)ρ

]1/ρ

≤ c‖s‖`τ,∞(f)
[ ∞∑
`=j

2ρ(`/p−`/τ)
]1/ρ

= c′2−(j/τ−j/p),

since τ < p. Finally, we use σN(s)f ≤ ‖s− s(j)‖f, since s(j) ∈ Σ2j . ❐

To complete the proof of Theorem 4.3, it only remains to show that bατ,τ =
`τ,τ(fsp,r ). Assuming this identity, the result follows immediately from (4.4) and
the trivial embedding `τ,τ(fsp,r ) ↩ `τ,∞(fsp,r ). Finally, the above identity is a
simple consequence of (4.3), which implies ‖eI‖fsp,r = ‖eI‖bατ,q . ❐

Remark 4.5. Proposition 4.4 is sharp, in the sense that for a p-space f the
inequalities σN(s)f Ü N−ε‖s‖`τ,r (f), N = 1, 2, . . . , can only hold if τ < p and
ε ≤ 1/τ − 1/p. The same example as in Proposition 4.2 shows this fact.

Remark 4.6. An interesting particular case of Theorem 4.3 corresponds to
N = 0. Our result proves the non-trivial embeddings:

bατ,q ↩ fsp,r ,

when

α
d
− 1
τ
= s
d
− 1
p
, max{τ, q} < p, 0 < r ≤ ∞.

These embeddings continue to hold in some cases when max{τ, q} = p (see
[15]), although as our examples above show, such cases will not admit a Jackson
type inequality.
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5. BERNSTEIN TYPE INEQUALITIES

In this section we turn to Bernstein-type inequalities of the form:

(5.1) ‖s‖bατ,q ≤ CNε‖s‖fsp,r , s ∈ ΣN, N = 1,2, . . . ,

where ε is a real number. The first observation is similar to Proposition 4.1, and
gives the same relation between the smoothness and integrability indices s, α, p,
τ. The proof is completely analogous, and left to the reader.

Proposition 5.1. If Bernstein’s inequality (5.1) holds for any N ≥ 1, then we
must have α/d− 1/τ = s/d− 1/p.

In a similar way, one finds a lower bound for the rate of growth of Nε.

Proposition 5.2. If Bernstein’s inequality (5.1) holds for some ε ∈ R, all N ≥ 1
and α/d− 1/τ = s/d− 1/p, then necessarily

ε ≥ max

{
1
τ
− 1
p
,

1
q
− 1
p

}
.

Proof. The proof is similar to the one given in Proposition 4.2. One tests
with S = 1̃Γ ∈ ΣN , for the choices Γ = {(1,0), . . . , (N,0)} and Γ = {(0,1), . . . ,
(0, N)}. We leave details to the reader. ❐

Remark 5.3. It is clear that (5.1) can never hold with ε < 0 (test, e.g, with a
fixed s = eI and let N → ∞). It is interesting, however, to observe that the case
ε = 0 corresponds precisely to the collection of embeddings: fsp,r ↩ bατ,q. These
are known to hold exactly when

p ≤ min{τ, q} and
s
d
− 1
p
= α
d
− 1
τ
,

with no restriction in 0 < r ≤ ∞ if p < τ, and just for 0 < r ≤ q if p = τ (see,
e.g., [15, Theorem 3.8]). For the remaining cases, the Bernstein inequality (5.1)
gives an upper bound for the norm of the inclusion operator ΣN → bατ,q, when ΣN
is seen as a subspace of fsp,r . Our next theorem shows that the lower bounds in
Proposition 5.2 are actually the best possible in the range p > min{τ, q}.

Theorem 5.4. Let s, α ∈ R, 0 < p, τ, q <∞, and 0 < r ≤ ∞ be so that

(5.2) min{τ, q} < p and
α
d
− 1
τ
= s
d
− 1
p
.

