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Abstract. We obtain mixed norm versions ℓs(Lp) of an inequality introduced by Wolff in

the context of local smoothing for the wave equation. We show that suitable modifications

of the original arguments of  Laba and Wolff allow to improve in their range of p, both in

the original ℓp(Lp) formulation and also in the stronger ℓ2(Lp), in all dimensions d ≥ 2.

As a consequence of the latter we obtain a new L4 bound for the cone multiplier operator

in R3, as well as further progress in the boundedness of Bergman projections in tubes over

light-cones.

1. Introduction

Let Γ = {(τ, ξ) ∈ R × Rd : τ = |ξ| } denote the forward light-cone in Rd+1, d ≥ 2. For

small δ > 0 and constants c ≈ 1, we shall consider δ-neighborhoods of the truncated cone

(1.1) Γδ(c) = {(τ, ξ) ∈ Rd+1 : 2−c ≤ τ ≤ 2c and
∣∣τ − |ξ|

∣∣ ≤ cδ}.

We also consider the usual plate decomposition of Γδ(c) subordinated to a covering of

the sphere by
√
δ-caps. Namely, given a maximal sequence Ω = {ωk} ⊂ Sd−1 so that

dist(ωk, ωk′) ≥
√
δ, for k 6= k′, and a constant c′ ≈ 1, we let

(1.2) Π
(δ)
k = Π(δ)

ωk
(c, c′) =

{
(τ, ξ) ∈ Γδ(c) :

∣∣ξ/|ξ| − ωk

∣∣ ≤ c′
√
δ
}
.

By a slight abuse of language we shall call the above sets “plates”, since by appropriately

adjusting the constants c, c′ they become comparable to 1×
√
δ× (d−1)

... ×
√
δ× δ rectangles

with longest axis in the direction of (1, ωk) and mid-length and short axes, respectively,

tangent and normal to Γ at the point (1, ωk).

In [16], T. Wolff proposes the validity of the following inequality related to the above

plate decomposition: for every ε > 0 there exists Cε > 0 (independent of δ and {ωk}) so

that

(1.3)
∥∥∥

∑

k

fk

∥∥∥
p
≤ Cε δ

−α(p)−ε
(∑

k

‖fk‖p
p

)1/p
, ∀ fk : supp f̂k ⊂ Π

(δ)
k ,

This is a preliminary version from 2008. Further work is still in progress.
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where α(p) := d(1
2 − 1

p) − 1
2 is the standard Bochner-Riesz critical index in d dimensions.

The inequality is conjectured to hold for all p ≥ 2 + 4
d−1 , and for each such p, the power

α(p) is optimal (except perhaps for ε > 0). (1.3) arises naturally when dealing with Lp-

boundedness of cone multipliers and local smoothing of the wave equation [16].

In his fundamental work [16], Wolff developed a method to prove such inequalities for

large values of p, obtaining a positive answer for p > 74 when d = 2. This method was

extended to higher dimensions in the paper by  Laba and Wolff [8], establishing (1.3) for

all p > 2 + min{ 32
3d−7 ,

8
d−3}. In both papers the authors announce that improvements over

these indices should certainly be possible, although perhaps still far from the conjectured

exponents. In fact, a slightly better range for all d ≥ 2 was already presented by the first

and third authors in [6], based on a minor modification in the original proof.

One of the purposes of this note is to observe that, with a bit more effort, the techniques

of the papers [16, 8] actually lead to the validity of (1.3) in the following improved range.

Theorem 1.1. Let d ≥ 2. Then, for all ε > 0 the inequality (1.3) holds when p > pd, where

(1.4) pd = 2 + 8
d−2

(
1 − 1/2

d+1

)
for d ≥ 3, and p2 = 20 for d = 2.

We shall actually do more by proving a stronger inequality than (1.3). In fact, motivated

by questions on the Bergman projection for tube domains over light cones [2, 1] it is natural

to consider as well mixed norm versions ℓs(Lp) of (1.3); namely

(Wp,s)
∥∥∥

∑

k

fk

∥∥∥
p
≤ Cε δ

−β(p,s)−ε
(∑

k

‖fk‖s
p

)1/s
, ∀ fk : supp f̂k ⊂ Π

(δ)
k ,

where

(1.5) β(p, s) =
d− 1

2s′
− d+ 1

2p
.

Here p ≥ 2(d+1)
d−1 and we consider only indices s > 1 so that β(p, s) ≥ 0, in which case the

exponent β(p, s) is best possible. Observe that for fixed p, the inequality becomes stronger

as s is smaller. In fact, (Wp,s) and Hölder’s inequality imply (Wp,σ) for all σ > s, since

# k′s = Card (Ω) ≤ C δ−
d−1
2 ,

and β(p, s) + d−1
2 (1

s − 1
σ ) = β(p, σ). The hardest case should be (p = 2(d+1)

d−1 , s = 2), which

will imply all the other cases by interpolation with the trivial (p = ∞, s = 1). One can also

ask for the validity of (Wp,s) when 2 < p < 2(d+1)
d−1 , in which case β(p, s) must be replaced

by d−1
2 (1

2 − 1
s ) (see Figure 1.1). However, no such result seems to be known, even in the

simpler case of functions with spectrum in a δ-neighborhood of the unit spheres∗.

∗Except for (W4,2) in the circle case, which is a trivial consequence of the classical estimate

‖∑
k fk‖L4(R2) . ‖(

∑
k |fk|2)1/2‖L4(R2).
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β(p,s)=(d−1)/(2s’)−(d+1)/(2p)

(p,s)=0β

(p,s)=(1/2−1/s)(d−1)/2β
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Figure 1.1. Conjectured region of validity for the inequality (Wp,s) for

different values of β(p, s). In the dashed region the result is trivial, while

the dotted line corresponds to the inequality (1.3) conjectured by Wolff.

Our contribution to this problem is mainly restricted to the case s = 2, that is

(1.6)
∥∥∥

∑

k

fk

∥∥∥
p
≤ Cε δ

−β(p)−ε
(∑

k

‖fk‖2
p

)1/2
, ∀ fk : supp f̂k ⊂ Π

(δ)
k ,

where now

(1.7) β(p) = β(p, 2) =
d− 1

4
− d+ 1

2p
.

Our main result can then be stated as follows.

Theorem 1.2. Let d ≥ 3. Then, the (Wp,2) inequality in (1.6) holds for all ε > 0 when

(1.8) p > pd = 2 + 8
d−2

(
1 − 1/2

d+1

)
.

When d = 2, the inequality (Wp,s) holds for all ε > 0 in the range

(1.9)

p > 20 if s ≥ 3 − 3
13 ,

p > p(s) if 2 ≤ s ≤ 3 − 3
13 ,

p > 70
3 if s = 2,
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Figure 1.2. Region of validity of inequality (Wp,s) for d ≥ 3 and d = 2,

according to Theorem 1.2.

where p(s) = 5(11s − 6 +
√

65s2 − 76s + 36)/(6(s − 1)).

Interpolating these results with the trivial (p = ∞, s = 1) estimates one obtains the

regions drawn in Figure 1.2.

As mentioned before, Theorem 1.2 can be proved following very closely the arguments

in [16, 8]. Our contribution lies on three points: first, a new packet decomposition adapted

to the ℓs(Lp) formulation of the problem. Secondly, a suitable iteration of the induction

on scales method from the original proof, leading in particular to a unified exponent for all

dimensions d ≥ 3. Third, in the special (and more difficult) case d = 2 we additionally refine

one of the combinatorial lemmas of Wolff, which in turn improves and slightly simplifies

the results in [16]. These methods, together with the use of bilinear restriction estimates as

described in [6], give the improved exponents announced in Theorems 1.1 and 1.2. Although

most of the ideas are contained in the original papers [16, 8], we have preferred to make

proofs as detailed and self-contained as possible, specially in what concerns to the more

general ℓs(Lp) setting. Nevertheless, the main combinatorial arguments (and specially the

very deep ones for d = 2 involving circle tangencies) remain untouched and have just been

quoted from [16, 8].

We recall that the validity of (1.3) implies progress in various remarkable problems in

harmonic analysis. We refer to [6] for a more complete discussion. In some of these problems,

the stronger (Wp,s) estimates obtained in this paper imply slightly better results. For

instance, when d = 2, the ℓ4(L20) inequality in Theorem 1.2, when suitably combined with

the bilinear methods of Tao and Vargas [14], implies the following improvement in the

square function estimate (see [6, Theorem 5.1]).
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Corollary 1.3. Let d = 2. Then for all α > 1
9 and all fk with supp f̂k ⊂ Π

(δ)
k , we have

(1.10)
∥∥∥
∑

k

fk

∥∥∥
L4(R3)

≤ Cα δ
−α

∥∥∥
(∑

k

|fk|2
)1/2

∥∥∥
L4(R3)

.

This is a slight improvement over the previously known α > 5/44, due to Tao-Vargas

and Wolff [14, 17].

As mentioned before, the ℓ2(Lp) inequalities (1.6) also imply progress in the boundedness

of Bergman projections in tubes over cones. We discuss this question in more detail in §7.

A reformulation. In order to prove inequalities of the form (Wp,s) we may assume,

without loss of generality, that the points in Ω = {ωk}k are strongly separated, meaning

that dist(ωk, ωk′) ≥ c′′
√
δ, k 6= k′, for a certain constant c′′ > 0 so that the plates Π

(δ)
k are

pairwise disjoint. One can also replace the fk’s by suitable projections of Schwartz functions

in Rd+1.

More precisely, let ζ, χ ∈ C∞
c (R) with supp ζ ⊂ [−2c, 2c] and supp χ ⊂ [4−c, 4c]. For

each ω ∈ Sd−1, consider as well a function ηω ∈ C∞(Rd \ {0}), homogeneous of degree 0

and supported in the open cone {ξ ∈ Rd : dist (ξ/|ξ|, ω) ≤ 2c′
√
δ}. Then, define operators

Pk = P
(δ)
ωk by

(1.11) P̂kf(τ, ξ) = ζ
(τ−|ξ|

δ

)
χ(τ) ηωk

(ξ) f̂ (τ, ξ).

Note that the functions P̂kf are supported in slight expansions of the plates Π
(δ)
k , and that

the operators Pk are uniformly bounded on Lp(Rd+1). We may choose the functions ζ, χ

and ηω so that Pk is the identity on functions with spectrum in Π
(δ)
k , and there is no loss of

generality if we adjust the constants so that the P̂kf ’s have disjoint supports. Then (Wp,s)

is equivalent with the statement that

(1.12)
∥∥∥

∑

k

Pkhk

∥∥∥
p
≤ Cεδ

−β(p,s)−ε
(∑

k

‖hk‖s
p

)1/s
, ∀ {hk} ⊂ Lp(Rd+1).

For 1 ≤ p, s ≤ ∞ and functions in f ∈ Lp(Rd+1) we may define a semi-norm by

(1.13) ‖f‖p,s;δ =
( ∑

k

‖Pkf‖s
p

)1/s
.

Note that if f =
∑
fk with supp f̂k ⊂ Πδ

k, then

(1.14) ‖f‖p,s;δ =
(∑

k

‖fk‖s
p

)1/s
and ‖f‖2,2;δ = ‖f‖2.

Also, when there is no ambiguity about the magnitude of δ we shall just write ‖f‖p,s.
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2. Notation and basic definitions

Throughout we fix p > pd. We also fix a positive but very small ǫ0, which may depend

on p and will be determined later. Statements involving the parameter δ are assumed to

hold for all δ ∈ (0, δ0], for some fixed δ0 ≪ 1. For each such δ we set

N = 1/δ and t = δǫ0 = N−ǫ0.

The constants C, c0, c1, ... appearing below may depend on p, d, ǫ0, δ0 and also on other

constants appearing below, but will be independent of δ, fk, {ωk}, and parameters such as

λ or ε. Otherwise we will indicate it by Cε, etc... By A . B we will mean A ≤ C B for some

C as above, and by A / B we mean A ≤ C (logN)C B, for some C > 0. We shall write

either #P or |P| for the cardinality of a finite set P. Recall that Ω = {ωk} has cardinality

. N
d−1
2 . Below it will be convenient to identify (perhaps with some abuse of language)

each point ωk with its subindex k; that is, we shall assume that k = ωk ∈ Sd−1.