Then, there exists C > 0 so that, for all N = 1, 2, . . . ,

(5.3) ‖s‖bατ,q ≤ CN1/(τ∧q)−1/p‖s‖fsp,r , ∀ s ∈ ΣN.
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Proof. As before, it will suffice to consider the case q = τ. Indeed, if q > τ
one can use ‖s‖bατ,τ ≤ CN1/τ−1/p‖s‖fsp,r and the trivial embedding bατ,τ ↩ bατ,q. If
on the other hand q < τ, we define β so that β/d−1/q = α/d−1/τ = s/d−1/p.
Then we will have

‖s‖
b
β
q,q
≤ CN1/q−1/p‖s‖fsp,r ,

and we obtain the desired inequality from the embedding b
β
q,q ↩ bατ,q.

As for Jackson inequalities, the case τ = q will be a straightforward conse-
quence of the equality bατ,τ = `τ,τ(fsp,r ) and the following general result. ❐

Proposition 5.5. Let f be a p-space as in Section 2. Then, for all 0 < τ < p
and all 0 < r ≤ ∞ there exists C = C(p, τ, r) > 0 such that

(5.4) ‖s‖`τ,r (f) ≤ CN1/τ−1/p‖s‖f, ∀ s ∈ ΣN, N = 1,2, . . . .

Proof. Let s = ∑Nk=1 sIkeIk ∈ ΣN , where we can assume ‖sI1eI1‖f ≥ · · · ≥
‖sINeIN‖f. Then, using the p-space property and monotonicity we have

‖s‖`τ,r (f) =
[ N∑
k=1

(k1/τ‖sIkeIk‖f)r
1
k

]1/r

≤ c
[ N∑
k=1

(
k1/τ−1/p

∥∥∥ k∑
`=1

sI`eI`
∥∥∥

f

)r 1
k

]1/r

≤ c‖s‖f

[ N∑
k=1

kr(1/τ−1/p) 1
k

]1/r

= C‖s‖fN1/τ−1/p. ❐

Remark 5.6. With the same proof as before, in the limiting case τ = p we
have

(5.5) ‖s‖`p,r (f) ≤ C(logN)1/r‖s‖f, ∀ s ∈ ΣN, N = 2,3, . . . .

Particularizing to the spaces fsp,r and bατ,q, this produces an additional Bernstein-
type inequality in the limiting situation when p = τ = min{τ, q} (and thus
s = α):

‖s‖bαp,q ≤ C(logN)1/p‖s‖fαp,r , ∀ s ∈ ΣN, N = 2,3, . . . .

Of course, when 0 < r ≤ q we can remove the logN, due to the embedding
fαp,r ↩ bαp,q (see Remark 5.3). For q < r ≤ ∞, we do not know whether the power
in the logN can be improved.
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6. APPLICATIONS OF JACKSON AND BERNSTEIN INEQUALITIES

6.1. Approximation and interpolation of sequence spaces. We can apply
the general setting introduced by DeVore and Popov [12] to characterize approx-
imation and interpolation spaces from Jackson and Bernstein inequalities. Recall
that for a quasi-normed space X, a collection of subsets {ΣN}∞N=0 is an approxi-
mating family whenever:

1. Σ0 = {0} ⊂ Σ1 ⊂ Σ2 ⊂ · · · ⊂ X;
2. There exists c ≥ 1 so that ΣN ± ΣM ⊂ Σc(N+M), ∀N, M ≥ 0.

Given γ > 0 and 0 < q ≤ ∞ we define the approximation space of order (γ, q),
Aγq(X), as the space of vectors x ∈ X for which

‖x‖Aγq(X) := ‖x‖X +
[ ∞∑
N=1

(NγσN(x))q
1
N

]1/q
<∞,

where as usual σN(x) = σN(x)X = infz∈ΣN ‖x − z‖X .
Similarly, if Y ↩ X are quasi-normed spaces, we define for 0 < θ < 1 and

0 < q ≤ ∞ the (real) interpolation space (X, Y)θ,q as the space of vectors x ∈ X
for which

‖x‖(X,Y)θ,q :=
[∫∞

0
(t−θK(t;x))q

dt
t

]1/q
<∞,

where K(t;x) = K(t;x)X,Y = infy∈Y {‖x −y‖X + t‖y‖Y }.
If we set X = f be a sequence space with the approximating family ΣN in

Section 2, then a direct application of the formalism of DeVore-Popov produces
the following result1.

Theorem 6.1. Let f↩ CI be a p-space for some 0 < p <∞. Then, for all γ > 0
and 0 < q ≤ ∞ we have

(6.1) Aγq(f) = `τ,q(f), whenever
1
τ
= γ + 1

p
.

Proof. In Propositions 4.4 and 5.5 (with r = ∞) we have established the
Jackson and Bernstein inequalities for the spaces f and `τ,∞(f) and every fixed
τ < p. Then, quoting Theorems 3.1 and 4.2 from [12] we obtain the following
identities for all 0 < q ≤ ∞:

Aβq(f) = (f, `τ,∞(f))β/γ,q, whenever 0 < β < γ := 1
τ
− 1
p
,(6.2)

Aγq(f) = (`τ0,∞(f), `τ1,∞(f))(γ−γ0)/(γ1−γ0),q,(6.3)

when 0 < γ0 < γ < γ1 and
1
τi

:= γi + 1
p

.

1This result, in a slightly different context, has been independently obtained in [17], [21].
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Observe that each space `τi,∞(f) is isometrically isomorphic to the Lorentz space
`τi,∞(I). Thus, using the interpolation properties of Lorentz spaces (see e.g. [1])
we see that the right hand side of (6.3) equals `τ,q(f), with 1/τ = γ + 1/p. ❐

Particularizing to the p-spaces f = fsp,r and bsp,p, we obtain the following corollary.

Corollary 6.2. Let s ∈ R, 0 < p <∞, 0 < r ≤ ∞. Then, for all γ > 0

(6.4) Aγ/dτ (fsp,r ) = Aγ/dτ (bsp,p) = b
s+γ
τ,τ , if

1
τ
= γ
d
+ 1
p
.

Proof. We know that `τ,τ(fsp,r ) = `τ,τ(bsp,p) = bατ,τ provided α/d− 1/τ =
s/d−1/p. Setting α = s+γ, and using (6.1) (with τ = q) we obtain the desired
identity. ❐

Remark 6.3. When p = ∞, the proofs given for Propositions 4.4, 5.5 and
Theorem 6.1 are also valid for the space bs∞,∞ (which is an “∞-space”), and there-
fore it holds

A1/τ
τ (bs∞,∞) = bs+d/ττ,τ , if 0 < τ <∞, s ∈ R

(see also [20, Section 11.5]). In this case, however, condition (c) in Section 2 fails,
meaning that greedy algorithms will not always be well defined.

Finally, we state a non-trivial interpolation property between fsp,r and bατ,τ .

Corollary 6.4. Let s ∈ R, 0 < p < ∞, 0 < r ≤ ∞. Then, for all γ > 0 and
0 < θ < 1 we have

(fsp,r , b
s+γ
τ,τ )θ,τθ = b

s+θγ
τθ,τθ , where

1
τ
= γ
d
+ 1
p

and
1
τθ

= θγ
d
+ 1
p
.

Proof. From Theorems 4.3 and 5.4 (with τ = q), and the general theory of
DeVore-Popov, we obtain for all 0 < q ≤ ∞

Aβ/dq (fsp,r ) = (fsp,r , bs+γτ,τ )β/γ,q, whenever 0 < β < γ and
γ
d

:= 1
τ
− 1
p
.

Using (6.4) we obtain the desired result. ❐

6.2. An abstract transference framework. In this section we present a gen-
eral procedure which allows to transfer results from sequence spaces into distribu-
tion or function spaces. This is essentially the ϕ-transform formalism of Frazier
and Jawerth [14], which nowadays can be applied in many different contexts.

The general setting can be described as follows. We consider a TVS F and its
dual F′, endowed with theω∗-topology. Typically, F is a space of test functions
containing a family of “analyzing wavelets” {ψ̃I}I∈I , while its dual F′ is a distri-
bution space containing the “synthesizing wavelets” {ψI}I∈I . For example, one
may have F = SL(Rd), the class of Schwartz functions in Rd with L vanishing
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moments, in which case we can identify F′ with the space S′/PL of distributions
modulo polynomials of degree < L. We shall also consider below the case F = Lp
and F′ = Lp′ for 1 < p < ∞. Of course, many other situations are possible,
depending on the regularity and vanishing moments of the wavelet systems. We
also recall from Section 3 that, if I = Ij,k as in (3.1), thenψI is typically generated
from a singleψ byψIj,k(x) = λjd/2ψ(Mjx−k), although our general setting ad-
mits as well other possibilities. Finally we observe that the same reasonings can be
carried out for wavelet systems with more than one generator {ψ1