Remark. For notational reasons, the scaling used in this paper is slightly different

from that in [16, 8], where Fourier transforms are supported in cone sectors of {(τ ′, ξ′) ∈
Rd+1 : 2−cN ≤ τ ′ ≤ 2cN and

∣∣τ ′−|ξ′|
∣∣ ≤ c} rather than in Γδ(c). Passing from one set-

ting to the other is straightforward, using the dilation (τ, ξ) ∈ Γδ(c) 7→ (τ ′, ξ′) = (Nτ,Nξ),

and we shall do so without mention when quoting results from [16, 8]. Alternatively, the

modified statements can also be found in [7].

Plates and plate families. We recall the basic notation concerning plates and tubes in [16, 8],

which we write with the same scaling as in [7]. An N -plate will be a rectangular box in Rd+1

of size c0(1 ×
√
N × (d−1)

... ×
√
N ×N), whose longest axis is a light-ray and the mid-length

and short axes are respectively tangent and normal to the corresponding light-cone at the

center of the plate. We typically denote plates in (t, x)-space by π and plate families by P.

We shall always assume that N -plates are essentially dual to some Π
(δ)
k , in which case we

use the notation

(2.1) π ‖ k

to indicate that π is an N -plate with long side parallel to nk = (1,−ωk). In particular,

any two plates are either parallel or point in
√
δ-separated directions. We shall also assume

that families P consist only of separated plates, meaning that for each π ∈ P at most C1

plates from P can be contained in a fixed dilate C2π, where C1 and C2 are fixed universal

constants.

An N -tube τ is a rectangular box of size c′0(
√
N × (d times )

... ×
√
N × N), whose longest

axis points also in some (1,−ωk) direction. Tube families T will also be assumed to be

separated. Finally, a σ-cube ∆ is a cube of sidelength σ centered at some point of the grid

σZd+1. By {∆} we denote the tiling of Rd+1 formed by all such cubes. In general, given a
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rectangular box R (e.g., a cube, tube or plate), we denote by cR the box obtained from R

by dilating it by a factor c > 0 about its center.

Bump functions. Given a fixed large M (which will be chosen later) we let

(2.2) w(x) = (1 + |x|2)−M/2,

and given a rectangle R we denote wR = w ◦a−1
R , where aR is an affine map taking the unit

cube centered at 0 to the rectangle R. Thus wR is roughly the characteristic function of

R with “Schwartz tails”(with an abuse of language, as for fixed M the function w is not a

Schwartz-function).

We shall also use a fixed non-negative Schwartz function ψ, strictly positive in B2(0),

with Fourier transform supported in B 1
100

(0), and so that
∑

n∈Zd+1 ψ(·+n)2 = 1. Again we

set

(2.3) ψR = ψ ◦ a−1
R .

In particular, if {R} is a tiling of Rd+1 by cubes (or plates, or tubes), then
∑

R ψ
2
R = 1.

Elementary properties of the norms ‖ · ‖p,s;δ.

Lemma 2.1. Let p ≥ 2 and f =
∑
fk with f̂k supported in Π

(δ)
k . Then

‖f‖∞,2 . N−(d+1)/2p‖f‖p,2 ,(2.4)

‖f‖∞ . Nβ(p)‖f‖p,2 ,(2.5)

‖f‖p,2 . ‖f‖2/p
2 ‖f‖1−2/p

∞,2 .(2.6)

Moreover, for every s ∈ [1, p] we have

(2.7) ‖f‖p,s . ‖f‖2/p
2 ‖f‖1−2/p

∞,r ,

where r = r(p, s) is defined by

(2.8)
2

r
= (

1

s
− 1

p
)/(

1

2
− 1

p
).

Proof. Observe that, by Young’s inequality,

(2.9) ‖g‖∞ . N−(d+1)/2p‖g‖p , when supp ĝ ⊂ Π
(δ)
k .

This yields (2.4). If f =
∑
fk with f̂k supported in Π

(δ)
k then, using (2.4),

‖f‖∞ .
∑

k

∥∥fk

∥∥
∞ . N

d−1
4

(∑

k

∥∥fk

∥∥2

∞

)1/2
. N

d−1
4

− d+1
2p

( ∑

k

∥∥fk

∥∥2

p

)1/2

which is (2.5). Inequality (2.6) is a special case of a corresponding inequality for the

projection operators Pk, namely for ϑ = 1 − 2/p and {hk} ⊂ Lp(Rd+1),
(∑

k

‖Pkhk‖2
p

)1/2
.

(∑

k

‖hk‖2
2

)(1−ϑ)/2( ∑

k

‖hk‖2
∞

)ϑ/2
.
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This follows by convexity from the obvious cases p = 2 and p = ∞. The more general

inequality (2.7) follows similarly, after noticing that 1
s = 1−ϑ

2 + ϑ
r and ϑ = 1 − 2/p imply

that r = r(p, s) as in (2.8). �

We shall also use the following localization estimate.

Lemma 2.2. Let 1 ≤ s ≤ p ≤ ∞ and f =
∑
fk with f̂k supported in Π

(δ)
k . Let Q = {Q} be

a grid of N -cubes and ψQ be as in (2.3) (so that ψ̂Q is supported in Bδ/100(0)). Then

(2.10)
( ∑

Q∈Q
‖ψQf‖p

p,s;2δ

)1/p
. ‖f‖p,s;δ .

Proof. Note that ψ̂Q ∗ f̂k is supported in Π
(2δ)
k . Also, ‖P (2δ)

k (ψQf)‖p .
∑

k′∈Ωk
‖ψQfk′‖p,

where Ωk = {k′ : dist (ωk′ − ωk) .
√
δ} has cardinality bounded by a constant. Applying

Minkowski’s inequality (since p ≥ s) and using the above observation we obtain

(∑

Q

[∑

k

∥∥P (2δ)
k (ψQf)

∥∥s

p

] p
s

) 1
p ≤

(∑

k

[∑

Q

∥∥P (2δ)
k (ψQf)

∥∥p

p

] s
p

) 1
s

.
(∑

k′

[∑

Q

∥∥ψQfk′

∥∥p

p

] s
p

) 1
s

.
(∑

k′

∥∥fk′

∥∥s

p

) 1
s
.

�

Packets.

Definition 2.3. (i) f is an called an N -packet associated with Π
(δ)
k if it can be written as

f =
∑

π∈P fπ for some family P = Pk(f) of separated N -plates with π ‖ k, in such a way

that every function fπ, π ∈ Pk, satisfies

(2.11) |fπ| ≤ c1 wπ and supp f̂π ⊂ c2 Π
(δ)
k ,

where c1, c2 are suitable fixed constants.

(ii) Let E be a set of directions in Ω and let Q an N -cube. We say that f is an (N,E,Q)-

packet† if it can be written as

(2.12) f =
∑

k∈E

∑

π∈Pk

fπ

where Pk is a family of plates π ‖ k so that π ⊂ 2N ε0Q for all π ∈ Pk, and fπ are functions

so that (2.11) holds for all π ∈ Pk and all k ∈ E. We denote the plate family of f by

P(f) = ∪k∈EPk.

†These packets are special cases of “N-functions”, as defined in [16, 8].
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(iii) We say that f is a stable (N,E,Q)-packet if it is an (N,E,Q)-packet with plate family

P(f) = ∪k∈EPk which in addition satisfies

(2.13) |Pk| ≤ 2|Pk′ |, ∀ k, k′ ∈ E.

(iv) Let f be an (N,E,Q)-packet with plate family P = ∪k∈EPk and with the representation

(2.12). A subpacket of f is a function f̃ of the form

(2.14) f̃ =
∑

k∈E

∑

π∈P̃k

fπ,

where each P̃k is a subset of Pk. Observe that every subpacket of an (N,E,Q)-packet is

again an (N,E,Q)-packet. However, subpackets of stable (N,E,Q)-packets are not neces-

sarily stable.

Condition (2.13) is crucial to deal with ‖ · ‖p,s;δ norms, and implies that the cardinalities

of the Pk’s are comparable, for all k ∈ E. Elementary properties of packets are listed below.

Lemma 2.4. Let f be an (N,E,Q)-packet. Then

(2.15) ‖f‖∞,r . |E| 1r , 1 ≤ r ≤ ∞,

(2.16) ‖f‖∞ . |E| . N
d−1
2 ,

(2.17) ‖f‖2
2 . N (d+1)/2|P(f)|,

Moreover, if p ≥ 2 and 1 ≤ s ≤ p we also have

(2.18) ‖f‖p,s .
(
N

d+1
2 |P(f)|

) 1
p |E|

1
s
− 1

p .

If in addition f is a stable (N,E,Q)-packet, then (2.18) holds for all p, s ≥ 1.

Proof. (2.15) and (2.16) are immediate. We next prove (2.18) for stable packets:

‖f‖p,s .
( ∑

k∈E

∥∥∥
∑

π∈Pk

fπ

∥∥∥
s

p

)1/s
.

( ∑

k∈E

∥∥∥
∑

π∈Pk

wπ

∥∥∥
s

p

)1/s

.
( ∑

k∈E

[
N

d+1
2 |Pk|

]s/p
)1/s

.
(
N

d+1
2 |P(f)|

)1/p|E|
1
s
− 1

p

where for the last inequality we use |Pk| ≈ |P(f)|/|E| by (2.13). Observe that the previous

proof does not require the stability assumption when p = s, which in particular gives (2.17).

Finally, to obtain (2.18) for general packets when p ≥ 2 and 1 ≤ s ≤ p, one uses the

interpolation estimate in (2.7), together with the previous (2.15) and (2.17):

‖f‖p,s . ‖f‖
2
p

2 ‖f‖1− 2
p

∞,r .
(
N

d+1
2 |P(f)|

)1/p|E|(1−
2
p
)/r,
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where r = r(p, s) is defined in (2.8). However, from the definition of r(p, s) one sees that

(1 − 2
p)/r = 1

s − 1
p , which establishes (2.18). �

The main lemma in this section concerns decompositions of functions with Fourier sup-

port in Γδ(c) into stable N -packets. The stability condition on the packets is crucial to

obtain the inequality in (2.22) below, which is a sort of converse to the inequality in (2.18).

This estimate will be strongly used in the proof of Proposition 3.3 and in the iteration

process which starts with Lemma 5.2.

Lemma 2.5. Let f =
∑
fk with f̂k supported in Π

(δ)
k and assume that

(2.19) sup
k

‖fk‖∞ ≤ A.

Then, for every N -cube Q, we may decompose

(2.20) f(x) =
∑

AN−10d≤2j.A

nj∑

ℓ=1

2j f [j,ℓ](x) + g(x), x ∈ Q

for some constant integers nj . logN , and where

(i) for each j, ℓ, the functions f [j,ℓ] are stable (N,Ej,ℓ, Q)-packets, for certain sets of direc-

tions Ej,ℓ ⊂ Ω. The corresponding plate families P [j,ℓ] consist only of plates π ⊂ 2N ε0Q.

Also, we can write

f [j,ℓ] =
∑

k∈Ej,ℓ

∑

π∈P [j,ℓ]
k

fπ,

for plate families P [j,ℓ]
k consisting of plates ‖ k, and so that P [j,ℓ] = ∪k∈Ej,ℓ

P [j,ℓ]
k .

(ii) The function g(x) satisfies

(2.21) ‖g‖L∞(Q) . N−8dA.

(iii) For every s, p ≥ 1 and every j, ℓ

(2.22) 2j
(
N

d+1
2 |P [j,ℓ]|

) 1
p |Ej,ℓ|

1
s
− 1

p . ‖f‖p,s;δ .

Proof. Fix k, and consider a tiling {π} of Rd+1 by plates π ‖ k. Write

(2.23) fk =
∑

π‖k
fkψ

2
π =

∑

π‖k : π∩(Nε0Q)6=∅
fkψ

2
π + gk.

For each j ∈ Z, let

P [j]
k =

{
π : π ‖ k, π ∩ (N ε0Q) 6= ∅ and 2j ≤ ‖fkψπ‖∞ < 2j+1

}
.
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Observe that ‖fkψπ‖∞ . ‖fk‖∞ ≤ A, and therefore these plate sets are non-empty only for

2j . A. Next, fix j, and for every positive integer ℓ define

Ej,ℓ =
{
k : 2ℓ−1 ≤ #P [j]

k < 2ℓ
}
.

Since #P [j]
k ≤ #{π : π ⊂ 2N ε0Q} . N (d+1)(1+ε0)/N

d+1
2 , the sets Ej,ℓ are non-empty only

for ℓ . logN .

Call fπ := 2−jfkψ
2
π, when π ∈ P [j]

k . Clearly, these are N -packets associated with Π
(δ)
k .

Define the functions

f [j,ℓ] =
∑

k∈Ej,ℓ

∑

π∈P [j]
k

fπ,

so that from (2.23) we see that

(2.24) f(x) =
∑

2j.A

2j
C log N∑

ℓ=1

f [j,ℓ](x) +
∑

k

gk(x).

By construction it is easy to see that, for each j and ℓ, the function f [j,ℓ] is an (N,Ej,ℓ, Q)-

packet. The stability condition in (2.13) is immediate since

|P [j]
k0
| < 2ℓ ≤ 2 |P [j]

k1
|, ∀ k0, k1 ∈ |Ej,ℓ|.

To pass from (2.24) to the decomposition in (2.20), define the function

g =
∑

k

gk +
∑

2j<AN−10d

2j
∑

ℓ

f [j,ℓ].

Observe that, from (2.23) and the Schwartz decay of ψ,

∥∥∑

k

gk

∥∥
L∞(Q)

≤
∑

k

∑

π‖k : π∩(Nε0Q)=∅

∥∥fkψ
2
π

∥∥
L∞(Q)

. N
d−1
2 sup

k
‖fk‖∞ CLN

−ε0L . N−9dA,

if we choose L sufficiently large (depending on ε0). On the other hand, using (2.16),

∑

2j≤AN−10d

2j
∑

ℓ

‖f [j,ℓ]‖∞ . (logN)
∑

2j<AN−10d

2j N
d−1
2 . AN−9d.

Putting the last two estimates together we obtain (2.21).
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Finally, we must verify (2.22), for every j, ℓ. Fix k0 ∈ Ej,ℓ, and use that |P [j]
k | ≈ |P [j]

k0
| ≈

2ℓ, for all k ∈ Ej,ℓ, which implies

2jpN
d+1
2 |P [j,ℓ]| ≤ 2jpN

d+1
2 |Ej,ℓ| 2ℓ . |Ej,ℓ|

∑

π∈P [j]
k0

2jp |π|

. |Ej,ℓ|
∑

π∈P [j]
k0

‖fk0ψπ‖p
∞ |π|

. |Ej,ℓ|
∑

π∈P [j]
k0

‖fk0ψπ‖p
p . |Ej,ℓ| ‖fk0‖p

p ,

where in the last two inequalities we have used (2.9) and
∑

n∈Zd+1 ψ(· + n)ρ . 1. Thus, we

have

‖f‖p,s ≥
( ∑

k0∈Ej,ℓ

‖fk0‖s
p

) 1
s

&
( ∑

k0∈Ej,ℓ

[2jpN
d+1
2 |P [j,ℓ]|

|Ej,ℓ|
]s/p ) 1

s
= 2j (N

d+1
2 |P [j,ℓ]|)

1
p |Ej,ℓ|

1
s
− 1

p ,

as we wished to prove. �

3. Equivalent formulations of the problem

Definition 3.1. Given p ≥ 2, s ∈ [1, p] and γ > 0, we say that hypothesis Hstr(p, s, γ) holds

if there exists Cγ > 0 so that for any δ = N−1 ≤ δ0 and any f =
∑

k fk with supp f̂k ⊂ Π
(δ)
k

(3.1) ‖f‖p ≤ CγN
β(p,s)+γ

( ∑

k

‖fk‖s
p

)1/s
,

where β(p, s) = d−1
2s′ − d+1

2p .

It is our objective to prove Hstr(p, 2, γ) for all γ > 0, in the asserted range of p’s in (1.8)

(and likewise for Hstr(p, s, γ) when d = 2 in the range in (1.9)). We formulate a slightly

weaker condition which can be seen as an analogue of a restricted weak type inequality.

Definition 3.2. Given p ≥ 2, s ∈ [1, p] and γ > 0, we say that hypothesis H(p, s, γ) holds

if there exists Cγ > 0 so that for all δ = N−1 ≤ δ0, for all N -cubes Q, all E ⊂ Ω and all

stable (N,E,Q)-packets f with plate family P(f) the following estimate holds

(3.2)
∣∣{x ∈ Q : |f(x)| > λ}

∣∣ ≤ Cγ λ
−pN (β(p,s)+γ)p N

d+1
2 |P(f)| |E| p

s
−1,

for all positive real number λ > 0.

The main result in this section is the following.
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Proposition 3.3. Let p ≥ 2, s ∈ [1, p] and 0 < γ < γ1. Then

(3.3) Hstr(p, s, γ) =⇒ H(p, s, γ) =⇒ Hstr(p, s, γ1).

The first implication follows by Čebyšev’s inequality and the estimate (2.18) for the

(p, s)-norm of stable plates. The second implication is less trivial and will be proved be-

low. Observe that one always has the trivial bound Hstr(p, s, γ = d+1
2p ), since ‖∑

k fk‖p ≤
∑

k ‖fk‖p . N
d−1
2s′ ‖f‖p,s = Nβ(p,s)+ d+1

2p ‖f‖p,s. Thus, assuming Proposition 3.3, Theorem

1.2 is reduced to prove the following

Theorem 3.4. Let p and s be as in (1.8) and (1.9). Then, there exists ǫ′0 = ǫ′0(p, s) so

that if hypothesis Hstr(p, s, γ0) holds for some γ0 > 0, then hypothesis H(p, s, γ) holds for

all γ > (1 − ǫ′0)γ0.

Indeed, if Theorem 3.4 holds, then Proposition 3.3 together with an iteration gives the

validity of the strong type estimate Hstr(p, s, ǫ) for all ǫ > 0, thus establishing Theorem 1.2.

In the proof of Proposition 3.3 we shall also use the following localization lemma.

Lemma 3.5. Let 1 ≤ s ≤ p < ∞ and α > 0. Assume that for all N -cubes Q and all

f =
∑

k fk with f̂k ⊂ Π
(δ)
k we have

(3.4) ‖f‖Lp(Q) ≤ C Nα ‖f‖p,s;δ.

Then,

(3.5) ‖f‖Lp(Rd+1) . C Nα ‖f‖p,s;δ.

Proof. Write f =
∑

Q∈Q ψ
2
Qf , where Q is a tiling of Rd+1 by N -cubes and ψQ is as in (2.3).

Then, using the Schwartz decay of ψ,

‖f‖p
Lp(Rd+1)

=
∑

Q′

∥∥∑

Q

ψ2
Qf

∥∥p

Lp(Q′)
.

∑

Q,Q′

∥∥ψ3/2
Q f

∥∥p

Lp(Q′)

.
∑

Q,Q′

∥∥ψQf
∥∥p

Lp(Q′)

(
1 + dist (Q,Q′)/N

)−10d
.

Since each ψQfk has spectrum contained in Π
(2δ)
k , we can apply (3.4) with f replaced by

ψQf (and δ by 2δ) to obtain

‖f‖p
Lp(Rd+1)

. CpNαp
∑

Q,Q′

∥∥ψQf
∥∥p

p,s;2δ

(
1 + dist (Q,Q′)/N

)−10d
,

which by Lemma 2.2 is controlled by ‖f‖p
p,s;δ. �

Proof of Proposition 3.3. We show the proof of the main implication

(3.6) H(p, s, γ) =⇒ Hstr(p, s, γ1), for γ1 > γ.



14 G. GARRIGÓS, W. SCHLAG AND A. SEEGER

By the previous lemma it suffices to show

(3.7) ‖f‖Lp(Q) ≤ CεN
(β(p,s)+γ+ε)‖f‖p,s;δ

for all ε > 0, all N -cubes Q and all f =
∑

k fk with f̂k ⊂ Π
(δ)
k . To do so we may assume

(3.8) ‖f‖p,s;δ = 1.

Fix an N -cube Q. Then

(3.9) ‖f‖p
Lp(Q) .

∑

m∈Z

2mp meas
(
{x ∈ Q : |f | > 2m}

)
.

By the arguments in Lemma 2.1 we have ‖f‖∞ . Nβ(p,s), and thus we may assume

m . logN in (3.9). Also, if 2m ≤ N−(d+1), then the right hand side of (3.9) is controlled

by ∑

2m≤N−(d+1)

2mp |Q| . N−(d+1)(p−1) ≤ 1.

Thus, only a logarithmic number of m’s are relevant in (3.9), so by a pigeonhole argument

we can find m∗ so that

(3.10) ‖f‖p
Lp(Q) . (logN) 2m∗p meas

(
{x ∈ Q : |f | > 2m∗}

)
+ 1.

Using supk ‖fk‖∞ . supk N
− d+1

2p ‖fk‖p ≤ N− d+1
2p , we can apply to f the packet decomposi-

tion in Lemma 2.5, with A = N− d+1
2p and the N -cube Q fixed above. By (2.21), the function

g in (2.20) is then . N−8d which in turn is ≪ 2m∗ . By the pidgeonhole principle applied

to the O((logN)2) terms in the sum in (2.20), there are integers j∗ and ℓ∗, so that the set

of directions E∗ = Ej∗,ℓ∗ and the stable (N,E∗, Q)-packet f∗ = f [j∗,ℓ∗] satisfy

meas {x ∈ Q : |f | > 2m∗} . (logN)2 meas
({
x ∈ Q : 2j∗ |f∗| > 2m∗

C(log N)2

})
.

By Hypothesis H(p, s, γ) the right hand side of (3.10) is then estimated by

Cγ (logN)3+2p N (β(p,s)+γ)p 2j∗pN
d+1
2 |P(f∗)| |E∗|

p
s
−1 / Cγ N

(β(p,s)+γ)p,

where the last inequality follows from the crucial estimate (2.22) and the assumption

‖f‖p,s;δ = 1. Since the powers of logN are controlled by CεN
ε, for any ε > 0, this finishes

the proof of (3.7) and thus the proposition. �

There are some situations in which the inequality in (3.2) is trivial to verify, namely when

either |E| or λ are sufficiently small.

Lemma 3.6. Let p > 2 and 1 ≤ s ≤ p. Then the inequality (3.2) is true for every γ > 0

and every (N,E,Q)-packet when either

(3.11) λ ≤ N
β(p,s) p

p−2 |E|(p
s
−1)/(p−2),
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or when

(3.12) |E| p
s′
−1 ≤ Nβ(p,s) p.

Proof. By Čebyšev’s inequality and Lemma 2.4

meas
(
{x : |f(x)| > λ}

)
≤ λ−2‖f‖2

2 . λ−2N (d+1)/2 |P(f)| ,

and therefore

(3.13) meas
(
{x : |f(x)| > λ}

)
≤ λ−pNβ(p,s)pN

d+1
2 |P(f)||E| p

s
−1,

if λ−2 ≤ λ−pNβ(p,s) p|E| p
s
−1, which is easily seen to the same as (3.11). On the other hand,

for packets f we have ‖f‖∞ . |E| (by (2.16)), so that (3.2) only needs to be verified when

λ . |E|. But in this range (3.11) always holds if |E| . Nβ(p,s)p/(p−2)|E|(p
s
−1)/(p−2), which

is the same as (3.12). �

The previous lemma can be slightly improved using the following known (although prob-

ably non optimal) square function estimate: for all f =
∑
fk with supp f̂k ⊂ Π

(δ)
k and for

all ε > 0 it holds

(3.14) ‖
∑

k

fk‖q ≤ CεN
d−1

4(d+3)
+ε ∥∥(∑

k

|fk|2
) 1

2
∥∥

q
, where q = 2(d+3)

d+1 .

This inequality follows from the bilinear methods of Tao and Vargas [14], combined with

Wolff’s bilinear restriction theorem for the cone [17]. See e.g. [6, Prop. 2.3] for a detailed

proof.

Lemma 3.7. Let q = 2(d + 3)/(d + 1), p > q and 1 ≤ s ≤ p. Then the inequality (3.2) is

true for every γ > 0 and every (N,E,Q)-packet when either

(3.15) λ / N
(β(p,s)p− d−1

2(d+1)
)/(p−q) |E|(p

s
− q

2
)/(p−q),

or when

(3.16) |E| p
s′
− q

2 / N
β(p,s)p− d−1

2(d+1) .

Proof. Using Chebichev’s inequality and (3.14) we see that

meas
(
{x : |f(x)| > λ}

)
≤ λ−q‖f‖q

q ≤ Cε λ
−q N

( d−1
4(d+3)

+ε)q ∥∥(∑

k

|fk|2
) 1

2
∥∥q

q
.