I , . . . ,ψ
m
I }I∈I ,

after the obvious replacement of I by I × · · · × I.
Let f = CI denote the TVS of all sequences indexed by I, and fc those which

are compactly supported. Observe that, with the product topology in CI , the
subspace fc is dense, and the system of vectors {eI}I∈I is an unconditional basis
of f.

Given a pair of systems Ψ̃ = {ψ̃I}I∈I ⊂ F and Ψ = {ψI}I∈I ⊂ F′, we define
the analysis and synthesis operators by

AΨ̃ : F′ -→ f

u 7 -→ {〈u, ψ̃I〉}I∈I

and

SΨ : fc -→ F′

{sI}I∈I 7 -→
∑
I∈I
sIψI.

We say that (Ψ̃ ,Ψ) is an analysis-synthesis pair for F′ when SΨ can be continuously
extended to the range of AΨ̃ , and moreover, the identity SΨ ◦ AΨ̃ = IF′ holds.
Equivalently, when every u ∈ F′ can be written as u = ∑

I〈u, ψ̃I〉ψI , with
unconditional convergence in the ω∗-topology of F′.

We say that a quasi-normed space F ↩ F′ is a retract of a quasi-normed
sequence space f ↩ f via (AΨ̃ , SΨ̃) whenever we can define in a bounded way the
mappings

(6.5) AΨ̃ : F -→ f and SΨ : f -→ F,

and the identity SΨ ◦AΨ̃ = IF holds. In this case we have the identification

(6.6) F = {u ∈ F′ : {〈u, ψ̃I〉}I ∈ f},

and the equivalence of norms

(6.7)
1
c
‖{〈u, ψ̃I〉}I‖f ≤ ‖u‖F ≤ c‖{〈u, ψ̃I〉}I‖f.
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A well-known application of this setting gives interpolation and inclusion results
for distribution spaces from the corresponding ones in sequence spaces (see, e.g.,
[1, p. 150]).

Proposition 6.5. Let F0, F1 ↩ F′ be two quasi-normed spaces which are, re-
spectively, retracts of two sequence spaces f0 and f1 via (AΨ̃ , SΨ ). Then f1 ↩ f0 implies
F1 ↩ F0. Moreover, for every 0 < θ < 1 and 0 < q ≤ ∞ the interpolation space
(F0, F1)θ,q is a retract of (f0, f1)θ,q.

In the next proposition we summarize the transference results concerning ap-
proximation spaces. The proof is completely elementary and left to the reader.

Proposition 6.6. Let F , B ↩ F′ be two quasi-normed spaces which are, respec-
tively, retracts of two sequence spaces f and b via (AΨ̃ , SΨ). Then,

(1) If {SN}∞N=0 ⊂ F is an approximating family for F , then so is ΣN := AΨ̃(SN)
for f.

(2) For all γ > 0, 0 < q ≤ ∞ the approximation space Aγq(F ;SN) is a retract of
Aγq(f;ΣN).

(3) For every ε > 0, Jackson’s inequality is preserved in the sense:

σN(s,ΣN)f Ü N−ε‖s‖b, ∀ s ∈ b

⇒ σN(u, SN)F Ü N−ε‖u‖B, ∀u ∈ B.

(4) For every ε > 0, Bernstein’s inequality is preserved in the sense:

‖s‖b Ü Nε‖s‖f, ∀ s ∈ ΣN
⇒ ‖u‖B Ü Nε‖u‖F , ∀u ∈ SN.

Finally, we point out that, in order to transfer results about N-term approxi-
mation (from f to F), we need the stronger condition that (Ψ̃ ,Ψ) are biorthogonal
systems, that is

(6.8) 〈ψ̃J ,ψI〉 = δI,J , ∀ I, J ∈ I.