Since q > 2, Minkowski’s inequality gives
∥∥(∑

k |fk|2
) 1

2
∥∥

q
≤ ‖f‖q,2;δ, while for (N,E,Q)-

packets we have ‖f‖q
q,2;δ . N

d+1
2 |P(f)| |E| q

2
−1, by Lemma 2.4. Thus, choosing ε < γ, (3.2)

will hold for all λ so that

λ−q N
d−1

4(d+3)
q |E| q

2 / λ−pNβ(p,s) p |E| p
s ,
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or equivalently when (3.15) holds. On the other hand, since we only consider λ ≤ ‖f‖∞ .

|E|, we see that (3.15) is always true when |E| /
(
N

β(p,s)p− d−1
2(d+1) |E| p

s
− q

2

)1/(p−q)
, which

after easy arithmetics gives the condition in (3.16). �

Remark 3.8. Thus, in the proof of Theorem 3.4 below we only need to consider the validity

of (3.2) for (N,E,Q)-packets f whose associated direction sets E have cardinality

(3.17) N
(β(p,s)p− d−1

2(d+1)
)/( p

s′
− q

2
)
(logN)C ≤ |E| . N

d−1
2 ,

and for real numbers λ in the range

(3.18) N
(β(p,s)p− d−1

2(d+1)
)/(p−q) |E|(p

s
− q

2
)/(p−q) (logN)C ≤ λ . |E|,

where C can be a suitably large constant.

4. Sufficient conditions for Theorem 3.4

The purpose of this section is identify properties of packets so that the improvement in

Theorem 3.4 holds. As in [16, 8] these can be phrased via localization of the level sets

{|f | > λ} using grids of slightly smaller cubes. Also, such localization assumptions will

hold when the cardinality of the involved plate families is suitably controlled in terms of λ.

4.1. Localization. We begin with an easy (but crucial) localization estimate.

Lemma 4.1. Let f̂ be supported in Γδ(c), let R be a cube of diameter tN , where t ≤ 1.

Then

(4.1) ‖ψRf‖2 . t1/2‖f‖2

Proof. By Plancherel this is equivalent with a statement about the integral operator TF (ξ) =∫
Kδ(ξ, η)F (η)dη with kernel

Kδ(ξ, η) = ψ̂R(ξ − η)χΓδ(c)(η).

The L2 operator norm is ≤ √
A1A2 where

A1 = sup
ξ

∫
|Kδ(ξ, η)|dη

A2 = sup
η

∫
|Kδ(ξ, η)|dξ.

Now clearly A2 = O(1) while the smaller η-support yields A1 = O(t). This implies the

assertion. �

We shall also use the following result.
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Lemma 4.2. Let f =
∑

k fk with supp f̂k ⊂ Π
(δ)
k , t ∈ [

√
δ, 1] and R a tN -cube. Then the

function fψR has Fourier transform supported in Γδ/t(C) and

(4.2)
∥∥fψR

∥∥
∞,r;δ/t

. t−
d−1
2r′ ‖f‖∞,r;δ, ∀ r ≥ 1.

Proof. Since ψ̂R is supported in Bδ/(100t)(0), it follows immediately that f̂ψR = f̂ ∗ ψ̂R is

supported in Γδ/t(C), for a sufficiently large constant C > 0. Next, denote by P
(δ/t)
k′ the

projections adapted to the plates Π
(δ/t)
k′ as in (1.11), and for each k′ let Ωk′ = {k :

(
Π

(δ)
k +

Bδ/(100t)(0)
)
∩ Π

(2δ/t)
k′ 6= ∅}. Observe that t ∈ [

√
δ, 1] implies #Ωk′ . t−(d−1)/2, ∀ k′, and

#{k′ : k ∈ Ωk′} . 1, ∀ k. Also we have

∥∥P (δ/t)
k′ (fψR)

∥∥
∞ =

∥∥P (δ/t)
k′ (

∑

k∈Ωk′

fkψR)
∥∥
∞ .

∑

k∈Ωk′

‖fk‖∞.

Then, (4.2) follows from the above observations and Hölder’s inequality. �

We now state a definition of λ-localization using tN -cubes. Below, Q(t) = {B} denotes

a fixed partition of Rd+1 by tN -cubes‡.

Definition 4.3. Let f be an (N,E,Q)-packet, let λ > 0 and as before t = δǫ0 = N−ǫ0. We

say that f localizes at height λ if there are subpackets fB of f , where B runs over

tN -cubes in a grid Q(t), such that

(4.3)
∑

B

#P(fB) / #P(f)

and

(4.4) meas
(
{x : |f(x)| > λ}

)
/

∑

B

meas
(
B ∩ {x : |fB| ' λ}

)
.

The next lemma gives, under the localization assumption, the crucial gain in the exponent

γ asserted in Theorem 3.4. The statement is just a straightforward modification of [8,

Lemma 6.2], but we sketch the proof below for completeness.

Lemma 4.4. Let p ≥ 2, s ∈ [1, p] and suppose that Hstr(p, s, γ0) holds for a fixed γ0 > 0.

Let λ > 0 and suppose that f is an (N,E,Q)-packet which localizes at height λ (with respect

to tN -cubes). Then, the estimate (3.2), i.e.

∣∣{x ∈ Q : |f(x)| > λ}
∣∣ ≤ Cγ λ

−pN (β(p,s)+γ)pN (d+1)/2|P(f)| |E| p
s
−1

holds for such f , Q and λ, and for all γ > γ0(1 − ǫ0/2).

‡Below B will always denote a tN-cube, while we keep the notation Q for N-cubes, and ∆ for
√

N-cubes.
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Proof. For each tN -cube B ∈ Q(t), the function fBψB has Fourier transform supported in

Γδ/t(C). We claim that

(4.5)
∥∥fBψB

∥∥
p,s;δ/t

. t−β(p,s) ‖fB‖2/p
2 |E|

1
s
− 1

p .

Indeed, using the convexity inequality in (2.7) (with r = r(s, p) as in (2.8)), followed by

Lemmas 4.1 and 4.2, we have

∥∥fBψB

∥∥p

p,s;δ/t
.

∥∥fBψB

∥∥2

2

∥∥fBψB

∥∥p−2

∞,r;δ/t

. t
∥∥fB

∥∥2

2
t−

d−1
2r′

(p−2)
∥∥fB

∥∥p−2

∞,r;δ
.(4.6)

Now, ‖fB‖∞,r . |E|1/r , while by the definition of r = r(s, p) in (2.8) we can write p−2
r′ =

p
s′ −1 and p−2

r = p
s −1. Inserting these estimates in the right hand side of (4.6), the claimed

inequality (4.5) follows easily.

Thus, using the localization condition and the hypothesis Hstr(p, s, γ0) (with δ replaced

by δ/t) we obtain

∣∣{|f | > λ}
∣∣ /

∑

B

∣∣ { |fBψB | ' λ
} ∣∣ (by (4.4))

/ λ−p
∑

B

(tN)(β(p,s)+γ0)p ‖fBψB‖p
p,s;δ/t

. λ−p
∑

B

N (β(p,s)+γ0)p tγ0p ‖fB‖2
2 |E| p

s
−1,

where in the last step we have used (4.5). Since by (4.3)
∑

B

‖fB‖2
2 . N

d+1
2

∑

B

#P(fB) / N
d+1
2 #P(f),

the lemma follows. �

4.2. Sufficient conditions for λ-localization. It is now important to identify situations

in which the localization conditions of Definition 4.3 apply and thus the improvement of

Lemma 4.4 holds. In [16, 8] a number of sufficient conditions are given, when the cardinality

of P(f) is controlled by a power of λ. The simplest one is the following.

Proposition 4.5. [8, Lemma 5.2]. Let f be an (N,E,Q)-packet and λ > 0 such that

(4.7) #P(f) ≤ t14d λ2 .

Then f localizes at height λ with tN -cubes. In particular, if p ≥ 2, s ∈ [1, p] and we assume

Hstr(p, s, γ0) for some γ0 > 0, then the inequality (3.2), i.e.

∣∣{x ∈ Q : |f(x)| > λ}
∣∣ ≤ C λ−pN (β(p,s)+γ)pN

d+1
2 |P(f)| |E| p

s
−1

holds for such f , λ and Q, and for all γ > (1 − ǫ0/2) γ0.
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We refer to [8] for details about the proof, which involves only simple combinatorial

arguments.

For completeness, the proof is included in small print.

The main geometrical argument behind Proposition 4.5 is in the following result which (in a slightly more

complicated version) will be applied to W = {|f | > λ}. For a proof we refer to [8, Lemma 4.2]. Below,

Q(t) = {B} denotes a grid of tN-cubes, and for x ∈ Rd+1 we define B(x) as the cube B in the grid containing

x (which is well defined apart from a null set).

Lemma 4.6. Let W be a measurable subset of Rd+1 and let P be a plate family, whose elements are contained

in a fixed cube of diameter CN1+ǫ0 . As before, let t = δǫ0 = N−ǫ0 . Consider the following relation “∼”

between plates π ∈ P and cubes B ∈ Q(t): we say that π ∼ B if B intersects the 9-fold dilate of Bπ, where

Bπ is a tN-cube in Q(t) for which the quantity |W ∩ π ∩ Bπ| is maximal. . Then

(4.8) #{B : π ∼ B} ≤ 10d, for every π ∈ P

and

(4.9) I :=

∫

W

∑

π∈P,π 6∼B(x)

χπ(x)dx / t−5d|W |
√

#P .

Proof. The condition that all plates in P are contained in a fixed CN1+ǫ0 -cube, and the separation property

of the plates implies #P = O(t−d−1Nd). Note that (4.8) is trivial from the definition of the relation. To

prove (4.9) we first note that

I =
∑

π

ν(π)

where

ν(π) =
∣∣∣{x ∈ W ∩ π : B(x) 6∼ π}

∣∣∣.
There is the trivial estimate∫

W

∑

π∈P:π 6∼B(x)

ν(π)≤|W |N−d

χπ(x)dx . #P|W |N−d . t−d−1 |W |.

Thus we only need to bound

Ĩ =
∑

π∈P:
N−d|W |≤ν(π)≤|W |

ν(π)

As there are O(log N) dyadic intervals between N−d|W | and |W | we can use a pidgeonhole argument to get

a subfamily P ′ ⊂ P and a value of ν between N−d|W | and |W | so that

(4.10) |Ĩ| / ν card(P ′)

and

ν ≤ ν(π) ≤ 2ν for each π ∈ P ′.

Since every plate can be covered with O(t−1) cubes, for each π ∈ P ′ there must be a cube B′(π) not related

to π so that

|W ∩ B′(π) ∩ π| & tν.

By the maximality condition in the definition of Bπ we must then also have

|W ∩ Bπ ∩ π| & tν for each π ∈ P ′.
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Clearly the number of all possible pairs of tN cubes is O(t−4(d+1)). This means that we can find two

tN-cubes B, B′ in Q(t) and a subfamily P ′′ of P ′ which has cardinality & t4(d+1)#P ′ so that for all π ∈ P ′′

we have Bπ = B and B′(π) = B′.

We now fix these two tN-cubes B and B′ and consider the auxiliary expression

A =
∑

π∈P′′

|W ∩ B ∩ π||W ∩ B′ ∩ π|.

Then we have the lower bound

A & (tν)2card(P ′′) & t4d+6card(P ′)ν2.

We can also derive an upper bound by rewriting

A =

∫

W∩B

∫

W∩B′

∑

π∈P′′

χπ(x)χπ(x′)dxdx′

If π ∩ B 6= ∅ and π ∩ B′ 6= ∅ for some π ∈ P ′′ then π is related to B but not to B′, thus the distance of B

to B′ is at least tN . This means that for each pair of points (x, x′) ∈ B × B′ there are . t−d+1 separated

plates which go to both x and x′. This means that the integrand
∑

π∈P′′ χπ(x)χπ(x) is O(t−d+1) and hence

we get the upper bound

A . t−d+1|W ∩ B||W ∩ B′| . t−d+1|W |2.

Comparing the upper and the lower bounds for A we find that

ν ≤ t−d−1(#P ′)−1/2
√
A ≤ t−5(d+1)/2|W |(#P ′)−1/2

and thus using (4.10) (i.e. Ĩ / ν card(P ′)) and we obtain

Ĩ / t−5(d+1)/2|W |
√

#P ′.

�

For technical reasons Lemma 4.6 is not quite enough for us since we wish to replace the characteristic

functions χπ by the similar weights wπ with “Schwartz-tails”. This is fairly straightforward and requires

adjustments in the definition of the relation ∼ between plates and tN-cubes and some additional pidgeon-

holing. We state the required estimate and refer to Lemma 4.3 in the paper by  Laba and Wolff [8] for details

of the proof.

Lemma 4.7. Let W be a measurable subset of Rd+1 and let P be a plate family, whose elements are contained

in a fixed cube of diameter CN1+ǫ0 . Let M0 be a large constant, and assume the constant M in the definition

of w (see (2.2)) is so large that M ≥ 10M0d. Let t = N−ε0 and Q(t) = {B} be a grid of tN cubes as before.

Then, there is a relation “∼” between plates in P and tN-cubes in Q(t) so that

(4.11) #{B : π ∼ B} / 1, for every π ∈ P

and if

WP(x) =
∑

π∈P
π 6∼B(x)

wπ(x)

then ∫

W

WP (x) dx / t−5d |W |
√

#P + N−M0 |W |.
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Proof of Proposition 4.5. We wish to apply Lemma 4.4 and therefore have to show that with P ≡ P(f)

under the assumption #P ≤ t14dλ2 the localization condition in Definition 4.3 holds.

We proceed applying Lemma 4.7 to W = {x : |f | ≥ λ} and P , and let ∼ be the relation between N-plates

and tN-cubes from Lemma 4.7. Recall that

f(x) =
∑

π∈P

fπ

with |fπ | . wπ . For every tN-cube B ∈ Q(t) define

fB(x) =
∑

π∼B

fπ .

By condition (4.11) we have
∑

B |P(fB)| / |P(f)|, i.e. (4.3). Moreover with P ≡ P(f)
∫

W

WP(x)dx / t−5d|W |
√

#P . t−5d|W |
√

t14d λ2 . t2d |W |λ .

This means that there is a subset W ∗ of W so that |W ∗| ≥ |W |/2 on which we have the pointwise bound

WP(x) . tλ, x ∈ W ∗

Also if x ∈ W ∗ ∩ B we have

|f(x) − fB(x)| =
∣∣∣

∑

π:π 6∼B

fπ(x)
∣∣∣ . WP(x) . tλ

and hence

|fB(x)| ≥ λ/2, x ∈ W ∗ ∪ B.

This implies the localization condition (4.4). �

A second sufficient condition, which also appears in [8] can be described as follows.

Following [8, §4], to every plate family P we can associate a (separated) N -tube family

T = T (P) of minimal cardinality so that each π ∈ P is contained in a 10-fold dilate of some

τ ∈ T . For each τ ∈ T (P) we call

P(τ) = {π ∈ P : π ⊂ 10τ}

and for every positive integer µ ∈ N we define a subfamily of P by

(4.12) P(µ) =
⋃

τ∈T (P)

{
P(τ) : 2µ−1 ≤ #P(τ) < 2µ

}
,

and a corresponding subfamily of tubes

(4.13) T (P(µ)) =
{
τ ∈ T (P) : 2µ−1 ≤ #P(τ) < 2µ

}
.

Observe that the families P(µ) are nonempty only for µ . logN , since we always have

#{π : π ⊂ 10τ} .
√
N, ∀ τ.

It is also clear that

(4.14) #T (P(µ)) .
#P
2µ

.
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Definition 4.8. Given an (N,E,Q)-packet f =
∑

π∈P fπ and a real number λ > 0, we

define µ∗ = µ∗(f, λ) as a positive integer at random among those for which the subpacket

f∗ =
∑

π∈P∗ fπ with plate family P∗ = [P(f)](µ∗) (defined as in (4.12)), satisfies

(4.15)
∣∣{|f | > λ}

∣∣ ≤ C0 logN
∣∣{|f∗| > λ

C0 logN

}∣∣,

for a fixed constant C0 > 0. Observe that by an elementary pigeonhole argument at least

one such µ∗ exists provided C0 is chosen large enough.

The second sufficient condition for λ-localization can now be written as follows (see [8,

Lemma 5.3]).

Proposition 4.9. Let f be an (N,E,Q)-packet and λ > 0, and assume that for µ∗ =

µ∗(f, λ) defined as above we have

(4.16)
|P(f)|

2µ∗
≤ t14d λ2 .

Then, f localizes at height λ with tN -cubes. In particular, if p ≥ 2, s ∈ [1, p] and we assume

Hstr(p, s, γ0) for some γ0 > 0, then the inequality (3.2), i.e.

∣∣{x ∈ Q : |f(x)| > λ}
∣∣ ≤ C λ−pN (β(p,s)+γ)pN

d+1
2 |P(f)| |E| p

s
−1

holds for such f , Q and λ, and for all γ > γ0(1 − ǫ0/2).

Moreover, if (4.16) does not hold, then for every
√
N -cube ∆ the subpacket f∗ in Defi-

nition 4.8 satisfies

(4.17)
∥∥f∗ψ∆

∥∥2

2
. t−14d |P(f)|

λ2
√
N

|∆||E|.

Proof. The first part of Proposition 4.9 is precisely the statement of [8, Lemma 5.3, Case

1], so we refer to this paper for a detailed proof.

We now establish the second part of the proposition, that is the inequality (4.17). Write

f∗ =
∑

k f
∗
k with supp f̂∗k ⊂ Π

(δ)
k . Since for each

√
N -cube ∆ the functions in {f∗kψ∆}k are

essentially orthogonal, by Plancherel we have

∥∥f∗ψ∆

∥∥2

2
.

∑

k

∫
|f∗k ψ∆|2 .

∫ ∑

π∈P∗

wπ w∆.

By Lemma 4.1 in [8], we can estimate

∫ ∑

π∈P∗

wπ w∆ .
2µ∗

√
N

∫ ∑

τ∈T (P∗)

wτ w∆ .
2µ∗ |E| |∆|√

N
.

Then, (4.17) follows using the upper bound for 2µ∗ obtained when (4.16) does not hold. �
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4.3. Sufficient conditions for d = 2. One cannot expect the sufficient conditions (4.7)

or (4.16) to hold for general packets f , since |P(f)| can be as large as Nd while λ2 is at

most Nd−1. As explained below, one can go over this difficulty localizing the problem with√
N -cubes, and reconsidering the above sufficient conditions at scale

√
N . As noticed in

[8], this idea turns out to work well for dimensions d ≥ 3, but does not give anything when

d = 2. Fortunately in the latter case much better sufficient conditions hold, as was proved

by Wolff in [16].

Proposition 4.10. : [16, Lemma 3.1]. Let f be an (N,E,Q)-packet in R2+1 and λ ≥ 1 so

that

(4.18) |P(f)| ≤ t300 λ3 .

Then f localizes at λ with tN -cubes. In particular, if p ≥ 2, s ∈ [1, p] and we assume

Hstr(p, s, γ0) for some γ0 > 0, then the inequality (3.2) holds for such f , Q and λ, and for

all γ > γ0(1 − ǫ0/2).

Proposition 4.11. Let f be an (N,E,Q)-packet in R2+1 and λ ≥ 1, and assume that for

µ∗ = µ∗(f, λ) as in Definition 4.8 we have

(4.19)
|P(f)|

2µ∗
≤ t3000 δ1/4 λ3 ,

then f localizes at height λ. In particular, if p ≥ 2, s ∈ [1, p] and we assume Hstr(p, s, γ0)

for some γ0 > 0, then the inequality (3.2) holds for all γ > γ0(1 − ǫ0/2).

Moreover, if (4.19) does not hold, then for every
√
N -cube ∆ we have

(4.20)
∥∥f∗ψ∆

∥∥2

2
. t−C N5/4

λ3
|P(f)||E|.

We refer to [16] for the deep proof of Proposition 4.10, which among other things relies

on combinatorial methods of Clarkson et al [4] for counting tangencies in arrangements of

circles.

Proposition 4.11 is new, and improves over Lemma 3.2 in [16], which (essentially) requires

the stronger sufficient condition

(4.21)
#P(f)

2r∗
≤ tC δ7/4 λ6.

It is straightforward to verify that (4.21) implies (4.19) since λ ≤ N
1
2 . We will give a

complete proof of Proposition 4.11 in §6.

5. The proof of theorem 3.4

5.1. A parabolic rescaling. The next lemma is an analogue and consequence of Wolff’s

inequality for Fourier plates contained in an angular sector of length
√
σ ≫

√
δ.
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Lemma 5.1. Let δ < σ < 1 and consider a fixed σ-plate Π(σ) contained in Γσ(C). Suppose

that Hypothesis Hstr(p, s, γ) holds for some p, s ≥ 1 and γ > 0. Then

(5.1)
∥∥∥

∑

k:
Π

(δ)
k ⊂Π(σ)

P
(δ)
k (hk)

∥∥∥
p

. (δ/σ)−β(p,s)−γ
(∑

k

‖hk‖s
p

)1/s
, ∀ {hk} ⊂ Lp(Rd+1).

Proof. The lemma follows by rescaling the problem with a suitable Lorentz transformation

and using hypothesis Hstr(p, s, γ) (see e.g. [8, p. 167]). For completeness, we describe the

argument here.

Let {η1, . . . , ηd} be an orthonormal basis of Rd, where η1 is chosen so that (1, η1) is the

center of the plate Π(σ). Then {(1, η1), (−1, η1), (0, η2), . . . , (0, ηd)} is a basis of Rd+1. Define

a linear operator L ∈ Gld+1(R) preserving the cone and acting on this basis by

L(1, η1) = (1, η1), L(−1, η1) = 1
σ (−1, η1) and L(0, ηℓ) = 1√

σ
(0, ηℓ), ℓ = 2, ..., d.

Set fk = P
(δ)
k (hk), so that the functions fk ◦L have now spectrum in (perhaps a multiple) of

the plates Π
(δ/σ)
k corresponding to the

√
δ/σ-separated centers {L(1, ωk)}. Thus, hypothesis

Hstr(p, s, γ) can be applied at scale δ/σ giving

∥∥∑

k

fk ◦ L
∥∥

p
. (δ/σ)−β(p,s)−γ

(∑

k

∥∥fk ◦ L
∥∥s

p

) 1
s
,

which after a change of variables yields (5.1). �

5.2. The two main lemmas. To prove Theorem 3.4 we must show that for every (N,E,Q)-

packet f and λ as in (3.18) the inequality (3.2) holds in the improved range γ > γ0(1− ǫ′0),

under the assumption Hstr(p, s, γ0). This will be done by repeatedly localizing at smaller

scales, and then using the induction hypothesis at the lowest scale. In this section we prove

the main two lemmas which show how this process works at each step. Proofs are similar

to [8, Lemma 6.1].

Below, we let N1 =
√
N (hence δ1 =

√
δ) and denote by Q1 = {∆} a tiling of Rd+1 by

N1-cubes. Then, for every (N,E,Q0)-packet f we can write

(5.2)
∣∣{x ∈ Q0 : |f(x)| > λ}

∣∣ ≤
∑

∆⊂Q0

∣∣ {x ∈ ∆ : |fψ∆(x)| > cλ}
∣∣

for some constant c > 0. Observe that, for a fixed ∆, the function fψ∆ has Fourier transform

supported in Γδ1(C), but in general is not a packet. However, by Lemma 2.5, fψ∆ can be

decomposed on ∆ in terms of (N1, E1,∆) packets. Below we denote by Ω1 a
√
δ1-separated

set in Sd−1, and by {Π
(δ1)
k }k∈Ω1 the corresponding plate decomposition of Γδ1(C).

Lemma 5.2. Let Q0 be an N -cube, f be an (N,E,Q0)-packet, and let λ ≥ 1. Then

there exists λ1 > 0 so that for every N1-cube ∆ ⊂ Q0 there is a plate family P(1,∆), a set
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E(1,∆) ⊂ Ω1, and a stable (N1, E(1,∆),∆)-packet f(1,∆) with plate set P(1,∆) so that

(5.3)
∣∣{x ∈ Q0 : |f(x)| > λ }

∣∣ /
∑

∆⊂Q0

∣∣{x ∈ ∆ : |f(1,∆)(x)| ≥ λ1 }
∣∣

and

(5.4) |P(1,∆)| /
λ2

1

λ2

‖fψ∆‖2
2

N
d+1
2

1

/
λ2

1

λ2
N

d+1
2

1 |E|.

Moreover, for all p, s ≥ 1 we have

(5.5) |P(1,∆)| |E(1,∆)|
p
s
−1 /

λp
1

λp

‖fψ∆‖p
p,s;δ1

N
d+1
2

1

.