This ensures that the operators AΨ̃ and SΨ in (6.5) are actually isomorphisms be-
tween F and f, and therefore that the set SN of linear combinations of at most
N ψI ’s, is mapped exactly onto the set ΣN of sequences with at most N non-null
entries.

The biorthogonality condition (6.8) is a natural requirement in many appli-
cations, but is also a bit too restrictive since it excludes for instance the use of
Frazier-Jawerth ψ-functions, or more generally, frame systems in F . For the mo-
ment we do not know of any general result aboutN-term approximation involving
systems which are not biorthogonal.
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6.3. Applications to distribution spaces: some examples. We turn to spe-
cific applications of our results to wavelet decompositions of classical distribution
and function spaces.

Throughout this section we fix a matrix M which is expansive (i.e., all its
eigenvalues have modulus larger than 1). As in Section 3 we let λ := |detM|1/d >
1 and I = Ij,k =M−j([0,1)d + k), and for a function η we shall denote

ηI(x) = ηj,k(x) = λjd/2η(Mjx − k), j ∈ Z, k ∈ Zd.

As a first assumption, suppose we are given two functions ψ̃, ψ ∈ L2(Rd) for
which the systems Ψ̃ = {ψ̃I} and Ψ = {ψI} form an analysis-synthesis pair for
L2(Rd). This happens, e.g., if (Ψ̃ ,Ψ) is a pair of dual frames in L2(Rd). For the
study of distribution spaces one must require some extra regularity in ψ̃ and ψ,
which is typically measured as follows:
1. r -regularity: the function η(x) ∈ Cr(Rd) and

sup
x∈Rd

|(1+ |x|)nDαη(x)| <∞, ∀n ≥ 1, 0 ≤ |α| ≤ r ;

2. `-vanishing moments: for all 0 ≤ |α| < `∫
Rd
xαη(x)dx = 0.

We shall denote by Sr`(Rd) the class of all r -regular functions with `-vanishing
moments.

Systems (Ψ̃ ,Ψ) as above are usually called wavelet systems, and under certain
conditions provide frames or unconditional bases for many classical distribution
spaces. The first examples were initially introduced for the matrixM = 2I [14,26],
and later on extended to more general expansive matrices. We refer to [3–5, 29,
31] for many such constructions whose main features we shall not discuss here.
We recall one more time that these systems often have more than one generator:
{ψ̃1, . . . , ψ̃m;ψ1, . . . ,ψm}, but for notational simplicity there is no loss if we just
considerm = 1.

For the study of distribution spaces we shall fix r , ` ∈ N ∪ {∞}, and let
F = Sr`(Rd). Observe that r = ` = ∞ corresponds to Schwartz functions with
infinite vanishing moments, and hence F′ is the space of tempered distributions
modulo polynomials. In general, F′ consists of distributions of order r modulo
polynomials of degree < `. We shall make the final assumption that (Ψ̃ ,Ψ) is
an analysis-synthesis pair for F′, that is, the identity u = ∑I〈u, ψ̃I〉ψI also holds
withω∗-unconditional convergence in F′. This is typically a consequence of the
regularity in ψ, ψ̃, but we shall not discuss this matter here (see e.g. [24]).

Next, associated with the sequence spaces fsp,r and bατ,q in Section 3 we can
define in an abstract way corresponding distribution spaces by (6.6) and (6.7),
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that is

Ḟ sp,r = Ḟ sp,r (Ψ̃ ,Ψ ,F′) := {u ∈ F′ : ‖u‖Ḟ sp,r := ‖〈u, ψ̃I〉‖fsp,r <∞}(6.9)

Ḃατ,q = Ḃατ,q(Ψ̃ ,Ψ ,F′) := {u ∈ F′ : ‖u‖Ḃατ,q := ‖〈u, ψ̃I〉‖bατ,q <∞}.(6.10)

It follows from the definition that Ḟ sp,r is a retract of fsp,r and similarly for Ḃατ,q and
bατ,q. When F = Sr` are large enough, these spaces are related with the classical
anisotropic homogeneous Triebel-Lizorkin and Besov spaces (see [33], or [13] for a
general definition in anisotropic cases). In fact, a main topic in wavelet theory is
to show that such equivalences hold with minimal assumptions on r and `. We
refer to [26] for the first results when M = 2I, and to [2, 24] for recent research
concerning more general matrices. The scope of our general framework is to cover
all these situations independently of further refinements which concerning such
characterizations may appear in the future.