Proof. Fix ∆ ⊂ Q0 and let g∆ ≡ fψ∆, which has Fourier transform supported in Γδ1(C)

and satisfies

‖g∆‖∞,∞;δ1 . (N/N1)(d−1)/2 = N
d−1
2

1

(by Lemma 4.2). Applying Lemma 2.5 with A = N
d−1
2

1 and Q = ∆, we can write

(5.6) g∆(x) =
∑

N−10d
1 A.2j.ANd

1

2j

nj,∆∑

ℓ=1

g∆
[j,ℓ](x) + h∆(x), x ∈ ∆,

where

nj,∆ . logN1,(5.7)

sup
x∈∆

|h∆(x)| . N−8d
1 A ≤ N−7d

1 ;(5.8)

moreover, for each (j, ℓ,∆) there is a subset E∆
j,ℓ of Ω1 so that g∆

[j,ℓ] is a stable (N1, E
∆
j,ℓ,∆)-

packet, with associated plate family P∆
j,ℓ, consisting only ofN1-plates π contained in 2N1+ǫ0

1 ∆,

and more importantly satisfying

(5.9) 2jpN
d+1
2

1 |P∆
j,ℓ| |E∆

j,ℓ|
p
s
−1 . ‖fψ∆‖p

p,s;δ1
, ∀ p, s ≥ 1.

As there are only O(logN) values of j and O(logN) values of ℓ a simple pidgeonhole

argument and (5.8) show that, for λ ≥ 1,
∣∣∣
{
x ∈ ∆ : |g∆| > cλ

}∣∣∣ ≤
∣∣∣
{
x ∈ ∆ :

∣∣∑
N−10d

1 A.2j.Nd
1 A 2j ∑nj,∆

ℓ=1 g
∆
[j,ℓ](x)

∣∣ > cλ
2

}∣∣∣

≤ C (logN)2
∣∣∣
{
x ∈ ∆ : |2j∆g∆

[j∆,ℓ∆](x)
∣∣ > λ

C(log N)2

}∣∣∣

for some fixed j∆, ℓ∆. Pigeonholing once again we can find, among the (j∆, ℓ∆)’s, a fixed

pair j∗, ℓ∗ ∈ Z (independent of ∆) so that
∑

∆

∣∣∣
{
x ∈ ∆ : |g∆| > cλ

}∣∣∣ /
∑

∆

∣∣∣
{
x ∈ ∆ : |2j∗g∆

[j∗,ℓ∗](x)
∣∣ > λ

C(log N)2

}∣∣∣.
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Using (5.2) this means that (5.3) holds with λ1 = 2−j∗λ/(C logN)2 and f(1,∆) = g∆
[j∗,ℓ∗]

,

and hence that E(1,∆) = E∆
j∗,ℓ∗

and P(1,∆) = P(g∆
[j∗,ℓ∗]

). Observe also that (5.5) follows

immediately from (5.9) and the definition of λ1.

The first inequality in (5.4) follows from the case p = s = 2 of (5.9) in the same fashion.

For the second inequality in (5.4) we observe that if f =
∑

k fk with supp f̂k ⊂ Π
(δ)
k then

the Fourier transforms f̂kψ∆ are supported in essentially disjoint sets. Thus we have the

crucial orthogonality estimate

(5.10) ‖fψ∆‖2
2 .

∑

k

‖fkψ∆‖2
2 . |∆|

∑

k∈E

‖fk‖2
∞ . Nd+1

1 |E|,

the last step following from the fact that ‖fk‖∞ . 1 for N -packets. This establishes the

second inequality in (5.4) and hence the lemma. �

Below we shall use the bound in (5.4) to argue that at least one of the sufficient conditions,

Proposition 4.5 or Proposition 4.9, can be applied to the triplet (f(1,∆), λ1,∆). The next

lemma, shows how to conclude the theorem for the original packet f in such case.

Lemma 5.3. Let p ≥ 2, s ∈ [1, p] and assume that Hstr(p, s, γ0) holds for some γ0 > 0.

Consider an (N,E,Q0)-packet f and a real number λ ≥ 1. Suppose we are given a number

λ1 > 0 and a collection {f(1,∆)}∆, where ∆ runs over a grid of N1-cubes contained in Q0,

where each f(1,∆) is an (N1, E(1,∆),∆)-packet with plate family P(1,∆) satisfying (5.3), (5.4)

and (5.5) (e.g., when f(1,∆) are generated as in Lemma 5.2). Assume in addition that there

is a real number α > 0 so that, for every ∆ ⊂ Q0, the pairs (f(1,∆), λ1) satisfy the inequality:

(5.11)
∣∣{x ∈ ∆ : |f(1,∆)(x)| > λ1 }

∣∣ /
N

(β(p,s)+α)p
1

λp
1

N
d+1
2

1 |P(1,∆)| |E(1,∆)|
p
s
−1,

Then, we also have

(5.12)
∣∣{x ∈ Q0 : |f(x)| > λ }

∣∣ / λ−pN (β(p,s)+γ)p N
d+1
2 |P(f)| |E| p

s
−1,

with γ = (γ0 + α)/2.

In particular, (5.12) holds with γ = γ0(1 − ǫ0/4) at least when one of the following

conditions is satisfied for every N1-cube ∆ ⊂ Q0:

(i) λ1 / N
(β(p,s)p− d−1

2(d+1)
)/(p−q)

1 |E(1,∆)|(
p
s
− q

2
)/(p−q);

(ii) |E(1,∆)|
p
s′
− q

2 / N
β(p,s) p− d−1

2(d+1)

1 ;

(iii) (f(1,∆), λ1) satisfies any of the sufficient conditions (4.7) or (4.16);

(iv) when d = 2, (f(1,∆), λ1) satisfies any of the sufficient conditions (4.18) or (4.19).
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Remark 5.4. We observe that the previous two lemmas already give Theorem 3.4 for p and

d sufficiently large. For instance, to verify that (5.11) holds, say with s = 2, by Proposition

4.5 we only need to check that the plate families P(1,∆) satisfy

|P(1,∆)| . t7dλ2
1.

By the inequality (5.4) and the fact that we only consider λ ≥ N
β(p,2) p

p−2 |E|1/2 (by Lemma

3.6 with s = 2), we obtain (after some arithmetics)

(5.13) λ−2
1 |P(1,∆)| /

N
(d+1)/2
1 |E|

λ2
≤ N

d+1
4

− 2p β(p,2)
p−2 = N

2
p−2

− d−3
4 ,

which is . t7d = N−7dε0 if d > 3 and p > 2 + 8
d−3−4dε0

. Thus, choosing ε0 = ε0(p) small we

can exhaust the range p > 2 + 8/(d − 3), which is one of the indices obtained in [8] for the

validity of (1.3). To improve over this index one must iterate the process with successive

N1/4, N1/8,... localizations, as described in the next subsection.

Proof of Lemma 5.3. By (5.3) and (5.11) we have

∣∣{x ∈ Q0 : |f | > λ }
∣∣ /

∑

∆⊂Q0

∣∣{x ∈ ∆ : |f(1,∆)| > λ1 }
∣∣

/
∑

∆⊂Q0

λ−p
1 N

(β(p,s)+α)p
1 N

d+1
2

1 |P(1,∆)| |E(1,∆)|
p
s
−1.

Thus, the result will be established if we can show

(5.14)
∑

∆⊂Q0

N
d+1
2

1 |P(1,∆)| |E(1,∆)|
p
s
−1 .

λ1
p

λp
N

(β(p,s)+γ0)p
1 N

d+1
2 |P(f)| |E| p

s
−1.

To do so, recall that fψ∆ are functions with spectrum in Γδ1(C), and denote by P
(δ1)
ℓ the

projections as in (1.11) associated with the usual partition of Γδ1(C) by 1×δ1×
√
δ1×...×

√
δ1

plates: {Π
(δ1)
ℓ }ℓ. Then by (5.5) we have for each ∆,

N
d+1
2

1 |P(1,∆)| |E(1,∆)|
p
s
−1 /

λ1
p

λp
‖fψ∆‖p

p,s;δ1

.
λ1

p

λp

( ∑

ℓ

∥∥P (δ1)
ℓ (fψ∆)

∥∥s

p

)p/s

=
λ1

p

λp

( ∑

ℓ

∥∥∥P (δ1)
ℓ

[
ψ∆ (

∑

k : Π
(δ)
k ⊂CΠ

(δ1)
ℓ

fk)
] ∥∥∥

s

p

)p/s

.
λ1

p

λp

( ∑

ℓ

∥∥∥ψ∆

( ∑

Π
(δ)
k ⊂CΠ

(δ1)
ℓ

fk

)∥∥∥
s

p

)p/s
.

We sum in ∆ and apply Minkowski’s inequality (since p ≥ s) to obtain
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∑

∆

N
d+1
2

1 |P(1,∆)| |E(1,∆)|
p
s
−1 /

λp
1

λp

∑

∆

(∑

ℓ

∥∥∥ψ∆

( ∑

Π
(δ)
k ⊂CΠ

(δ1)
ℓ

fk

)∥∥∥
s

p

)p/s

.
λp

1

λp

(∑

ℓ

[∑

∆

∥∥∥ψ∆

( ∑

Π
(δ)
k ⊂CΠ

(δ1)
ℓ

fk

)∥∥∥
p

p

]s/p)p/s

.
λp

1

λp

(∑

ℓ

∥∥∥
∑

Π
(δ)
k ⊂CΠ

(δ1)
ℓ

fk

∥∥∥
s

p

)p/s
.

Now, we apply Hypothesis Hstr(p, s, γ0) in the rescaled version of Lemma 5.1 and bound

for each ℓ ∥∥∥
∑

k:Π
(δ)
k ⊂CΠ

(δ1)
ℓ

fk

∥∥∥
p

. (N/N1)β(p,s)+γ0

( ∑

k:Π
(δ)
k ⊂CΠ

(δ1)
ℓ

‖fk‖s
p

)1/s
.

This yields
(∑

ℓ

∥∥∥
∑

Π
(δ)
k ⊂cΠ

(δ1)
ℓ

fk

∥∥∥
s

p

)p/s
/ N

(β(p,s)+γ0)p
1

( ∑

ℓ

∑

Π
(δ)
k ⊂cΠ

(δ1)
ℓ

∥∥fk

∥∥s

p

)p/s

. N
(β(p,s)+γ0)p
1

∥∥f
∥∥p

p,s

. N
(β(p,s)+γ0)p
1 N

d+1
2 |P(f)| |E| p

s
−1,

where the last inequality follows from (2.18). This proves (5.14) and establishes the lemma.

�

5.3. Iteration. We are now ready to describe the iteration. Here we fix p > pd as in (1.4)

and s ∈ [1, p]. We let Nj = N1/2j
for j = 0, 1, 2, . . . Starting with an (N,E,Q0)-packet

f = f0 and λ = λ0 as in (3.18), at step j we shall define, for each Nj−1-cube ∆j−1, a real

number λj > 0 and a collection of functions {f(j,∆)}∆⊂∆j−1 , where ∆ runs in a grid Qj of

Nj-cubes and each f(j,∆) is an (Nj , E(j,∆),∆)-packet with plate family P(j,∆), and so that

the pair (f(j,∆), λj) satisfies

(a)
∣∣{x ∈ ∆j−1 : |f(j−1,∆j−1)| > λj−1 }

∣∣ /
∑

∆∈Qj
∆⊂∆j−1

∣∣{x ∈ ∆ : |f(j,∆)| > λj }
∣∣

(b) |P(j,∆)| /
λ2

j

λ2
j−1

‖f(j−1,∆j−1)ψ∆‖2
2

N
d+1
2

j

;

(c) |P(j,∆)| /
λp

j

λp
j−1

‖f(j−1,∆j−1)ψ∆‖p,s;δj

N
d+1
2

j

.
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It is clear from Lemma 5.2 that this is possible for j = 1. We next show how to pass from

step j to step j + 1.

Suppose we are at step j. Then we stop the process for the Nj-cubes ∆ ∈ Qj for which

the pair (f(j,∆), λj) already satisfies the improved inequality in (5.11); in particular when

at least one of the conditions (i)-(iv) in Lemma 5.3 holds (with the subindex “1” replaced

by “j”). Observe that when for all cubes ∆ ⊂ ∆j−1 the inequality (5.11) is satisfied, then

a direct application of Lemma 5.3 gives the improved estimate at the next scale, i.e.

∣∣{x ∈ ∆j−1 : |f(j−1,∆j−1)| > λj−1 }
∣∣ / λ−p

j−1N
(α+γ0(1− ǫ0

4
))p

j−1 N
d+1
2

j−1 |P(j−1,∆j−1)|
p
s
−1,

which after j − 1 more applications of the lemma leads to (5.12) with γ = γ0(1 − ǫ0/2
j+1),

hence establishing Theorem 3.4 with ǫ′0 = ǫ0/2
j+1.

Assume therefore that we are dealing with cubes ∆ ∈ Qj for which (f(j,∆), λj) does not

satisfy any of the conditions (i)-(iv) in Lemma 5.3. That is, we are only considering

(5.15) λj ≥ (logN)CN
(β(p,s)p− d−1

2(d+1)
)/(p−q) |E(j,∆)|(

p
s
− q

2
)/(p−q)

and

(5.16) |E(j,∆)| ≥ N
(β(p,s) p− d−1

2(d+1)
)/( p

s′
− q

2
)
.

Also, since (iii) fails, by Proposition 4.9, there must exist a subpacket f∗(j,∆) of f(j,∆) so that

(5.17)
∣∣{|f(j,∆)| > λj}

∣∣ /
∣∣{|f∗(j,∆)| > cλj/ logN}

∣∣

and moreover, for every Nj+1-cube ∆j+1

(5.18)
∥∥f∗(j,∆)ψ∆j+1

∥∥2

2
. t−14d

N
d/2
j

λ2
j

|P(j,∆)| |E(j,∆)|.

Then, we can replace the original (f(j,∆),P(j,∆), λj) by (f∗(j,∆),P∗
(j,∆), λ

∗
j = cλj/ logN),

which also satisfies (a), (b), (c) and (5.15), (5.16). Next, we apply Lemma 5.2 to each pair

(f∗(j,∆), λ
∗
j ) to obtain new quadruplets (f(j+1,∆j+1),P(j+1,∆j+1), E(j+1,∆j+1), λj+1) with the

required conditions, i.e.

∣∣{x ∈ ∆ : |f∗(j,∆)| > λ∗j }
∣∣ /

∑

∆j+1∈Qj+1
∆j+1⊂∆

∣∣{x ∈ ∆j+1 : |f(j+1,∆j+1)| > λj+1 }
∣∣

(5.19) |P(j+1,∆j+1)| /
λ2

j+1

λ2
j

‖f∗(j,∆j)
ψ∆j+1‖2

2

N
(d+1)/2
j+1

;

|P(j+1,∆j+1)| /
λp

j+1

λp
j

‖f∗(j,∆j)
ψ∆j+1‖p

p,s;δj+1

N
(d+1)/2
j+1

.
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Observe that, with this construction, if we combine (5.19) and (5.18) we obtain in addition

the inequality

(d) |P(j+1,∆j+1)| / t−14d
λ2

j+1

λ4
j

N
d−1
4

j |P(j,∆j)| |E(j,∆j)|, j = 1, 2, . . .

The case d ≥ 3 and s = 2.

Claim. If d ≥ 3, p > pd and s = 2, then the above process will stop after a finite

number of iterations. More precisely, there exists ℓ = ℓ(p) ∈ N so that the quadruplets

(f(ℓ,∆),P(ℓ,∆), E(ℓ,∆), λℓ) satisfy the sufficient condition (4.7) in Lemma 4.5 for all ∆ ∈ Qℓ.

For simplicity, denote Aj = |P(j,∆j)| and Ej = |E(j,∆j)|. Then, from (d) above one obtains

(5.20) λ−2
ℓ Aℓ / t−14d(ℓ−1) Eℓ−1 · · ·E1

λ2
ℓ−1 . . . λ

2
2λ

4
1

(Nℓ−1 . . . N1)
d−1
4 A1.

Now, to estimate A1 we use (5.4), that is

(5.21) A1 /
λ2

1

λ2
N

d+1
4 E0.

Inserting this into (5.20) leads to

(5.22) λ−2
ℓ Aℓ / t−14d(ℓ−1) Eℓ−1 · · ·E1E0

λ2
ℓ−1 . . . λ

2
1λ

2
(Nℓ−1 . . . N1)

d−1
4 N

d+1
4 .

We need to show that the right hand side of this expression is smaller than t14d. Observe

that we can replace the symbol “/” in (5.22) by “≤ t−1”, provided N ≥ N0(ǫ0). Thus it

will suffice to prove the inequality

(5.23)
(
N

1− 1

2ℓ−1
)d−1

4 N
d+1
4 ≤ t30dℓ λ2

ℓ−1

Eℓ−1
. . .

λ2
1

E1

λ2

E0
.

By (5.15) (with s = 2) we know that

λj ≥ N
(β(p,s)p− d−1

2(d+1)
)/(p−q)

E
1/2
j = N

d−1
4

− q
4(p−q)

j E
1/2
j ,

and therefore it is enough to show that

(5.24) N
d−1
4 N

d+1
4 ≤ t30dℓ

(
N

d−1
2

− q
2(p−q)

)2− 1

2ℓ−1 .

Since t = N−ǫ0 , the previous is equivalent to

(5.25) 2(1 − 1
2ℓ )(d−1

2 − q
2(p−q)) − d

2 ≥ 30dℓǫ0.

It is now easy to verify that this holds when p > pd, for a sufficiently large integer ℓ = ℓ(p),

and a suitable choice of ǫ0 = ǫ0(p). More precisely, condition p > pd (for d ≥ 3) can be read

as q
4(p−q) <

d−2
8 , which is equivalent to

ǫp := 2(d−1
2 − q

2(p−q)) − d
2 > 0.
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Thus, we only need to choose ℓ = ℓ(p) so that 2−ℓ+1(d−1
2 − q

2(p−q)) < ǫp/2, and next choose

ǫ0 = ǫ0(ℓ, p) = ǫ0(p) so that 30dℓǫ0 < ǫp/2. This will satisfy (5.25) and establish the claim.

Thus letting ǫ′0 = ǫ0/2
ℓ+1, one obtains Theorem 3.4 for d ≥ 3.

The case d = 2. In this case the previous scheme does not give anything. One must use

in (5.18) above Proposition 4.11, rather than the weaker Proposition 4.9. In such case the

inequality in (5.18) can be replaced with the improved version

(5.26)
∥∥f∗(j,∆)ψ∆j+1

∥∥2

2
/ t−C

N
5/4
j

λ3
j

|P(j,∆)| |E(j,∆j)|

(which follows from (4.20)). Thus (d) will take the form

(5.27) |P(j+1,∆j+1)| / t−C
λ2

j+1

λ5
j

Nj+1 |P(j,∆)| |E(j,∆j)|, j = 1, 2, . . .

Then calling Aj = |P(j,∆j)|, Ej = |E(j,∆j)| and iterating as in the proof of the claim we are

led to

λ−2
ℓ Aℓ ≤ t−C Eℓ−1 . . . E1

λ3
ℓ−1 . . . λ

3
2λ

5
1

(
Nℓ . . . N2

)
A1

(by (5.21)) ≤ t−C Eℓ−1

λ3
ℓ−1

. . .
E1

λ3
1

E0

λ2

(
Nℓ . . . N2

)
N

3
4 .(5.28)

The lower bound for λj from (5.15) gives

|E|
λ2

≤ |E|1−2(p
s
− q

2
)/(p−q)

N2(β(p,s)− 1
6
)/(p−q)

=
|E|

2p
p−q

(
1
2
− 1

s

)

N
p

p−q

(
1
s′
− q

p

)

≤ N
p

p−q

(
1
2
− 1

s

)

N
p

p−q

(
1
s′
− q

p

) = N
− p−2q

2(p−q) ,(5.29)

where in the last inequality we have used that |E| . N1/2 (since we only consider s ≥ 2).

On the other hand the same bound for λj from (5.15) gives

(5.30)
Ej

λ3
j

≤
E

1−3(p
s
− q

2
)/(p−q)

j

N
3(β(p,s)− 1

6
)/(p−q)

j

=
E

3p
p−q

(
2p+q
6p

− 1
s

)
j

N
3p

2(p−q)

(
1
s′
− q

p

)
j

To estimate further this quantity we must distinguish cases.

Case 1: s ≥ 6p
2p+q = 3− 15

3p+5 . Then the exponent of Ej in (5.30) is positive and we can use

again the trivial bound Ej . N
1/2
j , which leads to

(5.31)
Ej

λ3
j

≤
N

3p
2(p−q)

(
2p+q
6p

− 1
s

)
j

N
3p

2(p−q)

(
1
s′
− q

p

)
j

= N
− 4p−7q

4(p−q)

j .
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Inserting (5.29) and (5.31) into (5.28) we obtain

λ−2
ℓ Aℓ ≤ t−C N

− 4p−7q
4(p−q) N

− p−2q
2(p−q) N1/2N3/4.

Since by Lemma 4.5 it suffices to show§ that λ−2
ℓ Aℓ ≤ t28, we will be done when

5
4 < 4p−7q

4(p−q) + p−2q
2(p−q) = 6p−11q

4(p−q) ,

or equivalently when

p > 6q = 20.

This establishes Theorem 1.2 in this case.

Case 2: 2 ≤ s ≤ 6p
2p+q = 3 − 15

3p+5 . Then the exponent of Ej in (5.30) is negative and we

must use instead the lower bound Ej & N
(β(p,s) p− 1

6
)/( p

s′
− q

2
)

j in (5.16), which after a simple

but tedious computation leads to

(5.32)
Ej

λ3
j

≤ N
−( p

s′
−q)/( p

s′
− q

2
)

j .

Inserting this expression together with (5.29) in (5.28) we obtain

λ−2
ℓ Aℓ ≤ t−C N−( p

s′
−q)/( p

s′
− q

2
)N

− p−2q
2(p−q) N1/2N3/4,

so that we will have λ−2
ℓ Aℓ ≤ t28 at least when

(5.33) 5
4 < 2p−2s′q

2p−s′q + p−2q
2(p−q) .

When s = 2 this is easily seen to be equivalent to

p > 7q = 70
3 = 23.333...

as asserted in Theorem 1.2. When 2 < s < 3 − 15
3p+5 , then solving for p in (5.33) leads to

the range

(5.34) p > p(s) =
(
11s − 6 +

√
65s2 − 76s+ 36

)
q/(4(s − 1)),

which therefore completes the proof of Theorem 1.2.

Remark 5.5. We point out that the range of p obtained in (5.34) when 2 < s < 3 − 15
3p+5

and d = 2 is slightly better than the interpolated line between (1
p = 3

70 ,
1
s = 1

2) and

(1
p = 1

20 ,
1
s = 13

36 ) (see Figure 1.2).

Remark 5.6. One can do similar computations to establish a range for s < 2, however the

region that comes out corresponds precisely to interpolating the case s = 2 with the trivial

p = ∞, s = 1, and therefore no new result appears in this case (again, see Figure 1.2).

§We could also require the weaker estimate Aℓ ≤ tC′

λ3
ℓ |Eℓ|

1

2 (by Lemma 4.10), but this makes no difference

at this point.
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6. Proof of Proposition 4.11

The main result in this section is Lemma 6.2, which gives an improvement over Lemma

2.5 in [16]. The rest of the proof of Proposition 4.11 follows from exactly the same reasoning

as in [16], replacing at each occurrence Wolff’s Lemma 2.5 by its improved version; we sketch

the argument in §6.2. Recall that throughout this section d = 2.

6.1. The combinatorial lemma. In this subsection it will be convenient to follow the

notation in [16, §2]. Namely, P = {π} will denote a collection of 1 ×
√
δ × δ plates, and

T = {τ} a collection of 1 ×
√
δ ×

√
δ tubes. As usual the longest axes of π and τ point

in
√
δ-separated light rays. We shall also use a collection P = {Π} of much larger plates

with dimensions 1× δ 1
4 ×

√
δ, and longest axes pointing in δ

1
4 -separated directions. All such

families are assumed to consist of separated plates or tubes, meaning that C1π contains less

than C2 plates from P, and similarly with T and P.

Fix t = δǫ0 and consider a tiling {B} of R3 by t-cubes. If w ∈ R3, we denote by B(w)

the t-cube containing w. Given a finite set W consisting of
√
δ-separated points in R3 and

a tube family T , we wish to define relations “∼” between tubes and t-cubes which keep as

small as possible the cardinality of the bad incidence set

Ib(W,T ) =
{

(w, τ) ∈ W × T : w ∈ τ, τ 6∼ B(w)
}
.

These relations will be admissible if they satisfy the property

(6.1) for every τ ∈ T Card {B : τ ∼ B} / 1.

One defines likewise the concept of admissible relation between t-cubes and P-plates, as well

as the bad incidence set Ib(W,P).

As a special example consider the relation τ ∼ B if B is equal or adjacent to a fixed cube

maximizing |W ∩ τ ∩ B|, and likewise for P-plates. Using this relation, Wolff proves the

following result.

Lemma 6.1. : (see [16, Lemma 2.3]). Let W be a
√
δ-separated set in R3.

(i) Given a plate family P, there exists an admissible relation ∼ so that, for every ε > 0

(6.2) Card Ib(W,P) ≤ Cε δ
−ε t−6 |P|1/3 |W|.