Our main result below is a direct application of the theory in Sections 6.1,
6.2 to the distribution spaces in (6.9) and (6.10). Combined with the above
mentioned characterization of classical spaces, it extends in particular results from
[9, 20, 23].

Corollary 6.7. Let (Ψ̃ ,Ψ) be a biorthogonal analysis-synthesis pair as above,
and consider the approximating sets SN , of linear combinations of at most N ψI ’s. Let
s ∈ R, 0 < p <∞, 0 < r ≤ ∞, and Ḟ sp,r be defined as in (6.9). Then, for all γ > 0
and 0 < q ≤ ∞,

Aγ/dq (Ḟsp,r ;SN) = (Ḟsp,r , Ḃs+β1
τ1,τ1 )γ/β1,q

= (Ḃs+β0
τ0,τ0 , Ḃ

s+β1
τ1,τ1 )(γ−β0)/(β1−β0),q,

when β1 > γ > β0 > 0 and 1/τi = βi/d+ 1/p, i = 0, 1. Moreover,

Aγ/dq (Ḟsp,r ;SN) = Aγ/dq (Ḃsp,p;SN)

= Ḃs+γq,q ,
if

1
q
= γ
d
+ 1
p
.(6.11)

In applications, it is perhaps of more interest to consider spaces of functions
(rather than equivalence classes of distributions). A typical case in the literature
is the n-term approximation by means of wavelets in Lp-spaces [8, 9]. In our
setting, this corresponds to taking F′ = Lp(Rd), for a fixed 1 < p < ∞. It is
well known that under certain conditions in ψ̃, ψ, the systems (Ψ̃ ,Ψ) become a
pair of unconditional bases in Lp, and moreover, Lp = Ḟ0

p,2(Ψ̃ ,Ψ , Lp) as defined
in (6.9) (see e.g. [2, 28] for a proof involving systems with expansive matrices). If
we denote Bατ,q := Ḃατ,q(Ψ̃ ,Ψ , Lp), then from the previous corollary we obtain the
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identity

(6.12) Aγ/dq (Lp(Rd);SN) = Bγq,q, if
1
q
= γ
d
+ 1
p
.

It should be pointed out, however, that Bγq,q is not equal to the classical Besov space
Bγq,q(Rd), as it has been stated by some authors in the literature. If for simplicity
we consider the isotropic case, and take the usual definition:

(6.13) Bατ,q(Rd) =
{
u ∈ Lτ(Rd)

: |u|Bατ,q(Rd) =
[ d∑
i=1

∫∞
0
(t−α‖∆[α]+1

tei u‖τ)q dtt
]1/q

<∞
}
,

then for α > d(1/τ−1)+ and 1/p := 1/τ−α/d it is well known that Bατ,τ(Rd)↩
Lp(Rd) and, moreover, for sufficiently nice wavelets,

c1|u|Bατ,τ(Rd) ≤ ‖{〈u, ψ̃I〉}I‖bατ,τ ≤ c2|u|Bατ,τ(Rd)

(see e.g. [9], or in the anisotropic case [16]). That is, Bατ,τ(Rd)↩ Bατ,τ . However,
it is easy to construct examples of functions u ∈ Bατ,τ which are not in Lτ(Rd),
and thus cannot belong to Bατ,τ(Rd). This is a typical phenomenon of “growth at
infinity,” which does not happen in the “compact” case Bατ,τ[0,1]d.

As a final application, which takes care of this phenomenon and is probably
closer to the problems in signal compression, we replace (Ψ̃ ,Ψ) by the truncated
systems (at a fixed level j0 ∈ Z):

Ψ̃+ = {ψ̃I : |I| ≤ λ−j0d} ∪ {ϕ̃I : |I| = λ−j0d},

and likewise for Ψ+. In practice, ϕ̃ and ϕ are a pair of scaling functions from
which one derives ψ̃ and ψ via usual multiresolution analysis methods [7,18,26].
Typically, ϕ, ϕ̃ are supposed to be r -regular but with no vanishing moments.
To adapt our setting to such applications, we take as starting assumption that
(Ψ̃+,Ψ+) is a biorthogonal analysis-synthesis pair for L2(Rd) (which happens, e.g., if
these are dual Riesz bases in L2). The new analysis operator u, AΨ̃+(u) = {sj,k}
is defined by:

sj,k = 〈u, ψ̃j,k〉 if j ≥ j0,
sj0−1,k = 〈u, ϕ̃j0,k〉,
sj,k = 0 if j < j0 − 1,
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and similarly for SΨ . Thus, the corresponding sequence spaces f
s,+
p,r and b

α,+
τ,q are

subspaces of the previous ones, consisting of sequences supported in the truncated
set

I+ = {I ∈ I : |I| ≤ λ−(j0−1)d}
= {Ij,k : j ≥ j0 − 1, k ∈ Zd}.

This new setting is also quite natural for the study of function spaces. As
before we set F′ = Lp(Rd) for fixed 1 < p < ∞. If for simplicity we assume
that M is diagonal, then it is known that the abstract space Fsp,r (Ψ̃+,Ψ+, Lp) (de-
fined as in (6.9)) coincides with the classical inhomogeneous Triebel-Lizorkin space
Fsp,r (Rd), with an equivalence of norms

‖u‖Fsp,r (Rd) ∼ ‖u‖Lp(Rd) + ‖AΨ̃+(u)‖fsp,r ∼ ‖AΨ̃+(u)‖fsp,r ,

at least for s ≥ 0 and regular enough wavelet bases [24]. This is also the case for
the space Bατ,τ(Ψ̃+,Ψ+, Lp), which when α > d(1/τ−1)+ and 1/p = 1/τ−α/d
coincides with the inhomogeneous Besov space Bατ,τ(Rd) with the norm equivalence

‖u‖Bατ,τ(Rd) ∼ ‖u‖Lτ(Rd) + ‖AΨ̃+(u)‖bατ,τ ∼ ‖AΨ̃(u)‖bατ,τ

(see [24], and [16] for a general Lp formulation).
Since Jackson and Bernstein inequalities remain valid for the subspaces f

s,+
p,r

and b
α,+
τ,q , one obtains an analog of Corollary 6.7 for the spaces Fsp,r (Ψ̃+,Ψ+,F′)

and Bs+βτ,τ (Ψ̃+,Ψ+,F′). In particular, for sufficiently regular wavelet bases we ob-
tain the characterization:

Aγ/dq (Fsp,r (R
d);S+N) = Aγ/dq (Bsp,p(R

d);S+N)

= Bs+γq,q (Rd), if
1
q
= γ
d
+ 1
p
,

where the approximating family S+N is made up of all linear combinations of at least
N functions in Ψ+. When s = 0 and r = 2, the identity becomes Aγ/dq (Lp;S+N) =
Bs+γq,q , which corrects the phenomenon in (6.12) for approximation with {SN} in
Lp(Rd).
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[9] RONALD A. DEVORE, BJÖRN JAWERTH, and VASIL A. POPOV, Compression of wavelet
decompositions, Amer. J. Math. 114 (1992), 737–785. MR1175690 (94a:42045)

[10] RONALD A. DEVORE, Nonlinear approximation, Acta Numerica, 1998, Acta Numer., vol. 7,
Cambridge Univ. Press, Cambridge, 1998, pp. 51–150. MR1689432 (2001a:41034)

[11] RONALD A. DEVORE, GUERGANA PETROVA, and VLADIMIR N. TEMLYAKOV, Best basis
selection for approximation in Lp , Found. Comput. Math. 3 (2003), 161–185. MR1966298
(2004c:41033)

[12] RONALD A. DEVORE and VASIL A. POPOV, Interpolation spaces and nonlinear approximation,
Function Spaces and Applications (Lund, 1986), Lecture Notes in Math., vol. 1302, Springer,
Berlin, 1988, pp. 191–205. MR942269 (89d:41035)

[13] PETER DINTELMANN, Classes of Fourier multipliers and Besov-Nikolskij spaces, Math. Nachr.
173 (1995), 115–130. MR1336956 (96h:42007)
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