(ii) Given a tube family T , there exists an admissible relation ∼ so that

(6.3) Card Ib(W,T ) / t−5 |T |1/2 |W|.

The statement in (i) is by far much deeper than its counterpart in (ii), relying on highly

non trivial bounds for circle tangencies. In his paper, Wolff improves the bound in (6.3) by

combining it with (6.2) (see [16, Lemma 2.5]). It seems, though, that both his statement
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and proof can be simplified. Below, given a set T , we denote by P(T ) a plate family of

minimal cardinality so that each τ ∈ T is contained in some Π ∈ P(T ) (as in [16, p. 1255]).

Lemma 6.2. Let W be a
√
δ-separated set in R3, and T a tube family so that every Π ∈ P(T )

contains at most m tubes. Then, there exists an admissible relation ∼ so that, for every

ε > 0

(6.4) Card Ib(W,T ) ≤ Cε δ
−ε t−11m1/6 |T |1/3 |W|.

Proof. Assume first that every plate Π ∈ P(T ) contains between m/2 and m tubes from T .

Given τ ∈ T , let Π be the plate in P(T ) containing τ , and TΠ the subset of all tubes from

T contained in Π. Define the relation τ ∼ B when one of the following holds:

(a) Π ∼ B, as in (i) of Lemma 6.1, with respect to the set W and the plate family P(T );

(b) τ ∼ B, as in (ii) of Lemma 6.1, with respect to the set W ∩ Π ∩ [∪B 6∼ΠB] and the tube

family TΠ.

More precisely, if we denote by BΠ the union of the t-cubes B which are equal or adjacent

to the cube maximizing |W ∩ Π ∩ B|, and denote by Bτ the union of the t-cubes B which

are equal or adjacent to the cube maximizing |[W ∩Bc
Π] ∩ τ ∩B|, then

τ ∼ B iff B ⊂ BΠ ∪Bτ .

Clearly ∼ is an admissible relation. Moreover,

Card Ib(W,T ) =
∑

τ∈T

∣∣W ∩ τ ∩
[
∪B 6∼τB

]∣∣ =
∑

Π∈Π(T )

∑

τ∈T
τ⊂Π

∣∣W ∩ τ ∩Bc
Π ∩Bc

τ

∣∣

(by (6.3)) /
∑

Π∈Π(T )

t−5m1/2
∣∣W ∩ Π ∩Bc

Π

∣∣

(by (6.2)) ≤ Cε δ
−ε t−11m1/2

∣∣P(T )
∣∣1/3 ∣∣W

∣∣

. Cε δ
−ε t−11m

1
2
− 1

3

∣∣T
∣∣1/3 ∣∣W

∣∣,

since by assumption |P(T )| ≈ |T |/m. Finally, to remove the condition that each Π contains

at least m/2 tubes, simply partition T into the subfamilies Tj = ∪{TΠ : 2j−1 ≤ |TΠ| < 2j},

and apply the above reasoning to each Tj. �

Remark 6.3. Observe that m in the statement of the lemma is always m . N
1
2 , since each

Π may contain at most N
1
4 parallel tubes pointing in each of N

1
4 different directions. In

fact, below we shall only use (6.4) with m = N
1
2 .
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Remark 6.4. From Lemma 6.2 it is easy to derive a version with “Schwartz tails” as in [16,

Lemma 2.7]. Namely, letting

Ib(T ,W) =
∑

w∈W

∑

τ∈T
τ 6∼B(w)

wτ (w),

then with the same conditions as in Lemma 6.2 there is an admissible relation ∼ so that

for all ε > 0

(6.5) Ib(T ,W) ≤ Cε δ
−ε t−11N1/12 |T |1/3 |W| + δ100|W|.

Remark 6.5. We point out that, according to the scaling we have adopted in the paper, we

will use the results in this subsection with families T of N ×
√
N ×

√
N -tubes and sets W of√

N -separated points. Of course, all the results remain valid with this scaling, by a simple

change of variables.

6.2. Proof of Proposition 4.11. We only sketch the proof of Proposition 4.11, since it is

essentially the same as in [16, Lemma 3.2] or [8, Lemma 5.3].

We are given an (N,E,Q)-packet f , and consider the subpacket f∗ =
∑

π∈P∗ fπ in

Definition 4.8 and λ ≥ 1 so that (4.19) holds. Reasoning as in [16, p. 1267] one can find a

finite set of N
1
2 -separated points W ⊂ {|f∗| > cλ/ logN} and a real number a = a(N) > 0

so that the set

W̃ :=
⋃

w∈W
∆(w) ∩

{
|f∗| > cλ

log N

}

(with ∆(w) denoting the
√
N -cube containing w) satisfies

meas
{
|f∗| > cλ/logN

}
/ meas (W̃ )

and

(6.6) meas
(
∆(w) ∩

{
|f∗| > cλ

log N

})
≈ aN

3
2 , ∀ w ∈ W.

Let ∼ denote the equivalence relation relative to (W,T (P∗)) obtained in Remark 6.4, and

given π ∈ P∗, define π ∼ B when the tube τ ∈ T (P∗) whose 10-fold dilate contains π

satisfies τ ∼ B. Define the plate families PB = {π ∈ P∗ : π ∼ B}, which satisfy

∑

B

|PB | / |P∗|

by property (6.1) from the previous subsection. By (4.15), to obtain the λ-localization of f

as in Definition 4.3 it suffices to show that

(6.7)
∣∣{|f∗| > cλ/ logN}

∣∣ /
∑

B

∣∣B ∩ {|fB| ' λ}
∣∣,
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where fB =
∑

π∈PB
fπ. To prove (6.7) we use the crude estimate

|f∗(x) − fB(x)| .
∑

τ 6∼B

wτ (x)

and show that the right hand side is ≪ λ/ logN when x ∈ B ∩ W̃ . Indeed, by Lemma

6.2 (in its version with Schwartz tails; see Remark 6.4) and the fact that wτ is essentially

constant in
√
N -cubes we have

∫

W̃

∑

τ 6∼B(x)

wτ (x) dx . aN
3
2

∑

w∈W

∑

τ 6∼B(w)

wτ (w) = aN
3
2 Ib(T (P∗),W)

≤ CεN
ε t−11N

1
12

∣∣T (Pr)
∣∣ 1
3 #(W) aN

3
2

. CεN
ε t−11N

1
12

[ |Pf |
2µ∗

] 1
3
∣∣W̃

∣∣,

which is smaller than c|W̃ |λ/(4 logN) if the sufficient condition (4.19) holds (choosing

ε ≪ ǫ0 and N ≥ N0(ǫ0)). Thus, there exists a subset W ∗ of W̃ with proportional measure

so that
∑

τ 6∼B(x)

wτ (x) < cλ/(4 logN), x ∈W ∗.

Therefore, if x ∈ B ∩W ∗ we have |f∗(x) − fB(x)| ≤ cλ/(4 logN), which implies |fB(x)| >
cλ/(4 logN). Thus,

∣∣{|f∗| > cλ/ logN}
∣∣ /

∣∣W̃
∣∣ .

∣∣W ∗∣∣ ≤
∑

B

∣∣B ∩ {|fB| ' λ}
∣∣,

as we wished to prove. Finally, to obtain (4.20) when the condition (4.19) does not hold,

one repeats the same argument as at the end of the proof of Proposition 4.9. We leave

details to the reader.

7. Boundedness of Bergman projections

As mentioned in the introduction, Wolff’s inequality, and their variants with ℓ2(Lp)-

norms, have also played a role in a complex analysis problem, namely the boundedness

of Bergman projections in tube domains over full light cones, see e.g. [2, 1]. Denote by

Q(Y ) = y2
0 − |y′|2 the Lorentz form in Rd+1 and consider the forward light cone on which

Q is positive;

Λd+1 = {Y = (y0, y
′) ∈ R × Rd : y2

0 − |y′|2 > 0, y0 > 0}.

Let T d+1 ⊂ Cd+1 be the tube domain over Λd+1, i.e.

T d+1 = Rd+1 + iΛd+1.
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Let wγ(Y ) = Q(Y )γ and consider the weighted space Lp(T d+1, wγ) with norm

‖F‖Lp(wγ) =
(∫∫

T d+1

|F (X + iY )|p∆γ(Y ) dY dX
)1/p

.

Let Pγ be the orthogonal projection mapping the weighted space L2(T d+1, wγ) to its sub-

space Ap
γ consisting of the holomorphic functions. Only the case γ > −1 is relevant since

Ap
γ = {0} for γ ≤ −1. One is interested in the boundedness of Pγ in Lp(T d+1, wγ). A

known and trivial necessary condition is

(7.1) 1 +
d− 1

2(γ + d+ 1)
< p < 1 +

2(γ + d+ 1)

d− 1

(see e.g. [2]). In fact it has been conjectured that boundedness should hold in this

range(7.1)¶.

Corollary 7.1. Let d ≥ 2 and pd as in (1.4). Then for all

(7.2) γ ≥ max
{
−1 + d−1

4 (pd − 2(d+1)
d−1 ), d−1

2 (pd − 2(d+1)
d−1 − 1)

}
,

the Bergman projection Pγ is a bounded operator in Lp(T d+1, wγ) in the sharp range (7.1).

Remark 7.2. We point out that the range in Corollary 7.1 is a consequence of the stronger

ℓ2(Lp) inequalities in Theorem 1.2. The weaker ℓp(Lp) estimates in Theorem 1.1 only imply

a solution to the problem in the smaller range γ ≥ d−1
2 (pd − 2(d+1)

d−1 ) (see [6, Corollary 1.4]).

The corollary follows from Theorem 1.2 and the arguments in [1, §5]. To be more precise,

one has the following (stronger) result:

Proposition 7.3. Let 2 ≤ s ≤ w < ∞ and suppose that Hstr(w, s, ε) holds for all ε > 0.

Let

(7.3) γ(w, s) = −1 + 2sβ(w, s).

Then, for every γ > −1, the Bergman projection Pγ is bounded in the mixed-norm space

Lp,u
γ (T d+1) = Lu(∆γ(Y )dY ;Lp(dX)) in the optimal range 2 ≤ u < ũγ,p = (γ+d)/(d+1

2p′ −1)

whenever

(7.4) p ≥ pw,s,γ := w + w
s

(γw,s − γ)+
γ + 1

.

Proof. The result follows from [1, Prop. 5.5] by using a similar reasoning as in [1, Corol.

5.11]. Namely, assuming first γ ≥ γ(w, s), then Hstr(w, s) implies [1, (5.6)] for all p ≥ w

and all µ > sβ(p, s), which in turn by [1, Prop. 5.5] implies (after some arithmetics) the

boundedness of Pγ in Lp,u
γ (T d+1) in the optimal range 2 ≤ u < ũγ,p.

¶Except for d = 2 and γ ∈ (−1,−1/2), in which case there are additional counterexamples for p ≥ 8 + 4γ

(see [1]).
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When γ < γ(w, s) one must find (ρ, σ) so that Hstr(ρ, σ) holds and γ = γ(ρ, σ). By

interpolation with the trivial (∞, 1)-estimate, Hstr(ρ, σ) holds when ρ ≥ w and σ′ = s′ρ/w.

Since with this choice γ(ρ, σ) ց −1 as ρ → ∞, one can always find a (unique) ρ so that

γ = γ(ρ, σ). In fact, a simple computation shows that ρ = pw,s,γ as in (7.4). Thus, by the

first part of the proof Pγ is bounded in Lp,u
γ (T d+1) in the optimal range 2 ≤ u < ũγ,p, for

all p ≥ pw,s,γ. �

To obtain Corollary 7.1 from Proposition 7.3 one must specialize to the diagonal case

p = u. First, an easy computation shows that 2 ≤ p < ũγ,p is equivalent to 2 ≤ p <

1 + 2(γ + d + 1)/(d − 1), which gives the conjectured range of Lp
γ-boundedness for Pγ in

(7.1) (by duality); thus, it suffices to find all γ’s so that the endpoint p = ũγ,p is ≥ pw,s,γ

as in (7.4). Straightforward arithmetics show that this is the case for

γ ≥ d− 1

2

(
w − 2(d+1)

d−1 − 1 + w
s

(γ(w, s) − γ)+
γ + 1

)
.

When d ≥ 3, we let w = pd and s = 2, so that considering the two cases γ > γ(w, s) and

γ ≤ γ(w, s), one obtains the conditions in (7.2). When d = 2, one may use w = p2 = 20

and s = 3, which leads to the same conditions on γ (namely to γ ≥ (w − 7)/2 = 6.5). This

establishes Corollary 7.1.
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